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A topological #-term in gauge theories, including quantum chromodynamics in 3 + 1 dimensions, gives
rise to a sign problem that makes classical Monte Carlo simulations impractical. Quantum simulations are
not subject to such sign problems and are a promising approach to studying these theories in the future. In
the near term, it is interesting to study simpler models that retain some of the physical phenomena of
interest and their implementation on quantum hardware. For example, dimensionally reducing gauge
theories on small spatial tori produces quantum mechanical models which, despite being relatively simple
to solve, retain interesting vacuum and symmetry structures from the parent gauge theories. Here we
consider quantum mechanical particle-on-a-circle models, related by dimensional reduction to the 1 + 1d
Schwinger model, that possess a f-term and realize an 't Hooft anomaly or global inconsistency at 6 = 7.
These models also exhibit the related phenomena of spontaneous symmetry breaking and instanton-anti-
instanton interference in real time. We propose an experimental scheme for the real-time simulation of a
particle on a circle with a #-term and a Z, potential using a synthetic dimension encoded in a Rydberg
atom. Simulating the Rydberg atom with realistic experimental parameters, we demonstrate that the
essential physics can be well captured by the experiment, with expected behavior in the tunneling rate as a
function of #. Similar phenomena and observables can also arise in more complex quantum mechanical

models connected to higher-dimensional non-Abelian gauge theories by dimensional reduction.

DOI: 10.1103/PhysRevD.105.074505

I. INTRODUCTION

Euclidean Lattice field theory is the most powerful
approach currently available for studying the nonperturba-
tive dynamics of a large class of gauge theories, including
quantum chromodynamics (QCD). However, lattice field
theory computations generically give rise to sign problems
which keep important phenomena out of reach, for exam-
ple, real-time dynamics, finite-density systems, or theories
with topological terms. In principle, quantum computers
and quantum simulators can be used to study such theories
and phenomena, but these techniques are at the early stages
of development. In the near term, it is useful to consider
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simpler theories in lower dimensions retaining some
aspects of the real higher-dimensional physics of interest.
The phenomena exhibited by these theories offer milestone
physics targets, and benchmarks for comparison with other
types of computations, along the road towards full, fault-
tolerant quantum simulations of realistic gauge theories
relevant for high energy physics. For reviews of lattice
gauge theory (LGT) simulations on quantum devices, see
[1-4], and for recent work on fault-tolerant algorithms for
LGT simulations see [5-7].

The quantum mechanical (QM) particle on the circle is
one of the simplest theories with instantons and a #-term. In
that sense it represents one such benchmark theory for
quantum simulation. It is also of interest because it is the
low-energy effective theory describing the dimensional
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reduction of 1 4+ 1d U(1) gauge theory on a spatial circle.
Dimensional reduction often leads to simpler theories
that retain some of the interesting physics of the parent
gauge theory, including symmetry structures and topologi-
cal aspects. The particle on the circle example can be
generalized to include an n-fold periodic potential, in
which case it is the dimensional reduction of the weakly
coupled massive charge-n Schwinger model [8]. The QM
circle-valued degree of freedom corresponds to the Wilson
loop around the spatial circle in the gauge theory and the Z,,
potential is dynamically generated by integrating out the
charged matter. Recently, digital quantum computations of
the phase structure of the Schwinger model with a #-term
have been studied in [9,10].

The most straightforward questions to ask in a quantum
simulation involve real-time evolution, so we are naturally
led to consider phenomena with two sign problems: real-
time dynamics associated with the 6-term. An interesting
class of observables is the tunneling rate between classical
vacua with a Z, symmetric potential on the circle. In
continuum Euclidean language, the presence of the 6-term
generates interference between instanton amplitudes in
different directions around the circle. For example, with
n = 2 and € = &, the tunneling rate between the two wells
vanishes due to perfect destructive interference between
the two instantons. This is in fact related to a fundamental
structural property of the theory, the presence of an
’t Hooft anomaly or a global inconsistency between
two discrete symmetries, which is matched in the infrared
by an exactly twofold degenerate ground state [11,12]. In
the dimensional reduction picture, the anomaly structure in
the QM theory is dictated by the same structure in the
Schwinger model. A similar anomaly or global incon-
sistency also arises in 4D Yang-Mills theory, occurring
between time-reversal symmetry and a 1-form Z, center
symmetry, and which is responsible for the spontaneous
breaking of charge conjugation times parity (CP) at 0 =
[12]. As such, studies of the QM particle on the circle can
also be used as a toy model for exploring methods and
observables probing the anomaly structure of higher-
dimensional gauge theories in quantum simulations.

An 't Hooft anomaly [13] is a quantum mechanical
obstruction to gauging certain global symmetries.
Intuitively, it either means that a single symmetry cannot
be gauged, or that two symmetries cannot be gauged
together, because gauging one explicitly breaks the other.
If neither are gauged, then neither is broken, but the
existence of the anomaly still implies a nontrivial infrared
limit of the theory due to ’t Hooft’s anomaly matching
conditions. For example, one possible realization of an
’t Hooft anomaly is a degeneracy of ground states. If the
ground states are related by an exchange symmetry S,
which has an anomaly with another symmetry S,, gauging
S, may eliminate some of the ground states, thereby
explicitly breaking S; and “saturating” the anomaly.

Global inconsistencies are similar symmetry properties
constraining the behavior of a given theory at two different
values of its couplings, for example, at § =0 and 6 = =z
[12]. Global inconsistencies also imply obstructions to
gauging global symmetries, but they are slightly milder
than an ’t Hooft anomaly: the gauging is possible at one
value of the couplings, but not both.

The QM Z,, particle on a circle model can realize either
an 't Hooft anomaly or a global inconsistency at 6 = 7,
depending on the parity of n [14]. In both cases, these
symmetry structures result in ground state degeneracy and
spontaneous symmetry breaking at € = z. The spectral
properties inferred from the anomaly/inconsistency govern
the slow dynamics of the system, providing a complemen-
tary explanation to the picture of instanton/anti-instanton
interference.

In this work we study encodings of Z, symmetric
particle-on-a-circle models on quantum simulators, utiliz-
ing a synthetic dimension mapped to the states of a
Rydberg atom. We compute the tunneling rate between
different wells as a function of n, 6, and the potential
frequency, first in the continuum instanton gas approxi-
mation, then by direct solution of the discrete time-
dependent Schrodinger equation (including the effects of
spatial discretization), and finally with models of synthetic
Rydberg lattice implementations that include realistic
experimental nonidealities. In this way we infer how
properties of the experimental platform and encoding affect
the continuum prediction.

