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ABSTRACT

We revisit the tidally excited oscillations (TEOs) in the A-type main-sequence eccentric binary KOI-54, the prototype of
heartbeat stars. Although the linear tidal response of the star is a series of orbital-harmonic frequencies which are not stellar
eigenfrequencies, we show that the non-linearly excited non-orbital-harmonic TEOs are eigenmodes. By carefully choosing the
modes which satisfy the mode-coupling selection rules, a period spacing (AP) pattern of quadrupole gravity modes (AP ~
2520-2535s) can be discerned in the Fourier spectrum, with a detection significance level of 99.9 per cent. The inferred period
spacing value agrees remarkably well with the theoretical / = 2, m = 0 g modes from a stellar model with the measured mass,
radius, and effective temperature. We also find that the two largest-amplitude TEOs at N = 90, 91 harmonics are very close to
resonance with [ = 2, m = 0 eigenmodes, and likely come from different stars. Previous works on tidal oscillations primarily
focus on the modelling of TEO amplitudes and phases, the high sensitivity of TEO amplitude to the frequency detuning (tidal
forcing frequency minus the closest stellar eigenfrequency) requires extremely dense grids of stellar models and prevents us
from constraining the stellar physical parameters easily. This work, however, opens the window of real tidal asteroseismology
by using the eigenfrequencies of the star inferred from the non-linear TEOs and possibly very-close-to-resonance linear TEOs.
Our seismic modelling of these identified eigen g-modes shows that the best-matching stellar models have (M ~ 2.20, 2.35 M)

and super-solar metallicity, in good agreement with previous measurements.
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1 INTRODUCTION

Mode identification is a key step in asteroseismology and it relies
heavily on pattern recognition in the Fourier spectrum of the
oscillating star. In the asymptotic regime, gravity (g) modes are
equally spaced in pulsation period (Tassoul 1980), and this period
spacing pattern has been exploited in various kinds of self-excited
g-mode pulsators such as y Dor stars (Van Reeth, Tkachenko &
Aerts 2016; Li et al. 2020), Slowly Pulsating B-stars (SPB) (Pdpics
etal. 2017), white dwarfs (Althaus et al. 2010), and sub-dwarf B-stars
(Baranetal. 2016). The g-mode period spacing versus period diagram
has been used to infer the asymptotic period spacing values, the
near-convective-core rotation rates, the near-core-boundary mixing
process of intermediate/massive stars, and the coupling between
inertial modes and gravity modes (Moravveji et al. 2015; Ouazzani
et al. 2017; Saio et al. 2021).

Gravity modes can also be excited externally by the tidal forcing
from a binary companion. Significant advances have been made in
tidal seismology after the discovery of the prototype heartbeat binary
KOI-54 (HD 187091, KIC 8112039) by Welsh et al. (2011, hereafter
W11). Tidally excited oscillations (TEOs) have been observed in
tens of heartbeat binary systems by the Kepler telescope (Thompson
et al. 2012; Kirk et al. 2016; Cheng et al. 2020; Guo 2021), and
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the TESS mission is unfolding more massive heartbeat binaries
(Jayasinghe et al. 2019; Kotaczek-Szymanski et al. 2021). Recently,
nearly one thousand heartbeat stars in the OGLE survey have been
reported by Wrona et al. (2021). Among the heartbeat binaries, only
a few systems have been studied in detail (Guo, Gies & Fuller 2017;
Fuller et al. 2017; Pablo et al. 2017; Hambleton et al. 2018; Guo
et al. 2019; Guo 2020; Jayasinghe et al. 2021). It is realized that the
frequency information is not so useful since they are essentially all
orbital harmonics, i.e. a series of forcing frequencies. The harmonic
TEO amplitude is very sensitive to the frequency detuning, i.e.
the difference between the forcing frequency and an eigenmode
frequency, which is difficult to obtain very precisely. This makes
the seismic modelling very difficult, and extremely dense grids of
stellar models are needed. Fuller et al. (2017) proposed a statistical
approach to model the TEO amplitudes which takes into account
this uncertainty in the detuning parameter.

In this work, however, we show that eigenfrequency information
can be taken advantage of in the non-linearly excited g modes. We
achieve this by studying the anharmonic TEOs of KOI-54 which are
non-linear excited ‘daughter modes’ undergoing three/multimode
coupling. In Section 2, we briefly recap previous works on KOI-54.
In Section 3, we show that there is a nearly equally spaced pattern
in the pulsation periods of anharmonic TEOs. This period spacing
(~2520-2535s) is in remarkable agreement with / = 2, m = 0
gravity modes of a stellar model whose mass, radius, and effective
temperature are consistent with the observationally inferred values.
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In Section 4, we perform a grid-based modelling of these non-linearly
excited g modes and the two dominant linearly excited harmonics
and explore the constraints we can put on the stellar parameters
(mass, radius, and metallicity, etc). In the final section, we discuss
the caveats of this work and suggest further works that can help to
solve the remaining mysteries of this interesting binary system.

