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Abstract—What is the round and communication complexity
of secure computation?

The seminal results of Chor-Kushilevitz-Beaver (STOC–1989,
FOCS–1989, DIMACS–1989) answer this question for compu-
tations with deterministic output. However, this question has
remained unanswered for computations with randomized output.
Our work answers this question for two-party secure function
evaluation functionalities.

We introduce a geometric encoding of all candidate secure
protocols for a given computation as points in a high-dimensional
space. The following results follow by analyzing the properties
of these sets of points.

1) It is decidable to determine if a given computation has a
secure protocol within round or communication constraints.

2) We construct one such protocol if it exists.
3) Otherwise, we present an obstruction to achieving security.

Our technical contributions imply new information complexity
bounds for secure computation.

Index Terms—secure computation, round complexity, commu-
nication complexity, information-theoretic security

I. INTRODUCTION

Consider the privacy-preserving mechanism design for (a

variant of) the facility location problem: Determine a facility’s

location distributed according to a (discrete) Gaussian at the

centroid of parties’ private locations. Among various privacy

metrics, secure multi-party computation (MPC), introduced

by Yao [14] and Goldreich-Micali-Wigderson [8], facilitates

the formalization of meaningful security where parties can

interactively achieve this objective without revealing non-

essential information, even a posteriori [13].

Motivated by such applications, it is natural to study an ab-

straction where Alice and Bob have private inputs x ∈ X and

y ∈ Y . Their objective is to interactively compute their output

sampled from the distribution f(x, y) (over some sample space

Z) without revealing additional information about their private

inputs. The computation f , represented by the output distri-

butions
{
f(x, y) ∈ RZ : x ∈ X, y ∈ Y

}
, is public knowledge.

Both parties have an unbounded computational power and are
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honest-but-curious, i.e., they follow the prescribed protocol;

however, they are curious to find additional information.

Question. Is there a secure protocol for a given computation?

What is its round and communication complexity?

Investigating this fundamental research problem is primarily

restricted to computations with deterministic output or where

at most one party’s input influences the output. For example,

among computations with deterministic output, the seminal

works of Chor, Kushilevitz, and Beaver [2], [6], [11] char-

acterized decomposable functions as ones admitting secure

protocols. The case of functions with randomized output has

remained unresolved ever since, barring highly specialized

computations [7], [12] (c.f., the discussion in [12]). Data and

Prabhakaran [7] characterized (1) securely realizable ternary

output functions and (2) functions with 2-round secure proto-

cols.

Even the decidability of this problem is unknown, let alone

resolving the search and optimization analogs.

A. Our contributions

We investigate the round and communication complexity of

two-party secure function evaluation. Given a computation, we

determine whether there is a secure protocol for the compu-

tation within specified round or communication constraints.

We generate one such secure computation protocol if the

feasibility test is affirmative. Otherwise, we demonstrate a

(geometric) obstruction to secure realizability within these

constraints. Our main technical idea is an innovative geometric

encoding of candidate secure (private-coin) protocols for a

given computation.

The round and communication studies generate (the encod-

ing of) increasingly complex candidate (private-coin) proto-

cols using an appropriate recursive geometric action, starting

from initial points that encode the base case protocols. Our

feasibility test translates into a membership test for a specific

query point in these recursively-generated sets of points. The

parse tree of how this specific query point is generated from

the base cases yields a secure protocol. If the query point is

outside these sets, then (a succinct description of) these sets

represent a geometric obstruction to secure realizability.

We study the sets of points that this geometric action recur-

sively generates through the lens of real algebraic geometry.

We show that these sets are tame1 and support the features in-

1The sets have an algebraic representation of bounded complexity.
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dicated above. Consequently, we obtain the following general

feasibility, search, and optimization results.

Theorem 1 (Round Complexity): There is a procedure that

takes as input (a) the function f : X × Y → RZ , and (b) the

interaction constraint r ∈ {1, 2, . . . , }. This procedure says yes

if (and only if) there is a secure protocol for f with (at most)

r rounds.

