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A B S T R A C T 

We revisit the tidally excited oscillations (TEOs) in the A-type main-sequence eccentric binary KOI-54, the prototype of 
heartbeat stars. Although the linear tidal response of the star is a series of orbital-harmonic frequencies which are not stellar 
eigenfrequencies, we show that the non-linearly excited non-orbital-harmonic TEOs are eigenmodes. By carefully choosing the 
modes which satisfy the mode-coupling selection rules, a period spacing ( � P ) pattern of quadrupole gravity modes ( � P ≈
2520–2535 s) can be discerned in the Fourier spectrum, with a detection significance level of 99 . 9 per cent . The inferred period 

spacing value agrees remarkably well with the theoretical l = 2, m = 0 g modes from a stellar model with the measured mass, 
radius, and ef fecti ve temperature. We also find that the two largest-amplitude TEOs at N = 90, 91 harmonics are very close to 

resonance with l = 2, m = 0 eigenmodes, and likely come from dif ferent stars. Pre vious works on tidal oscillations primarily 

focus on the modelling of TEO amplitudes and phases, the high sensitivity of TEO amplitude to the frequency detuning (tidal 
forcing frequency minus the closest stellar eigenfrequency) requires extremely dense grids of stellar models and prevents us 
from constraining the stellar physical parameters easily. This work, ho we ver, opens the window of real tidal asteroseismology 

by using the eigenfrequencies of the star inferred from the non-linear TEOs and possibly very-close-to-resonance linear TEOs. 
Our seismic modelling of these identified eigen g-modes shows that the best-matching stellar models have ( M ≈ 2.20, 2.35 M �) 
and super-solar metallicity, in good agreement with previous measurements. 

Key words: stars: interiors – stars: binaries: close – waves. 
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 INTRODUCTION  

ode identification is a key step in asteroseismology and it relies
eavily on pattern recognition in the Fourier spectrum of the 
scillating star. In the asymptotic regime, gravity (g) modes are 
qually spaced in pulsation period (Tassoul 1980 ), and this period 
pacing pattern has been exploited in various kinds of self-excited 
-mode pulsators such as γ Dor stars (Van Reeth, Tkachenko & 

erts 2016 ; Li et al. 2020 ), Slowly Pulsating B-stars (SPB) (P ́apics
t al. 2017 ), white dwarfs (Althaus et al. 2010 ), and sub-dwarf B-stars
Baran et al. 2016 ). The g-mode period spacing versus period diagram 

as been used to infer the asymptotic period spacing values, the 
ear-conv ectiv e-core rotation rates, the near-core-boundary mixing 
rocess of intermediate/massive stars, and the coupling between 
nertial modes and gravity modes (Moravveji et al. 2015 ; Ouazzani 
t al. 2017 ; Saio et al. 2021 ). 

Gravity modes can also be excited externally by the tidal forcing 
rom a binary companion. Significant advances have been made in 
idal seismology after the disco v ery of the prototype heartbeat binary
OI-54 (HD 187091, KIC 8112039) by Welsh et al. ( 2011 , hereafter
11 ). Tidally excited oscillations (TEOs) have been observed in 

ens of heartbeat binary systems by the Kepler telescope (Thompson 
t al. 2012 ; Kirk et al. 2016 ; Cheng et al. 2020 ; Guo 2021 ), and
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he TESS mission is unfolding more massive heartbeat binaries 
Jayasinghe et al. 2019 ; Kołaczek-Szyma ́nski et al. 2021 ). Recently,
early one thousand heartbeat stars in the OGLE surv e y hav e been
eported by Wrona et al. ( 2021 ). Among the heartbeat binaries, only
 few systems have been studied in detail (Guo, Gies & Fuller 2017 ;
uller et al. 2017 ; Pablo et al. 2017 ; Hambleton et al. 2018 ; Guo
t al. 2019 ; Guo 2020 ; Jayasinghe et al. 2021 ). It is realized that the
requency information is not so useful since they are essentially all
rbital harmonics, i.e. a series of forcing frequencies. The harmonic 
EO amplitude is very sensitive to the frequency detuning, i.e. 

he difference between the forcing frequency and an eigenmode 
requency, which is difficult to obtain very precisely. This makes 
he seismic modelling very difficult, and extremely dense grids of 
tellar models are needed. Fuller et al. ( 2017 ) proposed a statistical
pproach to model the TEO amplitudes which takes into account 
his uncertainty in the detuning parameter. 

In this work, ho we ver, we sho w that eigenfrequency information
an be taken advantage of in the non-linearly excited g modes. We
chieve this by studying the anharmonic TEOs of KOI-54 which are
on-linear excited ‘daughter modes’ undergoing three/multimode 
oupling. In Section 2 , we briefly recap previous works on KOI-54.
n Section 3 , we show that there is a nearly equally spaced pattern
n the pulsation periods of anharmonic TEOs. This period spacing 
 ≈2520–2535 s) is in remarkable agreement with l = 2, m = 0
ravity modes of a stellar model whose mass, radius, and ef fecti ve
emperature are consistent with the observationally inferred values. 
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n Section 4 , we perform a grid-based modelling of these non-linearly
xcited g modes and the two dominant linearly excited harmonics
nd explore the constraints we can put on the stellar parameters
mass, radius, and metallicity, etc). In the final section, we discuss
he caveats of this work and suggest further works that can help to
olve the remaining mysteries of this interesting binary system. 