2 RECAP OF PREVIOUS WORKS ON KOI-54

The discovery paper W11 measured the fundamental stellar pa-
rameters of KOI-54. The two main-sequence stars in the system
have the same masses within lo: M; = 2.33 £ 0.10Mg, M, =
2.39 £ 0.12Mg, and very similar effective temperatures: Ty =
8500 £ 200K, Tefr, = 8800 £ 200 K. Only the radii are slightly
different R; = 2.20 £ 0.03, R, = 2.33 £+ 0.03R. Spectroscopy
indicates a super-solar metallicity ([Fe/H] = 0.4). The orbital
parameters (period, eccentricity, and inclination) have also been
determined: Py, = 41.805d, e = 0.83, i = 5.5°. Thus the orbital
frequency is for, = 0.02392d"".

Of particular interest are the orbital harmonic TEOs in this system,
with the two dominant ones that are exact 90th and 91st orbital
harmonics. This kind of stellar response is exactly within expectation:
a forced harmonic oscillator oscillates at the forcing frequency and
not at its intrinsic eigenfrequency. For eccentric binaries like KOI-
54, the forcing frequencies are indeed a series of orbital-harmonic
frequencies (=Nfom, With N being a positive integer).

Subsequent works took advantage of this perfect laboratory to
study the effect of dynamical tides. Fuller & Lai (2012) modelled the
pulsation amplitude of the harmonic TEOs with the normal-mode
decomposition approach. They did a detailed study of the nature of
the 90th and 91st harmonics and suggested they can be naturally
explained by resonance locking (RL), a phenomenon in which one
pulsation mode is locked into resonance with the orbital frequency
for a long time (when the evolution of the mode frequency and the
forcing frequency have almost the same rate).

Burkart et al. (2012) (hereafter B12) also modelled the TEO
amplitudes with the mode-decomposition formalism. In addition,
since the non-adiabatic effect near the stellar surface is important
in modelling the amplitudes, they also solved the linear non-
adiabatic forced oscillation equation, with rotation implemented in
the traditional approximation. They also find that chance resonance
of / =2, m = 0 modes can explain the observed large amplitude of
the 90 and 91 harmonics without invoking resonance locking.

O’Leary & Burkart (2014) (hereafter O14) reanalysed the Kepler
light curves with longer time coverage. They extracted and tabulated
70 harmonic TEOs and 50 anharmonic TEOs with amplitude larger
than 0.7 umag (their tables 2 and 3, respectively). They also exam-
ined the TEO phases in great detail. The two dominant harmonic
TEOs at 90f,, and 91f,, are found to be / = 2, m = 0 pulsations,
so do the fifth and seventh largest harmonic TEOs at 72 and 53
harmonics. O14 discussed the anharmonics arising from the non-
linear three/multimode coupling in great detail.

By using the data extracted in O14, we re-examine these non-
linearly excited modes and extend their analysis.

3 NON-LINEARLY EXCITED ANHARMONIC
PULSATIONS AND GRAVITY-MODE PERIOD
SPACING

We discuss the tidally excited oscillation in detail, and it is convenient
to denote the frequencies by ‘fN’, where N is the frequency in units of
orbital frequency (N = flfor ). Thus the two dominant harmonic, linear
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TEOs are 90 and /91, and the largest-amplitude non-linear TEO
(anharmonic) is f22.419. This can be seen in the Fourier amplitude
spectrum of KOI-54 shown in Fig. 1. Note that in producing the
data of Fig. 1, O14 had already subtracted the equilibrium-tide
contribution from the light curves.

We distinguish between the orbital-harmonic TEOs (grey peaks)
and the anharmonic TEOs (red peaks) in Fig. 1. The harmonic TEOs
are topped by green or blue filled circles and the corresponding
orbital-harmonic number N = f/f,s,. Those that are likely [ =2, m =
0 oscillations are marked by blue circles since they all have pulsation
phases close to 0.25 or 0.75 (£0.02 in units of 27, see table 2 in
014).

To the linear order, the time-dependence of the stellar response
is the same as the tidal forcing frequency which, in the case of
eccentric orbits, is a series of orbital harmonic frequencies Nfyy. In
the framework of normal-mode decomposition, the stellar response
can be expressed as linear combinations of stellar eigenfunctions,
oscillating not at the eigenfrequencies but at the forcing frequencies
Nfow. The eigenfrequency comes into play in the resonance term,
similar to a harmonic oscillator’s response to an external forcing,
and the oscillations have a Lorentzian-shaped response centred at
the eigenfrequency. For a particular forcing frequency Nfyw, the
closest eigenfrequency fi (with the smallest detuning) dominates the
amplitude of the dynamical stellar response, and the equilibrium-tide
part of the stellar response comes from essentially all the eigenmodes,
with the major contribution from the f-mode (see Weinberg et al.
2012, fig. 1).