If such a protocol exists, this procedure outputs one such

secure protocol. If no such protocol exists, this procedure

outputs a (geometric) certificate attesting to this fact.

Theorem 2 (Communication Complexity): There is a proce-

dure that takes as input (a) the function f : X × Y → RZ ,

and (b) the communication constraint c ∈ {1, 2, . . . , }. This

procedure says yes if (and only if) there is a secure protocol

for f with (at most) c-bit communication.

If such a protocol exists, this procedure outputs one such

secure protocol. If no such protocol exists, this procedure

outputs a (geometric) certificate attesting to this fact.

Furthermore, our proof techniques establish the following

consequences.

1) Lemma 1: Even for X = Y = {0, 1}, for any r ∈
{1, 2, . . . }, there are functions f : X×Y → RZ requiring r
rounds of interaction, and, in turn, r bits of communication,

for secure computation.

2) Corollary 1: If a function f : X × Y → RZ has a secure

r-round protocol, then there is an r-round secure protocol

where Alice communicates �lg(|X|+ |Z|)� bits, and Bob

communicates �lg(|Y |+ |Z|)� bits every round.

B. Overview of the paper.

Section II introduces the notation and some minimal def-

initions and Section III presents our technical approach and

illustrates it using an example. Section IV summarizes the re-

duction of the cryptographic problem to a geometric problem.

Section V and Section VI demonstrate that the geometric prob-

lem is computable. Section VIII provides secure functionalities

with arbitrarily large round complexity. Section IX states all

the key lemmas needed for the proof of our main results.

II. PRELIMINARIES

This section defines our model and introduces the notation

and basic definitions to facilitate our discussions.

A. System model

We consider the Blum-Schub-Smale model of computa-

tion [3] and the two-party full information model. Alice and

Bob have unbounded computation power, and a synchronous

communication channel connects them. Parties have access

to an unbounded number of independent private random bits

with arbitrary biases. For example, a party can have a private

random bit that is 1 with a probability of 1/π. In an interactive

protocol, a round corresponds to one party sending a message

to the other party.

B. Secure function evaluation functionalities

Alice and Bob have private inputs x ∈ X and y ∈ Y , re-

spectively. A secure function evaluation functionality samples

(zA, zB) according to a distribution f(x, y), and outputs zA
to Alice and zB to Bob.

Among these functionalities, a symmetric secure function

evaluation (SSFE) samples z according to a distribution

f(x, y) and outputs z to both Alice and Bob. It suffices to

restrict our investigation to only symmetric functions [12], [7].

C. Security model

We denote two identical distributions D and D′ by D ≡ D′.

Our work considers perfect security against honest-but-curious

(semi-honest) adversaries, i.e., adversaries who follow the

protocol honestly but are curious to find additional information

about the honest party’s input.

Definition 1 (Semi-honest Security): Π is a perfectly semi-

honest secure protocol for a function f : X × Y → RZ if the

following conditions hold.

1) Correctness. Every complete transcript τ of the protocol

Π is associated with an output out(τ) ∈ Z. Let T (x, y)
represent the random variable corresponding to the com-

plete transcript of the protocol Π when parties have private

inputs x and y. Then, the following identity holds for every

(x, y) ∈ X × Y .

out (T (x, y)) ≡ f(x, y).

2) Security against corrupt Alice. The protocol transcript

provides Alice with no additional information about Bob’s

private input beyond their output. That is, there is a

simulator SimA such that the following identity holds for

all (x, y) ∈ X × Y .

SimA(x, f(x, y)) ≡ T (x, y).

Intuitively, the Markov chain Y −(X, f(X,Y ))−T (X,Y )
holds.

3) Security against corrupt Bob. There is a simulator SimB

such that the following identity holds for all (x, y) ∈ X ×
Y .

SimB(y, f(x, y)) ≡ T (x, y).

This definition coincides with Canetti’s universally compos-

able security definition [4] where the simulator has an un-

bounded computational power.