 RECAP  OF  PREVIOUS  WORKS  ON  KOI-54  

he disco v ery paper W11 measured the fundamental stellar pa-
ameters of KOI-54. The two main-sequence stars in the system
ave the same masses within 1 σ : M 1 = 2.33 ± 0.10 M �, M 2 =
.39 ± 0.12 M �, and very similar ef fecti ve temperatures: T eff1 =
500 ± 200 K, T eff2 = 8800 ± 200 K. Only the radii are slightly
ifferent R 1 = 2.20 ± 0.03, R 2 = 2.33 ± 0.03 R �. Spectroscopy
ndicates a super-solar metallicity ([Fe/H] = 0.4). The orbital
arameters (period, eccentricity, and inclination) have also been
etermined: P orb = 41.805 d, e = 0.83, i = 5.5 ◦. Thus the orbital
requency is f orb = 0.02392 d −1 . 

Of particular interest are the orbital harmonic TEOs in this system,
ith the two dominant ones that are exact 90th and 91st orbital
armonics. This kind of stellar response is exactly within expectation:
 forced harmonic oscillator oscillates at the forcing frequency and
ot at its intrinsic eigenfrequenc y. F or eccentric binaries like KOI-
4, the forcing frequencies are indeed a series of orbital-harmonic
requencies ( = Nf orb , with N being a positive integer). 

Subsequent works took advantage of this perfect laboratory to
tudy the effect of dynamical tides. Fuller & Lai ( 2012 ) modelled the
ulsation amplitude of the harmonic TEOs with the normal-mode
ecomposition approach. They did a detailed study of the nature of
he 90th and 91st harmonics and suggested they can be naturally
xplained by resonance locking (RL), a phenomenon in which one
ulsation mode is locked into resonance with the orbital frequency
or a long time (when the evolution of the mode frequency and the
orcing frequency have almost the same rate). 

Burkart et al. ( 2012 ) (hereafter B12 ) also modelled the TEO
mplitudes with the mode-decomposition formalism. In addition,
ince the non-adiabatic effect near the stellar surface is important
n modelling the amplitudes, they also solved the linear non-
diabatic forced oscillation equation, with rotation implemented in
he traditional approximation. They also find that chance resonance
f l = 2, m = 0 modes can explain the observed large amplitude of
he 90 and 91 harmonics without invoking resonance locking. 

O’Leary & Burkart ( 2014 ) (hereafter O14 ) reanalysed the Kepler
ight curves with longer time coverage. They extracted and tabulated
0 harmonic TEOs and 50 anharmonic TEOs with amplitude larger
han 0.7 μmag (their tables 2 and 3, respectiv ely). The y also e xam-
ned the TEO phases in great detail. The two dominant harmonic
EOs at 90 f orb and 91 f orb are found to be l = 2, m = 0 pulsations,
o do the fifth and seventh largest harmonic TEOs at 72 and 53
armonics. O14 discussed the anharmonics arising from the non-
inear three/multimode coupling in great detail. 

By using the data extracted in O14 , we re-examine these non-
inearly excited modes and extend their analysis. 

 NON-LINEARLY  EXCITED  ANHARMONIC  

ULSATIONS  AND  GRAVITY-MODE  PERIOD  

PACING  

e discuss the tidally excited oscillation in detail, and it is convenient
o denote the frequencies by ‘ fN ’, where N is the frequency in units of
rbital frequency ( N = f / f orb ). Thus the two dominant harmonic, linear
NRAS 517, 437–446 (2022) 
EOs are f 90 and f 91, and the largest-amplitude non-linear TEO
anharmonic) is f 22.419. This can be seen in the Fourier amplitude
pectrum of KOI-54 shown in Fig. 1 . Note that in producing the
ata of Fig. 1 , O14 had already subtracted the equilibrium-tide
ontribution from the light curves. 

We distinguish between the orbital-harmonic TEOs (grey peaks)
nd the anharmonic TEOs (red peaks) in Fig. 1 . The harmonic TEOs
re topped by green or blue filled circles and the corresponding
rbital-harmonic number N = f / f orb . Those that are likely l = 2, m =
 oscillations are marked by blue circles since they all have pulsation
hases close to 0.25 or 0.75 ( ±0.02 in units of 2 π , see table 2 in
14 ). 
To the linear order, the time-dependence of the stellar response

s the same as the tidal forcing frequency which, in the case of
ccentric orbits, is a series of orbital harmonic frequencies Nf orb . In
he framework of normal-mode decomposition, the stellar response
an be expressed as linear combinations of stellar eigenfunctions,
scillating not at the eigenfrequencies but at the forcing frequencies
f orb . The eigenfrequency comes into play in the resonance term,