Since the equilibrium-tide contribution has been removed, we
can essentially think that only the single mode which is closest
to the forcing frequency is oscillating, with the frequency of the
forcing frequency (not its eigenfrequency). Because the linear stellar
response are orbital harmonics and not eigenfrequencies, we cannot
use frequency information in the seismic modelling. However, the
anharmonic pulsations are likely generated by non-linear resonant
mode coupling. They are actually eigenmodes of the star and contain
useful information in their frequencies/periods. Higher radial order g
modes should satisfy the asymptotic relation and are nearly equally
spaced in pulsation period. Here, we show that this is indeed possible
for tidally non-linearly excited g modes in KOI-54.

First, there are a few factors that help us to identify the pulsation
modes. KOI-54 has a face-on orbit, with an orbital inclination of
only 5.5°. We can expect the axisymmetric m = 0 modes are more
visible and m # 0 modes are strongly disfavoured observationally.
Harmonic TEOs, most likely linear, are most likely to be / = 2.
The anharmonic daughter modes though can be [ = 1, 2, 3, but the
visibility of / > 3 modes is significantly lower (actually while an / =
3 mode is already very difficult to be seen in Kepler observations).

In Fig. 1, a noticeable feature is a series of nearly equally spaced
peaks in pulsation period, most notably between the pulsation period
0.4 and 1.0d. The spacing is about 2500s (5000 s if missing one
in the middle). These peaks are marked by the open brown circles
and their spacings are labelled. This regular period spacing is more
salient in Fig. 2, where we have used two methods to search for
regular spacing in the anharmonic TEOs. The upper panel shows the
histogram of pairwise period differences (Maceroni et al. 2014), and
a significant overdensity peak can be seen at ~2520s. In the lower
panel, we use the Kolmogorov—Smirnov (K-S) test to determine the
significance of the regular period spacing. This method is widely
used in the asteroseismology of compact stars (Winget et al. 1991;
Baran et al. 2019). The idea is that for a series of pulsation periods IT;
(possibly regularly spaced with AIT), we can calculate the deviation
from the equal-spacing regularity r; = n; — int(n;), where n; = (I1;
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Figure 1. Distribution of pulsation amplitudes down to 1 pmag. The symbol sizes are scaled according to the pulsation amplitudes. Orbital-harmonic pulsations
are shown as grey peaks and those having m = 0 phases are topped by blue circles. Anharmonic pulsations are indicated by the red peaks. A series of regularly
spaced peaks are marked by the brown circles and they are candidates of / = 2, m = 0 eigenmodes. The largest anharmonic pulsation at 22.419 times the orbital
frequency is labelled by a red square, and it couples with four other anharmonic frequencies indicated by the same symbol. The coupling is indicated by brown
lines connecting these five frequencies. The orbital harmonic numbers N of the corresponding parent modes are shown on these lines. Some orbital harmonic
pulsations and most of the anharmonic frequencies are labelled by their N = fIfo, either on the top or at the bottom.

— IIy)/ATI, int(x) is the greatest integer less than x and Il is the
shortest pulsation period. If the period series is random-distributed,
r; should satisfy the uniform distribution from O to 1. Then, we
can use the K-S test to quantify the difference between the actual
r; of the data and the uniform distribution. As shown in Fig. 2,
a given period spacing is shown as a local minimum of Q, with
‘confidence level” of (1 — Q) x 100 per cent. We find that AP ~
25355 at the 99.9 per cent significance level. Thus, both the upper
and lower panels reveal a regular spacing of ~2520-2535s. As
will be detailed below, this spacing agrees remarkably well with the
expected [ =2, m = 0 g-mode period spacing (See later sections and
Fig. 4).

Note that in Fig. 1, f22.419 is also in this m = 0, brown-
circled, regularly spaced peak series. It is also the largest-amplitude
anharmonic pulsation, so likely having / = 1 or / = 2. In Fig. 1, we
have listed the N values of anharmonic frequencies below the Fourier
spectrum (N = flfo). It can be seen that four modes are coupled to
122.419: f68.582, f49.589, f30.587, and f26.579. Thus they are more
likely to have the same spherical degree /. These five modes are
marked by the red squares. These four daughter-mode pairs can pair
up to form four parent-mode harmonics in three mode coupling (fy =
Ja + 1)1 O1 = 22.419 + f68.682, f72 ~ f22.419 + f49.589, f53 ~

122.419 + £30.587, and f49 ~ f22.419 + f26.579. The four parent
modes they form are among the largest amplitude harmonic TEOs
and they are all / = 2, m = 0 pulsations (topped by blue circles) as
identified in O14. These five modes are listed in our Table 1.