This paper is organized as follows. In Sec. II we discuss
slow dynamics in the continuum particle on a circle model
with a Z, symmetric cosine potential. Using the instanton
gas approximation to determine the low-lying states, we
compute the time-dependent rate to hop between vacua as a
function of the topological angle 6. In Sec. III we latticize
the circle, mapping the theory to a tight-binding model with
a finite Hilbert space. In this theory the #-angle is realized
by a complex hopping parameter that cannot be gauged
away. We study this theory with exact diagonalization (ED)
and compare to the continuum model to assess the effects of
discretization. In Sec. IV we map the tight-binding model
to a synthetic dimension of a Rydberg atom. In this
numerically investigated experimental model, different
Rydberg levels of the atom can be used to encode the
discretized spatial circle, and the amplitudes and phases of
incident microwaves control the amplitude and phase of the
hopping parameter. The Z, potential is encoded by tuning
the microwaves off resonance. We run real-time simula-
tions of the Rydberg encoding, solving the time-dependent
Schrodinger equation including realistic experimental
effects, for n =2, 3 on 4, 6, 8, and 12 lattice sites. We
compare to the idealized tight-binding model and find that
the Rydberg encoding should be able to realize the
dynamical phenomena associated with the 6-term and
anomaly/inconsistency structure.
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II. CONTINUUM THEORY

The continuum Euclidean action for a particle on a circle
with an n-well potential is

Sg[fc]—/d%[%m(§>2+/~l<l—cos<’g>> —%%}
(2.1)

where X is the position of the particle on a circle of radius R,
X~X+27R. T =it is the Euclidean time, and @ is the
topological angle. This action can be nondimensionalized
with I = mR?, the moment of inertia, serving as a unit of
length or time. We define dimensionless quantities 7 = 7/1,
X=X/R, A= AI, in terms of which the action is

1 (dx\? i0 dx
Sg[.X'] —/dT|:§ (E) +V(I’UC)—EE R

where V(nx) = (1 — cos(nx)). The Ith well is centered at
x=2zl/n. On a compactified Euclidean time circle,
x(z+ p) — x(r) = 2xZ. Then the O-term has the property
exp[—Sy[x]] = exp[—Sy 2.[x]], SO O ~ O + 27.

Atf = 0 orz and 4 = 0, there are two global symmetries
of this theory: the time-reversal symmetry 7 — —z and the
U(1)-rotation global symmetry x + x + a where a is
independent of z. Both can be lifted to symmetries of
2D electrodynamics; in the latter case, it is identified with
the electric 1-form center symmetry. At § = z, there is a
mixed ’t Hooft anomaly between these symmetries [12,14].
This anomaly implies a nontrivial vacuum structure, which
in this case manifests as a degenerate ground-state doublet.
The same result is obtained by taking the spacetime
symmetry to be the parity operation x — —x [12].

With 4 > 0, the rotation symmetry breaks to a discrete
subgroup, U(1) — Z,,. For even n, at @ = z, there is also a
mixed 't Hooft anomaly between the parity symmetry and
the Z,, rotation symmetry, again saturated by a degenerate
ground-state doublet. For odd n, there is no mixed anomaly.
Instead, there is a similar but slightly weaker phenomenon,
a global inconsistency [14]. That is, it is possible to add a
counterterm to restore CP symmetry if the U(1) symmetry
is gauged, but only at 8 =0 or 8 = z, not both. If we
demand that there is no anomaly at 8 = 0, then the result is
the same, a degenerate ground-state doublet at § = 7.

For real-time simulation of this theory, we can use the

Hamiltonian
Het(p- 2 L viny
=— - — nx),
A

where p=0L/0x =dx/dt+0/2x is the conjugate
momentum. If the initial state is localized near the [th
well, then quantum tunneling can occur, and the tunneling
dynamics probes the vacuum structure of the theory.

(2.2)

(2.3)

anti — instanton
instanton

\

TR
—
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X

FIG. 1. An illustration of the instanton and the anti-instanton in
the example of the n = 2 potential on the circle.

Semiclassically and in the continuum, tunneling is
described by instantons. The instanton/anti-instanton is
the classical solution that takes the particle from x =0
to x = & counterclockwise/clockwise, as is shown in Fig. 1.
The contribution to the tunneling amplitude from x = 0 to
x = # from an instanton is proportional to e~5%/2 and
that from an anti-instanton is proportional to e~S1=/2
where S; is the real part of the Euclidean instanton action.
The sum of these two contributions (and quantum fluctua-
tions around them) is proportional to 2e~5 cos(6/2). At
0 = n, the sum of the amplitudes vanishes. Contributions
from multiple instantons/anti-instantons are discussed in
Appendix B.

We perform a semiclassical analysis in the dilute
instanton gas approximation (DIGA) and including the
one loop fluctuation determinant in Appendix B (see, e.g.,
[15]). The DIGA analysis shows that the lowest n energies
can be described by an n-dimensional tight-binding effec-
tive Hamiltonian with eigenvalues

(2.4)

2
E(0) = % - decos( ”kn+ 0),

where k =0,1,2,....,n— 1(mod n), @ = nv/24, and d is
the instanton density, d = (4/n)e %/ "\ /w/x. The semi-
classical limit corresponds to a large instanton action, of
which the real part is S; = 8w/n? > 1.

A curious property of Eq. (2.4) is that the 2z periodicity
of @ is realized in a nonminimal way, with an associated
shift of energy branch: § — 6+ 2z, k — k— 1. This
“monodromy” phenomenon is also believed to arise in
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pure SU(N) Yang-Mills (YM) theory, as first conjectured
by Witten using large N arguments [16], and occurs in a
number of other related theories, including softly broken
supersymmetric QCD [17] and Yang-Mills on R* x S§!
[18]. Qualitatively, the quantum mechanical particle on the
circle can be thought of as analogous to a sphaleron
direction in field space in YM [12].

We can also read off the topological susceptibility at
6 = 0 from the 8 dependence of the ground-state energy,

20d 8w |w 2 8 [w\3/? )
T 8w/t [ —8w/n . 25
H=ng T3 \/;e NZ (n2> ¢ 25)

The low-lying energy levels can be probed by real-time
dynamics. Taking n =2 as an example, the lowest two
eigenstates are

Ey(0)) = (|o>+|1>) with Eo(e)zg—zwdcos@),

S\

(2.6)

. 0
E1(0) == (10) = 1)) with £,(6) =5+ 2adcos 5),

%\

(2.7

where |0) and |1) are localized in the centers of the two
potential wells at x = 0 and x = x respectively. If the initial
state is |0), then the time evolution will exhibit an angular
frequency of |E,(0) — Ey(0)| = 4wd cos(0/2). At 6 = x,
the two energies become degenerate and there is no
tunneling from |O> to |1). This is a result of the mixed 't
Hooft anomaly,' and at the semiclassical level, it arises via
quantum interference between the instanton and the anti-
instanton tunneling in opposite directions on the circle.
More generally, the time dependent probabilities to hop
from well O to itself or from well O to 1 are

0
Py(0,0;1) = cos® <2wd cos <§) t) .

'The state |E,(xz)) is odd under the Z, rotation symmetry
(|0) = [1), |1) = |0)), |E| (7)) = —|E (%)), analogous to one-
form center symmetries in higher-dimensional gauge theories, so
it disappears from the gauge-invariant spectrum if this symmetry
is gauged. The state |Ey(x)) is invariant under the symmetry and
survives if the symmetry is gauged. Under the global Z, time-
reversal symmetry, |E; (7)) is exchanged with |E(x)). Therefore,
if the Z, “center” symmetry is gauged, the time-reversal
symmetry is explicitly broken. There is thus a mixed ’t Hooft
anomaly between the two symmetries, which implies a nontrivial
structure in the low-energy part of the original theory (before
gauging). In this paper we are only concerned with the ungauged
theory, so we do not explicitly introduce a gauge field.

(2.8)

(2.9)

0
Py(0,1;1) = sin? <2a)dcos <§) t> .

A more complicated example is n = 3. Equation (2.4)
shows that the spectra at & = 0 and € = 7 are related to
each other by an inversion. Assuming that only the lowest
three eigenstates dominate the dynamics of tunneling, then
densities starting from a position eigenstate will be the
same for = 0 and € = #. This phenomenon in dynamics
differs from examples with even n.