imilar to a harmonic oscillator’s response to an external forcing,
nd the oscillations have a Lorentzian-shaped response centred at
he eigenfrequenc y. F or a particular forcing frequency Nf orb , the
losest eigenfrequency f A (with the smallest detuning) dominates the
mplitude of the dynamical stellar response, and the equilibrium-tide
art of the stellar response comes from essentially all the eigenmodes,
ith the major contribution from the f-mode (see Weinberg et al.
012 , fig. 1). 
Since the equilibrium-tide contribution has been remo v ed, we

an essentially think that only the single mode which is closest
o the forcing frequency is oscillating, with the frequency of the
orcing frequency (not its eigenfrequency). Because the linear stellar
esponse are orbital harmonics and not eigenfrequencies, we cannot
se frequency information in the seismic modelling. Ho we ver, the
nharmonic pulsations are likely generated by non-linear resonant
ode coupling. They are actually eigenmodes of the star and contain

seful information in their frequencies/periods. Higher radial order g
odes should satisfy the asymptotic relation and are nearly equally

paced in pulsation period. Here, we show that this is indeed possible
or tidally non-linearly excited g modes in KOI-54. 

First, there are a few factors that help us to identify the pulsation
odes. KOI-54 has a face-on orbit, with an orbital inclination of

nly 5.5 ◦. We can expect the axisymmetric m = 0 modes are more
isible and m �= 0 modes are strongly disfa v oured observationally.
armonic TEOs, most likely linear, are most likely to be l = 2.
he anharmonic daughter modes though can be l = 1, 2, 3, but the
isibility of l > 3 modes is significantly lower (actually while an l =
 mode is already very difficult to be seen in Kepler observations). 
In Fig. 1 , a noticeable feature is a series of nearly equally spaced

eaks in pulsation period, most notably between the pulsation period
.4 and 1.0 d. The spacing is about 2500 s (5000 s if missing one
n the middle). These peaks are marked by the open brown circles
nd their spacings are labelled. This regular period spacing is more
alient in Fig. 2 , where we have used two methods to search for
egular spacing in the anharmonic TEOs. The upper panel shows the
istogram of pairwise period differences (Maceroni et al. 2014 ), and
 significant o v erdensity peak can be seen at ≈2520 s. In the lower
anel, we use the Kolmogoro v–Smirno v (K–S) test to determine the
ignificance of the regular period spacing. This method is widely
sed in the asteroseismology of compact stars (Winget et al. 1991 ;
aran et al. 2019 ). The idea is that for a series of pulsation periods � i 

possibly regularly spaced with �� ), we can calculate the deviation
rom the equal-spacing regularity r i = n i − int ( n i ), where n i = ( � i 
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Figure 1. Distribution of pulsation amplitudes down to 1 μmag. The symbol sizes are scaled according to the pulsation amplitudes. Orbital-harmonic pulsations 
are shown as grey peaks and those having m = 0 phases are topped by blue circles. Anharmonic pulsations are indicated by the red peaks. A series of regularly 
spaced peaks are marked by the brown circles and they are candidates of l = 2, m = 0 eigenmodes. The largest anharmonic pulsation at 22.419 times the orbital 
frequency is labelled by a red square, and it couples with four other anharmonic frequencies indicated by the same symbol. The coupling is indicated by brown 
lines connecting these five frequencies. The orbital harmonic numbers N of the corresponding parent modes are shown on these lines. Some orbital harmonic 
pulsations and most of the anharmonic frequencies are labelled by their N = f / f orb , either on the top or at the bottom. 
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� 0 )/ �� , int ( x ) is the greatest integer less than x and � 0 is the
hortest pulsation period. If the period series is random-distributed, 
 i should satisfy the uniform distribution from 0 to 1. Then, we
an use the K–S test to quantify the difference between the actual
 i of the data and the uniform distribution. As shown in Fig. 2 ,
 given period spacing is shown as a local minimum of Q , with
confidence level’ of (1 − Q ) × 100 per cent . We find that � P ≈
535 s at the 99 . 9 per cent significance level. Thus, both the upper
nd lower panels reveal a regular spacing of ≈2520 –2535 s. As
ill be detailed below, this spacing agrees remarkably well with the 

xpected l = 2, m = 0 g-mode period spacing (See later sections and
ig. 4 ). 
Note that in Fig. 1 , f 22.419 is also in this m = 0, brown-

ircled, regularly spaced peak series. It is also the largest-amplitude 
nharmonic pulsation, so likely having l = 1 or l = 2. In Fig. 1 , we
ave listed the N values of anharmonic frequencies below the Fourier 
pectrum ( N = f / f orb ). It can be seen that four modes are coupled to
 22.419: f 68.582, f 49.589, f 30.587, and f 26.579. Thus they are more
ikely to have the same spherical degree l . These five modes are

arked by the red squares. These four daughter-mode pairs can pair 
p to form four parent-mode harmonics in three mode coupling ( f A =
 a + f b ): f 91 ≈ f 22.419 + f 68.682, f 72 ≈ f 22.419 + f 49.589, f 53 ≈
 22.419 + f 30.587, and f 49 ≈ f 22.419 + f 26.579. The four parent
odes they form are among the largest amplitude harmonic TEOs 

nd they are all l = 2, m = 0 pulsations (topped by blue circles) as
dentified in O14 . These five modes are listed in our Table 1 . 

