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DUAL CERTIFICATES AND EFFICIENT RATIONAL
SUM-OF-SQUARES DECOMPOSITIONS FOR POLYNOMIAL
OPTIMIZATION OVER COMPACT SETS*
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Abstract. We study the problem of computing weighted sum-of-squares (WSOS) certificates
for positive polynomials over a compact semialgebraic set. Building on the theory of interior-point
methods for convex optimization, we introduce the concept of dual certificates, which allows us to
interpret vectors from the dual of the sum-of-squares cone as rigorous nonnegativity certificates of a
WSOS polynomial. Whereas conventional WSOS certificates are alternative representations of the
polynomials they certify, dual certificates are distinct from the certified polynomials; moreover, each
dual certificate certifies a full-dimensional convex cone of WSOS polynomials. For a theoretical appli-
cation, we give a short new proof of Powers’ theorems on the existence of rational WSOS certificates
of positive polynomials. For a computational application, we show that exact WSOS certificates
can be constructed from numerically computed dual certificates at little additional cost, without any
rounding or projection steps applied to the numerical certificates. We also present an algorithm for
computing the optimal WSOS lower bound of a given polynomial along with a rational dual certifi-
cate, with a polynomial-time computational cost per iteration and linear rate of convergence.
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1. Introduction. Deciding whether a polynomial is nonnegative on an (often
compact) semialgebraic set and the closely related problem of computing the (approx-
imate) minimum value of a polynomial are fundamental problems of computational
algebraic geometry and theoretical computer science, with many applications from
discrete geometry and algorithmic theorem proving to the design and analysis of dy-
namical systems such as power networks, to name a few. This problem is well-known
to be decidable [44, 38] but strongly NP-hard. The perhaps most studied, and ar-
guably practically most successful, computational approach to it has been to certify
the nonnegativity of the polynomial by writing it as a (weighted) sum of squared
polynomials—a technique known as sum-of-squares decomposition. A variety of re-
sults from real algebraic geometry such as Putinar’s Positivstellensatz [36] guarantee
that every polynomial that is strictly positive over a compact semialgebraic set has
such a representation.

Lower bounds on the global minima of polynomials and weighted sum-of-squares
(WSOS) decompositions are usually computed numerically, using semidefinite pro-
gramming (e.g., [35, 8, 14]) or non-symmetric cone optimization [30], which is sufficient
in many of the practical applications mentioned above. However, in many contexts,
such as in computational algebraic geometry, system verification, and automated the-
orem proving, it is required that the computed bounds be certified rigorously, in exact
arithmetic. Such rational certificates are not always guaranteed to exist. In particu-
lar, rational polynomials on the boundary of the sums-of-squares cone may not have
a rational sums-of-squares decomposition [42], [24]. On the other hand, polynomials
in the interior of the sums-of-squares cone do have rational decompositions, a result
due to Powers [34], of which we provide a new elementary proof in Section 2.1.1.
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Computing rational WSOS decompositions for polynomials with rational coeffi-
cients is a challenging problem even in the univariate case [20]. Symbolic methods
such as those that rely on quantifier elimination or root isolation are exponential in
the number of variables of the input polynomial, and in the univariate case have been
found to be less efficient than more specialized methods. The optimal value of the
semidefinite program is an algebraic number, but the study of the algebraic degree of
the positive semidefinite cone [27] suggests that one cannot hope for easily comput-
able and verifiable certificates from taking a purely symbolic computational approach
to the semidefinite programming problems that come from sums-of-squares. There-
fore, a number of authors have proposed hybrid methods that “round” or “project”
efficiently computable but inexact numerical sum-of-squares certificates to rigorous
rational ones [33, 17, 6]; see also [9, 10, 3]. (Certifying a WSOS lower bound of a
polynomial, and the related goal of certifying a nonnegativity of a polynomial using
rational certificates, is also discussed in [19], and software developed to attain these
goals includes [18] and, [41], amongst others.)

Our contribution is twofold. In Section 2, we propose a new framework for cer-
tifying that a polynomial is WSOS using dual certificates. The approach relies on
convex programming duality and allows the efficient construction of rational WSOS
decompositions from suitable rational vectors from the dual cone. In contrast to con-
ventional WSOS certificates, which can be viewed as different representations of the
polynomial whose nonnegativity they certify, dual certificates are distinct from the
certified polynomials themselves. Moreover, every polynomial in the interior of the
WSOS cone has a full-dimensional cone of dual certificates, which makes it partic-
ularly easy to identify one with an efficient numerical method. We also show that
every rational polynomial in the interior of the WSOS cone has a rational dual certifi-
cate. This gives short new proofs to a number of known results about the existence
of sum-of-rational-squares decompositions, including theorems of Powers [34].

In Section 3, we discuss various algorithmic applications of dual certificates. We
propose an efficient algorithm, Algorithm 3.1, for computing and certifying rational
WSOS lower bounds for polynomials over a compact semialgebraic set using dual cer-
tificates. The algorithm can be implemented as an entirely numerical method that
nevertheless produces exact rational WSOS decompositions certifying rational lower
bounds. The algorithm provides, in each iteration, a certifiable WSOS bound with
a dual certificate that can be converted (in polynomial time) to an explicit rational
WSOS decomposition without any additional rounding or projection of the numerical
solutions. The sequence of WSOS bounds converges to the optimal WSOS bound at
a linear rate. In Section 4, we deduce explicit bounds on the number of iterations of
Algorithm 3.1 in the univariate case. Section 5 includes additional examples demon-
strating the efficacy of the method and the quality of the lower bounds obtained using
Algorithm 3.1 in standard polynomial optimization benchmark problems. Specifically,
we demonstrate that in some cases, the best certifiable bound using our purely nu-
merical algorithm (implemented using double-precision floating point arithmetic) is
indistinguishable from the true minimum in double-precision arithmetic.

1.1. Preliminaries. In the rest of this section we introduce some notation and
briefly review some convex optimization and interior-point theory that we rely on
throughout the paper.

1.1.1. Weighted SOS polynomials and positive semidefinite matrices.
Recall that a convex set K C R" is called a convex cone if for every x € K and
A > 0 scalar, the vector A\x also belongs to K. A convex cone is proper if it is closed,
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full-dimensional (meaning span(K) = R™), and pointed (that is, it does not contain
a line). We shall denote the interior of a proper cone K by K°.

Sum-of-squares (SOS) polynomials. Let V, 24 denote the cone of n-variate poly-
nomials of degree 2d. We say that a polynomial p € V,, o4 is sum-of-squares (SOS) if
there exist polynomials qi,...,qx € Vy,q such that p = Zle qf. Define ¥, 24 to be

the cone of n-variate SOS polynomials of degree 2d. The cone X, 204 C Vp 24 = R(ntﬁd)
is a proper cone for every n and d.

Weighted sum-of-squares. More generally, let w = (w1,...,w,,) be some given
nonzero polynomials and let d = (dy,...,d;,) be a nonnegative integer vector. We
denote by V¥, 4 the space of polynomials p for which there exist 71 € Vy, 24, ..., 7m €
Vp,2d,, such that p = Y7 | w;r;. A polynomial p € V¥ aa 1s said to be weighted sum-of-
squares (WSOS) if there exist o1 € £, 24,5 - - -, Om € L 24,, such that p=>"1" | w;o;.
It is customary to assume that w; = 1, that is, the ordinary “unweighted” sum-of-
squares polynomials are also included in the WSOS cones. Let X 2d denote the set of
WSOS polynomials in Vi¥s4. By definition, X754 C Viog isa full dimensional convex
cone. Additionally, under mild conditions, the cone E:sz is closed and pointed; for
example, it is sufficient that the set

(1.1) Sw & {x e R" |w;i(x) >0,i=1,...,m}

is a unisolvent point set for the space V¥, [30, Prop. 6.1]. (A set of points S C R™ is
unisolvent for a space of polynomials V if every polynomial in V is uniquely determined
by its function values at S.) In particular, this implies that both ¥, and its dual
cone have a non-empty interior. '

WSOS polynomials and positive semidefinite matrices. We will denote the set of
n X n real symmetric matrices by S™, and the cone of positive semidefinite n x n real
symmetric matrices by S”. When the dimension is clear from the context, we use the
common shorthands A > 0 to denote that the matrix A is positive semidefinite and
A > 0 to denote that the matrix A is positive definite. We will routinely identify
polynomials with their coefficient vectors in a fixed basis of V}¥,4. Thus, V54 and

(VXQd) are identified with RY, where U = dim (Vr‘;‘de).
The following well-known theorem (rooted in the works of Shor, Lasserre, Parrilo,

and Nesterov; here reproduced in the notation of the latter) illustrates the connection
between ¥}, and the cone of positive semidefinite matrices.

ProposITION 1.1 ([25, Thm. 17.6)). Fiz an ordered basis q = (¢q1,...,qu) of

oq and an ordered basis p; = (Pits---,PiL;) Of Voa, for i = 1,...,m. Let
Ai 2 Viog (E RU) — S%i be the unique linear mapping satisfying Ai(q) = w;p;p?,
and let A} denote its adjoint. Then s € XVW,4 if and only if there exist matrices
S1%=0,...,S, = 0 satisfying 7

(1.2) s= ) AIS)

Additionally, the dual cone of ¥} o4 admits the characterization

(1.3) (V) = {x€V¥q (ZRY) | A(x) =0 Vi=1,...,m}.

The proof of Proposition 1.1 is constructive: given matrices S; € Sii (i=1,...,m),
one may explicitly construct a (weighted) sum-of-squares decomposition of the poly-
nomial s. Thus, the collection of matrices (S1,...,S,,) itself can be interpreted as a
WSOS certificate of the polynomial s.

VW

n7
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ExXaMPLE 1. Throughout this example, matrices and vectors are indexed from 0;
x; denotes the ith component of the vector x, and S;; denotes the (i,7)-th entry of the
matric S.

1. If both p and q from Proposition 1.1 are the standard monomial bases of
univariate polynomials of degree d and 2d, respectively, then A : R24+1 — Sa+1
maps a vector in R24H1 to its corresponding Hankel matriz in S, and
A* maps a symmetric matriz S in ST to vectors in R?*L by summing
along its antidiagonals. For example, if d = 2 (and so L = d+1 =3 and
U=2d+1=25), then A and its adjoint are given by the equations

g X1 X2
A(X) = |T1 X2 X3
T2 X3 T4
and
A*(S) = (Soo0, 2501, 2502 + S11,2512, S22).

2. If both p and q from Proposition 1.1 are univariate Chebyshev polynomials of
degree d and 2d, respectively, then letting T; correspond to the ith Chebyshev
polynomial and using the identity T;T; = % (Tiﬂ —i—T|1-,j‘), we deduce that

the A operator in this setting satisfies A(x);; = % For example, for
d=2 and x € R,
i) X1 X9
_ + +
M=o o ot
1 3 (0]
T2 2 2
is a Hankel-plus-Toeplitz matriz and
S+ 8 S S
A*(8) = (Soo + ¥, 2501 + S12,2502 + %75127 %) :

3. If both p and q from Proposition 1.1 are the standard univariate monomial
bases, and we use weights 1 and 1 — 22, then A1(x) is a standard Hankel
matriz and Aa(x) s a shifted Hankel matriz (sometimes also referred to as
localizing matrices [16]). For example, if d = 2, then U = 5,L1 = 3, Ly = 2,

and the operator A def AL @Ay R® — S3 @ S? is given by

Toorroa Tp—Ty T1—X
A(zo, 1,22, 23,24) = [ 21 22 23| @ < 0 . 3) ;
X1 — T3 X9 — X4
T2 T3 T4
see, for example, [12, Sec. II.2]. The adjoint operator is given by
A*(8'@8?) = (Sgo + SGo: 2501 + 2501, 2502 + Sir — Sgo + ST, 2815 — 2551, 82, — S1) -
To lighten the notation, throughout the rest of the paper we assume that the
weight polynomials w = (w1, ..., w,,) and the degrees d = (dy, . .., d,,) are fixed, and
denote the cone X7, by ¥ and the space of polynomials Vioa by V. Additionally,
we denote by A the RV — Sl @ ... @ Slm linear map A1(-) @ -+ @& Ay, (+) from
Proposition 1.1. With this notation, the condition (1.2) can be written as s = A*(S)
for some positive semidefinite (block diagonal) matrix S € S¥1 @ ... @ St=. Similarly,
Eq. (1.3) simplifies to
(1.4) ¥ = {x € RY|A(x) = 0}.
The interior of this cone is simply

(1.5) (¥*)° = {x e RY | A(x) >~ 0}.
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1.1.2. Barrier functions and local norms in convex cones. The analysis
of the dual certificates introduced in Section 2 relies heavily on the theory of barrier
functions for convex cones. In this section, we give a brief overview of the parts of
this theory and some additional notation that will be needed throughout the rest of
the paper.

