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Abstract The aquatic fern Salvinia molesta D.S.
Mitch. is an invasive species that can have devastat-
ing effects on the freshwater habitats it colonizes.
Currently, a lack of clarity surrounding the genomic
composition and genetic diversity of S. molesta
impedes eradication efforts. Salvinia molesta is a
polyploid hybrid with unknown and controversial
parentage, first noted in Africa but morphologically
similar to South American species. Giant salvinia is
also thought to reproduce primarily, perhaps exclu-
sively, through vegetative reproduction, raising the
possibility that the global invasion comprises one
or a few clonal genotypes. This research focuses on
identifying the maternal genome donor of S. molesta,
determining if this species consists of a single or
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multiple independently derived lineages, and evaluat-
ing invasive-range genotypic diversity. Whole chloro-
plast genome (plastome) sequencing from field-col-
lected and herbarium specimens was used to quantify
genetic diversity in S. molesta and the phylogenetic
relationships among Salvinia species. Phylogenetic
analysis revealed that S. molesta and S. herzogii share
the same plastome, although S. herzogii is unlikely
to be S. molesta’s maternal progenitor due to its own
hybrid status and odd ploidy. Rather, we conclude
that S. molesta’s maternal progenitor is either an
undescribed or extinct species. The observed plas-
tome diversity within S. molesta indicates the pres-
ence of multiple divergent genotypes which strongly
suggest multiple origins of this hybrid. Additionally,
this diversity clearly indicates that a single clone does
not dominate the invasive range. This genomic diver-
sity could have direct implications for the successful
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management of this invasive species, particularly for
biological control.
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Phylogeny - Polyploidy - Plastome

Introduction

Hybridization, polyploidy, and asexuality are com-
monly associated with plant invasions (Ellstrand and
Schierenbeck 2000; Liu et al. 2006; Te Beest et al.
2012), creating novel, aggressive genotypes that can
spread rapidly. These traits are all features of the
aquatic fern giant salvinia, Salvinia molesta D.S.
Mitch., (Salviniaceae). Giant salvinia has escaped
its presumed native range in South America and has
become an aggressive invader of standing freshwater
habitats in Southern Africa, eastern/southern Asia,
Australia, Europe, and the United States. Previous
studies have shown that S. molesta’s biomass can
double in five days and that it can have an exponential
growth rate while colonizing a new habitat (Mitchell
and Tur 1975; Rani and Bhambie 1983). This growth
potential and the ecosystem-altering effects of its
establishment have led to S. molesta being ranked
among the 100 worst invasive species worldwide
(Luque et al. 2014). This invasion has been remark-
ably fast- S. molesta was first noted in the late 1950s
in Zimbabwe (Mitchell 1972). The current U.S. inva-
sion is thought to largely originate from populations
first recorded from Louisiana and Texas in 1998
(Jacono 1999) and has since spread to twelve states
(Coetzee and Hill 2020). Although the control of this
species has been the subject of considerable research
(e.g., Mitchell and Tur 1975; Room 1983; Jacono
et al. 2001; Lal 2016; Coetzee and Hill 2020), a lack
of clarity surrounding the origin and genetic diversity
of S. molesta may be hindering current control and
eradication efforts (Thomas and Room 1986). A bet-
ter understanding of the biogeographic origin of giant
salvinia could guide the search for biocontrol agents
(Schaffner 2001), while knowledge of the genetic
diversity of this species could help predict the speci-
ficity of such agents (Gaskin et al. 2011).
Chromosome pairing information suggests that
giant salvinia is an allopentaploid (Kuriachan 1979).
Its putative hybrid origin and odd-number of chro-
mosome sets are consistent with many aspects of S.
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molesta’s invasive behavior, such as its high growth
rate and non-viable spore production (Mitchell and
Tur 1975; Nagalingum et al. 2008; Galam et al.
2015). Among the estimated 13 species in the genus
Salvinia, the search for the progenitor species of
S. molesta has focused on the Salvinia auriculata
Aubl. species complex, a group of four to six primar-
ily South American species possessing four apically
united hairs on each papillae- so called “egg-beater”
or “fouet-like” hairs (Mitchell and Thomas 1972;
Jacono et al. 2001; Miranda and Schwartsburd 2019).
Giant salvinia exhibits this hair type and is otherwise
morphologically similar to several members of this
complex. This suggests that despite being first noted
in Africa, S. molesta has a South American origin.
Specifically, it has been proposed that its likely paren-
tal species are S. biloba Raddi and S. auriculata or
S. biloba and S. herzogii de la Sota (Mitchell 1972;
Nagalingum et al. 2008). In addition to hair type,
S. molesta, S. biloba, and S. herzogii are especially
similar morphologically due to their bilobed floating
leaves and sorophore display (Miranda and Schwarts-
burd 2019). A taxonomic analysis of Salvinia species
occurring in Brazil shows that these proposed paren-
tal species have overlapping distributions (Miranda
and Schwartsburd 2019). Identifying giant salvinia’s
maternal genome donor could be achieved through
chloroplast genome (i.c., plastome) sequencing of S.
molesta and other Salvinia species, as previous work
supports fern plastomes as being maternally inher-
ited (Wolf 2010). By sampling S. molesta across its
invasive range, this approach also has the potential
to identify distinct plastome haplotypes of S. molesta
that reflect an evolutionary history of multiple, inde-
pendent hybridization events (Beck et al. 2012b; Sigel
et al. 2014, Dillenberger et al. 2018).