II1. DISCRETIZATION
A. The tight-binding Hamiltonian

The particle on the circle with a topological term can also
be thought of as a charged particle on a circle moving in a
homogenous transverse magnetic field. The natural dis-
cretization is the tight-binding model with complex hop-
ping parameters. The discrete Hamiltonian is

H = Z[Wtiﬂbj}lbi + Wi blbisy + Viblb)]

2mé
+<V(n§i) 1(32>bTb]

with periodic boundary conditions. Here blT and b; are
bosonic creation and annihilation operators at site i, and we
have restored the dimensionful parameters. £ is the lattice
spacing on the circle of radius R = &ng.s and ng, 1S the
number of sites. (See Appendix A for how to discretize
the continuum Hamiltonian to the tight-binding model.)
This discrete Hamiltonian can be diagonalized exactly, and
it is shown to have the same spectrum in the continuum
limit £ — 0 as

H=- <p —i>2 + Vnx).

1 ) .
e (el%(:bjﬂbi + e_lﬁébjbiﬂ)

(3.1)

3.2
2m 27R (3:2)

Note that 37, b b;/(mE) = 1/(mé?) is a constant term.

Without the circle topology, one can make a diagonal
unitary transformation |x) = ¢’*™)|x)’ to make the hopping
parameter real, and then the theory is equivalent to the usual
real-hopping tight-binding Hamiltonian. However, this
redefinition cannot be performed globally on a circle if
0 ¢ 2z7. With b] = e @b!", b, = ¢'%b), the hopping
parameter transforms as wj ;| = = e/(@=)y, ;. To make
the hopping parameter real, we would like to choose

0

a—apy ) =53¢

7R (3.3)

Then, periodicity of the a; implies
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277 D g — Aj—g = Aj—g — ;2R
i=0 i=0 i=0 =% Rorx é

= 0 € 21Z. (3.4)

Any values of 6 that do not satisfy this condition will not
allow a transformation to make all hopping parameters real.
A generic theory at a value of @ & 227 is not equivalent to a
real-hopping tight-binding model. The 6 parameter that
classifies these theories is

B. Numerical exact diagonalization results

We use the numerical ED method to analyze the discrete
Hamiltonian.

The ED method yields the whole spectrum of the tight-
binding Hamiltonian on n; sites, and we can compare the
lowest n energies with the continuum DIGA prediction in
Eq. (2.4). We show this comparison in Fig. 2. For moderate
values of w, the qualitative features of the lowest n energies
are consistent between ED and DIGA. Ground-state
degeneracy occurs at € = z for any n and w [14] in both

computations. The ED and DIGA ground-state energies are
offset relative to one another, but these offsets are much
smaller than the spacing between harmonic-oscillator
energies ~w. To isolate the nonperturbative contribution
and suppress the effects of these relative offsets, the
differences w/2 + E; — (1/n) > ,_, Ey as computed with
DIGA are plotted in Fig. 2. The shapes of the lowest n

0 = arg Hw,»,,»H (mod 27), (3.5)

which is analogous to the Polyakov loop around the spatial
direction.

Energy

Energy

0
0
©) (d)

FIG. 2. Comparison between the spectra from ED (solid) on n, = 120 lattice sites and DIGA (dashed). We show the lowest n energy
branches with (a)n =2, @ = 2;(b)n =3, w = 3;(c) n = 4, ® = 12. Only 0 € [—x, z] is shown; the 2z periodicity in € is exact in both
ED and DIGA. The qualitative shapes of spectra are well captured by DIGA, indicating reasonable proximity to the continuum
semiclassical limit. In the semiclassical limit @ — oo, tunneling between different potential wells is exponentially suppressed and the
energy levels are dominated by the perturbative spectra of the local potential wells which are approximately harmonic oscillators. In
(d) with n = 2, @ = 4, ny, = 120, the first 6 branches from ED are plotted to illustrate the general structure of the spectrum including
excited states. Every two energy branches are connected at @ = +z. The lowest two branches are very close and almost overlap with the
given plotting scale. The lowest two branches are approximately at the ground-state energy level, w/2 = 2, of a harmonic oscillator with
frequency w. Similarly, the (2s + 1)th and (2s + 2)th branches are approximately at the sth excited harmonic-oscillator energy
(s+1/2)w.
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The energy difference between the two lowest states |E; — E| with varying n,. Parameters used in exact diagonalization are

n=2,0=0,(a) o =2, (b) = 8. The energy difference starts to converge from n; = O(10).

10! —=— ED
—— DIGA
= 1074
|
g 1077
1071
0 5 10 15
w
(a)

2.0
¢ |E1 - E0|ED/‘E1 - E0|DIGA
1.5
3]
0.5
0.0+ .
0 5 10 15
w
(b)

FIG. 4. Forn =2, n, =2000, 0 = 0, with varying @ € [0.5, 16.0], (a) the energy difference between the two lowest states |E| — E|
from ED and DIGA and (b) the ratio between the results of ED to DIGA. The DIGA gives the correct order of magnitude from w = 0.5,

and starts to converge at around @ = 2.

energies from the ED and DIGA are not of the same size,
but this discrepancy, as we show below, decreases as @
increases and the semiclassical limit is approached.

Now let us examine the continuum limit of ED. We take
n = 2,60 = 0 as an example with @ = 2, 8 in the ED shown
in Fig. 3. The continuum limit is approached at
around n; = O(10).

In Fig. 4, we compare the DIGA and ED results for the
splitting |E| — E| between the ground and the first excited
states in the two-well potential, using a large number of
sites n, = 2000. The results match at the order of magni-
tude level for all @ > 0.5, and converge rapidly for w > 2.

For w not too large, qualitative features of spectra are
well captured with a few lattice sites. n, = 2, 4, 6, 8, 12
lattice sites are studied in Sec. IV below.

IV. EXPERIMENTAL SCHEMES

A. Encoding using a synthetic dimension

A synthetic dimension [19] is an effective dimension
encoded in, e.g., the internal degrees of freedom of an

atom or molecule, which can be used to study a range of
phenomena related to dynamics and transport. In the
quantum mechanics problem considered here, a single
Rydberg atom can be used to encode a discretized spatial
circle on which the particle resides: as shown in Fig. 5,
multiple internal Rydberg states can be used to encode
position (site) basis states of a lattice with periodic
boundary conditions. Here, we describe a lattice formed
by Rydberg levels (high-lying electronic states of an atom’s
valence electron), which are plentiful, long lived, and have
recently been utilized for the generation of synthetic
lattices [20].

For the single-particle studies we describe, one may
either employ individual Rydberg atoms excited from a
bulk gas of laser-cooled atoms [20] or, alternatively, from a
single atoms trapped in an optical tweezer [21]. For both
cases, synthetic lattices of Rydberg states may formed by
global addressing with multifrequency microwave fields,
e.g., provided by a single high-bandwidth source and horn
antenna. In the latter approach based on tweezer-trapped
atoms, the scalability of optical tweezer arrays [22]
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A loop-like synthetic dimension encoded in individual Rydberg atoms by connecting (a) 4 states, (b) 6 states, (c) 8 states, and

(d) 12 states with resonant microwaves. In this approach, transitions between connected states are enabled by applying microwave
electric fields at the frequency resonant with (or slightly detuned from, to elicit an effective site energy) the state-to-state frequency
splitting. Each state in a loop represents a discretized position on the circle. s/, pi/2, P32, and ds), states are used to encode the
position. dj,, states are also included in the numerical simulation. Gray-colored states lie outside of the subspace of the effective
synthetic lattice, and transitions to such states are suppressed by energy differences between unwanted transitions and the desired

(driven) transitions.

provides natural opportunities to introduce strong inter-
particle interactions for the study of correlated dynamics in

synthetic dimensions [23].