It is convenient to identify the spaces V and V* with RY (U = dim(V))), equipped
with the standard inner product, (x,y) = xTy and the induced Euclidean norm || - ||

Let A : RV — S” be the unique linear mapping specified in Proposition 1.1
above, and let A* denote its adjoint. Central to our theory is the barrier function
f:(X*)° = R defined by

(1.6) F(x) < —In(det(A(x)).

Note that by Eq. (1.5), f is indeed defined on its domain. The function f is twice
continuously differentiable; we denote by g(x) its gradient at x and by H(x) its
Hessian at x. Since f is strictly convex on its domain, H(x) = 0 for all x € (X*)°.
Consequently, we can also associate with each x € (X*)° the local inner product

(-, )x : V*x V* = R defined as (y, z)x et y T H (x)z and the local norm || - ||x induced
by this local inner product. Thus, ||y|lx = |[H(x)"/?y||. We define the local (open)

ball centered at x with radius r by Bx(x,r) ef {y € V*||ly —x]||x < r}. Analogously,

we define the dual local inner product (-,-)% : V xV — R by (s, t)% def sTH(x) 't.
The induced dual local norm || - || satisfies the identity ||t||X = || H (x)~/%t].

We remark that the function in (1.6) falls into the broader category of loga-
rithmically homogeneous self-concordant barriers (or LHSCBs for short), which are
expounded upon in the classic texts [26] and [39]. Throughout, we will invoke several
useful results concerning LHSCBs for the function (1.6); these are enumerated in the
following lemma:

LEMMA 1.2. Using the notation introduced in this section, the following hold for
every x € (X*)°:
1. We have Bx(x,1) C (¥*)°, and for all u € Bx(x,1) and v # 0, one has

(17) 1= u = < J0 < (1= fu = xl)
2. The gradient g of f can be computed as
(1.8) g(x) = —A"(A(x)7),
and the Hessian H(X) is the linear operator satisfying
(1.9) H(x)v = A*(A(x)"A(V)A(x)™")  for every v € RY.
3. The function f is logarithmically homogeneous; that is, it has the following
properties:
(1.10) glax) = a 'g(x) and H(ax) =a 2H(x) for every a >0,
furthermore

(111)  H(x)x=—g(x) and [gx)llk=Ix]x=v{-g(x),x) =7,
where v =" | L; is the barrier parameter of f.

4. The gradient map g : (¥*)° — RY defines a bijection between (X*)° and ¥°,
In particular, for every s € X° there exists a unique x € (X*)° satisfying

s = —g(x).
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5. If lu—x||x < 1, then

(112) lotu) - g0l < 5

—lu = x|l

[[u — x|x

6. If [lg(u) —g(x)[% <1, then

lg(n) — g(x)llx
—llg(u) = g(x)ll%

(113) =] < <
Proof.

1. This is Renegar’s definition of self-concordance applied to the function f,
which is a composition of an affine function and a well-known self-concordant
function, and is thus self-concordant; see [39, Sec. 2.2.1 and Thm. 2.2.7].

2. Straightforward calculation.

3. Straightforward calculation using the identities (1.8) and (1.9). We remark
that these identities hold for all LHSCBs [39, Thm. 2.3.9].

4. See [39, Sec. 3.3].

5. See [29, Lemma 5].

6. This is an application of the previous claim to the conjugate barrier function
of f. |

2. Dual certificates. We begin this section by introducing our central object,
the cone of dual certificates corresponding to a WSOS polynomial (Definition 2.1), and
by showing in Theorem 2.2 how we can use dual certificates to construct an explicit
(weighted) sum-of-squares decomposition of WSOS polynomials in closed form. We
continue using the notation introduced in the previous section, and let 3 denote a
general WSOS cone X7,y with non-empty interior and H denote the Hessian of the
barrier function f defined in (1.6).

DEFINITION 2.1. Lets € ¥. We say that the vector x € (£*)° is a dual certificate
of s, or simply that x certifies s, if H(x) 's € X*. We denote by

C(s) ¥ {x e (Z%)° | H(x) ‘s € 2%}

the set of dual certificates of s. Conversely, for every x € (¥*)°, we denote by

Px) Y {se S| H(x) 's e 2}
the set of polynomials certified by the dual vector x.

EXAMPLE 2. To keep this example as simple as possible, we consider unweighted
univariate sum-of-squares polynomials represented in the monomial basis. Consider
the univariate polynomial z — 1 + 22 corresponding to the coefficient vector s =
(1,0,1) € %, the (unweighted) sums-of-squares cone of polynomials with degree at most
2. We can characterize C(8) as follows. By definition, a vector x = (zo, 1, x2) belongs
to the cone of dual certificates C(s) if and only if A(H(x)"'s) = 0 and x € (X*)°.
The inverse Hessian at X is

CC% o1 CC%
-1 1(,.2
H(x)"" = [ 2or1 5(o1 +z0m2) 7172 |,
.I% X129 .I%

so H(x)™'s = (2% + 22, zox1 + 2122, 23 + 23). Then, we have

2 2
1N rh + xy Tox1 + T12x2
A(H()™'s) = (:voxl + T122 x7 + 3 )
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so A(H(x)™s) is automatically positive semidefinite. Hence x € C(s) for every x €
(X)°.

The following theorem justifies the terminology introduced in Definition 2.1. Through
Eq. (2.1) below, we can construct a WSOS certificate S for the polynomial s in the
spirit of Proposition 1.1 by an efficiently-computable closed-form formula, and thus
we may interpret the dual vector x € C(s) itself as a certificate of the polynomial s.

THEOREM 2.2. Let x € (X*)° be arbitrary. Then the matriz S = S(x,s) defined
by
(2.1) S(x,s) € A(x) A (H (x) " 's) A(x) !
satisfies A*(S) =s. Moreover, x is a dual certificate for s € ¥ if and only if S = 0.

Proof. The first statement can be shown by applying the Hessian formula from
Lemma 1.2:

A* (271) * —1 —1 —1 (!)) —-1q _
(S) ="A"(Ax)""AH(x)'s)A(x)"") = H(x)H(x) 's=s,
For the second statement, note that S 3= 0 if and only if A(H (x)~'s) = 0, which
is equivalent to x € C(s) by the definition of C(s) and the characterization (1.4) of
DI d
Recall from Lemma 1.2 (claim 4) that for every s € X° there exists a unique

x € (X*)° satisfying s = —g(x). This vector is a dual certificate of s, since

H(x)'s = —H(x)'g(x) "2 x e (z)°.
Thus, every polynomial in the interior of the WSOS cone ¥ has a dual certificate.

DEFINITION 2.3. When —g(x) = s (€X°), we say that x is the gradient certificate
of s.

It is immediate from the definition that if x is a dual certificate of s, then so
is every positive multiple of x. Analogously, if x is a dual certificate of s, then
x is also a dual certificate of every positive multiple of s. (One may also confirm
directly that the matrix S constructed in (2.1) is invariant to a positive scaling of
x.) Also note that when x is the gradient certificate of s = —g(x), then S(x,s)
is positive definite. Since S is continuous on (¥*)° x X°, all vectors in some (s-
dependent) neighborhood of x are dual certificates of s, as they also give rise to a
positive semidefinite S(x,s). Conversely, the gradient certificate of s is also a dual
certificate of every polynomial in some (x-dependent) neighborhood of s. Our next
theorem is a quantitative version of this observation. (Recall that v denotes the
barrier parameter introduced in Eq. (1.11).)

THEOREM 2.4. Suppose t € £° and let x € (¥*)° be any vector that satisfies the
inequality
(2.2) tT (xx" —(v—1H(x)"")t >0.
Then x € C(t), and equivalently, t € P(x). In particular, if s = —g(x) for some
x € (X*)°, then x is a dual certificate for every polynomial t satisfying ||t — s||% < 1.

Proof. We start with the second claim. From the definitions of the local norm
and the dual local norm, we have
(23) It =slx = [H) 2t =s)| = [|H)"*(x = Hx)"'t)|| = [x — H(x)""t]x.

Thus, ||t —s||% < 1 is equivalent to H(x) ™'t € Byx(x,1). Since Bx(x,1) C (¥*)° from
the first claim of Lemma 1.2, Byx(x,1) C X*, and x € C(t) by definition.
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The first claim of the Lemma is the “conic version” of the second claim. To
prove it, suppose that the inequality in (2.2) holds. Then the univariate quadratic
polynomial

= (1= )22 4 (2(t,x)) 2 — (t, H(x)"'t)

has a nonnegative discriminant, therefore it has a real root 6. Moreover, since (1—v) <
0 and (t, H(x)"'t) > 0, it follows that 6 > 0. Using the identities in Eq. (1.11), we
have

0 < (1—v)8” + (2(t,%)) 0 — (t, H(x)"'t)
=62 (1= (9(x), H(x)""g(x))) — 0 (2(t, H(x)"'g(x))) — (t, H(x)"t)
=07 —(t +dg(x), H(x) 7" (t + dg(x)))
= 8% — ||H(x) "2 (t + 6g(x))[1*.

dg(x
We conclude that ||H(x)~'/2(t + §g(x))|| < & for some § > 0. Then using Lemma 1.2
again, we have

12§”H@y%0@+6MMN
(1.11) HaH(X)l/Q (5-2H(x) "'t - 5—1X)H
UL a7 (1 (67 -0,

so by the identities (2.3) and the first part of our proof, t is certified WSOS by %x
Since all positive multiples of x certify t, and 0 is positive, it follows that x certifies
t. d

COROLLARY 2.5. Suppose that x € ¥*, s = —g(x), and that y is a vector that
satisfies the inequality ||x — y||x < % Then'y € ¥*, and x certifies t = —g(y).

Proof. If |x — y|x < %, Lemma 1.2 ensures that y € £*, and we also have

(1.12) Hx_ny
[s —tlx = llg(x) —g¥)llx < ———— <1
1—|x—ylx

Then by Theorem 2.4, x certifies t. a

EXAMPLE 3. Consider the univariate polynomial t given by t(z) = 1 — z + 22 +
23 — 2% To show that t is nonnegative on the interval [—1,1], it suffices to show
that the coefficient vector t = (1,—1,1,1,—1) is a member of E{‘:zd, with weights
w(z) = (1,1 — 22) and degree vector d = (2,1). For this example, we represent
all polynomials in the monomial basis. In this setting, the A and A* operators are
precisely those detailed in Example 1 part (3).