Many hybrid polyploids have evolved asexual
reproduction (Whitton et al. 2008; Herben et al. 2017)
and S. molesta is no exception. Salvinia molesta does
not produce viable spores (Loyal and Grewal 1966),
and it is commonly viewed as reproducing largely
or perhaps exclusively through vegetative reproduc-
tion (Mitchell 1972; Jacono 1999; Mora-Olivo and
Yatskievych 2009; Miranda and Schwartsburd 2016).
This raises the possibility that the global S. molesta
invasion may comprise relatively few, perhaps even
one, widespread clonal genotypes. Indeed, multiple
empirical studies support the notion that asexually
reproducing invasive species exhibit low genotypic
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diversity in their non-native range. Zhang et al.
(2010) found that 80% of introduced Eichhornia cras-
sipes Mart., populations were composed of a single
clone and that a single genotype accounted for almost
75% of invasive individuals. Very low genetic varia-
bility was found across the invasive range of apomic-
tic Hieracium aurantiacum L. in North America, with
a single AFLP genotype documented in 46 out of the
48 sampled populations (Loomis and Fishman 2009).
A study of the clonal invader giant reed, Arundo
donax L., revealed that 98% of invasive individuals in
the United States exhibited the same multilocus geno-
type (Ahmad et al. 2008). In the apomictic grass Pen-
nisetum setaceum (Forssk.) Chiov., a single genotype
was observed across three states in its invasive range
(Poulin et al. 2005). The possibility of low genetic
diversity has implications for both the adaptive poten-
tial of giant salvinia and for its biocontrol, including
the potential for specific interactions between host
and biological control genotypes (Gaskin et al. 2011;
Darling 2015; Sun et al. 2020).

Taken together, previous research establishes sev-
eral null hypotheses: (1) Salvinia molesta’s progenitor
species are likely members of the South American S.
auriculata complex rather than an eastern-hemisphere
(Europe/Asia/Africa) species; (2) as an allopolyploid
species, S. molesta is likely to be the result of mul-
tiple independent hybridization events; and (3) as an
asexually reproducing species S. molesta is likely to
display low genetic diversity in its invasive range. In
order to evaluate these hypotheses we adopt phyloge-
netic and haplotype network approaches using whole
plastome sequences from field and herbarium sam-
ples of S. molesta and other Salvinia species.