Rydberg synthetic lattices can be formed by coupling
different Rydberg levels with resonantly oscillating micro-
wave electric fields. The coupling of these electronic states
is governed by electric dipole selection rules, i.e.,
AL = £1,|AJ| £ 1, |Amy| < 1. Individual tunneling links
of the synthetic lattice are formed by spectrally resolving a
given state-to-state transition. Zeeman shifts by a bias
magnetic field help to separate out different magnetic
sublevels (m; states) and their transitions. We note that,
along with hard constraints due to selection rules, there are
some practical limitations on the lattice graphs that can be
formed, with practical considerations related to the range of
microwave frequencies that need to be applied.

With suitably chosen parameters (frequencies, amplitudes,
and phases) of external microwaves, in the rotating wave
approximation (RWA) and within the decay time of excited
states, one can form a tight-binding model described by the
Hamiltonian

H = [wiib] bi+ Wi blbiy + Vibib)]. (4.1)

Here, the absolute values of hopping parameters |w; ;| are
tuned via the amplitudes of the microwaves; the complex
phases of the hopping parameters w;;,; are tuned by the
phases of the microwaves (and accounting for path-dependent
phases from the sources to the atoms); and state-dependent
potential terms V; are controlled by the detuning between the
microwave frequencies and the resonance frequency of the
relevant transition. Consequently, it is possible to have full
spectroscopic control over the parameters in Eq. (4.1).

Order-of-magnitude estimates can be used to establish
suitable ranges of parameters viable with realistic experi-
ments based on Rydberg synthetic lattices. The hopping
parameter magnitudes |w| generated by resonant micro-
waves corresponds to the (resonant) Rabi frequency Q for a
given transition:

1

(4.2)
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The Z, potential is set by detuning as

)

A=]=&1/n (4.3)
Here A is the detuning scale and @ = w/1 is the perturba-
tive fast frequency. We regard Q, A, the number of sites
(states) ny = 2R /&, and a microwave relative phase 6 from
Eq. (3.5) as the experimental variables. The energy scales
of the theory are the fast frequency

2nn

= V200" (4.4)

nS
and the nonperturbative slow frequency

@piga = 20d

:2d)><26_n%5’1%\/@
n T
2n 2A n
= 8(2A3Q)1/4, |— 2 /==, (45
(24°Q) Mf"l’( Van] @9

The dimensionless quantity,

(4.6)

characterizes the theory. The continuum limit n; — oo can
be understood as n,/n — oo since a greater number of
potential wells n demands a greater number of sites n; to
resolve the shape of the potential. For given values of n and
ng, the parameters of the theory @ and 7 are determined by
the experimental parameters Q and A.

104<

10% 4

(a)

B. Comparison of real-time dynamics

For concreteness, we consider the use of potassium (*°K)
Rydberg states in the range of n ~ 80, as shown in Fig. 5.
This choice is without loss of generality, as a change of
atomic species or the range of principal quantum numbers
will only result in slight modifications of the microwave
frequencies and bandwidths required. We incorporate
moderate Zeeman shifts of the state energies, assuming
applied quantization fields in the range of tens of Gauss.
We select the m; = +J magnetic sublevels to serve as the
relevant states that are part of our synthetic lattice. All state
energies and state-to-state transition frequencies are deter-
mined using the open-source Alkali Rydberg Calculator
platform [24,25]. The synthetic lattice technique relies on
having the desired transitions (those representing tunneling
connections between sites/states of the synthetic lattice) be
separated in frequency from those that lead to states outside
of the “synthetic lattice” subspace. In these explorations,
the frequency separation Ay, of desired transitions from
unwanted transitions are at the scale of ~10 MHz. To
ensure the validity of the rotating wave approximation
that underlies our description of the tight-binding syn-
thetic lattice, we are limited to considering Hamiltonian
terms, w and V, that are small compared to Ag,.

The condition VA% 4+ Q* < A, controls the goodness
of the RWA. A, is on the order of ~10 MHz. For
observing the tunneling event, the characteristic tunneling
time scale 27/@pga must not substantially exceed the
nominal Rydberg lifetime ~10 us. Therefore, the ratio
VA% + Q% /@piga < 10 MHz x 10 us = 100 is a con-
straint for a realistic experiment. If this ratio is close to
0(100), then a fraction of the tunneling process might still
be observed. Figure 6 demonstrates this ratio for n = 2 and
n =3 with a few values of n,.

We compare two real-time simulations: a simulation
of the ideal tight-binding Hamiltonian, Eq. (4.1), and a
realistic simulation of the Rydberg atom. In the latter
case we solve the Schrodinger equation with time-

WDIGA

FIG. 6. The ratio VA? + Q?/@pga for (a) n = 2, (b) n = 3. For a realistic experiment for observing a complete tunneling event, the
ratio must be well below O(100), which constrains the parameters w, n, n;.
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FIG. 7. Comparison in probabilities as functions of experimental time between full Rydberg simulations (solid) and RWA (tight-
binding) simulations (dashed) for n = 2, n; = 4. Sites 0 and 2 are centers of the two potential wells. Sites 1 and 3 are tops of the two
potential barriers. Parameters used in simulation are listed in Table I. The ’t Hooft anomaly occurs at (c),(f),(i) @ = z. The moment of
inertia [ is w/@ = 150 ns in all panels. The magnetic field is B = 15 Gauss. The probabilities at sites 1 and 3 are suppressed because
they are at the two maxima of the potential. The full simulation of the Rydberg atom and the simulation of the idealized RWA limit

nearly overlap.

dependent external fields (microwaves) and including 54
(for 4-state) /126 (for 6-/8-/12-state) nearby (potentially
connected) Rydberg states in the simulation. The initial
state is prepared as a position eigenstate at the bottom of the
Oth well, i.e., a Kronecker delta distribution. This prepa-
ration of an atom within a single Rydberg state can be
accomplished through a Rydberg laser z-pulse, an adiabatic
sweep, or a STIRAP excitation.

The site-resolved (along the synthetic dimension) pop-
ulation dynamics of the Rydberg system may, e.g., be
achieved by performing state-selective field ionization as in
Ref. [20]. Alternatively, the phenomenology associated
with the ’t Hooft anomaly, namely a transition to frozen
dynamics due to instanton-anti-instanton interference, may
be observed even if only measuring the dynamics of a
single (initially occupied) Rydberg state. Such a partial
measurement scheme, resolving the dynamics in only one

or a few Rydberg levels, may be more amenable to
experiments based on optical tweezers.

For the minimal case n =2, n, =4, Fig. 7 shows
good agreement between the full simulation of 54
Rydberg states and the tight-binding model corresponding
to the RWA. Continuum semiclassical calculations,
Egs. (2.8), (2.9), show that the tunneling frequency scales
as ~2adcos(6/2). With a fixed potential height, the
tunneling frequency decreases when 6 increases from 0
to . From left to right, the columns of Fig. 7 depict this
trend for @ = 0, z/2, n. At 6 = r, the slow dynamics result
from the exact degeneracy of the two lowest energy
eigenstates in the idealized limit, reflecting the prediction
of the 't Hooft anomaly. For a fixed 0 # n and a fixed

= 150 ns in Fig. 7, the tunneling frequency decreases
exponentially with w. Although n = 2, n; = 4 is not close
to the continuum limit, qualitatively we observe that the
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TABLE 1. Parameters used in Fig. 7, and results of a fit to the real-time evolution of probabilities. The probability to evolve from site 0
back to site 0 is modeled by P(0,0;7) = A; (1 + cos(@wn?)) + Az COS(@raf + Prast), Which is Eq. (2.8) modified by an additional fast-
oscillation term at frequency @g, ~ 24 = 2A. The fast frequency @y, deviates from the potential curvature @ in the continuum limit
because of the low resolution of the potential with only n, = 4 sites. Fit parameters are @, @50, A1, Az, and @y Dy cOrresponds to
the DIGA result 2@pga cos(6/2) = 4@d cos(0/2) in the semiclassical and continuum limit. For a given value of w, with the three
values 0 = 0, z/2, z, the fit results for @,,, exhibit close proportionality to cos(0/2) = 1, cos(z/4) = 0.707, cos(z/2) = 0 respectively.