Consider the vector x = (5,0,5/2,0,15/8). This vector is the gradient certifi-
cate of the constant one polynomial, since simple arithmetic yields that —g(x) =
A*(A(x)71) = (1,0,0,0,0). The same certificate also certifies the nonnegativity of the

polynomial t above. To confirm this, we compute H(x)™1:

384 0 192 0 144
5 | 0 240 0 180 0O
Hx)"'=—1[192 0 176 0 152|,
Bl g 180 0 165 0
144 0 152 0 149
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and by Theorem 2.2, it is sufficient to verify that

144 20 72
12 -
?SA(H(X)*lt) =1-20 72 5@ <_7125 2;)5) = 0.
2 -5 49

With some additional work, we can also compute from x rational matrices S and
So to certify the nonnegativity of the polynomial using Proposition 1.1: plugging our
dual certificate into the formula (2.1), we obtain

1 (22 -5 2% 1 /18 —15
26 5 52

These matrices, in turn, can be factored using the LDLT form of Cholesky decompo-
sition to compute an explicit rational sum-of-squares representation of t:

11/ 1322 52 > 371 2022\ 393724
tz) =— (- +1) + 2 + +

20 11 22 880 \© 371 7420

9 5:\2 15922
+(1—z2)<2—0(1—€> +—5 )

2.1. Rational nonnegativity certificates. We now turn to an important the-
oretical application of dual certificates and show that every rational polynomial (that
is, every polynomial with rational coefficients) in the interior of ¥ has a rational dual
certificate, and show that this implies that every rational polynomial in ¥° is a sum of
rational squares. (We cannot hope this to be true on the boundary; this follows from
Scheiderer’s seminal result [42], although facial reduction techniques could yield ratio-
nal certificates in some cases [24].) As an immediate consequence, we get new short
proofs of two theorems of Powers [34] that positive rational polynomials over compact
sets, under the assumptions of Schmiidgen’s (resp., Putinar’s) Positivstellensatz, have
rational sum-of-squares certificates.

We also show using similar arguments that these rational sum-of-squares certifi-
cates can be computed from dual certificates using numerical algorithms.

2.1.1. Existence of rational WSOS certificates for rational polynomials.

THEOREM 2.6. Everys € X° N QY has a rational dual certificate x € (£*)° NQY
and a sum-of-rational-squares decomposition.

Proof. Let s € X°, and suppose y € (X*)° is the gradient certificate of s. As
C(s) is full-dimensional for every s € 3° by Theorem 2.4, and as H(y) is positive
definite for every y € (X*)°, the ball centered at y with radius 1/2 in the local norm
is a full-dimensional ellipsoid contained in (X*)°. As a result, there exists a rational
vector x € QY N (¥*)° such that [[x —ylly < 1/2, which by Corollary 2.5 guarantees
that x is a rational dual certificate for s. Finally, by Theorem 2.2, we can derive
a conventional (primal) weighted sum-of-rational-squares decomposition for s: the
Gram matrix S(x,s) defined in (2.1) is automatically rational, and from there an
explicit rational WSOS decomposition can be computed in rational arithmetic via
the LDL™ decomposition of this Gram matrix.

Recall that according to Putinar’s celebrated Positivstellensatz [36], every (strictly)
positive polynomial over a compact semialgebraic set (1.1) belongs to a WSOS cone
¥ = ¥V,q for a sufficiently large d, if the quadratic module associated with the
polynonﬁals W1, ..., Wy 18 Archimedean. It follows that (under the same assumption)
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every positive polynomial belongs to the interior of 37, as well for every sufficiently
large d. (Every positive polynomial s lies in the interior of a simplex whose vertices
are positive polynomials, and by Putinar’s Positivstellensatz each vertex of this sim-
plex belongs to ¥}, for every large enough d; our s then belongs to the interior of
this WSOS cone.) Invoking Theorem 2.6, we have the following “rational Putinar’s
Posivstellensatz” for rational polynomials:

COROLLARY 2.7 ([34, Thm. 7]). Let s € QY be the coefficient vector of a polyno-
mial s(-) that is strictly positive on the compact semialgebraic set Sy, defined in (1.1),
and suppose that the quadratic module associated with {w1, ..., wy,} is Archimedean
and each w; 1is rational. Then s has weighted-sum-of-rational-squares decomposition
using the weights wi, ..., Wn.

In an analogous fashion, we can show that as long as Sy, is compact (without the
Archimedean assumption), every rational polynomial positive over Sy has a rational
Schmiidgen nonnegativity certificate as was also shown by Powers; see [34, Thm. 5].

2.1.2. Rigorous certificates from numerical methods. Theorem 2.4 and
Corollary 2.5 have important consequences for both numerical (finite-precision), exact-
arithmetic, and hybrid algorithms for computing sum-of-squares certificates.

The fact that every polynomial s € ¥° has a full-dimensional cone of certificates
C(s) means that exact dual certificates can in principle be computed by purely numer-
ical, inexact algorithms. As long as s is a rational polynomial that is sufficiently in
the interior of ¥ that a numerical method (implemented in floating point arithmetic)
can identify any point x € C(s), the same argument as in the proof of Theorem 2.6
shows that a rational weighted-sum-of-squares certificate can be readily computed.

We can also take this argument one step further and apply it to certifying sum-of-
squares lower bounds. Consider, for example, a hypothetical algorithm that aims to
compute the gradient certificate y of some polynomial ¢ — v with coefficient vector t —
~v1 € X° to certify ¢(z) > vVz € Sy, but computes instead only an approximation x ~
y in finite-precision arithmetic. (Here, 1 denotes the coefficient vector of the constant
one polynomial; Sy is the semialgebraic set (1.1) over which we wish to bound the
polynomial ¢.) As long as the inherent errors of the finite-precision computation are
small enough to ensure ||[x—y||x < 1/2, Corollary 2.5 guarantees that x is a certificate
of nonnegativity for ¢ — ~. Since floating-point numbers are, by definition, rational,
every sufficiently accurate numerical solution of —g(x) = t — 1 is automatically a
rational dual certificate of the nonnegativity of ¢ — . Additionally, as long as the
coefficient vector t and the lower bound ~ are also rational, any such numerical dual
certificate x can be directly converted to an exact rational primal certificate (Gram
matrix) S = 0 satisfying A*(S) = t — 41 via the formula of Eq. (2.1).

This property sets dual certificates apart from conventional certificates: a numer-
ical solution to the semidefinite programming (feasibility) problem

find an S 3= 0 satisfying A*(S) =t — 41

will generally satisfy the equality constraints A*(S) = t —~1 only within some numer-
ical tolerance, thus S will not be a rigorous certificate, even if we can guarantee (by
the appropriate choice of optimization algorithm) that at least the cone constraint
S = 0 is always satisfied. Hence, additional post-processing (a rounding or projection
step, such as those in the hybrid methods of [33] and [21]) is needed. In contrast,
any dual certificate x from the full-dimensional cone C(t —~1) is a rational certificate
(that can be turned into an explicit rational WSOS decomposition).

In Section 3.3, we present an efficient algorithm (Algorithm 3.1) to compute certi-
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fiable rational lower bounds with matching dual certificates that can be implemented
as an entirely numerical method using these ideas.

2.2. Complexity considerations. Depending on the choice of the A operator
(that is, in essence, the choice of bases p and q in the construction of the semidefinite
representation of ¥ following Proposition 1.1), the computation of S(x, s) can be made
efficient, even polynomial-time in the bit model. Suppose that for a given rational
x € (X*)°, the matrices A(x) and H(x) are rational and can be computed efficiently.
Then for any s € RY, the computation of S(x,s) amounts to (1) computing a rational
Cholesky (LDLT) factorization of A(x) and H(x) (which are positive definite by
definition); (2) computing the vector v. = H(x) !s using the Cholesky factors of
H (x) computed in the previous step; and (3) computing A(v) and then S(x,s) using
the Cholesky factors of A(x). Therefore, computing S(x,s) is efficient as long as A()
and H(-) can be computed efficiently.

For any reasonable choice and representation of A, the computation of A(-) and
A*() are efficient, as they are linear operators, typically explicitly represented in
matrix form with rational entries. Studying the same question in the context of
numerical methods for SOS optimization, the authors in [30, Sec. 6] showed that
when polynomials are represented as Lagrange interpolants, the Hessian H(x) can be
computed with O(m max;{L;}U?) arithmetic operations. One can also argue directly
from the identity (1.9), that (since A and A* are efficiently computable) the Hessian
can be computed efficiently; the bottleneck once again is the inversion or factorization
of A(x). We note the monomial and Chebyshev polynomial bases as two additional
important special cases (both in the univariate and multivariate setting): in these
cases, A(x) is a low displacement-rank matrix. For example, when the polynomials
are univariate, each block of A is a Hankel (or Hankel-plus-Toeplitz) matrix if using the
monomial (or Chebyshev) basis. Therefore the inversion of A and the computation of
H can be handled using discrete Fourier transforms or the “superfast” (nearly-linear-
time) algorithms of Pan and others [28].

2.3. Relation to prior work. (Weighted) sum-of-squares certificates are com-
monly associated with, and computed using, semidefinite optimization—an approach
that goes back to Nesterov [25], Parrilo [32], and Lasserre [14]. It is pertinent to put
our work in the context of Lasserre’s, as both make extensive use of the dual cone X°
and thus have many superficial similarities.

In our notation, the semidefinite optimization approach can be summarized as
follows: to find the best WSOS lower bound for a polynomial ¢, whose coefficient
vector is denoted by t, we need to solve the semidefinite optimization problem

(2.4) sup{c|A*(S) =t —c1, S = 0}.
The WSOS certificate itself is the Gram matriz S, whose factorization yields an
explicit representation of ¢ — c¢. Lasserre’s seminal observation is that the WSOS

lower bound can also be characterized as the optimal value of the dual semidefinite
optimization problem (which can also be derived from moment theory), written as

(2.5) inf{tTy 1Ty = 1, A(y) = 0}.
In fact, an immediate consequence of weak duality is that every feasible solution
of (2.5) yields a WSOS-certifiable lower bound on ¢. Additionally, under standard

regularity conditions (such as the existence of a Slater point in (2.5)) we have strong

duality, with attainment in the primal problem (2.4), meaning that the optimal value
of (2.5) is the best WSOS-certifiable lower bound [14].
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Our work extends this theory. Although the above arguments show that every
y € ¥* with 1Ty = 1 yields a WSOS lower bound, these dual vectors cannot be turned
into explicit (“primal”) WSOS certificates—a dual optimal (or feasible) solution y
from (2.5) does not translate to an optimal (or feasible) solution S for any particular
¢ in (2.4). One interpretation of Theorem 2.4 is that it identifies a full-dimensional
subset of solutions of (2.5) which, through the definition (2.1), can be turned into a
primal certificate S via a simple closed-form formula. This allows us to circumvent
solving the semidefinite optimization problem (2.4) altogether. This is a potentially
huge gain, as the dimension of S in (2.4) is considerably larger than dim(X). We
demonstrate how dual certificates can be used in designing efficient algorithms in
Section 3.3.

3. Computing rigorously certified lower bounds with dual certificates.
With our theoretical infrastructure and notation in place, we now turn to the ques-
tion of computing certified lower bounds and dual certificates for these bounds. In
Section 3.1 we show that under the condition that the constant one polynomial is in
the interior of our WSOS cone, every polynomial has a dual certifiable lower bound.
(We argue that this is a mild, essentially without loss of generality, condition in
Section 3.5.) We also show that after a suitable preprocessing (required only once for
every WSOS cone), such a certified bound can be computed by a closed-form formula
for any polynomial.

In Section 3.2 we discuss efficient algorithms to compute the best lower bound
that a given certificate certifies for a given polynomial and show that using dual
certificates, inexact numerical certificates (that come, for example, from numerical
sum-of-squares optimization approaches) can be turned into rigorous rational certifi-
cates with minimal additional effort.

We then combine these ideas with the observations made in Section 2.1.2 and
present a new algorithm (Algorithm 3.1) for approximating the best WSOS lower
bound for a given polynomial with arbitrary accuracy in Section 3.3. The algorithm
returns both a rational lower bound approximating the optimal WSOS lower bound
and a rational certificate certifying the bound. We also show that Algorithm 3.1 is
linearly convergent to the optimal bound. In Section 3.4, we detail how to compute
a bound on the linear rate of convergence of Algorithm 3.1. This in turn makes it
possible to compute WSOS lower bounds that are certifiably within a prescribed e
from the optimal bound.