Materials and methods
Sampling

We obtained samples from 94 herbarium and freshly
collected specimens, representing 14 Salvinia spe-
cies (Online Resource 1). These specimens were
collected between 1956 and 2020 (mean collection
year=2000). We emphasized sampling of mem-
bers of the S. auriculata complex, especially to
obtain a geographically and temporally diverse set
of S. molesta individuals. Herbarium specimens
were obtained from 13 herbaria (Online Resource

1) through loans, in-person visits, and samples sent
from collaborators. A small amount of leaf tissue was
removed from herbarium specimens and an annota-
tion label was applied. Field collections focused on
obtaining a broad contemporary sample of S. molesta
from the Gulf Coastal Plain (AR, TX, LA, MS, AL).
Potential sampling sites were identified using the
iNaturalist platform (2020). Once a population was
located, material suficient for a herbarium voucher
was pressed, and a portion of leaf tissue was pre-
served in silica gel for DNA extraction.

DNA extraction, library preparation, and sequencing

DNA extractions were performed with a standard
CTAB protocol modified for 96 well plates (Beck
et al. 2012a). A Qubit fluorometer (Life Technolo-
gies) was used to establish DNA concentration for
all extracts. Library preparations were performed
using the NEBNext Ultra II DNA Library Prep Kit
for Illumina with the NEBNext Multiplex Oligos for
[llumina (Dual Index Primers Set 1) (New England
Biolabs). Library preparation followed the detailed
text and video protocols outlined in Saeidi et al.
(2018), with 200 ng of input DNA. Samples with low
library concentrations were re-amplified with univer-
sal Illumina primers prior to the hybridization reac-
tion (Saeidi et al. 2018). Unenriched libraries were
sequenced with 150 bp paired-end chemistry on an
[llumina NextSeq 550 (Illumina) at the University of
Kansas Genome Sequencing Core.

Sequence analysis

Following de-multiplexing, adapters and low-quality
sequence reads were removed with Trimmomatic
(Bolger et al. 2014). Trimmed sequences were aligned
to a published Salvinia plastome (Li et al. 2018)
using Geneious (Biomatters). Consensus sequences
were extracted from each assembly with at least
30,000 reads using an ambiguity threshold of 60%.
Sites with coverage of less than ten were considered
ambiguous. After MAFFT (Katoh et al. 2002) align-
ment in Geneious, a maximum likelihood phylogeny
was constructed using RAXML (Stamatakis 2014)
with the GTRCAT model of sequence evolution and
1000 maximum-likelihood bootstrap (MLBS) repli-
cates. The tree was rooted with an Azolla filiculoides
Lam. plastome (GenBank accession # MF177094.1).
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Fig. 1 Maximum likelihood phylogeny resulting from analysis
of Salvinia plastome sequence data. Branches supported with
100% maximum likelihood bootstrap support are shown with
bold, thickened lines. Sample names correspond to those in
Online Resource 1

The number and phylogenetic position of S. molesta
plastomes was then used to identify the haplotype of
the putative maternal progenitor species. A network
approach was used to identify potential multiple ori-
gins of S. molesta and to estimate the minimum num-
ber of invasive S. molesta genotypes in the United
States. Following alignment, all nucleotide positions
exhibiting ambiguities, gaps, and identical bases were
masked. A Templeton, Crandell and Sing network
(TCS; Clement et al. 2002) was produced from the
resulting masked alignment in PopArt (Population
Analysis with Reticulate Trees) (Leigh and Bryant
2015).

Results
Sampling and sequencing

A total of 94 Illumina libraries were constructed
from 79 herbarium and 15 field-collected extractions
(Online Resource 1). The 79 herbarium specimens
exhibited library DNA concentrations ranging from
0.00 to 33.9 ng/ul (mean 11.78634 ng/ul). There was
an inverse relationship between the age of the her-
barium specimen (ranging from 1956 to 2020; Online
Resource 1) and DNA library concentration, with
older specimens yielding lower-concentration librar-
ies (P=0.005). A subset of 84 libraries were chosen
for sequencing, comprising 76 herbarium specimens
and 8 field-collected samples. This subset of sam-
ples was chosen based on taxonomy, DNA library
concentration, and geographic location to maximize
the Salvinia species sampled and to include a diverse
geographic representation of S. molesta. The 76 her-
barium specimens chosen for sequencing yielded
between 259,732-56,834,492 sequence reads (mean
15,862,965+8,155,554). There is no relationship
between the number of raw reads and the age of the
herbarium specimen (P=0.085). Sequencing cover-
age ranged from 0.463 to 643.7, (mean 106.3+113.6).
There was no clear relationship between the average
nucleotide coverage and the age of the herbarium

specimen (P=0.089). For each specimen between
574-1,271,576 reads mapped to the reference Sal-
vinia plastome (mean 149,397+180,986). There was
no significant relationship between the number of
reads mapped to the reference plastome and the age
of the herbarium specimen (P=0.394). On average,
0.944% of total reads per herbarium sample mapped
to the reference (0.003—4.58%, = 0.0091%).