Parameters 0 @ (107* ns71) Opg (ns7') 244 Ay Prast
(@) @=001ns"!, w=1.5, 0 8.56 0.0095 0.91 0.035 —-0.78
(b) ie, A=000375ns"! =27 x0.597 MHz, #/2 598~ 8.56cos(x/4) 0.0086 090 0.055 -0.085
(@) Q= 0.00135 ns~! = 27 x 0.215 MHz b2 0.013 ~ 8.56 cos(n/2) 0.0084 0.90 0.10 0.000
(d @ =0.0133 ns7!, @ = 2.0, 0 5.17 0.0141 0.96 0.026 0.006
(e) ie., A = 0.00667 ns~! = 2z x 1.06 MHz, /2 3.66 ~ 5.17 cos(n/4) 0.0140 0.96 0.029 -0.029
® Q =0.00135 ns~! =27 x 0.215 MHz T 0.000 = 5.17 cos(z/2) 0.0138 0.96 0.038 0.000
() @ =0.02ns7", w = 3.0, 0 2.40 0.0304 0.99  0.007 0.001
(h) ie, A =0.015ns! =2z x 2.39 MHz, /2 1.70 2.40cos(n/4) 0.0302 0.99  0.007 —0.003
@) Q =0.00135 ns~! =27 x0.215 MHz V3 0.000 = 2.40 cos(7/2) 0.0302 0.99 0.008 0.000
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FIG. 8. n =3, n, = 6. Sites 0, 2, and 4 are centers of the three potential wells. There is a global inconsistency between (a),(d),(g)
0 = 0 and (c),(f),(i) @ = z. Parameters are @ = 0.01 ns~!, w = 3.0, i.e., A = 0.00333 ns~! = 27 x 0.531 MHz, Q = 0.00152 ns~! =
27 x 0.242 MHz at (a),(d),(g) € = 0, (b),(e),(h) 8 = z/2, (¢),(f),(i) & = x. The magnetic field is B = 45 Gauss. # = 0 and € = r exhibit
similar dynamics in terms of position probabilities, {cos(x)), and (sin(x)), consistent with our expectation from the DIGA. § = z/2 is a
more generic value of 6 which has less symmetry and its results are shown here for comparison.
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TABLEII. Parameters used in Fig. 8, and results of a fit to the real-time evolution of (cos(x)). {cos(x)) at @ = 0 and € = x is modeled
by (cos(x)) = A (1 4+ 2 cos(@wnl)) + A cOS(@fasif + Prast)s Which is Eq. (B35) modified by an additional fast-oscillation term at
frequency @gy ~ 24 = 2A. (cos(x)) at @ = z/2 is modeled by (cos(x)) = A;(2cos(@wyn?) + coS(2@un)) + As cOS(@paqt? + Prast)s
which is Eq. (B37) modified by an additional fast-oscillation term. Fit parameters are @, @ A1, Ao, and @yg,. With the chosen
parametrization of fit functions, @, at ® = 0 and @ = 7 is approximately /3 times @,,, at @ = /2, which is consistent with Eqgs. (B35),

(B37) from DIGA.

Parameters 0 @un (1074 0571 @p (ns™') 34 A, Prast
(a),(d).(2) @ =0.01 ns™!, w = 3.0, 0 8.20 0.0073 0.92  0.058 -0.003
(b).(e),(h) ie, A =0.00333 ns™! =27 x0.531 MHz, 7/2 494 =8.57/\/3 0.0086 0.90  0.055 —0.085
(©),(D,(0) Q =0.00152 ns~' = 27 x 0.242 MHz T 8.85 0.0076 0.90 0.070  —0.051

tunneling frequency decreases from top to bottom in
Fig. 7. Fitting the frequency to the simulation results
(see Table I), cos(6/2) behavior of the tunneling fre-
quency is captured well even with the minimal number of
sites. The remaining factor 2@d is not perfectly captured
by the n, = 4 simulation, but the decrease in @, from
smaller to larger w at a fixed 0 # = is consistent with the
behavior of 2&d.

The simulated experimental time scale is 5 us, which is a
reasonable timescale over which one may expect to main-
tain coherent internal state dynamics, taking into account
noise due to stray electric and magnetic fields, any effects
of thermal motion [26], state decay, and decoherence due to
blackbody radiation. For explicit comparison, the exper-
imental synthetic Rydberg lattice results of Ref. [20] are
consistent with fully coherent microwave driven dynamics
over a time of 5 us.

In general, for even n, the ’t Hooft anomaly at 8 = =z is
reflected in the twofold degeneracy of all energy eigen-
states (doublets) [14]. Some energy eigenstates at § = 0,
e.g., the ground state, are singlets. Therefore, the spectral
structure is quite different between 6 = 0 and 6 = &, which
results in different real-time probability evolution. In the
n = 2 example shown in Fig. 7, there is tunneling at @ = 0
but no tunneling at 6 = z.

When 7 is odd, a global inconsistency between 6 = 0
and 0 = r arises. This is a weaker condition that does not

require all energy eigenstates to be doublets at 0 = z. If
there is a singlet at one of the @ values (0 or x), then it
cannot be continuously connected to a singlet at the other 6
value [14]. The global inconsistency can be reflected by a
singlet at @ = z being continuously connected to a doublet
at @ = 0, which is in fact what happens when 7 is odd,
explicitly shown by the example in Fig. 2(b). It is possible
for & = 0 and € = x to have the same number of singlets,
realized by their similar spectra related by an inversion in
the energy space. As a result, the dynamics of § = 0 and
6 = x can be very similar for odd 7. In the case of n = 3,
since the tunneling is not forbidden at & = 0, it will not be
forbidden at 8 = x, either.

For n = 3, ny = 6, the simulation in Fig. 8 shows good
agreement between the full simulation of 126 Rydberg
states and the 6-site tight-binding model from the RWA.
The simulated experimental time is 10 ps, again within a
reasonable estimate of the Rydberg lifetime and coherence
time. Continuum semiclassical calculation shows the
position-space probabilities are approximately equal for
0 =0 and 0 = 7 at fixed @ and w, and this is reflected in
Figs. 8(a) and 8(c). The first and third columns of Fig. 8
also demonstrate the similarity between € = 0 and 6 = #
via the time-dependent expectation values (cos(x)) and
(sin(x)). A more generic value @ = /2 is shown in the
second column of Fig. 8(b) as a comparison. (sin(x))
vanishes at @ = /2 but does not vanish at @ = 0 or 0 = 7.
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FIG.9. Forn =2, n, = 8, the probability at the potential minimum site 4, antipodal to the initial site 0. Parameters are & = 0.01 ns™",
®=20,ie., A=0.005ns"! =27 x 0.796 MHz, Q = 0.00405 ns~' = 27 x 0.645 MHz at (a) = 0, (b) @ = /2, (c) = x. The
magnetic field is B = 45 Gauss. The tunneling angular frequency in the DIGA is expected to be proportional to cos(6/2) given by
Egs. (2.8), (2.9). The 't Hooft anomaly occurs at (c) @ = 7 where the tunneling frequency vanishes.
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FIG. 10. For n =2, n; = 12, the probability at the potential minimum site 6, antipodal to the initial site 0. Parameters are
@ =0.005ns"", =25, ie, A=0.003125ns"" =27 x 0497 MHz, Q =0.00365 ns™' =27z x0.581 MHz at (a) 6 =0,
(b) 8 =x/2, (c) & = . The magnetic field is B = 45 Gauss. The tunneling angular frequency in the DIGA is expected to be
proportional to cos(6/2) given by Egs. (2.8), (2.9). The 't Hooft anomaly occurs at (c) & = = where the tunneling frequency vanishes.