Throughout this section, and the rest of the paper, the boldface vector 1 repre-
sents the constant one polynomial (or, precisely, its coefficient vector) in the WSOS
cone ¥ (= X)), in the space of polynomials V(= VY, ).

n

3.1. Universal dual certificates. Suppose that 1 € 3°. Then 1 has a gradient
certificate x1, and as we have seen in Theorem 2.4, 1 € P(x7)°, that is, x; certifies an
entire full-dimensional cone of polynomials with 1 in its interior. Conversely, an entire
cone of certificates, with x; in its interior, certifies 1. Our next observation is that
each of these certificates also certifies some WSOS lower bound for every polynomial:

LEMMA 3.1. Letx € (X*)° be any certificate for which 1 € P(x)° andr € (0,1/2].
Then for every polynomial t € V, the inclusion x € C(t+cl) holds for every sufficiently

large scalar c. Specifically, if x € (X*)° satisfies || — g(x) — 1||x < 5, then the
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inclusion x € C(t 4 c1) holds for every

Bl B {C SR 1
In this case, letting y. denote the gradient certificate of t + c1, the inequality

-1

llc X_ycnc*m <r

also holds.

Proof. The first statement is immediate from the fact that P(x) is a cone and
the assumption that 1 € P(x)°: the dual vector x certifies all small perturbations of
1, including every polynomial of the form (¢!t + 1), and thus also t + c1, for every
sufficiently large c. We prove the second and third statements in detail.

Using the definitions of the local dual norm and logarithmic homogeneity (1.10)
from Lemma 1.2, we have

(3.2)
16+ 1) — ea]fy, P20 (e )2 ) et )2 P e
Similarly,
(3.3)
" by def. _ _ (1.2) _ by def.
lelteg(0) 21 2 el H (%)~ 21 +g )| = 1 H ()2 (14| Y2 [149(5)

Thus, we have

[(t + 1) + cg([e-1x < N6+ €1) = LTy + [lel + cg(x) (|21,

|
(3.2),(3.3) _ . .
=77 Il + 1L+ g1

(3.4) G r

- r+1
r

r+1
Using logarithmic homogeneity again, we see that ¢~ 'x is the gradient certificate for
—cg(x). Therefore, invoking Theorem 2.4, we deduce from the inequality (3.4) that
c~1x is a dual certificate for t +c1. Moreover, via the inequality (1.13) in Lemma 1.2,
we conclude that

=900 =1 + 1l = 9(x) = 1]lx

. (L13) [|tx, (3.4)
HC X_yc”c*lx < %*x < T,
L—ltll%-
as claimed. 0

We emphasize that the certificate x; (or any x with 1 € P(x)°) in Lemma 3.1 only
needs to be computed once for any particular WSOS cone XV, ;. Once x; (and the
corresponding H (x1)~!) are computed, a certifiable lower bound and a corresponding
certificate can be computed in closed form for every polynomial t € V, with minimal
effort.

When the weight polynomials w are sufficiently simple, the gradient certificate of
1 may even be easily expressible in closed form, as in the following example.

EXAMPLE 4. Consider the cone of nonnegative univariate polynomials of degree
2d over the interval [—1,1], which is well known to be the same as the WSOS cone
Y oq withn =1, m = 2, degree vector d = (d,d — 1), and weight polynomials
w(z) = (1,1 — 22) [}]. Furthermore, suppose that all polynomials are represented
in the basis of Chebyshev polynomials of the first kind, that is, both of the ordered
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bases p and q in Proposition 1.1 that determine the operator A are Chebyshev basis
polynomials. Then both diagonal blocks of A are Hankel-plus-Toeplitz matrices (similar
to Example 1), and the gradient certificate of 1 = (1,0,...,0) € R?¥*2 4s simply the
vector

x1 = (2d+1,0,...,0).

This can be proven by a direct calculation verifying the equality —g(x1) = A*(A(x1)71) =
1. The Hessian at this certificate is the diagonal matrix

L (A 4d-2 2
= 1 .
2d+1 e\ T 2d 1 2d 1

Analogous results can be derived for polynomials of odd degree using d = (d,d), and
weight polynomials w(z) = (1 — 2,1+ z).

(3.5) H(xy)

3.2. Optimal and near-optimal lower bounds from a given dual certifi-
cate. Suppose we have found a dual certificate x that certifies the nonnegativity of
the polynomial t —c1. What is the best lower bound certified by the same certificate?
By definition, the answer is the solution of the one-dimensional optimization problem

Cmax = max{y eR|t—~vy1 € P(x)}.

As discussed in Section 2, if the inverse Hessian H(x)~! (or the Cholesky or LDLT
factorization of H(x)) is already computed, then membership in P(x) is easy to test by
verifying the positive semidefiniteness of A(H (x)~!(t —~1)). Therefore, an arbitrarily
close lower approximation of cjhax can be found efficiently, in time proportional to the
logarithm of the approximation error, by binary search on the optimal 4. (An initial
lower bound on ¢p,ax is the currently certified lower bound ¢ assumed to be part of the
input; an upper bound on cpax can be computed, e.g., by evaluating the polynomial
t at any point in its domain.)

The repeated matrix factorization makes the algorithm outlined above too expen-
sive to use as a subroutine. A weaker bound can be computed in closed form using
Theorem 2.4: if

¢ max {rve R’ (t —~1)" (xxT - (v— 1)H(X)_l) (t—~1) >0},

then t — ¢/, € P(x). For a given certificate x, if the inverse Hessian H(x)™! (or
the Cholesky or LDL™ factorization of H(x)) is already computed, then solving this

optimization problem amounts to finding the roots of a univariate quadratic function.

EXAMPLE 5. Continuing with Ezample 3 (witht = (1, —1,1,1, —1), weights w(z) =
(1,1—22)), we compute Cpaqx and ., fort using the certificate x = (5,0,5/2,0,15/8).
For comparison, the minimum of the polynomial is 5% (619 - 51\/ﬁ) ~ 0.798.

To compute Cpaz, we compute the largest v such that A(H(x)"1(t — 1)) =
A (H(x)7Ht — 1)) @ A2 (H(x) "1 (t — v1)) is positive semidefinite but not positive
definite. We compute the characteristic polynomials of the ~vy-parametrized matrices,
as A(H(x)"1(t — 1)) is on the boundary of the PSD cone when the constant term
of the characteristic polynomial vanishes. The constant term of the characteristic
polynomial of Ay (H (x)™1(t — 1)), itself a polynomial in ~, has smallest real root at
v = 6%1 (67 — 5\/ﬁ) Meanwhile, the constant term of the characteristic polynomial

of Ao(H(x)71(t — 1)) has smallest real root at v = 35 (41 — 5v/10). We conclude
that Cmaee = g5 (67 — 5V/17) = 0.724.

/
To compute ¢, ., we expand and reduce

(t—)" (xx" — (v - DH(x)") (t —71) = % - 4?77 + 572,
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Computing the roots of this quadratic, we conclude that ¢, . = % (9 — 2V 10) ~ 0.334.

3.3. Computing optimal WSOS bounds. We now present an iterative method
to compute the best WSOS lower bound for a given polynomial t along with a cer-
tificate for that bound. The pseudocode of the algorithm is shown in Algorithm 3.1.
After a high-level description of the method, we show that it converges linearly to the
optimal WSOS bound below (Theorem 3.6).

Previously, in Lemma 3.1, we showed that for a sufficiently large ¢, t 4+ ¢1 can
be certified by ¢~ !x for every x in a suitable neighborhood of the gradient certificate
of 1; this result justifies the initialization of the algorithm in Line 1. In order to
increase the lower bound, the algorithm iterates two steps: certificate updates (Line
3) and bound updates (Line 4). The bound updates are similar to the ¢/ ., bound in
Section 3.2; we will precisely justify this step in Lemma 3.3. The certificate updates
are motivated as follows: since each bound update attempts to push ¢ towards the
best bound certifiable by x, the certificate x sits near the boundary of C(t — c1) after
each bound update. To allow for a sufficient additional increase of the bound in the
subsequent iteration, the certificate x is updated to be closer to the gradient certificate
y of the current t —c1. This certificate y would be prohibitively expensive to compute
in each iteration; instead, the update step in Line 3 can be interpreted as a single
Newton step from x towards the solution of the nonlinear system —g(y) =t — c1.

EXAMPLE 6. We continue with the setup of Fxamples 3 and 5: we consider the
univariate polynomial whose coefficient vector in the monomial basis ist = (1, —1,1, 1,

_1))

defined over the interval [—1, 1] represented by the weights w(z) = (1,1—22). Algorithm 3.1

with r = 1/4, with inputs t and tolerance ¢ = 1077 in double-precision floating point
arithmetic outputs the bound ¢ =~ 0.798284319 and a certificate vector x. Note that
the ezact minimum of t is =(619 — 51v/17) ~ 0.798284401.

A plot of the difference between the current certified lower bound ¢ and the min-
imum c* in each iteration is shown in Figure 3.1, illustrating the linear convergence
of Algorithm 3.1 for this polynomial. The exact rational representation of the floating

point bound is
c=277%.7190305926654593,

and the rational vector certifying the nonnegativity of t — cl is

173493184462864992
67729650226350000

x =273 | —120611300436615200

—161900156381728960
—5796381308580693

Note that no rounding or projection steps are needed to compute a rigorous certificate.
In the analysis of the algorithm below (Lemma 3.3) we shall see that if the algorithm
was implemented in exact arithmetic, we would have ||x — y|x < r = 1/4 in each
iteration, where y is the gradient certificate of t — c1. Working with finite precision,
the iterates may fail to satisfy this inequality; however, as long as the numerical errors
are sufficiently small to ensure the considerably weaker inequality ||x — yl|lx < 1/2,
the computed numerical certificate x is automatically a rational certificate for the
computed SOS lower bound c by Corollary 2.5.

Additional examples are discussed in Section 5.
The computationally most expensive part in each iteration is having to compute
(after each certificate update) a Cholesky factorization of the Hessian H(x) (or the
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Algorithm 3.1 Compute the best WSOS lower bound and a dual certificate

input : A polynomial t; a tolerance € > 0.

parameters: An oracle for computing the barrier Hessian H for ¥; a radius r €
(0,1/4]; a certificate x satisfying || — g(x) — 1[[% < 45.

outputs : A lower bound ¢ on the optimal WSOS lower bound ¢* satisfying ¢*—c <
g; a dual vector x € (X*)° certifying the nonnegativity of t — c1.

-1
Compute ¢p 1= — ( L — || —g(x) — 1||;) It]|%. Set ¢ :=cp and x := —%x.

r+1

2 repeat

Set x := 2x — H(x)"}(t — c1).
Find the largest real number c; such that

r
— H(x)"Yt — cu1 < '
S
Set Ac = ¢y —c. Set e:= ¢y
until Ac < p,Ce
return ¢ and x.
o
| o N .
I NG .
TN
- "
0 50 _ 150

iterations

Fic. 3.1. The convergence of the sequence of certified lower bounds computed by Algorithm 3.1
to the minimum of the polynomial studied in Examples 3 and 6, illustrating the linear convergence
shown in Theorem 3.6 below.

inverse Hessian H (x)~!). With that available, the bound update and the next certifi-
cate update are very efficient: by an argument analogous to the discussion on ¢/,
in the previous section, the bound update amounts to solving a univariate quadratic
equation, and the certificate update is essentially a matrix-vector multiplication or
two triangular solves. As discussed in Section 2.2, the computation and factorization
of the Hessian is efficient for popular choices of polynomial bases.

We now turn to the analysis of the algorithm, deferring the discussion on the

stopping criterion until later. To simplify the statements of the results, we will

use the following notation throughout the rest of the section. We define x def

2x — H(x)"!(t — c1) to be the updated certificate in Line 3 to help distinguish the
certificates before and after the update. Finally, we let y be the vector satisfying
—g(y) =t —cl and y; be the vector satisfying —g(y+) =t — ¢4 1.

In the next series of Lemmas we show that the bound update from ¢ to c; is
well-defined, and is always an increase, by bounding the distance between x and y
in each step of the iteration. We also establish that throughout the algorithm, the
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iterates satisfy ||x — y|lx < r. (At the beginning of the first iteration this holds by
Lemma 3.1.) The first result, Lemma 3.2, shows that x, is closer than x to the
gradient certificate of t — c1 in their respective local norms.