Given an l A = 2, m A = 0 parent mode (e.g. f A = f 91 or f 72, f 53),
he three-mode coupling selection rules can help to limit possible ( l ,
 ) values of the daughters. If we reasonably assume m a = m b = 0,
nly ( l a , l b ) = (2, 2), (1, 1), or (1, 3) can satisfy the selection rules: | l a 
l b | ≤ l A ≤ | l a + l b | and ( l A + l a + l b ) mod 2 = 0. B12 considered

ossible daughter modes of f 91 within the range of l a , l b ∈ 1–6. They
ound that the optimal daughters are those with l ∈ 1–3. Among their
isted optimal daughter pairs, the one with the smallest three-mode 
oupling threshold is the ( l a , l b ) = (2, 2) pair. Thus this combination
s more likely to be observed. This supports the interpretation that
he four modes coupled to f 22.419 have l = 2, m = 0. 

To better show the identified regular spacing of 2520 s, an echelle
iagram is constructed by using the anharmonic TEOs (the right- 
and panel of Fig. 3 ). The symbols are scaled by the corresponding
ulsation amplitudes. Modes with the same spacing form a vertical 
idge in the echelle diagram, and indeed, the brown circled modes in
ig. 1 all locate essentially in a v ertical ridge. The y all hav e a similar
 mod � P of about 2200 s. In total, we identified 16 candidates of l =
MNRAS 517, 437–446 (2022) 
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M

Figure 2. Upper: Period difference histogram of the anharmonic pulsations. Lower: Kolmogoro v–Smirno v (K–S) test of the anharmonic pulsation periods. 
In both diagrams, a salient period spacing of ≈2520–2535 s is revealed. The K–S test statistic Q indicates that the regular period spacing at � P ≈ 2535 s is 
significant at the 99 . 9 per cent confidence level. 

Table 1. Four daughter modes coupled to f22.419. 

N ( f a ) N ( f b ) N ( f a + f b ) N | f a / f b − f b / f a | 
68.582 22.419 91.001 91 2.7322 
49.589 22.419 72.008 72 1.7598 
30.587 22.419 53.006 53 0.6314 
26.579 22.419 48.998 49 0.3420 
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, m = 0 eigenfrequencies. Detailed information on these equally-
paced modes is listed in Table 2 . Note that the aforementioned four
odes that coupled to f 22.419 all locate essentially in a vertical

idge. We set the limit of the ridge as two vertical–dashed lines. Our
nterpretation is that these 16 regularly spaced pulsations are a series
f l = 2, m = 0 g modes. 
There are two frequency pairs with very small differencing: f =

7.675, f 57.577 and f 49.731, f 49.589. Such close frequencies mean
hey cannot be both eigenfrequencies from one star, since their
pacings are one order of magnitude smaller than the typical g-mode
requency spacing. 1 Our identified 16 g modes only include the
arger-amplitude ones in the two pairs: f 57.577, f 49.589. In Table 2 ,
ower-amplitude ones in the two pairs are shown in parentheses. 

The left-hand panel of Fig. 3 shows the echelle diagram of the
armonic TEOs. We do not expect to see a vertical ridge unless
NRAS 517, 437–446 (2022) 

 If we include l = 1 modes and m �= 0 modes due to rotational splitting, this 
air could still be from the same star. 

c  

b  

2  

S  
he harmonic TEOs are very close to the eigenfrequency, i.e. with
etuning much smaller than the period spacing � P . Most harmonics
re, indeed, not vertically aligned and not within the vertical ridge
elimited by the dashed lines. Ho we ver, the f 90 and f 72 are inside
he vertical ridge, and the f 91 is also close to the ridge. These three
requencies happen to be the largest-amplitude orbital-harmonic l =
, m = 0 TEOs (blue-dotted peaks), and thus it is in fact expected
hat they should have smaller frequency detuning. The fact that
hey are indeed close to this vertical ridge (our identified l = 2,
 = 0 eigenfrequencies) is encouraging. We will discuss further the
etuning of the f 90, f 91 in the next section. 
Given the similarity of the two stars, we are not sure whether one

tar is pulsating or both stars are. Thus the pulsation spectrum may be
 mixture of the spectra of both stars. Thus finding a g-mode period
pacing from the same ( l , m ) originating from one or two stars is
ery difficult. Our identified equally spaced eigenfrequencies mean
hat even in the mixed spectrum of two stars, there are still enough
igenmodes that have regular spacings. And these regularly spaced
odes are likely from the same star. 
In our 16 brown-circled l = 2, m = 0 modes, 9 can pair up to

orm a harmonic TEO, but not all their parent modes are visible. The
arent modes are indeed not necessarily visible in the spectrum. 
A key question is whether the observed anharmonic pulsations

ould be self-excited instead of tidally excited. Stars can indeed show
oth tidally excited g modes and self-excited g modes (Guo et al.
019 , KIC4142768). Luckily, KOI-54 locates in the gap between the
PB instability strip (P amyatn ykh 1999 ) and the γ Dor instability

art/stac2611_f2.eps
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Figure 3. Echelle diagram of the orbital harmonic pulsations (left) and the anharmonic pulsations (right). The largest-amplitude anharmonic pulsation at f / f orb = 