D. Round and communication complexity

Our work considers worst-case notions of round and com-

munication complexity for interactive protocols. A protocol

has round complexity (at most) r, if for all Alice input x
and her private randomness, and Bob input y and his private

randomness, the protocol Π exchanges (at most) r messages.

Similarly, a protocol has communication complexity (at most)

c, if for all Alice input x and her private randomness, and

Bob input y and his private randomness, the protocol Π
communicates (at most) c bits.

1036

Authorized licensed use limited to: Purdue University. Downloaded on May 18,2023 at 17:03:33 UTC from IEEE Xplore.  Restrictions apply. 



f(0, 0) = 1
216 (52, 80, 48, 36) f(0, 1) = 1

216 (26, 100, 36, 54)

f(1, 0) = 1
216 (26, 40, 96, 54) f(1, 1) = 1

216 (13, 50, 72, 81)

Fig. 1: Definition of the representative example function f : {0, 1}×
{0, 1} → R{1,2,3,4}.

III. TECHNICAL OVERVIEW

This section presents a high-level summary of our technical

ideas underlying our proof strategy to determine whether a

given two-party SSFE has an r-round secure protocol or not.

An illustrative worked-out representative example accompa-

nies this presentation, showing that the example function of

Figure 1 has a 4-round secure protocol and no 3-round secure

protocol.

Step 0: Standardization. Prior results [7], [12] show that one

needs to consider only symmetric secure function evaluation

(SSFE) f : X × Y → RZ of a specific standardized form.

Among all SSFE, one needs to consider only those where

there are A ∈ RX×Z , B ∈ RY×Z , and V ∈ RZ such that the

following identities hold (see Lemma 2 in Section IX).

f(x, y)z = Ax,z ·By,z · Vz (for all x ∈ X, y ∈ Y, z ∈ Z)
∑

x∈X

Ax,z = 1 (for all z ∈ Z)

∑

y∈Y

By,z = 1 (for all z ∈ Z)

Consider our example SSFE f : X × Y → RZ in Figure 1,

where X = Y = {0, 1} and Z = {1, 2, 3, 4}. This function

satisfies the standardization constraints as evidenced by A ∈
RX×Z , B ∈ RY×Z , and V ∈ RZ below.

A =

{

A1 = (1/3, 1/3, 2/3, 3/5) ∈ RZ

A0 = (2/3, 2/3, 1/3, 2/5) ∈ RZ
(1)

B =

{

B1 = (1/3, 5/9, 3/7, 3/5) ∈ RZ

B0 = (2/3, 4/9, 4/7, 2/5) ∈ RZ
(2)

V = (13/24, 5/4, 7/6, 25/24) ∈ RZ (3)

What does the state-of-the-art tell us about this function?

This function avoids Kilian’s obstruction [10] and does not

have a 2-round protocol [7].

Step 1: Security experiment. Suppose Π is a perfectly secure

protocol for f . Let Π(τ) represent the residual protocol of Π
continuing from the partial transcript τ .2 For example, when

τ = ∅ (the empty transcript), then Π(τ) = Π, and when τ is

a complete transcript, then Π(τ) is a 0-round protocol where

the output is out(τ), irrespective of the parties’ inputs.

2The formal description of the protocol Π(τ)(x, y) is as follows. Alice
reverse-samples a random local private randomness consistent with her private
input x and the public transcript τ . Bob reverse-samples a random local private
randomness consistent with his private input y and the public transcript τ .
Starting with these private views, Alice and Bob follow the protocol Π to
generate the next messages and extend the protocol transcript τ .

Let f (τ) : X × Y → RZ represent the randomized function

such that f (τ)(x, y) is identical to the output distribution of

the protocol Π(τ)(x, y), for all (x, y) ∈ X × Y . For example,

f (∅) = f and, for a complete transcript τ , the function f (τ) =
e(z), a function that outputs z with probability 1 (irrespective

of the inputs), where z = out(τ) and e(z) ∈ {0, 1}Z is the

vector indicating the output z ∈ Z.