Phylogenetic and network analyses

Following sample selection based on read number,
the maximum likelihood plastome phylogeny (Fig. 1)
was reconstructed with 58 herbarium specimens,
eight field-collected samples and two sequences
previously accessioned on GenBank (accession
#MF177094.1, #MF177095.1). These sequences span
13 Salvinia species, including all but one western
hemisphere species, Salvinia oblongifolia Mart. Two
main clades are apparent, one comprising plastomes
from most eastern-hemisphere specimens (maximum
likelihood bootstrap support, MLBS=45%) and the
other comprising plastomes from all western-hem-
isphere specimens, as well as S. molesta specimens
from Africa and Madagascar, with complete sup-
port (MLBS=100%). The western-hemisphere clade
is further divided into two completely supported
(MLBS=100%) subclades, one comprising S. min-
ima and Salvina sprucei Kuhn and the other compris-
ing samples of species belonging to the S. auriculata
complex. Within the S. auriculata complex, sam-
ples of S. biloba, S. auriculata, and S. radula Baker
are united (MLBS=100%) with four morphologi-
cally anomalous samples hypothesized to be previ-
ously undescribed species (Bond Schwartsburd pers.
comm.). All S. molesta samples are united with two
S. herzogii samples (MLBS=100%).

The plastome TCS network of S. molesta and S.
herzogii samples (Fig. 2) was created from 31 sam-
ples and resulted in three groups of similar haplo-
types. The first group, separated by 13 substitutions
from the rest of the network, includes all Brazilian
samples (both S. molesta and S. herzogii). The sec-
ond group comprises only samples of S. molesta
from across its invasive range, including a common
shared haplotype (13 samples from Mexico, Texas,
Louisiana, California, Georgia, and North Carolina)
and nine additional haplotypes from the U.S., French
Guiana, and Madagascar invasions. The third group
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IL110 Zimbabwe
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IL149 USA Hawai

IL157 Brazil
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Fig. 2 TCS haplotype network constructed from Salvinia
molesta and Salvinia herzogii plastome sequences. Filled cir-
cles denote S. molesta samples, open circles denote S. herzogii

is separated by ten substitutions from the rest of the
network and includes a single haplotype of S. molesta
from the U.S. (Arkansas) and two samples from
Africa.

Discussion

Identifying Salvinia molesta’s maternal progenitor
The two primary clades in the ML plastome phy-
logeny representing species native to the eastern
and western hemispheres are consistent with previ-