22.419 is labelled by the red square, together with the four modes it couples. The parent modes of these four daughter-mode pairs are also marked by the red 
square in the left-hand panel, with their N = f / f orb labelled. 
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trip (Xiong et al. 2016 ). Its masses of 2.33 and 2.35 M � are too
assive to be a γ Dor star and not massive enough to be an SPB star.

n fact, our non-adiabatic calculations in Section 4 show no unstable 
 modes. Thus it is reasonable to assume that all the anharmonic
ulsations are of tidal origin, as opposed to self-excitation. 
Our interpretation of a series of l = 2, m = 0 modes spaced by

bout 2520 s can naturally explain the daughter modes since the 
eries include almost all the largest amplitude daughters. 

We can have further constraints on the mode identification if we 
onsider the spatial o v erlap of the eigenfunctions of daughter modes.
he coupling coefficient between daughters is only significant if they 
ave good spatial overlap. This requires that the difference between 
he daughter radial orders be less than the parent’s, i.e. | n a − n b | �
 c (see e.g. Weinberg et al. 2012 , fig. 12). If the modes in a triplet
re short wavelength g-modes (for which eigenfrequencies satisfy 
 nl ∝ l / n ), then the small detuning ( f a + f b ≈ f c ) and spatial o v erlap
onditions together imply that the daughter frequencies satisfy | f a / f b 
f b / f a | � 1. As shown in the last column of Table 1 , this condition

s only satisfied for the last two pairs listed. Ho we ver, it requires
urther study to see whether this criterion applies strictly to the radial
rders in our case ( n ∼ 10–25 versus n ∼ 500 in the solar g-modes
f Weinberg et al. 2012 ). Our preliminary calculation seems to show
ess drastic drop for n c > | n a − n b | . Also, the threshold amplitude of
he parent mode for the three-mode-coupling S a (equation 38 Burkart 
t al. 2012 ) depends both on the coupling coefficient κabc and the
requency detuning δω. Daughter mode pairs with smaller κabc , once 
ompensated with smaller δω, can still reach the threshold for three-
ode-coupling. Thus the first two daughter pairs in Table 1 could

till be the daughter modes of f91. 
The m = ±1 modes also satisfy the selection rules for mode

oupling. If these m = + 1, −1 modes are present, pulsations with
ame l and m are also equally spaced in periods, with a period
pacing of ∼2520 s for l = 2 modes and ∼4370 s for l = 1 modes. In
act, the K–S test in Fig. 2 shows a possible period spacing of 4760 s
although at much lower significance level), which is not too far away
rom the l = 1 mode period spacing, which is ≈ √ 

3 times of the l =
 counterpart. We cannot rule out the possibility that the anharmonic
requencies may contain some l = 1 modes. Rotational splittings may
lso be present, with a frequency spacing of δf = (1 − C nl ) f rot , with
 nl ≈ 0.5, 0.16 for l = 1, 2 modes, respectively. These are regular

requency spacings not regular period spacings. Given the projected 
otational velocity vsin i = 7.5 km s −1 and orbital inclination i =
MNRAS 517, 437–446 (2022) 
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Table 2. Identified l = 2, m = 0 g modes and the two largest harmonic TEOs 
f90 and f91. 

Frequency N Amplitude Period P mod � P 
(d −1 ) ( f / f orb ) (mmag) (d) (s) 

2.158883 90.252 0.0013 0.4632025 2221 
1.915717 80.087 0.0021 0.52199777 2261 
1.72439 72.088 0.0020 0.57991522 2225 
1.640532 68.582 0.0490 0.60955836 2266 
1.568781 65.583 0.0018 0.63743760 2155 
1.434493 59.969 0.0057 0.69711041 2270 
(1.379613) 57.675 0.0008 0.72484095 2146 
1.377281 57.577 0.0157 0.72606825 2252 
1.277955 53.425 0.0007 0.78250017 2088 
(1.189604) 49.731 0.0011 0.84061587 2069 
1.186201 49.589 0.0036 0.84302745 2278 
1.110606 46.429 0.0013 0.90040933 2195 
0.731666 30.587 0.0015 1.3667438 2167 
0.635773 26.579 0.0008 1.5728884 2338 
0.536266 22.419 0.0787 1.8647462 2354 
0.491229 20.536 0.0010 2.0357104 2005 
1.508813 63.076? 0.0246 0.66277266 1824 

2.176809 91.002 0.2277 0.46466667 1891 

2.152855 90.000 0.2942 0.46466667 2347 
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and this is a reasonable approximation since we are dealing with m = 0 
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.5 deg ( W11 ), we obtain a rotational frequency f rot = 0.70 d −1 .
hus, we expect to find rotational splittings of δf = 0.35 d −1 for l =
 modes; and δf = 0.59 d −1 for l = 2 modes. Ho we ver, a search for
e gular frequenc y spacing in the anharmonic TEOs yields no salient
ignificant frequency spacings. 