Consider an environment that samples x uniformly at ran-

dom from X , samples y uniformly (and independently) at

random from Y , sends x to Alice and sends y to Bob. For

a partial transcript τ of the protocol, let π(τ) ∈ RX represent

the conditional distribution of Alice’s input conditioned on

Π generating the partial transcript τ . Likewise, let ρ(τ) ∈ RY

represent the conditional distribution of Bob input conditioned

on Π generating τ .

Remark 1: Security in cryptographic context is inherently a

worst case notion – a protocol’s insecurity is the maximum

insecurity over all possible inputs of the parties. However,

for perfect security, a distribution notion of security is also

equivalent to the worst case security. When the environment

samples the inputs independently and uniformly at random

for the two parties, each input pair is picked with probability

1/|X| · |Y |. So, if a protocol is ε insecure in the worst case,

then it is at least ε/|X|·|Y | insecure when interacting with our

environment. Therefore, for perfect security, these two notions

are identical.

We define the pertinent information corresponding to the

partial transcript τ as
(
π(τ), ρ(τ), f (τ)

)
. Our objective is to

characterize all candidate pertinent information systematically.

Step 2: Structure for inductive geometric characterization.

We inductively prove a function structure result showing that

the following invariant holds for some appropriate V (τ) ∈ RZ ,

and for all x ∈ X, y ∈ Y, z ∈ Z (see Lemma 6).

f (τ)(x, y)z = A(τ)
x,z ·B

(τ)
y,z · V (τ)

z , where (4)

A(τ)
x,z =

{

Ax,z/π
(τ)
x if π

(τ)
x > 0

0 otherwise,

B(τ)
y,z =

{

Bx,z/ρ
(τ)
x if ρ

(τ)
x > 0

0 otherwise,

That is,
(
π(τ), ρ(τ), V (τ)

)
∈ RX × RY × RZ determines

the function f (τ), represented by f (τ) ∼=
(
π(τ), ρ(τ), V (τ)

)
.

Consequently, henceforth,
(
π(τ), ρ(τ), V (τ)

)
∈ RX×RY ×RZ

represents the pertinent information of τ .

Simultaneously, we inductively prove a geometric embed-

ding. Let Ω(τ) represent the set of all partial transcripts that

are one-round extensions of τ . Then, the following geometric

embedding holds
(

π(τ), ρ(τ), V (τ)
)

=
∑

τ ′∈Ω(τ)

p(τ
′) ·
(

π(τ
′), ρ(τ

′), V (τ ′)
)

,
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where
{

p(τ
′)
}

τ ′∈Ω(τ)
is a probability distribution over Ω(τ)

(see Lemma 4).

If Alice extends the partial transcript τ , then ρ(τ) = ρ(τ
′),

for all τ ′ ∈ Ω(τ), because she cannot reveal additional infor-

mation about Bob’s input (beyond what the partial transcript τ
already reveals). Similarly, if Bob extends the partial transcript

τ , then π(τ) = π(τ
′), for all τ ′ ∈ Ω(τ).

We prove the function structure and the geometric embed-

ding results simultaneously using induction on the height of

the partial transcript τ , which is naturally defined. A complete

transcript has height 0, and the height of any partial transcript

is one more than the maximum height of the partial transcripts

in Ω(τ).

Step 3: Base cases. Fix a complete transcript τ such that

out(τ) = z ∈ Z. By the security of the protocol, observe

that π
(τ)
x = Ax,z , for all x ∈ X , and ρ

(τ)
y = By,z , for all

y ∈ Y (see Lemma 5). Furthermore, the function f (τ) = e(z),
therefore V (τ) = e(z) ensures that f (τ) ∼=

(
π(τ), ρ(τ), V (τ)

)
.

Observe that the pertinent information of the complete tran-

script τ depends solely on f and is independent of the

transcript itself.