Given an [y, = 2, my = 0 parent mode (e.g. fx = /91 or 72, f53),
the three-mode coupling selection rules can help to limit possible (/,
m) values of the daughters. If we reasonably assume m, = m;, = 0,
only (I, [,) =(2,2), (1, 1), or (1, 3) can satisfy the selection rules: |/,
— Iy <y <|l,+ 1p| and (Iy + 1, + I,) mod2 = 0. B12 considered
possible daughter modes of /91 within the range of /,, [, € 1-6. They
found that the optimal daughters are those with / € 1-3. Among their
listed optimal daughter pairs, the one with the smallest three-mode
coupling threshold is the (/,, [,) = (2, 2) pair. Thus this combination
is more likely to be observed. This supports the interpretation that
the four modes coupled to 22.419 have [ =2, m = 0.

To better show the identified regular spacing of 2520 s, an echelle
diagram is constructed by using the anharmonic TEOs (the right-
hand panel of Fig. 3). The symbols are scaled by the corresponding
pulsation amplitudes. Modes with the same spacing form a vertical
ridge in the echelle diagram, and indeed, the brown circled modes in
Fig. 1 all locate essentially in a vertical ridge. They all have a similar
P mod AP of about 2200 s. In total, we identified 16 candidates of [ =
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Figure 2. Upper: Period difference histogram of the anharmonic pulsations. Lower: Kolmogorov—Smirnov (K-S) test of the anharmonic pulsation periods.
In both diagrams, a salient period spacing of ~2520-2535s is revealed. The K-S test statistic Q indicates that the regular period spacing at AP ~ 25355 is
significant at the 99.9 per cent confidence level.

Table 1. Four daughter modes coupled to £22.419.

N(fa) N(fp) Nfa + /) N Valfy — folfal
68.582 22.419 91.001 91 2.7322
49.589 22.419 72.008 72 1.7598
30.587 22.419 53.006 53 0.6314
26.579 22.419 48.998 49 0.3420

2, m = 0 eigenfrequencies. Detailed information on these equally-
spaced modes is listed in Table 2. Note that the aforementioned four
modes that coupled to f22.419 all locate essentially in a vertical
ridge. We set the limit of the ridge as two vertical-dashed lines. Our
interpretation is that these 16 regularly spaced pulsations are a series
of [ =2, m =0 g modes.

There are two frequency pairs with very small differencing: ' =
57.675, f57.577 and f49.731, f49.589. Such close frequencies mean
they cannot be both eigenfrequencies from one star, since their
spacings are one order of magnitude smaller than the typical g-mode
frequency spacing.! Our identified 16 g modes only include the
larger-amplitude ones in the two pairs: f57.577, f49.589. In Table 2,
lower-amplitude ones in the two pairs are shown in parentheses.

The left-hand panel of Fig. 3 shows the echelle diagram of the
harmonic TEOs. We do not expect to see a vertical ridge unless

'If we include / = 1 modes and m # 0 modes due to rotational splitting, this
pair could still be from the same star.
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the harmonic TEOs are very close to the eigenfrequency, i.e. with
detuning much smaller than the period spacing AP. Most harmonics
are, indeed, not vertically aligned and not within the vertical ridge
delimited by the dashed lines. However, the /90 and f72 are inside
the vertical ridge, and the /91 is also close to the ridge. These three
frequencies happen to be the largest-amplitude orbital-harmonic / =
2, m = 0 TEOs (blue-dotted peaks), and thus it is in fact expected
that they should have smaller frequency detuning. The fact that
they are indeed close to this vertical ridge (our identified [ = 2,
m = 0 eigenfrequencies) is encouraging. We will discuss further the
detuning of the 90, /91 in the next section.

Given the similarity of the two stars, we are not sure whether one
star is pulsating or both stars are. Thus the pulsation spectrum may be
a mixture of the spectra of both stars. Thus finding a g-mode period
spacing from the same (/, m) originating from one or two stars is
very difficult. Our identified equally spaced eigenfrequencies mean
that even in the mixed spectrum of two stars, there are still enough
eigenmodes that have regular spacings. And these regularly spaced
modes are likely from the same star.

In our 16 brown-circled [ = 2, m = 0 modes, 9 can pair up to
form a harmonic TEO, but not all their parent modes are visible. The
parent modes are indeed not necessarily visible in the spectrum.