LEMMA 3.2. Let x4 andy be defined as above, and assume that ||x —y|x < r for
some r < +. Then |x4 — yllx, < %

Proof. Recall that the update in Line 3 of Algorithm 3.1 is a single (full) Newton
step towards the solution of the nonlinear system —g(y) = t — ¢1. Equivalently, the

update x4 — x is a Newton step toward the minimizer of the convex self-concordant

function et
fe(x) = (t— cl)Tx+ f(x).

Applying [39, Thm. 2.2.3] to f., we have

lx-yl2 _ »
-yl Tor

2

s = ylhe < -

Coupling this result with the definition of self-concordance (Eq. (1.7)), we have

e =yl lx-ylI2 2

—lx=yl T A=lx=ylx)? = 1 -7)?
We conclude that xy € By (y,1), and we can thus invoke the inequality (1.7) for
another change of norms to conclude that

<1

— <
s = lly < 5

2
x4 — ylly (=4 r r
||X+ - ny < < = = .
Tl xt = ylly 1—(12—1)2 (I=r)2=r> 1-2r O

We remark that, while x certifies t — c¢1 whenever ||x —y||x < %, and each step of
our proof is valid for all 0 < r < %, we can only have % < r whenever 0 < r < %
Therefore, using Lemma 3.2, we can guarantee that [|x4 — y[jx, < [x — y|/x when
[x —yllx < 3. Below, we need to further limit 7 to ensure that the bound update is

an improvement.

LEMMA 3.3. Suppose that ||x4 —yl[x, < 11—; for some 0 <r < 1. Then cy > c

and [|x4 =y llx, <7
Proof. We begin by showing that

r
— H(x)"'(t —cl)|x —
e = HOO ™ (¢ = e, < — .
which implies that Step 4 of the algorithm indeed increases the lower bound to ¢4 > c.
Suppose [x4 — ¥llx; < 11—; Recall from Eq. (1.11) that H(x4)x4 = —g(x4).
Using this identity and the definition of the local norm, we deduce that
| = g(x+) + 9k, = I1H ()2 (H (x4 )% = (¢ = 1)) |
(3.6) = ||H (x4)"*xp = H(x4) "2 (t = e1)]|
= llxy = H(x)7Ht = 1),
Using this in tandem with inequality (1.12) from Lemma 1.2, we have
_ (3.6)
I = Hx) 7't = cl)]lx, =" (1= g(xs) + 9(¥)llx.
T‘2
12 x4 = yllx, 1—2r r

> < <
L—xy =ylxy ~ 115 r+1

for every r < %, proving our first claim.



18 MARIA M. DAVIS AND DAVID PAPP

To see the second statement, we observe that
. _ r
(3.7) = g(x4) +9(ylls, = llxe — Hxg) Mt —c1)||lx, = 1S 1

by the definition of the bound update step in Line 4 and our discussion above. Now
inequality (1.13) from Lemma 1.2 yields
d
| —9(x1) +9(y+)llx r/(r+1)
||X+_y+||x+ S 1 +* >~ 1 1 =T.
=90 +9ly)lx, — 1= (/(r+1))
The next lemma uses Lemma 3.2 in showing that the improvement in the lower
bound can be bounded from below by a constant times the local norm of 1.

LEMMA 3.4. Define p, def %:2%2) Then at the end of each iteration of Algorithm 3.1,
Pr

T where y is the gradient certificate of t — cl.
Yy

Proof. From the identities (3.7) and the definition of ¢4 in Line 4 of the algorithm,
we have

cy —cCc2>

r

1 xy — Hx) 't — 1), = [ —g(xy) +9(y+)lx, -
Upper bounding the right-hand side by the triangle inequality gives

r * * *
(3.8) i | =9(x+)+9W)llx, <N =9¥+) +9@lx, = ll(ct —)1%, -

Thus, to lower bound (c+ — ¢), it suffices to upper bound | — g(x+) + g(y)I[%, -

From Lemma 3.2, we know that ||xy —yl/x, < 11—; Using the inequality (1.12)
in Lemma 1.2, we have

HX+_Y||x+ < _Tor r
L R T I Gl V2

(3.9) = 9(x+) + 9l

Combining the inequalities in (3.8) and (3.9), we have

r T2

—o)|1)|x, > — .
(C+ C)” ||X+ — r + 1 1 _ 2T _ ,,,_2
Finally, changing norms again with inequality (1.7),

e+ = Allly, = (er =, O = lly = x4lx,)

2 2
> o r 1T o ]
r+1 1—-2r—12 1—2r

We remark that if r is chosen so that 0 < r < %, then p, > 0, and, for example,
pr > 2/21 for r = 1/6. Therefore in each iteration of the algorithm, the improvement
of the bound can be bounded from below by a quantity proportional to ([|1]/3)~",
where y is the current gradient certificate.

Now, we turn our attention to the convergence of Algorithm 3.1. When 1 € X°,
the optimal WSOS lower bound c¢* for a polynomial t is the unique scalar « for which
t — 1 is on the boundary of ¥. In Theorem 3.5, we show that the norm ||1]; can
be related to the distance (¢* — ¢) between the current bound and the optimal WSOS
lower bound. We will then combine this result with Lemma 3.4 above to show that
the algorithm converges linearly to the optimal WSOS lower bound of t. The analysis
also motivates the stopping criterion for the algorithm.

In what follows, we let Apax(M) denote the largest eigenvalue of the matrix M
and Apin(M) denote the smallest eigenvalue. We also remark that || - |1, || - || and
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| - oo refer to the standard 1-norm, 2-norm, and infinity norm of vectors, respectively
(not to be confused with the local norms used above).

THEOREM 3.5. Suppose that t — c¢*1 is on the boundary of . Let y denote the
gradient certificate of some t — cl with ¢ < c¢*. Then there exists a constant C
(depending only on the operator A) such that ¢* — ¢ < (C|1]]3)~".

Proof. Recall that —g(y) =t — ¢1. Define the constant
ey min{1™v | v € 2%, |v] o = 1}.

Observe that the minimum exists (as ¥* is a closed and non-trivial cone) and k; > 0,

because 1 € ¥°. Using the shorthand « o> 0, we now have

DEEE
vi=" (=g ) 7=
=) Tyl
(1.10) y

Lyl (-1, 2 )

-

Iyl ({t=en 2 )+ @ —a (L))

> 0+ [[yllccaks = [lyllccctkr,

from which we conclude that

v
3.10 o < —.
(3.10) Iyl <

Recall from Eq. (1.9) that H(y)v = A*(A(y) " *A(v)A(y)~!). Therefore, vIH(y)v =
(v, A*(A(y) PA(W)A(y) 1)) = tr(A(v)A(y) tA(v)A(y)™!). Moreover, observe that
for every A > 0 and real symmetric matrix B of the same size, we have

tr(A)Amin (B) < tr(AB) < tr(A)Amax(B).
Using this fact, we have that for every v € RY,

We conclude that

(3.11) Amin (H (y)'/?) >

wherein we define
ko def min{/tr(A(v)?) | ||v]| =1}

We remark that k2 = omin(A) > 0 (since A(v) # 0 whenever v # 0).
= |

Next, recall that [|1]|y |H(y)~'/?1|| and note |H(y) Y?|| = m
Define

- max {Amax (A(Y)) | ¥ € 2%, [¥lle = 1}
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These identities and our previous inequalities give

1Ll = 1H(y)" 1) <

(3.11) (3.10)
1] 2 /\max(A(Y))”l”SkSHYHH]-” 20 ksv|1]]

Defining C' def Huks e conclude that
ksv[[1]]

a=c" —c<(Clf) " O

We remark that the parameter v = Y " | L; is a parameter of the WSOS cone
> entirely independent of the representation of the polynomials. The parameter k;
depends on the basis in which the WSOS polynomials are represented (but otherwise
does not depend on A), while ko and k3 are properties of the A operator representing
3.

Coupling Lemma 3.4 with Theorem 3.5, we have also proven our main result
about the convergence of our algorithm:

THEOREM 3.6. Algorithm 3.1 is globally linearly convergent to ¢* = max{c | t —
cl € X}, the optimal WSOS lower bound for the polynomial t. More precisely, in each
iteration of Algorithm 5.1, the improvement of the lower bound Ac = c4 — ¢ satisfies

Ac

c*—c¢

(3.12)

> pC,

with the absolute constant p, > 0 defined in Lemma 3.4 and the A-dependent constant
C > 0 defined in Theorem 3.5.

Theorem 3.6 motivates the stopping criterion (Line 6) of Algorithm 3.1: the cur-
rent bound c¢ is guaranteed to satisfy ¢ < ¢* < ¢+ ¢ as soon as Ac < p,-Ce.
Alternatively, we can rearrange the same inequality to provide an explicit upper
bound on the number of iterations of the algorithm. After k iterations of Algorithm 3.1
we have
¢ —cp < (1= p.C)F(c* = o),

*
C —Cqo

therefore, for a fixed cone (and parameter C), the algorithm terminates after O (log -

iterations. Additionally, it is typically easy to bound from above the global minimum
of the input polynomial t (e.g., by evaluating it at any point in its domain), and thus
bound ¢* from above, and when an explicit bound on the magnitude of the elements
in {x € R"|w;(x) >0,¢=1,...,m} is known, it is also straightforward to upper
bound ¢* by kw||t]] with some constant kv dependent only the weight functions w.
Similarly, from the first step of Algorithm 3.1 (with x € C(1)),

-1
T * *
o= ( g - 1|x) e

r+1

-1
> (1000 102) A

bounding the initial bound ¢y from below by a A-dependent constant multiple of ||t]].

In conclusion, for a fixed cone (and representation A), the algorithm terminates
after O(log @) iterations.

We also remark that although our primary goal is to obtain certified rational lower
bounds on the polynomial, dual certificates also provide upper bounds on the optimal
WSOS bound via Theorem 3.6, whenever the A-dependent constant C defined in the
proof of Theorem 3.5 of is known (or can be bounded from below) for a particular

cone ¥. In particular, although the analysis heavily relies on the quantity ||1]|;, which

o )\min (H(y)1/2) - k2 k2 - klk‘ga ’

)
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is not efficiently computable (we do not have access to the gradient certificate y), the
inequality (3.12) provides a computable upper bound on ¢*.

The effect of finite precision. As all iterative numerical algorithms, Algorithm 3.1
will eventually fail to make progress before satisfying its stopping criterion if imple-
mented in finite precision and with a tolerance e that is too small. As ¢ approaches
the optimal WSOS lower bound, t — ¢1 and x approach the boundary of ¥ and ¥*,
respectively. This is marked by the increasing ill-conditioning of the Hessian H(x)
used in the Newton step in Line 3 and of the quadratic equation solved in Line 4.
Thus, the algorithm will stall if the Hessian is numerically singular or if ¢4 does not
improve on ¢ due to rounding errors in the quadratic formula.

We emphasize that this only affects the quality of the bound (how close we can
get to the optimal WSOS lower bound), not the correctness of the bounds that are
claimed to be certified. The validity of the certificate x certifying the current lower
bound ¢ can be verified in rational arithmetic at the end of any iteration; there is no
danger of the numerical method yielding an incorrect bound or an invalid certificate
undetected. Comparing Lemma 3.3 with Corollary 2.5, we see that as long as the
iterates of Algorithm 3.1 satisfy ||x —y||x < 1/2, the certificate and the current bound
will remain valid, and that with infinite-precision computation, these iterates would
even satisfy [|[x—y|x < 1/4. Aslong as the numerical errors are small enough that the
iterates remain in the 1/2-radius local norm ball (instead of the expected 1/4-radius
ball), the algorithm computes certifiable bounds and rigorous rational certificates in
spite of every step of the computation being imprecise.

3.4. Bounding constants in Theorem 3.5. In general, we cannot hope to find
a sharp closed-form bound for the constant C' in Theorems 3.5 and 3.6, but we can
compute cone-specific bounds on each of the constants ki, k2, and k3 in the formula
for C by convex optimization.