ous findings (Nagalingum et al. 2008), and establish
a fundamental historical biogeographic split within
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the genus (Fig. 1). It also excludes the possibility of
an eastern-hemisphere maternal donor of S. molesta.
The paternal donor could be either an eastern- or
western-hemisphere species, alternatives that carry
different historical biogeographic implications. A
western-hemisphere paternal donor would imply ini-
tial hybridization in that region and the subsequent
transport of the hybrid to the various regions where S.
molesta is invasive. An eastern-hemisphere paternal
donor would imply the transport of the western-hem-
isphere maternal donor to the eastern hemisphere,
subsequent hybrid origin of S. molesta there, fol-
lowed by transport to the various regions where it is
invasive. Within the western-hemisphere clade, giant
salvinia samples are placed in a well-supported clade
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encompassing all species of the S. auriculata com-
plex. This is consistent with morphology and estab-
lishes that S. molesta’s maternal donor is part of this
group. In his initial description of S. molesta, Mitch-
ell (1972) suggested that S. biloba and S. auriculata
or S. herzogii are S. molesta’s likely progenitors based
on geographic proximity and morphological charac-
teristics of extant populations. In a taxonomic treat-
ment of Salvinia species occurring in Brazil, Miranda
and Schwartsburd (2019) also suggest S. biloba and
S. herzogii as its putative parents. However, Salvinia
auriculata and S. biloba can be excluded as maternal
donor given their strongly supported placements out-
side the well-supported S. molesta clade (Fig. 1).
Notably, both included specimens of S. herzogii
are placed in this “molesta” clade, as is consistent
with the previous findings of Machado et al. (2016)
based on phylogenetic analysis of a single plastid
gene. Although this suggests that S. serzogii could be
the maternal progenitor of S. molesta, a prior study
cast doubt on this scenario. Cytological evidence
established that S. herzogii is itself a polyploid, in
this case a heptaploid (Schneller 1980). It should be
noted, however, that this is based on mitotic and mei-
otic counts from a single S. herzogii locality. If this
count is reflective of the entire species, this excludes
S. herzogii as a potential genome donor, since based
on chromosome pairing behavior (Kuriachan 1979)
the pentaploid S. molesta likely resulted from the
union of reduced gametes from a tetraploid (diploid
gamete) and a hexaploid (triploid gamete). Rather, the
plastome data suggest the allopolyploids S. molesta
and S. herzogii likely share as their maternal par-
ent a species that is either unsampled, undescribed,
or extinct. The only described western hemisphere
Salvinia species not included in this phylogeny is S.
oblongifolia Mart. Although this species also occurs
in Brazil, it is currently not sympatric with S. molesta
and is considered a poor morphological match due to
its oblong laminae and spatulate (rather than fouet-
like) hair system (Miranda and Schwartsburd 2019).
The phenomenon of a “missing” progenitor in
ferns has been frequently reported (e.g., Hoot et al.
2004; Windham and Yatskievych 2005; Kim et al.
2008; Beck et al. 2010), with the genomic signature
of an extinct or undetected progenitor persisting in the
hybrid and/or polyploid taxon. The grouping of six S.
molesta and S. herzogii haplotypes, all collected from
Brazil, in the haplotype network (Fig. 2) suggests that

the maternal progenitor of S. herzogii was geneti-
cally similar to extant Brazilian (presumably native)
S. molesta. This makes biogeographical sense, as S.
herzogii is currently sympatric with giant salvinia in
southeastern Brazil. Since S. molesta and S. herzogii
are quite similar (Miranda and Schwartsburd 2019),
this suggest that their putative common maternal
genome donor shares a similar haplotype, and likely,
their same general morphology. The search for this
missing parent should therefore start with examin-
ing S. molesta material from the shared range of S.
molesta and S. herzogii in southeastern Brazil, specif-
ically looking for specimens that exhibit well-formed
spores that would suggest sexuality. More broadly,
our inference of an unsampled giant salvinia maternal
donor species combined with the observation of two
putatively undescribed species highlight the need for
a complete taxonomic revision of Salvinia. Additional
cytological data is badly needed. Our knowledge of
chromosome number and pairing behavior is based
on very few counts, and a number of species remain
completely unexamined. This is particularly critical
given the frequency of polyploidy in this complex
genus.