 COMPARISON  WITH  STELLAR  MODELS  

ND  SEISMIC  MODELLING  

fter identifying a possible l = 2, m = 0 g-mode period spacing, we
roceed to compare the observed eigenfrequencies with those from
tellar models. 

We evolve a series of non-rotating stellar models with the MESA

v8118) stellar evolution code (Paxton et al. 2011 , 2013 , 2015 ,
018 ). We search in the following effective-temperature/radius/mass
arameter space: T eff ∈ (8100, 9200 K ), R ∈ (2.0–2.4 R �) M ∈ (2.00–
.60 M �). For both stars, these parameter ranges co v er the ±2 σ of
he observed T eff , ±3 σ range of the observed radii, and ±2 σ range of
he observed masses. We used a slightly larger search-box for stellar
adius. The reason is that KOI-54 is not an eclipsing system and the
nference on radius (based on relative radius R / a for an eclipsing
ystem) is rather limited. The radius errors ( σR 1 , 2 = 0 . 03 R �) derived
n W11 are probably underestimated. 

The adopted step size in mass is 0.05 M � and our maximum time
tep in the evolution is set to 8 × 10 6 yr. We also explore the effects of
onv ectiv e-core o v ershooting and metallicity. Our calculations adopt
he exponentially decaying overshooting (Herwig 2000 ), and covers
he parameters f ov = 0.00 and 0.02. We adopt the zero-point for
he o v ershooting function f 0 = 0.001. We fix the conv ectiv e mixing
ength parameter αMLT to 1.8 and adopt the OPAL opacity tables
Iglesias & Rogers 1996 ) and default MESA equation-of-state. 

The observed metallicity is super-solar: [ Fe / H ] = 0.4 ± 0.2. Fol-
owing Nsamba 2019 and using the ‘gs98’ solar mixtures (Grevesse &
auval 1998 ) with an initial helium abundance Y 0 = 0.2484, we find

he [Fe/H] = 0.4 corresponds to metal mass fraction Z = 0.035. We
hus calculate stellar models with Z = 0.02, 0.03, 0.04. 
NRAS 517, 437–446 (2022) 
For each MESA model within the observed radius error box R
 (2.0–2.4) R �, we calculate the non-adiabatic eigenfrequencies 2 

ith the GYRE (v5.0) oscillation code (Townsend & Teitler 2013 ;
ownsend, Goldstein & Zweibel 2018 ). The pulsation frequencies of
6 observed l = 2, m = 0 g modes are compared with the calculated
igenfrequencies and RMSE are calculated. It is defined as RMSE =
 ∑ 

( f − f obs ) 2 /N (in units of d −1 in the figure) and is a measure of,
n an average sense, how well we can match the observed frequencies.
ig. 4 shows the result for one of our best-fitting models with M =
.20 M �, Z = 0.03, and f ov = 0.02, and we call it our ‘baseline model’.
he upper panel shows the evolution of g-mode eigen-periods (open
ircles) as a function of stellar radius. The identified l = 2, m = 0 g
odes are indicated by the horizontal brown lines. We also include
 likely l = 2, m = 0 mode with f = 63.067 f orb (yellow line); this
aughter mode has a large amplitude, and is also close to the vertical
idge in the echelle diagram. It is likely that this mode belongs to
he series. It deviates to the left of the vertical ridge probably due to

ode trapping. Indeed, in the Period Spacing versus Period diagram,
e can usually see these trapped g modes having smaller � P and
eviate from the equal spacing. 
The two dominant orbital harmonic pulsations at N = 90 and 91

blue lines) are also shown. The reason is that these two pulsations
re believed to be very close to eigenmodes (resonances). In the TEO
mplitude modelling of B12 , they found that in order to achieve the
bserved large amplitudes of f 90 and f 91, a chance resonance with
 = 2, m = 0 modes with a frequency detuning df ≈ 0.01 f orb =
.0002 d −1 is required. 
First, we show that the observed period spacing � P ≈ 2520 s

s in nice agreement with the expected l = 2, m = 0 g modes of
 star with the measured mass, radius, and ef fecti ve temperature
n W11 . This can be seen obviously in the upper panel of Fig. 4 .
he theoretical pulsation periods from GYRE can be compared with

he horizontal bro wn/yello w lines. In the lower panel, we show the
requency matching result, i.e. the RMSE as a function of stellar
adius, T eff and age. The five best-matching models are marked by the
lue squares. The best-matching model (indicated by the filled blue
quare) has R = 2.19 R � and T eff ≈ 8500 K and the corresponding
tellar age is 400 Myr. 