Recall that k1 = min{1"v | v € ¥*,||v||oc = 1}. Although the norm constraint

is not convex, we have

— i : - 3+
k1 = EISHU{mln{kl’i, kl,i}}v

1<
with
(3.13) ki, = min{1"v | v € 2%, |[v[|eo < land v; =1} (i =1,...,m)
and
(3.14) ki, =min{1"v | v e X ||v[lo <land v; = -1}, (i=1,...,m)

Therefore, k1 can be computed (numerically) by solving 2U convex optimization prob-
lems. (For a rigorous lower bound, we can use dual methods that determine approxi-
mately optimal but feasible solutions of the dual optimization problems of (3.13) and
(3.14).)

Recall that ko = min{tr(A(v)?) | |[v|| = 1}. Hence, the constant ks is the smallest
singular value of the linear operator A and can be computed to high accuracy using
singular value decomposition. Alternatively, we have

L
tr(A(v)?) = ZAi(v)2 = vIMyv,
i=1

for a positive semidefinite rational matrix M that is easily computable from A; lower
bounding ke amounts to lower bounding the smallest eigenvalue of the matrix M.
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Recall that the constant k3 = max {A\max(A(y)) | ¥ € %, |l¥lloc = 1}. Using the
Gershgorin circle theorem, we know that
(3.15) Amax(A(y)) = 1I§r}€a§Xm Amax (Ak(¥)) < 1I§r}€a§Xm [ A% (¥)]loc-

So k3 can be bounded from above by the largest absolute row sum of all of the Ag
operators.

Since the values of ||1|| and v are known, having bounded k; and k2 from below
by positive quantities and k3 from above, C' can be bounded from below by a positive,
efficiently computable constant. In Section 4 we revisit this question and find closed-
form bounds for the case of univariate nonnegative polynomials over an interval.

3.5. Assumptions. Throughout, we have made two fundamental assumptions.
The first is that the constant one polynomial is in the interior of the WSOS cone ¥ =
X od- (Naturally, in any remotely interesting situation, positive constant polynomials
must belong to 3, but not necessarily to the interior.) The second is that we have
access to some dual certificate of the constant one polynomial in 3. These assumptions
are mild and practically unrestrictive, as we shall discuss below.

Constant one polynomial in the interior of ¥. This is a mild assumption both
from a theoretical and practical perspective. In many cases (when the weights are
sufficiently simple), it can be verified directly and ensured to hold a priori; it can also
be verified via convex optimization. If 1 is only on the boundary, there are various
ways to expand X to a larger WSOS cone that will contain 1 in the interior: first, as we
discussed in Section 2.1.1, as long as the assumptions of Putinar’s Positivstellensatz
are satisfied, every positive polynomial on Sy is in the interior of X¥,; for every
sufficiently large degree vector d. Alternatively, ¥ = Y oa can be extended, with
the inclusion of a single additional weight that is nonnegative on Sy, to satisfy this
condition without changing span(X) (in particular, without increasing the degrees),
as stated in the following theorem.

THEOREM 3.7. Suppose X354 C RY s full dimensional. Let r be the coefficient

vector of a polynomial which is bounded (positively) away from zero on Sy. Then
E(wl,...,wm,wm+1)

r is in the interior of 22 e 0)

nonnegative on Sy .

, for some weight polynomial wy,+1 which is

Proof. Since ¥, C RY is full dimensional, we can select linearly independent
coefficient vectors si,82,...,sy € X} ,4 such that r & aff({s1,s2,...,su}). (Here, aff

denotes the affine hull.) Define sy := Mr — ZzU:1 s;, with M € R large enough to
guarantee that sy 11 > 0 on Sy, and that syy1 & aff({s1,s2,...,sy}). By construction,
r = ﬁ Zgzl s;, that is, r is in the interior of the simplex whose vertices are the
(affinely independent) vectors Uﬂ—ilsi, 1 =1,...,U 4+ 1. Each of these vertices belong
to the WSOS cone EXZ&’ where W = (w1, ..., W, Wn+1) is the set of initial weights
augmented with the new weight polynomial wy,+1 whose coefficient vector is sy41
and d = (dy,...,dmn,0). (The new weight w41 is only multiplied by nonnegative

constants in this new WSOS cone.) Therefore, r is in the interior of ZZ"2 I O

Certificate for the constant one polynomial in Algorithm 3.1. We have also as-
sumed that we have access to a certificate x € C(1). In the examples in this pa-
per, we could determine the gradient certificate for 1, x;, in closed form. If we
do not know x; explicitly, then a crude approximation of x; is already sufficient to
initialize Algorithm 3.1. Precisely, we need to compute a certificate x € C(1) sat-

T

isfying || — g(z) — 1[[x < ;55 (wherein the parameter r here is the same as that in
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Algorithm 3.1). There are several approaches to compute such a vector. For instance,
we can use any convex optimization algorithm to minimize the convex, self-concordant
function f(x) LTy 4+ f(x) (with f(x) defined in (1.6)); the minimizer of f(x) sat-
isfies —g(x) = 1. As we only need a certificate x with —g(x) in the neighborhood of
1, an approximate minimizer of f(x) returned by a numerical optimization method is
sufficient.

Alternatively, motivated by two-phase interior-point methods that start from an
approximate analytic center, we can run Algorithm 3.1 “in reverse” to find a certificate
of 1 as long as we have access to any vector in (X*)°. The intuition is that if some
vector x certifies t 4 cl, then it also certifies ¢~'t + 1, which is approximately the
same polynomial as 1 if ¢ is sufficiently large.

Thus, starting with any vector x € (¥*)° and its corresponding polynomial t =
—g(x) € X°, we iterate a modified certificate update step and a modified constant
update step which are identical to those in Lines 3 and 4 of the algorithm, except that
we replace the polynomial t — ¢1 with t + c1, in order to find a large constant ¢ and
a certificate x for which x certifies t + ¢1. We terminate this iterative process when
It +cl —cl||x = ||t||x < ' is sufficiently small to guarantee that ||(t + c1)/c — 1/
is small enough to ensure that cx certifies 1. We omit the details of this analysis that
are analogous to the analysis of Algorithm 3.1; in particular, the proof of its rate of
convergence can be adapted to show that in this “reversed” algorithm, c¢ increases
exponentially, and ||(t 4+ ¢1)/c — 1]||.x converges to zero at a linear rate.

4. Univariate polynomials. In the univariate case, we can bound the number
of iterations of Algorithm 3.1 by providing explicit bounds on the constant C', adapting
the arguments from those in Section 3.4. For brevity, we only treat the even-degree
case in detail.

THEOREM 4.1. Suppose that n = 1 and degt = 2d. Using the Chebyshev ba-
sis to to represent all polynomials and weights w(z) of (1,1 — 2%) (as in Exam-
ple /), Algorithm 3.1 terminates after at most O(d? log %) iterations and requires

O(d® log W) floating point operations overall.

Proof. We start by bounding the constant C' from Theorem 3.5 as a function of

all relevant parameters by bounding each of k1, k2 and ks in the formula for C.
1. k1 > 1. Recall that k; = min{1%v | v € ¥*,||v|l~ = 1}. Since nonnegative
polynomials and weighted sum—of—squ?res polynomials coincide in the univari-

ate case [4], every vector v € (2‘1"’2 d) can be written as a conic combination

of moment vectors; precisely, we write v.=>""" | a;q(z;), wherein z; € [—1,1]
and a; > 0 for each ¢ [12, Sec. I1.2]. Then, we have

1Tv =17 <Z oziq(zi)) = Zai (qu(zi)) = Zai.

If ||v|lo = 1, there exists some j such that | >." ; @;q;(2;)| = 1. Since for
the Chebyshev basis each q(z;) € [—1,1]?¢+1 it follows that

n n n n
Yo (z)| <Y g (z)] <D el = a,
=1 1=1 1=1 =1
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since a;; > 0. Thus, Y7 | a; > 1. It follows that

n
1Tv = Zai >1,
i=1

therefore k1 > 1.

. ky > 33— V6 ~ 0.437. Recall that ky = min{tr(A(v)?) | ||v| = 1}. We

have
tr(A(v)?) = tr(A1(v)?) + tr(A2(v)?) > tr(Aq(v)?).
Note that
(4.1) 2pi(x)pj(x) = piyj(x) + pji—jj(x) for everyd,j =0,1,...

Coupling this identity with the fact that A;(q) = w;pp’ = pp?T (recall that
the first weight is wq = 1), we deduce that

(4.2) Ai(v);; = §Ui+j + §U|i,j‘.
Therefore, the zeroth row (and the zeroth column) of A;(v) is (vo, Uiyt V4)
and the last row (and the last column) is (5 (va+va), 5 (va—1+vas1)s - - -, 5 (vo+
v24)), and so we have
d d
2 Zv +ZZ Vj + v2q—j)° =v Mv
1=0 7=0

where M is the 2d + 1 x 2d 4+ 1 matrix (indexed from zero) given by

5 . . .
7 ifi=j<d
M- 2 ifi=j=d
Y)Y ifitj=2di#£j, orifi=j>d
0  otherwise

Therefore
VIV > V]2 (M) = [P (3 V5) ).

We conclude that

ko > =1/3 — V5 &~ 0.437.

1
2

. k3 <d+ 1. Recall that

ks = max{Amax(A(y)) | ¥y € X7, [lylloc = 1},
and that based on the inequality (3.15), we need only bound the largest
absolute row sum of A1(y) and As(y), for ally € ¥ with ||y|lco = 1.
For A;(y), the identity (4.2) and ||y|lcc = 1 yield the bound
d d_1q
Z|Al(y)i,j| = Z )
j=0 J=0
For Ay (y), observe that 1 — t* = 1(po(t) — p2(t)). Coupling this with the
identity (4.1), we deduce that
2 0ol0) — p2()pi(0ns (1) =5 (2P (1) + 2011 (1) — prssalt)—

Plitj—2(t) = Dlizji42(t) = Djjimji—2/ (1)),

1
Yits + 3Yli—il <d+1.
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SO
1
Ao(¥)ig = g (2¥i4s + 2151 = Yitst2 = Yiirj—2l = Yiimjle2 = Ylli—jl-21) -
Then, assuming ||y||cc = 1, we obtain the bound
d d
1
> Ma(y)igl <> g2+2+1+1+141) <d+1.
j=0 §=0

Thus, ks < max{masc{||A1(3) oo, [A2(3)llsc} | [¥lloo = 1} < d+ 1.
Lastly, since v = 2d + 1 and ||1|| = 1, combining the above bounds on k;, k2 and

ks we get

kiks 3-Vh

C = .
ksv|[1] = 2(d + 1)(2d + 1)

From (3.12) and the discussion directly following Theorem 3.6, the number of
iterations is proportional to

1 *—
(4.3) (@] — log "
log = €
(recalling that ¢ is the inputted tolerance from Algorithm 3.1).  From the series
expansion Fl—_ =271 - % — ... we see that the first term in (4.3), which only
1—2

depends on the input through the degree d, is O(C~1) = O(d?). To bound the
numerator of second term, recall that for a coefficient vector t in the Chebyshev basis,
lc*| < |lt]lr < (2d + 1)'/2||t||2, and from the intialization of Algorithm 3.1 we also
have

1+7r 4 (3.5
H 2laltlle <
L) el < e 2
Thus, |¢* — ¢p| is of order O(]|t]|2d), and the claim about the number of iterations
follows.
The bottleneck of each iteration is the computation and factorization of the Hes-
sian, which require O(d?) floating point operations. Therefore, the total number of

|co| <

floating point operations is O(d® log W) The O(-) notation hides only absolute
constants and the user-defined constant parameter p, from Lemma 3.4. ad

4.1. Optimization versus certification. Our approach and analysis have been
motivated from the perspective of optimization, where the goal is to compute a certi-
fied lower bound as close to the global minimum as possible. From this perspective,
the dependence of the complexity of Algorithm 3.1 on the parameter ¢, or rather on
|It]| /e, which measures the relative error of the lower bound is arguably one of the
most important questions. In this section, we interpret the above results from an-
other perspective, that of computational algebraic geometry and symbolic computing,
where the related fundamental question is often posed as follows: given a polynomial
of integer coefficients (in the monomial basis) that is known to be positive on a given
domain, what is the complexity of certifying its positivity? The answer, in principle,
ought be a function of the number of variables, the degree, and the bit size of the co-
efficients. Note that ¢ is not a relevant parameter in this question, as the polynomial
is assumed to be positive.