For all output z ∈ Z, define the point

P (z) :=

(

(Ax,z : x ∈ X) , (By,z : y ∈ Y ) , e(z)

)

(5)

∈ RX × RY × RZ .

For our example, we have (refer to Equation 1 for the values

of A and B)

P (1) = ((2/3, 1/3), (2/3, 1/3), e(1)) ,

P (2) = ((2/3, 1/3), (4/9, 5/9), e(2)) ,

P (3) = ((1/3, 2/3), (4/7, 3/7), e(3)) ,

P (4) = ((2/5, 3/5), (2/5, 3/5), e(4)) .

Therefore, the pertinent information of all transcripts of

height 0 (i.e., the complete transcripts) lie in the set

S(0) :=
{

P (z) : z ∈ Z
}

⊆ RX × RY × RZ .

Step 4: Recursive generation of increasingly complex

protocols. For i ∈ {0, 1, . . . }, let S(i) ⊆ RX × RY × RZ

represent the set of all candidate pertinent information of

partial transcripts at height � i. Assume that we already have

computed the set S(i). Our objective is to define the set S(i+1)

recursively.

For t ∈ {1, 2, . . . }, consider arbitrary t
points Q(1), Q(2), . . . , Q(t) ∈ S(i), such that

Q(k) =
(
π(k), ρ(k), V (k)

)
, for k ∈ {1, 2, . . . , t}. Let

Q = (π, ρ, V ′) =
∑t

k=1 p
(k) · Q(k) be a convex linear

combination of the points Q(1), Q(2), . . . , Q(t).

Suppose Alice extended the partial transcript correspond-

ing to Q into the partial transcripts corresponding to

Q(1), Q(2), . . . , Q(t). Then, it must be the case that ρ =
ρ(1) = ρ(2) = · · · = ρ(t). We prove that the converse is

also true. That is, if ρ(1) = ρ(2) = · · · = ρ(t), then Alice

can securely extend the partial transcript corresponding to Q
into the partial transcripts Q(1), Q(2), . . . , Q(t). For brevity,

we say Alice fuses the points Q(1), Q(2), . . . , Q(t). Likewise,

if π(1) = π(2) = . . . = π(t), then Bob fuses the points

Q(1), Q(2), . . . , Q(t).

Define linear maps ϕ1 : R
X × RY × RZ → RX and

ϕ2 : R
X × RY × RZ → RY as follows.

ϕ1(π, ρ, V
′) := π ϕ2(π, ρ, V

′) := ρ. (6)

Therefore, the set S(i+1) is recursively defined in Figure 2.

For t ∈ {1, 2, . . . } and any points

Q(1), Q(2), . . . , Q(t) ∈ S(i) satisfying

ϕ1(Q
(1)) = ϕ1(Q

(2)) = · · · = ϕ1(Q
(t)), or

ϕ2(Q
(1)) = ϕ2(Q

(2)) = · · · = ϕ2(Q
(t))

add all possible convex linear combinations of

Q(1), Q(2), . . . , Q(t) to the set S(i+1).

Fig. 2: Recursive procedure to construct S(i+1) from S(i).

Figure 3 assists in visualizing the evolution of the sets

S(0) → S(1) → · · · for our example. In our case, these

sets are subsets of R2+2+4, which is challenging to visualize.

Consider the projection of a point (π, ρ, V ′) ∈ R{0,1} ×
R{0,1} × R{1,2,3,4} to (π1, ρ1). Figure 3 demonstrates the

evolution of the sets S(0) → S(1) → · · · → S(4) under this

projection. Observe that fusing Q(1), . . . , Q(t) is permissible

if and only if π(1) = · · · = π(t) or ρ(1) = · · · = ρ(t).
When, X = Y = {0, 1}, this constraint (equivalently)

becomes: fusing Q(1), . . . , Q(t) is permissible if and only if

π
(1)
1 = · · · = π

(t)
1 or ρ

(1)
1 = · · · = ρ

(t)
1 .