A key question is whether the observed anharmonic pulsations
could be self-excited instead of tidally excited. Stars can indeed show
both tidally excited g modes and self-excited g modes (Guo et al.
2019, KIC4142768). Luckily, KOI-54 locates in the gap between the
SPB instability strip (Pamyatnykh 1999) and the y Dor instability
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Figure 3. Echelle diagram of the orbital harmonic pulsations (left) and the anharmonic pulsations (right). The largest-amplitude anharmonic pulsation at f/fo, =
22.419 is labelled by the red square, together with the four modes it couples. The parent modes of these four daughter-mode pairs are also marked by the red

square in the left-hand panel, with their N = f/for1, labelled.

strip (Xiong et al. 2016). Its masses of 2.33 and 2.35 My are too
massive to be a y Dor star and not massive enough to be an SPB star.
In fact, our non-adiabatic calculations in Section 4 show no unstable
g modes. Thus it is reasonable to assume that all the anharmonic
pulsations are of tidal origin, as opposed to self-excitation.

Our interpretation of a series of / = 2, m = 0 modes spaced by
about 2520s can naturally explain the daughter modes since the
series include almost all the largest amplitude daughters.

We can have further constraints on the mode identification if we
consider the spatial overlap of the eigenfunctions of daughter modes.
The coupling coefficient between daughters is only significant if they
have good spatial overlap. This requires that the difference between
the daughter radial orders be less than the parent’s, i.e. [n, — 1| <
n. (see e.g. Weinberg et al. 2012, fig. 12). If the modes in a triplet
are short wavelength g-modes (for which eigenfrequencies satisfy
Wy o I/n), then the small detuning (f, + f & f.) and spatial overlap
conditions together imply that the daughter frequencies satisty |f,/f),
— fulfa] S 1. As shown in the last column of Table 1, this condition
is only satisfied for the last two pairs listed. However, it requires
further study to see whether this criterion applies strictly to the radial
orders in our case (n ~ 10-25 versus n ~ 500 in the solar g-modes

of Weinberg et al. 2012). Our preliminary calculation seems to show
less drastic drop for n. > |n, — n,|. Also, the threshold amplitude of
the parent mode for the three-mode-coupling S, (equation 38 Burkart
et al. 2012) depends both on the coupling coefficient « .. and the
frequency detuning §w. Daughter mode pairs with smaller « 4., once
compensated with smaller Sw, can still reach the threshold for three-
mode-coupling. Thus the first two daughter pairs in Table 1 could
still be the daughter modes of f91.

The m = +1 modes also satisfy the selection rules for mode
coupling. If these m = +1, —1 modes are present, pulsations with
same [ and m are also equally spaced in periods, with a period
spacing of ~2520s for / = 2 modes and ~4370 s for / = 1 modes. In
fact, the K-S test in Fig. 2 shows a possible period spacing of 4760 s
(although at much lower significance level), which is not too far away
from the / = 1 mode period spacing, which is & +/3 times of the [ =
2 counterpart. We cannot rule out the possibility that the anharmonic
frequencies may contain some / = 1 modes. Rotational splittings may
also be present, with a frequency spacing of §f = (1 — Cp)fior, With
Cy =~ 0.5, 0.16 for [ = 1, 2 modes, respectively. These are regular
frequency spacings not regular period spacings. Given the projected
rotational velocity vsini = 7.5kms~! and orbital inclination i =

MNRAS 517, 437446 (2022)
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Table 2. Identified / = 2, m = 0 g modes and the two largest harmonic TEOs
f90 and f91.

Frequency N Amplitude Period P mod AP
@ (o)~ (mmag) @ ®)
2.158883 90.252 0.0013 0.4632025 2221
1.915717 80.087 0.0021 0.52199777 2261
1.72439 72.088 0.0020 0.57991522 2225
1.640532 68.582 0.0490 0.60955836 2266
1.568781 65.583 0.0018 0.63743760 2155
1.434493 59.969 0.0057 0.69711041 2270
(1.379613) 57.675 0.0008 0.72484095 2146
1.377281 57.577 0.0157 0.72606825 2252
1.277955 53.425 0.0007 0.78250017 2088
(1.189604) 49.731 0.0011 0.84061587 2069
1.186201 49.589 0.0036 0.84302745 2278
1.110606 46.429 0.0013 0.90040933 2195
0.731666 30.587 0.0015 1.3667438 2167
0.635773 26.579 0.0008 1.5728884 2338
0.536266 22.419 0.0787 1.8647462 2354
0.491229 20.536 0.0010 2.0357104 2005
1.508813 63.076? 0.0246 0.66277266 1824
2.176809 91.002 0.2277 0.46466667 1891
2.152855 90.000 0.2942 0.46466667 2347

5.5deg (W11), we obtain a rotational frequency fi,; = 0.70d~".
Thus, we expect to find rotational splittings of §f = 0.35d~! for [ =
1 modes; and 8f = 0.59d™" for / = 2 modes. However, a search for
regular frequency spacing in the anharmonic TEOs yields no salient
significant frequency spacings.