Tunneling frequencies obtained by fitting to the time
dependence of (cos(x)) are shown in Table II. The relative
ratios of these frequencies at @ =0, /2, = are approx-
imately V/3:1:4/3, consistent with the DIGA prediction in
Egs. (B35), (B37). Unlike in the case of even n, tunneling is
not forbidden at 8 = x.

The continuum limit is approached by increasing n,. In
this work, we only consider the experimentally simplest
initial state, a Kronecker delta distribution on the lattice,
i.e., a state corresponding to a single site. This has the effect
of introducing overlap with higher frequency states as n; is
increased, complicating the dynamics. Nonetheless the
basic physical point can still be extracted. Using these
single-site initial states, the most relevant results from
simulations with ny, = 8, n = 2 are shown in Fig. 9, and
with ny, =12, n =2 in Fig. 10. The time-dependent
probability at the potential minimum antipodal to the initial
site shows that the tunneling frequency decreases as 6
increases from O to z, which is qualitatively consistent with
the cos(6/2) factor.

As mentioned above, the Kronecker delta initial state is
not the perturbative ground state of the local harmonic-
oscillator potential, so its overlap with harmonic-oscillator
excited states leads to fast oscillations which the DIGA
does not capture. We show in Appendix C that a cleaner
slow tunneling profile can be seen in the real-time dynam-
ics if the initial state dominantly overlaps with the pertur-
bative ground state of the local potential well. These
perturbative ground states are superpositions of many
different sites for large n; and may be more challenging
to realize in an experiment.

We also note that in this experimental scheme the
topological angle € can be tuned continuously through
tuning relative phases of microwaves. The tuning of 0 is
completely external, so it should be possible to vary 6
adiabatically, e.g., from 8 = 0 to § = = with the observa-
tion of a level crossing at @ = /2. The adiabatic evolution
can exhibit the ground-state degeneracy due to the ’t Hooft
anomaly or global inconsistency.

V. CONCLUSIONS AND OUTLOOK

Quantum simulations offer an exciting opportunity to
study aspects of gauge theories that are inaccessible to
classical Euclidean simulations due to sign problems. In
this work we have investigated real-time phenomena
connected with an ’t Hooft anomaly. The anomaly arises
in theories with a finite f-term, which carries its own sign
problem, so these phenomena are associated with two types
of sign problems.

We have focused on the real-time quantum mechanical
particle on the circle with Z, symmetric potential and
a f-term. This is the low-energy, weak coupling limit of
the massive charge-n Schwinger model compactified on a
small spatial circle, so in a sense it is one of the simplest
gauge theory truncation exhibiting the anomaly structure
of interest. The anomaly arises for even n and is asso-
ciated with a slow time scale for tunneling between the
perturbative vacua localized in wells on opposite sides of
the circle. We study the slow dynamics in two regimes: the
semiclassical continuum limit, and in discretized models
suitable for simple analog simulations. Continuum semi-
classics is useful for qualitative understanding, and also
represents a target for experimental realizations.

The discretized theories are tight-binding models, and
we have studied their realization on a synthetic dimension
encoded in a Rydberg atom. Our simulations for Rydberg
synthetic lattices with n, = 4, 6, 8, 12 sites show that the
idealized tight-binding results can be reproduced reason-
ably well. For the Z, potential, the simulated spectrum of
the idealized tight-binding model with n; =4 —2000
converges to its continuum limit for n; 2 O(10). Also in
the Z, case, the simulated real-time dynamics exhibits a
tunneling frequency between the potential minima propor-
tional to cos(6/2), consistent with the semiclassical result.
At 6 = n, the tunneling rate vanishing, a dynamical
manifestation of the 't Hooft anomaly. In contrast, for a
Zs-symmetric potential, the real-time dynamics is similar
for @ = 0 and 6 = =, with nonzero tunneling in both cases.
This is again consistent with the semiclassical expectation
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and is compatible with the global inconsistency symmetry
structure, which is milder than an 't Hooft anomaly.

While we have focused on the example of Rydberg
synthetic lattices, the tight-binding models may also be
realized in synthetic lattices based on ground-state neutral
atoms [27-29] or molecules [23]. Alternatively, the 't Hooft
anomaly and global inconsistency of the particle on a circle
model might also be effectively realized in classical analog
experiments based on optics, electrical circuits, or mechani-
cal elements.

More generally, the work presented in this paper can
be extended to study other interesting models. On the
theoretical side, the dimensional reduction technique can
be applied to non-Abelian gauge theories in four dimen-
sions to obtain simpler quantum mechanical models while
preserving interesting physics. For example, the reduction
of SU(2) gauge theory on a spatial torus 7° yields a
quantum mechanical model richer than the single particle
on the circle [30], and this model accurately describes the
string tension to glueball mass? ratio of the full 4D theory
[31,32]. However, since the degree of freedom in these
models lives on more complicated manifolds than the
circle, the realization by synthetic dimensions is less
natural. A study of these models with digital quantum
simulations is in progress. On the experimental side, a
more natural generalization is to consider N coupled
quantum mechanical rotors, realized as synthetic dimen-
sions in N separate Rydberg atoms. Such a system may
provide an analog simulation of the low energy limit of
multiple coupled Abelian gauge theories. In general,
reducing higher-dimensional field theories to lower
dimensional theories or quantum mechanics can allow
the exploration of nonperturbative phenomena from the
parent theory in near-term simulations, aiding the devel-
opment of observables and techniques useful for reaching
longer-term goals.
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APPENDIX A: DISCRETIZATION OF THE
CONTINUUM HAMILTONIAN TO THE
TIGHT-BINDING MODEL

In this appendix, we derive the tight-binding Hamiltonian
equation (3.1) by discretizing the continuum Hamiltonian
equation (2.3). We discretize the space of the continuous x
by x; =i (i=1,2,...,n,) where £ is the spacing. The
kinetic part of the continuum Hamiltonian is then

K(0) E% (p—%)z —%(—i%—%)z, (A1)

where 6 is a parameter. When 6 = 0, the operator K in the
representation of x is the Laplace operator, and can be
discretized to

1
52 (Biirsn

<xi|K§(9 =0)|xy) = —252

-2+61). (A2)

The two Kronecker &’s can be interpreted as nearest-
neighbor hopping terms. We can Fourier transform from
the discrete x space to the discrete momentum space by

tpjx,|x

(A3)

lp;) =

where p; = 2xj/(n,&) (j = 1.2, ...,
the representation of discrete p is

ny). The operator K in

Ny

1
:n_ Z —ipjx; +1Pj/x/< 1|K§(9 :O)|x,-/>

Sii'=1

1
T

<Pj’K§(9:O)|Pj’>

(e7Pif +eiPi€ —=2).  (A4)

For the case of nontrivial §, we substitute p by p — 8/(2x) in
Eq. (A4) and thus define K:(6) by

1 . . . )
(PjlKeO)py) = - @5,,,,@—%%%@ewff—l%é—z).