Step 5: Protocol reconstruction. Recall that our objective is

to determine whether f has an (at most) r-round protocol. The

pertinent information of the empty transcript is represented by

Q(f) :=

(

UX , UY ,
1

|X × Y |
· V

)

∈ RX × RY × RZ , (7)

where UX is the uniform distribution over X , UY is the

uniform distribution over Y , and V is the vector determined

in Equation 3 of the standardization step.

In our example function, we have (refer to Equation 3 for

the value of V )

Q(f) =

(

(1/2, 1/2) , (1/2, 1/2) ,

(13/96, 5/16, 7/24, 25/96)

)

∈ RX × RY × RZ .

Therefore, f has an (at most) r-round protocol if and only

if Q(f) ∈ S(r). If Q(f) 
∈ S(r), then the descriptions of

the query point Q(f) and the set S(r) are a novel geometric

certificate that f does not have an r-round secure protocol. For

our example, Q(f) ∈ S(4); however, Q(f) 
∈ S(3) (clear from

1038
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⊗

1/3 1/2 2/3

1/3

1/2

2/3

Axis-2

Axis-1

proj
(

S(0)
)

⊗

1/3 1/2 2/3

1/3

1/2

2/3

Axis-2

Axis-1

proj
(

S(1)
)

⊗

1/3 1/2 2/3

1/3

1/2

2/3

Axis-2

Axis-1

proj
(

S(2)
)

⊗

1/3 1/2 2/3

1/3

1/2

2/3

Axis-2

Axis-1

proj
(

S(3)
)

⊗

1/3 1/2 2/3

1/3

1/2

2/3

Axis-2

Axis-1

proj
(

S(4)
)

Fig. 3: Plot of the projection of the points in S(i)(f) for 0 � i � 4.

The ⊗ mark represents the projection of the query point Q(f) (defined
in Equation 7), where f is defined in Figure 1. The geometric action

allows the following. For any two points in S(i), one can add the

line segment joining them to S(i+1) if the two points have identical
first or second coordinates.

Figure 3) – proving that our function has a 4 round protocol

and 3 rounds are insufficient.

We show that every step of the inductive construction

of a point Q ∈ S(i+1) by fusing Q(1), . . . , Q(t) ∈ S(i)

translates into a protocol that extends a partial transcript

corresponding to Q into partial transcripts corresponding to

Q(1), . . . , Q(t). These transition probabilities are determined

by
{
p(k)

}

k∈{1,2,...,t}
and

{
π(k)

}

k∈{1,2,...,t}
(refer to Sec-

tion VII for the reconstruction algorithm). Using this step

recursively, one recovers the protocol for f using a witness

explaining the membership of the point Q(f) ∈ S(r).

For our example, let us visualize how Q(f) ∈ S(4). For

points (π, ρ, V ′) ∈ R{0,1}×R{0,1}×R{1,2,3,4} we continue to

represent the projected point (π1, ρ1). For some critical points,

we also mention the corresponding payload V ′ ∈ R{1,2,3,4}.

Figure 4 demonstrates the witness of Q(f) ∈ S(4).

Functions with an arbitrarily high round complexity.

Fix any r ∈ {1, 2, . . . }. We show that there are functions

f : {0, 1}×{0, 1} → RZ such that a secure protocol for f must

have r rounds. In our example |Z| = (r + 1). The idea is to

construct S(0) such that the query point Q(f) = (1/2, 1/2, ·) 
∈
S(r−1), proving Lemma 1. Section VIII presents this function

construction.

Modification: Determining communication complexity. In

the geometric problem, bounding t � 2 in the recursive

definition of Figure 2 ensures that Q(f) ∈ S(c) if and only

if f has an (at most) c-bit secure protocol.

IV. CRYPTOGRAPHIC REDUCTION

Suppose we are investigating the round/communication

complexity of a general (two-party) secure function evaluation.