4 COMPARISON WITH STELLAR MODELS
AND SEISMIC MODELLING

After identifying a possible [ = 2, m = 0 g-mode period spacing, we
proceed to compare the observed eigenfrequencies with those from
stellar models.

We evolve a series of non-rotating stellar models with the MESA
(v8118) stellar evolution code (Paxton et al. 2011, 2013, 2015,
2018). We search in the following effective-temperature/radius/mass
parameter space: Tegr € (8100, 9200K), R € (2.0-2.4Ry) M € (2.00—
2.60 Mg). For both stars, these parameter ranges cover the +2¢ of
the observed 7., =30 range of the observed radii, and £20 range of
the observed masses. We used a slightly larger search-box for stellar
radius. The reason is that KOI-54 is not an eclipsing system and the
inference on radius (based on relative radius R/a for an eclipsing
system) is rather limited. The radius errors (og, , = 0.03R) derived
in W11 are probably underestimated.

The adopted step size in mass is 0.05 Mg and our maximum time
step in the evolution is set to 8 x 10° yr. We also explore the effects of
convective-core overshooting and metallicity. Our calculations adopt
the exponentially decaying overshooting (Herwig 2000), and covers
the parameters f,, = 0.00 and 0.02. We adopt the zero-point for
the overshooting function f; = 0.001. We fix the convective mixing
length parameter appr to 1.8 and adopt the OPAL opacity tables
(Iglesias & Rogers 1996) and default MESA equation-of-state.

The observed metallicity is super-solar: [Fe/H] = 0.4 £ 0.2. Fol-
lowing Nsamba 2019 and using the ‘gs98’ solar mixtures (Grevesse &
Sauval 1998) with an initial helium abundance Y, = 0.2484, we find
the [Fe/H] = 0.4 corresponds to metal mass fraction Z = 0.035. We
thus calculate stellar models with Z = 0.02, 0.03, 0.04.
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For each MESA model within the observed radius error box R
€ (2.0-2.4)Rg, we calculate the non-adiabatic eigenfrequencies”
with the GYRE (v5.0) oscillation code (Townsend & Teitler 2013;
Townsend, Goldstein & Zweibel 2018). The pulsation frequencies of
16 observed [ = 2, m = 0 g modes are compared with the calculated
eigenfrequencies and RMSE are calculated. Itis definedas RM SE =
/D2 (f — fons)?/N (inunits of d~! in the figure) and is a measure of,
in an average sense, how well we can match the observed frequencies.
Fig. 4 shows the result for one of our best-fitting models with M =
2.20Mg,Z=0.03,andf,, = 0.02, and we call it our ‘baseline model’.
The upper panel shows the evolution of g-mode eigen-periods (open
circles) as a function of stellar radius. The identified /=2, m=0g
modes are indicated by the horizontal brown lines. We also include
a likely / = 2, m = 0 mode with f = 63.067f,(yellow line); this
daughter mode has a large amplitude, and is also close to the vertical
ridge in the echelle diagram. It is likely that this mode belongs to
the series. It deviates to the left of the vertical ridge probably due to
mode trapping. Indeed, in the Period Spacing versus Period diagram,
we can usually see these trapped g modes having smaller AP and
deviate from the equal spacing.

The two dominant orbital harmonic pulsations at N = 90 and 91
(blue lines) are also shown. The reason is that these two pulsations
are believed to be very close to eigenmodes (resonances). In the TEO
amplitude modelling of B12, they found that in order to achieve the
observed large amplitudes of 90 and /91, a chance resonance with
| = 2, m = 0 modes with a frequency detuning df ~ 0.01fo, =
0.0002d~" is required.

First, we show that the observed period spacing AP = 2520s
is in nice agreement with the expected / = 2, m = 0 g modes of
a star with the measured mass, radius, and effective temperature
in W11. This can be seen obviously in the upper panel of Fig. 4.
The theoretical pulsation periods from GYRE can be compared with
the horizontal brown/yellow lines. In the lower panel, we show the
frequency matching result, i.e. the RMSE as a function of stellar
radius, Ts and age. The five best-matching models are marked by the
blue squares. The best-matching model (indicated by the filled blue
square) has R = 2.19 Ry and T &~ 8500 K and the corresponding
stellar age is 400 Myr.