Genetic diversity of the S. molesta invasion

Although one S. molesta haplotype was particu-
larly common in the United States and Mexico, a
total of 13 unique invasive giant salvinia haplo-
types are observed in the haplotype network sepa-
rated by as many as 45 substitutions (i.e., IL112R
from French Guiana vs. IL110R from Zimbabwe,
Fig. 2). This observation of intraspecific S. molesta
diversity applies to both the African invasion (three
samples representing three unique haplotypes that
are separated by as many as 39 substitutions) and
U.S. invasion (21 samples representing nine unique
haplotypes that are separated by as many as 18 sub-
stitutions). This diverse giant salvinia invasion is
consistent with previous work on S. molesta. Galam
et al. (2015) observed significant variation in the
U.S. S. molesta invasion using nuclear gapCp gene
sequence data and AFLP genotypes. More variation
was observed within rather than between populations,
and 180 unique gapCp haplotypes were observed in
240 total individuals from six populations in Louisi-
ana and Texas. This invasive-range genetic diversity
could be due to either multiple origins of S. molesta,
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incorporating unique, genetically-variable maternal
plastomes each time, or somatic mutation following
a single origin. The somatic mutation scenario seems
less likely given the very recent appearance and
spread of this species, with the first (native) Brazilian
collections from 1923 (Miranda and Schwartsburd
2019), first observed outside of Brazil at Lake Kar-
iba in 1959 (Mitchell 1972), and not seen in the U.S.
until 1998. This would therefore require the large
amount of intraspecific plastome diversity seen in S.
molesta to have arisen in a human lifetime. Therefore,
we propose that the observed genetic diversity is the
result of multiple independent origins that led to the
formation of various independently derived lineages
of S. molesta and its repeated long-distance dispersal
and introduction throughout its invasive range. Ulti-
mately, distinguishing between the two hypotheses
for invasive-range diversity will require an expanded
sampling of native-range S. molesta, in order to dis-
cover if the observed diversity of invasive-range hap-
lotypes is present. Regardless of their cause, the pres-
ence of multiple S. molesta genotypes has potential
implications for biocontrol, as differential interactions
between invader and biocontrol genotypes have been
consistently documented (Burdon et al. 1981; Lym
et al. 1996; Garcia-Rossi et al. 2003; Manrique et al.
2008; Campanella et al. 2009; Boughton and Pember-
ton 2011; Goolsby et al. 2013; Harms et al. 2020).

A growing number of studies of asexual invasive
plants also report high levels of genetic diversity. In
the clonal invader Pueraria lobata (Willd.) Ohwi,
93% of loci were found to be polymorphic across
20 invasive populations (Pappert et al. 2000). In the
vegetatively reproducing Oxalis pes-caprae L., 88%
of ISSR bands were found to be polymorphic, with
no band private to a given population (Rottenberg
and Parker 2004). Both Geng et al. (2016) and Wil-
liams et al. (2020) reported genetic variation in the
vegetatively reproducing Alternanthera philoxeroides
(Mart.) Griseb., from both nuclear (61 unique mul-
tilocus genotypes observed among 179 individuals)
and chloroplast (6 haplotypes among 375 individuals)
datasets. Thum et al. (2020) analyzed nuclear micro-
satellite variation in Myriophyllum spicatum L., and
found 24 unique multilocus genotypes in this vegeta-
tively reproducing aquatic invasive across 103 sam-
pled lakes. Finally, in the vegetatively reproducing
aquatic invasive Lemna minuta Kunth, Paolacci et al.
(2021) inferred four genetic clones from nine lakes in
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Ireland. Collectively these studies highlight the pos-
sibility for substantial genetic diversity within asexual
plant invasions, consistent with multiple introduc-
tions of these species.

Herbarium-derived plastome data for understanding
plant invasions

These results join numerous studies that have dem-
onstrated successful plastome sequencing from her-
barium specimens (Baaker et al. 2016; Zeng et al.
2018; Kates et al. 2021) and suggest that plastome
genotyping from herbarium specimens holds promise
for understanding the genetic diversity of plant inva-
sions across both space and time. Plastome sequenc-
ing through low-coverage shotgun sequencing- so
called “genome skimming” (Straub et al. 2012) is
relatively inexpensive, is technically and analytically
straightforward, does not require any prior knowledge
of the genome, and avoids the complexity of home-
ologous gene copies when dealing with polyploids
such as Salvinia. Limits of genome skimming rela-
tive to nuclear genome data include the fact that the
plastome is effectively a single locus and is unable to
provide biparental information. Genome skimming
data from a temporally and geographically diverse
set of herbarium specimens would potentially allow
researchers to ask several basic questions: (1) How
many genotypes form the invasion? (2) What is the
geographic distribution of these genotypes? (3) Did
these genotypes arrive relatively early in the invasion
or are they recent arrivals? Although researchers have
been applying “first generation” genetic tools (Sanger
sequencing, microsatellites, etc.) to invasive species
herbarium-derived DNAs for some time (Saltonstall
2002; Dormontt et al. 2014; Brandes et al. 2019),
to our knowledge this is the first study to use whole
plastome sequencing to investigate the genetic diver-
sity of a plant invasion.
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