(AS)

Then it can be Fourier transformed back to the discrete x
representation

(x| K£(0)|xy) =— ZE”’J’“' 1 (pilKe(0)|py)
S =1
1 3
(a2 ). (0

Our discretization procedure preserves the 2z periodicity of
0, whereas directly treating the first-order term of p from
expanding (p — 60/(2x))? as discrete first-order derivative
would break the 27 periodicity of 6. Discretization of the
potential part of the Hamiltonian in the discrete x repre-
sentation is

(xi|Velxy) = 6;0V(nx;) = 51":"/1(1 — cos <§> > (A7)
' ¥/

Finally, we write the Hamiltonian in the form of second
quantization and obtain Eq. (3.1).
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APPENDIX B: DILUTE INSTANTON GAS
APPROXIMATION

1. One-instanton contribution

For the theory of Eq. (2.2), the Euclidean equation of
motion is

d? d
There are instanton and anti-instanton solutions
+ 4 Vi(t—170)
x5 (r) = +—arctan(e"VA770)), (B2)
n
with initial and final conditions
L _
xFH(r=—-00) =0, (B3)
2
xE(r=4o0) = £ (B4)
n

7o is the center of the instanton/anti-instanton. Actually,
compared to the instantons of the V = 0 theory, these are
like fractional instantons. Their classical action is

i 8w _i0
—=—=F—, B5
n w2 (B5)
also in keeping with the fractional instanton interpretation.

Here we have defined the curvature of V(x) at x =0 as

V'(x =0) = n’A=0’. (B6)

We denote the Euclidean action of the instanton
by Sglxt] = S..

Quantum fluctuations around the classical stationary
solution x} can also be included. At the quadratic order,
contributions from the fluctuations can be written as func-
tional determinants and evaluated using the Gel’fand-
Yaglom method [33-35].

To regularize the functional determinant, we use the
known Euclidean propagator from x = 0 to an arbitrary
final position x for the harmonic-oscillator Hamiltonian H ,,

with potential (1/2)w*x?:

-H,T|, — 0) = @ —Lwox? coth(oT)
Cele™ b = 0) = [ S (@ T '

Then the one-instanton propagator for tunneling is

(B7)

e_HT‘x = 0>one instanton

< 2r
x ==
n

= (x =0le~ 7T |x = 0)

<x = 27” |e_HT|x = O>0ne instanton
(x = 0le~HoT |x = 0)

Y B N e—sﬁ{det[—(dz/dfz) + V”(xc)]}'l/z
~ \/ 2z sinh(0T) det[—(d?*/ds?) + @’

) (144, (BS)

where ... denotes 2-loop and higher contributions, which
we omit in the rest of this computation.

The next-to-leading order factor has a zero mode, while
all of the other fluctuation modes have positive eigenvalues,
and it should be addressed separately as follows:

Ui VG
del[~(&/de) + ]

[ReS, fdet[~(d/dr?) + V" (x,)]| 12
" \/;{ w2 det[—(d?/dr?) + @?] } /a’dfo,

where the notation det’ refers to the determinant with the
zero mode removed, and 7 is assumed to be large. The
integral f wdry can yield w7 in the one-instanton con-
tribution but we still keep this form for further evaluation of
the DIGA result.

Then we use the Gelfand-Yaglom method to compute the
ratio of determinants. To simplify the calculation we use,
consider the dimensionless form

(B9)

det'[~(d?/de) + V" (x,)]
w2 det[—(d?/d?) + &?]
_ det'[—(d?/dr?) + V" (x.)/a?]
w2 det—(2/dr) + 1]
_ det'[—(d?/dr?) + cos[4 arctan(e”™")]]
B det[—(d?/dr?) + 1]

det’ M

- e B10
det M (B10)

where r := w1, ry = wty. ry does not affect the value of the
determinant in the large-7 limit and we set ry = 0 for
simplicity in the following calculation. With the definition

W(r) == cos[4 arctan(e”)] — 1, (B11)
the differential operators are
d2
M= ———5+1+W(r), (B12)
dr
f &
e = —— 4+ 1. B13
M yER (B13)
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Both of these operators acting on odd/even functions still
give odd/even functions, so the eigenfunctions of them can
be divided into odd and even sectors by appropriate initial
conditions at »r = 0. The ratio of the functional determi-
nants can be written as

det! M
det M free

det’/\/leven det Modd
= . B14
det M5, det M (B14)

The zero mode is an even function and thus belongs to the
even sector of M.

We use the Gel’fand-Yaglom method for the odd sector
and obtain

det(Moga) 1
_L Bl
det(MI55) 2 (B13)

We remove the zero mode [36] in the even sector and
obtain

det (Meyen) 1
_— =, B16
det(MES,) 2 (B16)

Equations (B8), (B9),(B10), (B14), (B15), (B16) com-
bined together yield

27
X =—1/e .
stant
n one mstanton

w _g |ReS,
v e 229 [ wdry.  (B17
2zsinn(@?) ¢V 2z / wdro. (B17)

2. Dilute instanton gas

H7|x = 0)

Multiple instantons and anti-instantons can contribute to
a tunneling process. If the centers of these instantons and
anti-instantons in Euclidean time are separated well enough
so that different centers 7; and 7; satisfy |z; — 7;| > ™",
then the dilute instanton gas approximation is valid [15].

We define the instanton density

ReS. 8 2 o

k instantons and k anti-instantons with k — k = I(mod n)
contribute to a tunneling from x = 0 to x = 2zl/n as

< 2xl
x=""le

d:= e—ReS(,

e HT]x = 0)

DIGA

T)F(ZT)
= B19
2r smh a)T) ‘ k! (B19)
k— }\kljgnr?ludn
for w7 > 1, where [=0,1,....n—1, T :=wde?",

7 := wde /", To evaluate the summation over k and k,

we construct an effective Hamiltonian H ., for n potential
wells, explained further in Appendix C.

In the semiclassical limit, the potential barriers are
high enough so that the n lowest perturbative states
are ground states of local harmonic oscillators centered
at x =2xl/n for any [ =0,1,...,n — 1. We denote these
local harmonic-oscillator ground states as |/). For o7 > 1,
we take

\/
~.

<l|e_HwellsT

— e—a}T/Z Z

JJENO
Jj—Jj=I(mod n)

(B20)

The factor of e=?7/2 is from the perturbative ground-state
energy w/2 and in the w7 > 1 limit, consistent with the
factor sinh~'/?(w7’) in Eq. (B19). We will make this point
more rigorous in Appendix C. The Hamiltonian matrix that
yields Eq. (B20) is

®
Hyens = Ho + Hpiga = 51,

2
o -Z 0 -~ 0 =T
-7 0 -Z --- 0 0

+ . (B21)
-7 0 0 -7 0

where 1, is the n x n identity matrix. The (/,0)th matrix
element of the j + jth power of Hpyga in the expansion of
exp(_HwellsT) is

Aoy = s ey
ATy

where [ = j — j(mod n).

Equation (B21) is a tridiagonal matrix with two addi-
tional corners and can be regarded as an n-site tight-binding
model. To diagonalize Hpiga, We consider the discrete
Fourier transform of the basis {|/)},_,,

N DR n—1
lnl

e
Vi

lZﬂkl/n‘l (B23)

*where k =0,1,2,...,n — 1. We can check that |k) is an
energy eigenstate from

*This Fourier transform has a minus sign difference relative to
the exponent from the definition of Bloch states, so the state |k)
has crystal momentum —k.

074505-15



JIAYU SHEN et al.