When the stellar mass varies, we find that M = 2.00 and 2.05 M �
odels have strong avoided crossings, since for a lower-mass model

o have the same radius, the star must be more evolved. And the
 modes appear not as regular as those in Fig. 4 . Models with M
 2.4 M � cannot match the observed R and T eff constraints. Thus

he regular appearance of g modes matches the mass range of M =
.1–2.3 M �, which have only mildly avoided crossings and do not
eviate strongly from the regular period-spacing pattern. 
By using models with M from 2.00 to 2.60 M � with � M =

.05 M � (fixed Z = 0.03, f ov = 0.02), we explore whether we can
atch the f 90 and f 91 in Fig. 5 . We find that for models within the

bserved R and T eff box (dashed lines), f 90 and f 91 cannot be matched
imultaneously. This is because the eigenfrequency spacing of the
odels is larger than the orbital frequency. The lower panel shows

he models with absolute frequency difference | f − f 90 | < 0.004 d −1 

in green) and | f − f 91 | < 0.004 d −1 (in blue). The upper panel uses
 smaller threshold of 0.0008 d −1 . This small detuning value is in the
ame order of magnitude as that required to ensure f 90 and f 91 have
he observed large amplitudes ( ≈0.2–0.3 mmag). 
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Figure 4. Top: The eigenmode periods for a stellar model of M = 2.20 M �, f ov = 0.02, and Z = 0.03 is shown as a function of stellar radius, ef fecti ve 
temperature, and age. These eigenmode periods (circles) can be compared with the 16 observed l = 2, m = 0 g modes (shown as horizontal lines and they are 
marked by the brown circles in Figs 1 , 2 ). The two dominant harmonic pulsations at 90 and 91 f orb are also shown (blue lines). Bottom: Frequency matching to 
the 16 observed g modes. The root mean square error (RMSE) is plotted for each model. 

t  

d  

c  

t
 

2  

0  

t
fi
s
s  

m  

w
 

i  

f  

r  

t  

b  

e  

0  

w  

t  

d
 

g  

o  

I  

c  

s
t  

H  

g
 

m  

l  

m  

s  

a  

T
w

o  

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/517/1/437/6708381 by U
niversity of W

isconsin Law
 user on 18 M

ay 2023
We also show the mean absolute frequency difference result for 
he 16 identified l = 2, m = 0 g modes. Models having low RMSE (or
enoted as | f − f ( m = 0) | shown in Fig. 5 ) are indicated by the brown
ircles, with the lower panel adopting a larger threshold 0.02 d −1 and
he upper panel a smaller threshold 0.015 d −1 . 

Note that f91 is the parent mode of several daughters in the l =
, m = 0 g mode series, so we expect f 91 and the 16 l = 2, m =
 g modes are from the same star. In our modelling shown in Fig. 5 ,
here are indeed models having both the brown circles and blue- 
lled circle marks, these models are best candidates for the inferred 
tellar parameters of KOI-54. The top panel, with a smaller threshold, 
hows that models with M = 2.20 M � and R ≈ 2.2–2.3 R � can
atch both f91 and the l = 2, m = 0 g-mode series reasonably
ell. 
In both thresholds, f 90 and f 91 cannot be matched simultaneously,

.e. there are no models with both filled-blue and filled-green marks.
 90 and f 91 must come from two different stars. This fact was also
ecognized in B12 . The top panel indicates that f 90 can be matched
o < 0.0008 d −1 for the higher-mass model with M = 2.35 M �. A
inary model with M 1 = 2.20 M � and M 2 = 2.35 M � can naturally
 xplain the observ ed TEOs: the former can match the 16 l = 2, m =
 eigenmodes and f 91, and the latter has an eigenmode resonating
ith f 90. Given the similarity of the tw o stars, it w ould be surprising
hat only one star shows TEOs and the mode-coupling and the other
oes not. 
Note that when fitting the l = 2, m = 0 g-mode frequencies, our

rids of models cannot make the mean of the absolute theoretical-
bserv ed frequenc y difference | f − f ( m = 0) | smaller than 0.01 d −1 .
t is possible that the identified series of l = 2, m = 0 modes is
ontaminated with signals from the other star. In the mixed Fourier
pectrum of both stars, the period spacing pattern is compromised and 
he comparison with one stellar model is thus not very successful.
o we ver, because of the similarity of the two stars, the observed
-modes still show a regular period spacing. 
In Fig. 6 , we compare the eigenfrequencies of models of different
etallicities and conv ectiv e-core o v ershooting with the observ ed 16

 = 2, m = 0 g modes. As shown in the right-hand panel, we find solar
etallicity models ( Z = 0.02) generally perform worse than super

olar metallicity models ( Z = 0.03), having larger RMSE (except for
 narrow radius range of 2.26–2.40 R � for M = 2.10 M � models).
his is in agreement with the spectroscopic measurements in W11 
ho found Z ≈ 0.035. 
The left-hand panel shows the result for the conv ectiv e-core 

 v ershooting. Both f ov = 0.00 and f ov = 0.02 models can match
MNRAS 517, 437–446 (2022) 
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M

Figure 5. Evolutionary tracks on the T eff –Radius plane. The observed T eff –R box is indicated by the dashed boundaries. The eigenfrequencies inside the box 
are calculated, and those that satisfy certain conditions are labelled. Three cases are considered: the mean absolute frequency difference f(model)–f(observed) 
for the observed harmonics: f91 (blue), f90 (green), and the 16 observed m = 0 g modes (brown). The upper and lower panels use different thresholds, in the 
frequency units of d −1 . 
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he frequencies reasonably well, and they have essentially similar
erformance. 