⊗

1/3 1/2 2/3

1/3

1/2

2/3

Axis-2

Axis-1

e(1)

e(2)

e(3)

e(4)

4
7
e(1) + 3

7
e(2)

4
35

e(1) + 3
35

e(2) + 4
5
e(3)

1
4
e(1) + 3

4
e(2)

1
15

e(1) + 1
20

e(2) + 7
15

e(3) + 5
12

e(4)

13
96

e(1) + 5
16

e(2) + 7
24

e(3) + 25
96

e(4)

Alice Fusing
13
96

e(1) + 5
16

e(2) + 7
24

e(3) + 25
96

e(4)

Bob Fusing
1
15

e(1) + 1
20

e(2) + 7
15

e(3) + 5
12

e(4)

Alice Fusing
4
35

e(1) + 3
35

e(2) + 4
5
e(3)

e(3)
Bob Fusing

4
7
e(1) + 3

7
e(2)

e(1) e(2)

e(4)

Bob Fusing
1
4
e(1) + 3

4
e(2)

e(2)e(1)

Fig. 4: For the function f in Figure 1, this figure displays the

payload of “critical points” in proj
(

S(4)
)

. Recall that e(1) =

(1, 0, 0, 0), e(2) = (0, 1, 0, 0), e(3) = (0, 0, 1, 0), and e(4) =
(0, 0, 0, 1), the payloads of the points in the base case. Furthermore,

note that V (∅) = 1
2
× 1

2
×V = 13

96
e(1)+ 5

16
e(2)+ 7

24
e(3)+ 25

96
e(4).

The tree presents the (shallowest tree) producing the payload from
e(1), e(2), e(3), and e(4), generating the (unique) most efficient
secure protocol for f .

If this function has Kilian’s obstruction [9], [10], there is

no secure protocol. However, avoiding Kilian’s obstruction

does not imply the existence of a secure protocol (for exam-

ple, the famous Kushilevitz function). If the function avoids

Kilian’s obstruction, then studying its round/communication

complexity is equivalent to studying the round/communication

complexity of a related standardized SSFE [7], [12].

Consequently, without loss of generality, consider a stan-

dardized function f : X × Y → RZ defined in step 0 of

Section III. Let A ∈ RX×Z , B ∈ RY×Z , V ∈ RZ be the

appropriate vectors. Define Q(f) as in Equation 7. For every

z ∈ Z, define P (z) as in Equation 5. Define the linear maps

ϕ1, ϕ2 as in Equation 6.

Round Complexity. Initialize the base case set S(0) :=
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{
P (z) : z ∈ Z

}
. For every i ∈ {0, 1, . . . }, recursively define

S(i+1) :=

⎧

⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

t∑

k=1

p(k)Q(k) :

t ∈ {1, 2, . . . },
Q(1), Q(2), . . . , Q(t) ∈ S(i)

p(1), p(2), . . . , p(t) � 0,
∑t

k=1 p
(k) = 1,

ϕ1(Q
(1)) = · · · = ϕ1(Q

(t)) or

ϕ2(Q
(1)) = · · · = ϕ2(Q

(t))

⎫

⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

(8)

The following statements hold.

1) An r-round semi-honest secure protocol for f exists if and

only if Q(f) ∈ S(r).

2) Given a witness for Q(f) ∈ S(r), one can construct an (at

most) r-round secure protocol for f .

3) The descriptions of the point Q(f) and the set S(r) ⊆ RX×
RY × RZ are a geometric obstruction for r-round secure

protocols for f when Q(f) 
∈ S(r).

Communication Complexity. Initialize the set T (0) :=
{
P (z) : z ∈ Z

}
. For every i ∈ {0, 1, . . . }, recursively define

T (i+1) :=

⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

p(1)Q(1) + p(2)Q(2) :

Q(1), Q(2) ∈ T (i),
p(1), p(2) � 0,
p(1) + p(2) = 1,

ϕ1(Q
(1)) = ϕ1(Q

(2)) or

ϕ2(Q
(1)) = ϕ2(Q

(2))

⎫

⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

(9)

The following statements hold.