When the stellar mass varies, we find that M = 2.00 and 2.05 M,
models have strong avoided crossings, since for a lower-mass model
to have the same radius, the star must be more evolved. And the
g modes appear not as regular as those in Fig. 4. Models with M
> 2.4Mg cannot match the observed R and T.g constraints. Thus
the regular appearance of g modes matches the mass range of M =
2.1-2.3 Mg, which have only mildly avoided crossings and do not
deviate strongly from the regular period-spacing pattern.

By using models with M from 2.00 to 2.60 My with AM =
0.05 Mg (fixed Z = 0.03, f,, = 0.02), we explore whether we can
match the /90 and /91 in Fig. 5. We find that for models within the
observed R and T box (dashed lines), f90 and /91 cannot be matched
simultaneously. This is because the eigenfrequency spacing of the
models is larger than the orbital frequency. The lower panel shows
the models with absolute frequency difference |f — 90| < 0.004 d~!
(in green) and |f — /91| < 0.004 d~" (in blue). The upper panel uses
a smaller threshold of 0.0008 d~!. This small detuning value is in the
same order of magnitude as that required to ensure /90 and /91 have
the observed large amplitudes (~0.2-0.3 mmag).

2The effects of rotation on the eigenfrequencies are not taken into account,
and this is a reasonable approximation since we are dealing with m = 0
modes.
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Figure 4. Top: The eigenmode periods for a stellar model of M = 2.20 Mg, f,, = 0.02, and Z = 0.03 is shown as a function of stellar radius, effective
temperature, and age. These eigenmode periods (circles) can be compared with the 16 observed [ = 2, m = 0 g modes (shown as horizontal lines and they are
marked by the brown circles in Figs 1, 2). The two dominant harmonic pulsations at 90 and 91f,, are also shown (blue lines). Bottom: Frequency matching to
the 16 observed g modes. The root mean square error (RMSE) is plotted for each model.

We also show the mean absolute frequency difference result for
the 16 identified / = 2, m = 0 g modes. Models having low RMSE (or
denoted as |f — f(m = 0)| shown in Fig. 5) are indicated by the brown
circles, with the lower panel adopting a larger threshold 0.02d~! and
the upper panel a smaller threshold 0.015d~".

Note that 91 is the parent mode of several daughters in the /
2, m = 0 g mode series, so we expect 91 and the 16 [ = 2, m
0 g modes are from the same star. In our modelling shown in Fig. 5,
there are indeed models having both the brown circles and blue-
filled circle marks, these models are best candidates for the inferred
stellar parameters of KOI-54. The top panel, with a smaller threshold,
shows that models with M = 2.20Mg and R ~ 2.2-2.3R; can
match both f91 and the / = 2, m = 0 g-mode series reasonably
well.

In both thresholds, /90 and /91 cannot be matched simultaneously,
i.e. there are no models with both filled-blue and filled-green marks.
/90 and 1 must come from two different stars. This fact was also
recognized in B12. The top panel indicates that /90 can be matched
to <0.0008 d~! for the higher-mass model with M = 2.35My. A
binary model with M, = 2.20 Mg and M, = 2.35 Mg can naturally
explain the observed TEOs: the former can match the 16 [ =2, m =
0 eigenmodes and /91, and the latter has an eigenmode resonating

with /90. Given the similarity of the two stars, it would be surprising
that only one star shows TEOs and the mode-coupling and the other
does not.

Note that when fitting the / = 2, m = 0 g-mode frequencies, our
grids of models cannot make the mean of the absolute theoretical-
observed frequency difference |f — f(im = 0)| smaller than 0.01d~".
It is possible that the identified series of / = 2, m = 0 modes is
contaminated with signals from the other star. In the mixed Fourier
spectrum of both stars, the period spacing pattern is compromised and
the comparison with one stellar model is thus not very successful.
However, because of the similarity of the two stars, the observed
g-modes still show a regular period spacing.

In Fig. 6, we compare the eigenfrequencies of models of different
metallicities and convective-core overshooting with the observed 16
=2, m=0gmodes. As shown in the right-hand panel, we find solar
metallicity models (Z = 0.02) generally perform worse than super
solar metallicity models (Z = 0.03), having larger RMSE (except for
a narrow radius range of 2.26-2.40 Ry for M = 2.10 My models).
This is in agreement with the spectroscopic measurements in W11
who found Z ~ 0.035.

The left-hand panel shows the result for the convective-core
overshooting. Both f,, = 0.00 and f,, = 0.02 models can match
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Figure 5. Evolutionary tracks on the Tef—Radius plane. The observed T.—R box is indicated by the dashed boundaries. The eigenfrequencies inside the box
are calculated, and those that satisfy certain conditions are labelled. Three cases are considered: the mean absolute frequency difference f(model)—f(observed)
for the observed harmonics: f91 (blue), f90 (green), and the 16 observed m = 0 g modes (brown). The upper and lower panels use different thresholds, in the

frequency units of d~'.

the frequencies reasonably well, and they have essentially similar
performance.

