A generalizable strategy to image neurotransmitters with vibrational spectroscopy of isotopologues

Gabriel Dorlhiac, Markita Landry, Aaron Streets¹

¹Univ. of California, Berkeley (United States)

Proceedings Volume PC11973, Advanced Chemical Microscopy for Life Science and Translational Medicine 2022; PC1197310 (2022) https://doi.org/10.1117/12.2609057 Event: SPIE BiOS, 2022, San Francisco, California, United States

Abstract

Chemical neurotransmission is central to brain activity, where aberrations thereof lead to psychiatric or neurodegenerative disorders. The time and length scales over which neurochemical signaling occurs can differ between neurotransmitters, and is not always correlated with neuron electrical activity. Herein, we demonstrate a new, non-perturbative approach based on vibrational microscopy to image neurotransmitter isotopologues for dopamine and GABA, and demonstrate that these neurotransmitter isotopologues enable direct imaging of neurotransmitters in neuronal cells. This method is generalizable to other neurotransmitters, neuromodulators, and neuropeptides, providing a generic toolkit for imaging neurochemistry.