PHYS. REV. D 105, 074505 (2022)

Hpigalk) = (=€ T — e=27k/nT) | k)
2k + 0
- —2wdcos< ™ >|k). (B24)
n
The spectrum of Hy + Hpiga 1S
2rk + 6
E (0) = % - 2wdcos( e ) (B25)

This result is Eq. (2.4).
At a real time ¢, the probability amplitude of hopping
from well [ to well /' under the DIGA is

(t]e=oonr)
n—1
Z elZ/zk (1-1) /n —iE (0)t

1§ 2 2
== exp[iik(l—l’)—i—iZa)dcos( ﬂk+e>t].
n

nkO n

(B26)

For n = 2, the probability from well O to itself is

Py(0,0;1) = cos? <2wd cos <§) t) : (B27)

and the probability from hopping from well O to 1 is

0
Py(0,1;1) = sin? (2a)d cos (§> t) .

The tunneling frequency is 2wdcos(0/2) = wpiga cos(6/2).
At 0 = z, the tunneling is highly suppressed.

For n = 3, at high-symmetry points § = 0 and 8 = 7z, the
probabilities from well 0 to wells 0, 1, 2 are the same under
DIGA:

(B28)

8 3
Pg:()(o,o;t) = PGZH(O, O, t) =1 —§Sin2 <§a)dt>, (B29)

4 (3
Pop_o(0,1;1) = Py, (0, 1;1) = §sin2 <§ codt), (B30)

4
szo(o, 2, t) = P9:ﬂ<0, 2, t) = §Sin2 (% a)dt) . (B31)

Both & = 0 and 8 = 7 have a symmetry between P(0, 1;¢)
and P(0,2;1), i.e., probabilities of tunneling counterclock-
wise and clockwise, a parity symmetry in dynamics.
However, at a generic value of 0, for example, § = 7/2,
this parity symmetry in dynamics is absent, as is shown
explicitly by

1
Posp(0.0:0) =5 (1+ 2 cos(V3wdr))?, (B32)
L 16 V3 V3 n

szﬂ./z(o, 1, t) = ?Sln (det> CoS (70)dt - g) s

(B33)
16 3 3

Py_2(0.2;1) = gsm <\/7_ wdt) cos <§ wdt + %)

(B34)

The expectation values of cos(x) and sin(x) in real-time
evolution from site 0 are thus

(1 4+ 2cos(3wdt)), (B35)

UJl»—A

(cos(x))g—g = (cos (x))g_, =
(sin (x))g— = (sin (x))g—, = 0, (B36)

(2 cos(\/ga)dt) + cos(2\/§wdt)),
(B37)

(cos (x))gr/o =

W | =

(sin (X)) p_/n = %(2 sin(v3wdt) — sin(2v/3wdt)). (B38)

APPENDIX C: RELATIONS BETWEEN
PROPAGATORS AND PROBABILITY
DENSITIES

In this appendix, we describe how to obtain the time-
dependent probability density near the potential well / with a
given initial state [y) from the propagator (/| exp(—H7)|0).

With energy eigenstates denoted as |¢;), the spectral
decomposition of the Euclidean propagator from x = 0 to
x =2zl/n and the transition amplitude from |y) to x =
2xl/n are

(x =2xl/nle~"7T|x = 0)

= Ze‘sf7<x =2zl/n|e;)(g;lx =0,  (Cl)

(x =2xl/nle” "7 |y) = Ze—si7<x = 2xl/nle;)(eily).

i

(C2)

We take the DIGA result for the propagator from Eq. (B19)
and expand the sinh~!/?(w7) function for large w7 . We
obtain
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(x= 2751/”|‘3_HT|X = O>DIGA

/ (IT 2 e~ w'T/2a e 2]0)T
ke kkﬁenr?c?dn
(C3)
where
1 .
s —wT/2 —2joT
Vsinhw7Z e Zaje "
_ \/_e—a)T/Z 4 l e20T + 40T
2 8
5 35
+1—6e—6w7+ﬁ T .. ) (C4)
with
_ @)
aj = 41(]')2 <C5>
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FIG. 11.

In the semiclassical limit, energy eigenstates are linear
combinations of eigenstates with the same perturbative
energy of harmonic oscillators centered at all potential
wells and satisfy |(x = Olg;)| = |[(x = 27/n|e;)| = ...
= |(x =2z(n—1)/nle;)|. By comparing Egs. (Cl) and
(C3), for the lowest n states |¢;) (i =0, 1,...,n — 1) linear
combinations of the harmonic-oscillator ground states at n
potential wells, we obtain

s = 0l = 45 = 2at/ale)| = (2) /2. (co

where the factor of 1/y/n is because of n exponential
functions from the sum over k, k with n frequencies differing
by the nonperturbative tunneling scale O(|Z|). This result is
also consistent with the value of ground state wave function
evaluated at the center of the quadratic potential.

Using Egs. (Cl1), (C2), (C3), (C6) and choosing
ly) ~ |enooo), the ground-state wave function of the
harmonic oscillator near x = 0, we obtain

30
= 201
=
(S
10
&
0 4
0 500 1000 1500
t
(b)
30
= 201
=
[S
101
£
O B
0 500 1000 1500
t
(d)

Time evolution of the probability densities at x = x from various localized initial states centered at x = 0. In this example we

take n = 2 wells, n, = 120 sites, and a frequency near the semiclassical limit, @ = 4.0. The initial states o (1 + cos(x)/2)?* take
parameters (a) @ = 2.0, (b) @ = 4.0, (c) @ = 6.0, (d) @ = 8.0. The fuzziness of the density curves arises from overlap between the initial
state and excited states, and is minimized near @ = @ where the width matches that of the perturbative Gaussian ground state in a

single well.
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(x =2zxl/n|le” "7 |y)
~ > e (x = 2zl /nle;) (€ileno.00)

w\ /4 IT)(IT)*
- (;> > k!) : /}!) Ve,

_kkeNO
k—k=I(mod n)

where we have used (g;|x = 0) x (w/7)"*\/ay/n{e;|lw)
for |¢;) that is a linear combination of harmonic-oscillator
ground states.

The probability density from |w) to x = 2zl/n for a real
time 7 is then

(C7)

ply.w;T)=[(x=2xl/n|e™"T |y) (x=2al/n|e"" |y 17
(C8)

which yields the same 7 dependence as from using H
(also with 7 — iT) in Appendix B 2.

In addition to the nonperturbative frequency at order
O(|Z]) in real-time dynamics, there are also perturbative
frequencies approximately at order O(w) in the semi-
classical limit due to the separations of the harmonic
oscillator energy levels. When the initial wave function
takes the form o ((1+ cos(x;))/2)** ~1—ax?/2 and
a ~ w, then this wave function gets close to the ground
state wave function « exp(—wx?/2) ~ 1 — wx?/2 of the

harmonic oscillator with frequency w. When « gets close to
o, we would expect that the initial wave function is
approximately the same as a ground eigenstate in one of
the potential wells, and then the dominant phenomenon in
real-time dynamics will be the nonperturbative tunneling
described by the DIGA in the semiclassical limit.

We numerically demonstrate that this claim is
qualitatively correct. As shown in Fig. 11, the fuzziness
in the density as a function of real time diminishes
near a ® o.

We observe clean slow profiles in Fig. 11 for a large
range of the Gaussian width and also in Figs. 7 and 8, but
do not observe as clean profiles in Figs. 9 and 10. A few
factors contributing can contribute to this. (1) The
Kronecker delta distribution has sharp edges so can have
significant overlap with more excited states than Gaussian
initial states used in Fig. 11. (2) With the greater numbers of
sites in Figs. 9, 10 than in Figs. 7 and 8, the slow profiles
would have been still clean if @ (with / being approx-
imately fixed in the dimensionful form) were chosen
greater because then the separation between the lowest n
states and higher states at order @ will be greater and reduce
the effects from these higher states. However, greater @
would make the frequency of tunneling exponentially
slower. With a finite window of the Rydberg decay time,
to observe at least a significant fraction of a full tunneling
period, w cannot be chosen too large.
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