 DISCUSSION  AND  CONCLUSIONS  

ased on previous works of B12 and O14 , the main contribution
f this work lies in finding the period spacing pattern in the non-
inearly excited eigenmodes. This method of mode identification has
een used e xtensiv ely for self-e xcited g-modes but nev er for tidally
xcited modes. This promising method can be potentially applied to
ens of Kepler heartbeat binaries with TEOs, as well as those from
ther space missions. We also show that the linearly excited TEOs,
.e. orbital harmonic pulsations, can also be used as eigenmodes if
he frequency detuning is sufficiently small. 

Ho we v er, there are cav eats in this work, and lots of uncertainties
till remain for KOI-54. 

We did not model the amplitudes of orbital-harmonic TEOs. This
as done in B12 and it is found that non-adiabatic calculations and
ense stellar models are required. We also did not consider the effect
f rotation in our eigenfrequency calculations since m = 0 mode
requencies are unaffected by rotation to the first order. Rotation
NRAS 517, 437–446 (2022) 
oes play an essential role in shaping the appearance of the pulsation
ourier spectrum ( B12 ). 
Now that possible eigenfrequencies have been identified, it is

esirable to perform a thorough modelling of the amplitudes and
hases of harmonic TEOs including all the subtle effects mentioned
bo v e, together with our newly identified l = 2, m = 0 g modes. The
arge uncertainty in the frequency detuning can now be significantly
educed. 

There are also lots of unidentified anharmonic TEOs and they
ould be gravity modes of l = 1–3. By calculating the mode-coupling
hresholds for various of daughter-mode pair combinations (different
 , m , n ), it is possible to narrow down their mode identifications.
lso, the m �= 0 harmonic TEOs are mostly unidentified. O14 did
 preliminary identification by using their phases, and they have
ossibly l = 1, 2 or even l = 3. 
There are possible l = 2, m = 0 modes that we have missed. They
ay not locate in the vertical delimited region in the echelle diagram.
ne piece of evidence is from f 91. B12 and O14 showed that it has

our daughter pairs: ( f 22.419, f 68.582), ( f 60.419, f 30.587), ( f 49.589,
 41.417), and ( f 63.076, 27.929). We already identified the first pair
s l = 2, m = 0 modes, and f 49.589 and possibly f 63.076 are also

art/stac2611_f5.eps
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Figure 6. Upper: Evolutionary tracks on the Radius–Ef fecti ve temperature plane. The effects of different conv ectiv e o v ershooting (left-hand panel) and 
metallicity (right-hand panel) are shown. The observed R –T eff box is indicated by the dashed lines and models inside are calculated for their eigenfrequencies. 
Lower: RMSE from matching the 16 observed l = 2, m = 0 eigen g modes with eigenfrequencies from stellar models. 
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n our identified series. It is thus reasonable to assume that some of
he remaining daughter modes in these pairs also belong to the l =
, m = 0 mode series. 
It is expected that additional modelling effort could potentially 

urther constrain the stellar parameters of both stars in KOI-54. 
We are studying pulsations with amplitudes down to 1 μmag. Such 

ow amplitudes may raise questions such as: Are we o v erinterpreting
he data? Does the data reduction process in O14 produce any 
ctitious frequencies? Although we cannot completely rule out these 
ossibilities, it is hard to believe that all the convincing evidence we
nd in the data is purely due to coincidences. Besides, our work, apart
rom being incremental progress to the characterization of KOI-54, 
oints out a new piece of information: the direct usage of anharmonic
EOs in tidal asteroseismology. 
Throughout the paper, we have assumed the anharmonic TEOs 

scillate at exactly the linear eigenfrequency. But at some level 
on-linear interactions between modes shift the daughter oscillation 
requencies from their linear value (see e.g. Kumar & Goodman 
996 , Appendix C). This subtle effect is an important mechanism 

or weakly non-linear modes and could be very useful to link 
he theory with observations. It is also interesting to check the 
requency detunings in the mode triplets and to compare them 

ith the theoretical parametric instability width (Kumar & Good- 
B
an 1996 ). We plan to perform further studies in a separate 
aper. 
We also did not study the amplitude/phase variation of the TEOs.

14 showed that the amplitudes of f 90 and f 91 are decreasing with
ime. It is possible to extract this information for all TEOs. And in
rinciple, we can model the linear and non-linear TEO amplitude 
ariation in the ‘amplitude equations (AE)’ framework (Weinberg 
t al. 2012 ). This would involve calculating the mode-coupling 
oefficients and integrating the AEs accordingly (Guo 2020 ). The 
on-linear TEOs can settle into an equilibrium state, and their 
mplitude ratios are proportional to their corresponding damping 
ates. Of course, they can also have different behaviours such as
imit cycles or even chaos. There remains lots of room for the study
f non-linear seismology. 
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