Polynomial-time certification of nonnegativity is challenging even in the univariate
case. The methods of Guo et al. [7] and Schweighofer [43] are exponential in the degree.
(The complexity of the latter was only recently established in [20].) On the other hand,
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[2] presents an algorithm for computing positivity certificates of a polynomial over an
interval in time polynomial in both the degree and the bit size of the coefficients.
Another algorithm, published by Chevillard et al. [5] and analyzed in [20] is also
polynomial in the degree, and so is the recent algorithm of Magron and Safey El Din
[17]. Of the methods mentioned in this paragraph, all those that have polynomial
complexity in the degree in the univariate case rely on techniques that are exclusive
to univariate polynomials and cannot be generalized to the multivariate case.

Neither of these complexity results are directly comparable to our results above,
as we are concerned with nonnegativity over compact sets (as opposed to the real
line, as most of the papers cited above), we are working in the real number model for
floating-point computation, and to avoid the inherent numerical instability of high-
degree polynomials represented in the monomial basis, we consider the input to be
a coefficient vector in the Chebyshev basis. But Algorithm 3.1 can be adapted to
the above decision problem as follows: given a polynomial by its (integer) coefficient
vector t in the Chebyshev basis, we can compute a positive lower bound u on its
minimum over the interval [—1,1] assuming that this minimum is positive, using a
technique of Basu, Leroy, and Roy [1]. Finally, we can invoke Algorithm 3.1 with
tolerance € < u. As soon as the certified lower bound turns positive, the algorithm
can be terminated.

Theorem 1.2 of [1] gives a positive lower bound on the minimum of a polynomial
with integer coefficients in the monomial basis over the interval [0,1]. This bound
is a function of only the degree d of the polynomial and the maximum bitsize 7 of
its coefficients. The proof can be adapted to bounding the minimum over [—1,1]
without any substantial changes. The change of basis (from the Chebyshev basis
to monomial) can be incorporated using the observation that a degree-d polynomial
with integer coeflicients of bit size at most 7 in the Chebyshev basis also has integer
coefficients in the monomial basis, and the bit size of the largest magnitude coefficient
is no more than 2d + 7. Thus we have the following bound.

LEMMA 4.2 ([1]; Thm. 1.2, adapted). Let t be a univariate polynomial of degree
d taking only positive values on the interval [—1,1], and suppose that the coefficients
of t in the Chebyshev basis are integers of bit size no more than 7. Then we have

) 3d/2
LA 1) > Seanean g1 e )

Hence, the number of iterations of Algorithm 3.1 with tolerance € = p(d, 7) is

21, lItld 4, 53
@) (d IOgu(d,T)) —O(d +d T),
polynomial in the degree and linear in the bit size of the coefficients.

We underline that, unlike the algorithms mentioned above, Algorithm 3.1 does
not rely on any techniques that are specific to univariate polynomials. Its complexity
in the multivariate setting is a subject of future research.

5. Numerical examples. In this section, we report the results of numerical
experiments with a simple Mathematica implementation of Algorithm 3.1 and investi-
gate the quality of the best certifiable rational lower bound using the purely numerical
version of the algorithm implemented using double-precision floating point arithmetic.
These results are summarized in Table 5.1.

Problem instances. Problems 1-7 are standard benchmark problems from the
polynomial optimization literature going back to at least [37] (but see also, e.g., [22,
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# Problem n d # iters time [s] ct—c k
1 R.D.3 3 2 121 0.11 2.690981304 x 106 —22
2 Schwefel 3 4 384 1.08 5.764365051 x 10~7 —13
3 L.V. 4 4 3 467 2.24  2.602585946 x 1075 11
4  Caprasse 4 4 283 2.45 2.260781469 x 1075 —10
5  Butcher 6 3 268 8.66 1.180076686 x 10=¢ —13
6  Magnetism 7 2 318 1.16  9.031997478 x 10=% —15
7 Heart Dipole 8 4 374 127.9  8.688025884 x 1076 -7
8  Wrig b 5 2 172 0.34 1.339771877 x 1076 —12
9 PPEx4 3 4 332 0.58 1.397125980 x 106 —12
TABLE 5.1

Summary of results of running Algorithm 3.1 on standard benchmark problems from [37, 22, 33].
n and d represent the number of variables and the degree of the polynomial to be minimized. The
c* — ¢ column lists the difference between the certified lower bound c returned by Algorithm 3.1 and
the true minimum c* of the polynomial. The k column lists the smallest integer exponent k for which
¢* — 10% can be certified by the outputted certificate vector from Algorithm 3.1.

23, 30]). Problem 8 is from [22], Problem 9 is Example 4 from [33]. The problem is
originally unconstrained; we added the constraint ||z|| < 10 to the problem, which can
be shown to be redundant. All polynomials were represented in the monomial basis
throughout the computation. The minimum values of these polynomials are known.

Implementation details. The analysis of the method provides theoretically safe
choices for the algorithmic parameters; in the experiments we used r = 1/4. Ini-
tial points were determined either from simple closed-form solutions of the nonlinear
system —g(x) = 1 or approximate numerical solutions, as discussed in Section 3.5.
Instead of the stopping criterion used in the theoretical analysis, we ran the method
with € = 0, until numerical issues prevented progress, to compute the best possible
bound and a corresponding rational dual certificate.

The timing results were obtained on a standard Macbook laptop computer equipped
with 16GB RAM and a 2.8 GHz Intel Core i7 processor with 4 cores running macOS
10.15.7. We used Mathematica version 12.0.0.0.

The ¢* — ¢ column of Table 5.1 shows the difference between the minimum and
the certified lower bound returned by the algorithm.

Following the numerical computation, we also used the approach outlined in
Section 3.2 to determine an approximately optimal lower bound certified by the dual
certificate returned by Algorithm 3.1. Denoting the known optimal value of the poly-
nomial by ¢*, a simple linear search can identify the smallest (negative) integer ex-
ponent k for which the lower bound ¢* — 10* is certified by the same dual certificate.
The value of this k is reported in the last column of Table 5.1.

Summary. As expected, the numerical method yields bounds with roughly 5-8
correct decimal digits, and as predicted by the theory, the numerical dual certificate
can certify stronger bounds than those returned by the Algorithm 3.1. It is remark-
able, however, that the best bounds are often at least 5-6 digits more accurate than
the ones from the algorithm (this is owing to the fact that the algorithm uses the sim-
ple sufficient condition in the c-update steps, rather than looking for a near-optimal
bound), and that in one example, the numerical dual certificate can even certify a
bound that is indistinguishable from the minimum with the precision used throughout
the computation. (Both the relative and absolute errors of the bound are far smaller
than the unit round-off in double precision.)
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6. Discussion.

Primal versus dual certificates. Conventional nonnegativity certificates are repre-
sentations of the certified polynomials that make their nonnegativity apparent. This
is a fundamental issue for numerical methods for computing nonnegativity certificates,
as the certificate they compute is typically a rigorous WSOS certificate for a slightly
different polynomial from the one we seek to certify.

Dual certificates address this issue: through the formula (2.1), not only can we
interpret any rational dual vector from C(s) as a certificate, but we can also compute,
via a closed-form formula, a rational certificate for the polynomial s with rational
coefficients. Since every polynomial (in the interior of the SOS cone) has a full-
dimensional cone of dual certificates, even an inexact numerical method computing
low-accuracy solutions to an SOS optimization problem can return dual certificates
that can be turned into a rational certificate this way. For example, Algorithm 3.1
can be implemented as a purely numerical method, followed by an application of the
formula (2.1) to compute a rational certificate for the computed bound. Although the
certificate x only loosely tracks the gradient certificate of t — c1, we can guarantee
that x certifies the current bound. This also means that, unlike most numerical or
hybrid methods that require high-accuracy solutions from the numerical component
of the algorithm, Algorithm 3.1 provides a certified bound even if terminated early;
only the quality of the bound suffers.

Recent work in numerical methods for non-symmetric cones has resulted in a few
additional algorithms that can directly optimize over the cone of WSOS certificates
circumventing semidefinite programming, including [11] and [31]; in principle, these
can also be coupled with the methods presented in Section 2.

Efficiency. In general, it is difficult to make general statements about the asymp-
totic running time of Algorithm 3.1 as a function of every parameter (the degree and
the number of unknowns of the input polynomial, etc.) as these also depend on the
specific weight polynomials and the chosen representation (A operator). As noted,
the computational cost per iteration is a low-degree polynomial for A operators cor-
responding to popular bases in numerical methods (e.g., Chebyshev and interpolant
bases), and the method is linearly convergent, that is, for a given polynomial it re-
quires a number of iterations proportional to log(1/e) to compute a certified rational
bound within € of the optimal bound ¢*. We derived an explicit bound on the linear
rate and the initial gap ¢* — ¢p in the univariate case in Section 4; it may also be
possible to derive such bounds in other important special cases, such as the cases of
multivariate polynomials over simple semialgebraic sets such as the unit sphere or the
unit cube.

Application to polynomials with particular structures. Dual certificates can be
used in combination with other recent approaches aimed at increasing the practical
efficiency of sum-of-squares optimization, such as exploiting sparsity or symmetry.
For example, the (term- or correlative-) sparsity of the polynomial in [13, 15, 45] has
the effect of making the A operator simpler, either by reducing the dimension of A(x)
or by imposing a block structure on it, reducing the overall size of the problem at
hand. This in turn simplifies the computation of A and H~! and the verification of
the semidefiniteness of A(x), for x € ¥*. Future research could also examine how ex-
ploiting symmetries, e.g., following [40], may be used in tandem with dual certificates.
Likewise, future work could extend dual certificates to the noncommutative setting.

REFERENCES



[6]

[7]

(8]

[17]

18]

DUAL SUM-OF-SQUARES CERTIFICATES 29

S. Basu, R. LEROY, AND M. RoOY, A bound on the minimum of a real positive polynomial over
the standard simplez, arXiv, (2009), https://arxiv.org/abs/0902.3304.

F. Boupaoup, F. CARuUSsO, AND M.-F. Roy, Certificates of positivity in the Bernstein basis,
Discrete & Computational Geometry, 39 (2007), pp. 639-655, https://doi.org/10.1007/
s00454-007-9042-x.

D. A. BRAKE, J. D. HAUENSTEIN, AND A. C. LIDDELL, Validating the completeness of the real
solution set of a system of polynomial equations, in Proceedings of the the ISSAC 16, New
York, NY, USA, 2016, ACM, p. 1437150, https://doi.org/10.1145/2930889.2930910.

L. BRICKMAN AND L. STEINBERG, On nonnegative polynomials, The American Mathematical
Monthly, 69 (1962), pp. 218-221. doi:10.2307/2311058.

S. CHEVILLARD, J. HARRISON, M. JOLDES, AND C. LAUTER, Efficient and accurate computa-
tion of upper bounds of approzimation errors, Theoretical Computer Science, 412 (2011),
pp. 1523-1543, https://doi.org/10.1016/j.tcs.2010.11.052.

M. DOSTERT, D. DE LAAT, AND P. MOUSTROU, Ezact semidefinite programming bounds for
packing problems, 2020, https://arxiv.org/abs/2001.00256.

Q. Guo, M. SArey EL DIN, AND L. ZHI, Computing rational solutions of linear matriz in-
equalities, in Proceedings of the ISSAC '13; ACM, 2013, https://doi.org/10.1145/2465506.
2465949.

D. HENRION AND J.-B. LASSERRE, GloptiPoly: Global optimization over polynomials with Mat-
lab and SeDuMi, ACM Transactions on Mathematical Software, 29 (2003), pp. 165-194,
https://doi.org/10.1145/779359.779363.

E. KALTOFEN, B. L1, Z. YANG, AND L. ZHI, Ezact certification of global optimality of approz-
imate factorizations via rationalizing sums-of-squares with floating point scalars, in Pro-
ceedings of the 21st International Symposium on Symbolic and Algebraic Computation,
ISSAC ’08, New York, NY, 2008, ACM, pp. 155-164, https://doi.org/10.1145/1390768.
1390792.