5 DISCUSSION AND CONCLUSIONS

Based on previous works of B12 and O14, the main contribution
of this work lies in finding the period spacing pattern in the non-
linearly excited eigenmodes. This method of mode identification has
been used extensively for self-excited g-modes but never for tidally
excited modes. This promising method can be potentially applied to
tens of Kepler heartbeat binaries with TEOs, as well as those from
other space missions. We also show that the linearly excited TEOs,
i.e. orbital harmonic pulsations, can also be used as eigenmodes if
the frequency detuning is sufficiently small.

However, there are caveats in this work, and lots of uncertainties
still remain for KOI-54.

We did not model the amplitudes of orbital-harmonic TEOs. This
was done in B12 and it is found that non-adiabatic calculations and
dense stellar models are required. We also did not consider the effect
of rotation in our eigenfrequency calculations since m = 0 mode
frequencies are unaffected by rotation to the first order. Rotation
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does play an essential role in shaping the appearance of the pulsation
Fourier spectrum (B12).

Now that possible eigenfrequencies have been identified, it is
desirable to perform a thorough modelling of the amplitudes and
phases of harmonic TEOs including all the subtle effects mentioned
above, together with our newly identified / = 2, m = 0 g modes. The
large uncertainty in the frequency detuning can now be significantly
reduced.

There are also lots of unidentified anharmonic TEOs and they
could be gravity modes of / = 1-3. By calculating the mode-coupling
thresholds for various of daughter-mode pair combinations (different
I, m, n), it is possible to narrow down their mode identifications.
Also, the m # 0 harmonic TEOs are mostly unidentified. O14 did
a preliminary identification by using their phases, and they have
possibly / = 1,2 oreven [ = 3.

There are possible / = 2, m = 0 modes that we have missed. They
may not locate in the vertical delimited region in the echelle diagram.
One piece of evidence is from f91. B12 and O14 showed that it has
four daughter pairs: (f22.419, f68.582), (f60.419, f30.587), (f49.589,
f41.417), and (f63.076, 27.929). We already identified the first pair
as [ = 2, m = 0 modes, and f49.589 and possibly f63.076 are also
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Figure 6. Upper: Evolutionary tracks on the Radius-Effective temperature plane. The effects of different convective overshooting (left-hand panel) and
metallicity (right-hand panel) are shown. The observed R—Tegr box is indicated by the dashed lines and models inside are calculated for their eigenfrequencies.
Lower: RMSE from matching the 16 observed / = 2, m = 0 eigen g modes with eigenfrequencies from stellar models.

in our identified series. It is thus reasonable to assume that some of
the remaining daughter modes in these pairs also belong to the / =
2, m = 0 mode series.

It is expected that additional modelling effort could potentially
further constrain the stellar parameters of both stars in KOI-54.

We are studying pulsations with amplitudes down to 1 umag. Such
low amplitudes may raise questions such as: Are we overinterpreting
the data? Does the data reduction process in O14 produce any
fictitious frequencies? Although we cannot completely rule out these
possibilities, it is hard to believe that all the convincing evidence we
find in the data is purely due to coincidences. Besides, our work, apart
from being incremental progress to the characterization of KOI-54,
points out a new piece of information: the direct usage of anharmonic
TEOs in tidal asteroseismology.

Throughout the paper, we have assumed the anharmonic TEOs
oscillate at exactly the linear eigenfrequency. But at some level
non-linear interactions between modes shift the daughter oscillation
frequencies from their linear value (see e.g. Kumar & Goodman
1996, Appendix C). This subtle effect is an important mechanism
for weakly non-linear modes and could be very useful to link
the theory with observations. It is also interesting to check the
frequency detunings in the mode triplets and to compare them
with the theoretical parametric instability width (Kumar & Good-

man 1996). We plan to perform further studies in a separate
paper.

We also did not study the amplitude/phase variation of the TEOs.
014 showed that the amplitudes of 90 and /91 are decreasing with
time. It is possible to extract this information for all TEOs. And in
principle, we can model the linear and non-linear TEO amplitude
variation in the ‘amplitude equations (AE)’ framework (Weinberg
et al. 2012). This would involve calculating the mode-coupling
coefficients and integrating the AEs accordingly (Guo 2020). The
non-linear TEOs can settle into an equilibrium state, and their
amplitude ratios are proportional to their corresponding damping
rates. Of course, they can also have different behaviours such as
limit cycles or even chaos. There remains lots of room for the study
of non-linear seismology.
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