E. L. KALTOFEN, B. LI, Z. YANG, AND L. ZHI, Ezact certification in global polynomial op-
timization via sums-of-squares of rational functions with rational coefficients, Journal of
Symbolic Computation, 47 (2012), pp. 1-15, https://doi.org/10.1016/j.jsc.2011.08.002.

M. KARIMI AND L. TUNGEL, Domain-driven solver (DDS): a MATLAB-based software package
for convex: optimization problems in domain-driven form, arXiv:1908.03075, (2019).

S. KARLIN AND W. J. STUDDEN, Tchebycheff Systems, with Applications in Analysis and Sta-
tistics, Wiley Interscience, New York, NY, 1966.

M. KoJima, S. KiMm, AND H. WAKI, Sparsity in sums of squares of polynomials, Mathematical
Programming, 103 (2004), pp. 45-62, https://doi.org/10.1007/s10107-004-0554- 3.

J. B. LASSERRE, Global optimization with polynomials and the problem of moments, STAM Jour-
nal on Optimization, 11 (2001), pp. 796-817, https://doi.org/10.1137/51052623400366802.

J. B. LASSERRE, Convergent SDP-relazations in polynomial optimization with sparsity, STAM
Journal on Optimization, 17 (2006), pp. 822-843, https://doi.org/10.1137/05064504x.

M. LAURENT, Sums of squares, moment matrices and optimization over polynomials, in Emerg-
ing Applications of Algebraic Geometry, M. Putinar and S. Sullivant, eds., vol. 149 of IMA
Volumes in Mathematics and its Applications, Springer, New York, NY, 2009, pp. 157-270,
https://doi.org/10.1007/978-0-387-09686-5_7.

V. MAGRON AND M. SAFEY EL DIN, On Ezact Polya and Putinar’s Representations, in Pro-
ceedings of the ISSAC ’18, ACM, New York, NY, USA, 2018, pp. 279-286, http://arxiv.
org/abs/1802.10339.

V. MAGRON AND M. SAFEY EL DIN, RealCertify: A Maple package for certifying non-negativity,
ACM Commun. Comput. Algebra, 52 (2018), p. 34737, https://doi.org/10.1145/3282678.
3282681.

V. MAGRON AND M. SAFEY EL DIN, On exact Reznick, Hilbert-Artin and Putinar's represen-
tations, Journal of Symbolic Computation, 107 (2021), pp. 221-250, https://doi.org/10.
1016/j.j5c.2021.03.005.

V. MAGRON, M. SAFEY EL DIN, AND M. SCHWEIGHOFER, Algorithms for weighted sum of
squares decomposition of non-negative univariate polynomials, Journal of Symbolic Com-
putation, 93 (2019), pp. 200-220, https://doi.org/10.1016/j.jsc.2018.06.005.

V. MAGRON AND J. WANG, SONC optimization and exact nonnegativity certificates via second-
order cone programming, 2020, https://arxiv.org/abs/2012.07903.

C. MuNoz AND A. NARKAWICZ, Formalization of Bernstein polynomials and applications to
global optimization, Journal of Automated Reasoning, 51 (2012), pp. 151-196, https://doi.
org/10.1007/s10817-012-9256- 3.

R. MURRAY, V. CHANDRASEKARAN, AND A. WIERMAN, Signomial and polynomial optimization
via relative entropy and partial dualization, Mathematical Programming Computation, 13


https://arxiv.org/abs/0902.3304
https://doi.org/10.1007/s00454-007-9042-x
https://doi.org/10.1007/s00454-007-9042-x
https://doi.org/10.1145/2930889.2930910
https://doi.org/10.2307/2311058
https://doi.org/10.1016/j.tcs.2010.11.052
https://arxiv.org/abs/2001.00256
https://doi.org/10.1145/2465506.2465949
https://doi.org/10.1145/2465506.2465949
https://doi.org/10.1145/779359.779363
https://doi.org/10.1145/1390768.1390792
https://doi.org/10.1145/1390768.1390792
https://doi.org/10.1016/j.jsc.2011.08.002
https://doi.org/10.1007/s10107-004-0554-3
https://doi.org/10.1137/S1052623400366802
https://doi.org/10.1137/05064504x
https://doi.org/10.1007/978-0-387-09686-5_7
http://arxiv.org/abs/1802.10339
http://arxiv.org/abs/1802.10339
https://doi.org/10.1145/3282678.3282681
https://doi.org/10.1145/3282678.3282681
https://doi.org/10.1016/j.jsc.2021.03.005
https://doi.org/10.1016/j.jsc.2021.03.005
https://doi.org/10.1016/j.jsc.2018.06.005
https://arxiv.org/abs/2012.07903
https://doi.org/10.1007/s10817-012-9256-3
https://doi.org/10.1007/s10817-012-9256-3

30

o g o <

MARIA M. DAVIS AND DAVID PAPP

(2020), pp. 257-295, https://doi.org/10.1007 /s12532-020-00193-4.

. NALDI AND R. SINN, Conic programming: Infeasibility certificates and projective geometry,

Journal of Pure and Applied Algebra, 225 (2021), p. 106605, https://doi.org/10.1016/j.
jpaa.2020.106605.

. NESTEROV, Squared functional systems and optimization problems, in High performance

optimization, H. Frenk, K. Roos, T. Terlaky, and S. Zhang, eds., Kluwer, Dordrecht, 2000,
pp. 405-440, https://doi.org/10.1007/978-1-4757-3216-0_17.

. NESTEROV AND A. NEMIROVSKII, Interior-point polynomial algorithms in convex program-

ming, vol. 13 of STAM Studies in Applied Mathematics, Society for Industrial and Applied
Mathematics (SIAM), Philadelphia, PA, 1994, https://doi.org/10.1137/1.9781611970791.

. Nig, K. RANESTAD, AND B. STURMFELS, The algebraic degree of semidefinite program-

ming, Mathematical Programming, 122 (2010), pp. 379-405, https://doi.org/10.1007/
s10107-008-0253-6.

. Y. PAN, Structured matrices and polynomials, Birkhduser, Boston, MA, 2001, https://doi.

org/10.1007/978-1-4612-0129-8.

. Papp AND S. YILDIZ, On “A homogeneous interior-point algorithm for non-symmetric con-

vex conic optimization”, arXiv:1712.00492, (2017), https://arxiv.org/abs/1712.00492.

. PAPP AND S. YILDIZ, Sum-of-squares optimization without semidefinite programming, STAM

Journal on Optimization, 29 (2019), pp. 822-851, https://doi.org/10.1137/17M1160124.

. Papp AND S. YILDIZ, alfonso: Matlab package for nonsymmetric conic optimization, IN-

FORMS Journal on Computing (accepted), (2021), https://arxiv.org/abs/2101.04274.

. A. PARRILO, Structured Semidefinite Programs and Semialgebraic Geometry Methods in

Robustness and Optimization, PhD thesis, California Institute of Technology, May 2000.

. PEYRL AND P. A. PARRILO, Computing sum of squares decompositions with rational coeffi-

cients, Theoretical Computer Science, 409 (2008), pp. 269-281, https://doi.org/10.1016/j.
t¢s.2008.09.025.

. POWERS, Rational certificates of positivity on compact semialgebraic sets, Pacific Journal

of Mathematics, 251 (2011), pp. 385-391, https://doi.org/10.2140/pjm.2011.251.385.

. PRAJNA, A. PAPACHRISTODOULOU, P. SEILER, AND P. A. PARRILO, SOSTOOLS: Sum of

squares optimization toolbox for MATLAB, 2004, http://www.cds.caltech.edu/sostools.

. PUTINAR, Positive polynomials on compact semi-algebraic sets, Indiana University Mathe-

matics Journal, 42 (1993), pp. 969-984, https://doi.org/10.1512/iumj.1993.42.42045.

. RAy AND P. S. V. NATARAJ, An efficient algorithm for range computation of polynomials

using the Bernstein form, Journal of Global Optimization, 45 (2009), pp. 403-426, https://
doi.org/10.1007/s10898-008-9382-y.

. RENEGAR, On the computational complexity and geometry of the first-order theory of the

reals. Parts I-III., Journal of Symbolic Computation, 13 (1992), pp. 255-352, https://doi.
org/10.1016/S0747-7171(10)80003-3.

. RENEGAR, A mathematical view of interior-point methods in convexr optimization, MOS-

SIAM Series on Optimization, Society for Industrial and Applied Mathematics (STAM),
Phiadelphia, PA, 2001, https://doi.org/10.1137/1.9780898718812.

. RIENER, T. THEOBALD, L. J. ANDREN, AND J. B. LASSERRE, Exploiting symmetries in SDP-

relazations for polynomial optimization, Mathematics of Operations Research, 38 (2013),
pp. 122-141, https://doi.org/10.1287 /moor.1120.0558.

. SAFEY EL DIN, RAGIib (real algebraic geometry library). Maple package, 2007.
. SCHEIDERER, Sums of squares of polynomials with rational coefficients, Journal of the Eu-

ropean Mathematical Society, 18 (2016), pp. 1495-1513, https://doi.org/10.4171/JEMS/
620.

. SCHWEIGHOFER, Algorithmische Beweise fir Nichtnegativ-und Positivstellensdtze, Master’s

thesis, Universitdt Passau, 136 (1999).

. TARskI, A decision method for elementary algebra and geometry, Tech. Report R-109,

RAND Corporation, May 1951. http://www.rand.org/pubs/reports/2008/R109.pdf.

J. WANG, V. MAGRON, AND J.-B. LASSERRE, TSSOS: A moment-SOS hierarchy that exploits

term sparsity, SIAM Journal on Optimization, 31 (2021), pp. 30-58, https://doi.org/10.
1137/19M1307871.


https://doi.org/10.1007/s12532-020-00193-4
https://doi.org/10.1016/j.jpaa.2020.106605
https://doi.org/10.1016/j.jpaa.2020.106605
https://doi.org/10.1007/978-1-4757-3216-0_17
https://doi.org/10.1137/1.9781611970791
https://doi.org/10.1007/s10107-008-0253-6
https://doi.org/10.1007/s10107-008-0253-6
https://doi.org/10.1007/978-1-4612-0129-8
https://doi.org/10.1007/978-1-4612-0129-8
https://arxiv.org/abs/1712.00492
https://doi.org/10.1137/17M1160124
https://arxiv.org/abs/2101.04274
https://doi.org/10.1016/j.tcs.2008.09.025
https://doi.org/10.1016/j.tcs.2008.09.025
https://doi.org/10.2140/pjm.2011.251.385
http://www.cds.caltech.edu/sostools
https://doi.org/10.1512/iumj.1993.42.42045
https://doi.org/10.1007/s10898-008-9382-y
https://doi.org/10.1007/s10898-008-9382-y
https://doi.org/10.1016/S0747-7171(10)80003-3
https://doi.org/10.1016/S0747-7171(10)80003-3
https://doi.org/10.1137/1.9780898718812
https://doi.org/10.1287/moor.1120.0558
https://doi.org/10.4171/JEMS/620
https://doi.org/10.4171/JEMS/620
http://www.rand.org/pubs/reports/2008/R109.pdf
https://doi.org/10.1137/19M1307871
https://doi.org/10.1137/19M1307871

	1 Introduction
	1.1 Preliminaries
	1.1.1 Weighted SOS polynomials and positive semidefinite matrices
	1.1.2 Barrier functions and local norms in convex cones


	2 Dual certificates
	2.1 Rational nonnegativity certificates
	2.1.1 Existence of rational WSOS certificates for rational polynomials
	2.1.2 Rigorous certificates from numerical methods

	2.2 Complexity considerations
	2.3 Relation to prior work

	3 Computing rigorously certified lower bounds with dual certificates
	3.1 Universal dual certificates
	3.2 Optimal and near-optimal lower bounds from a given dual certificate
	3.3 Computing optimal WSOS bounds
	3.4 Bounding constants in Theorem 3.5
	3.5 Assumptions

	4 Univariate polynomials
	4.1 Optimization versus certification

	5 Numerical examples
	6 Discussion
	References