1) A c-bit semi-honest secure protocol for f exists if and only

if Q(f) ∈ T (c).

2) Given a witness for Q(f) ∈ T (c), one can construct an (at

most) c-bit secure protocol for f .

3) The descriptions of the point Q(f) and the set T (c) ⊆
RX×RY ×RZ are a geometric obstruction for c-bit secure

protocols for f when Q(f) 
∈ T (c).

What remains? Since t is unbounded in the recursive def-

inition of the set S(i+1), it is unclear whether one can test

Q(f) ∈ S(r). Section V upper bounds t in the recursive def-

inition of S(i+1). Subsequently, Section VI demonstrates that

membership testing, witness extraction, and the descriptions

of the sets S(i) and T (i) are finite.

Proof overview of Theorem 1 and Theorem 2. Theorem 1

follows as a consequence of (a) the reduction of the round

complexity problem to the geometric problem in this section,

(b) the upper bound on t in the recursive definition of S(i+1)

in Section V, and (c) Theorem 3 proving the tameness of

the S(i) sets. Theorem 2 follows as a consequence of (a) the

reduction of the communication complexity problem to the

geometric problem in this section and (b) Theorem 3 proving

the tameness of the T (i) sets.

V. INTERLUDE: BOUNDING COMPLEXITY

Consider Equation 8. Define d := |X|+ |Y |+ |Z|. Let Q
be a convex linear combination of

{
Q(k)

}

k∈{1,2,...,t}
, where

t � d + 1, such that ϕb(Q
(1)) = · · · = ϕb(Q

(t)), for some

b ∈ {1, 2}. Carathéodory’s theorem [5] states that there are

1 � i1 < i2 < · · · < i� � t, where 1 � � � d + 1, such that

Q is a convex linear combination of Q(i1), Q(i2), . . . , Q(i�).

Furthermore, ϕb

(
Q(i1)

)
= · · · = ϕb

(
Q(i�)

)
. Consequently, it

suffices to consider t ∈ {1, 2, . . . , d+1} in Equation 8 and in

Figure 2.

For the specific ϕ1 and ϕ2 being considered in Section IV

we can obtain a better upper bound on t, whence the following

corollary.

Corollary 1: If the function f : X × Y → RZ has an r-

round semi-honest secure protocol then there is an r-round

protocol where every message sent by Alice requires (at most)

�lg (|X|+ |Z|)� bits, and every message sent by Bob requires

(at most) �lg (|Y |+ |Z|)� bits.

VI. REAL ALGEBRAIC GEOMETRY PROBLEM

In this section, we consider only recursively generated

sets
{
S(i)

}

i∈{0,1,... }
, which suffice to prove the bounds on

{
T (i)

}

i∈{0,1,... }
. Let ϕ : Ω → Ω′ be an arbitrary function. The

(�-fold) fibre product, represented by Ω×ϕ Ω×ϕ · · · ×ϕ Ω
︸ ︷︷ ︸

�-times

, is

defined to be the set below.
{

(ω1, ω2, . . . , ω�) : ω1, . . . , ω� ∈ Ω, ϕ(ω1) = · · · = ϕ(ω�)

}

.

Our ambient space is Rd, where d ∈ {2, 3, . . . }. Let

ϕ1, ϕ2 : R
d → Rd′

be two linear maps, where d′ ∈ {1, 2, . . . }.

Let S(0) ⊆ Rd be an arbitrary initial set of points. Define

Λ(d) :=

{(

p(1), . . . , p(d+1)
)

:
p(1), . . . , p(d+1) � 0,

p(1) + . . .+ p(d+1) = 1

}

.

Define the bilinear map 〈·, ·〉 :
(
Rd
)d+1

× Rd+1 → Rd as

follows.

〈(

Q(1), . . . , Q(d+1)
)

,
(

p(1), . . . , p(d+1)
)〉

:=

d+1∑

k=1

p(k)·Q(k).

For i ∈ {0, 1, . . . }, inductively define

S(i+1) :=
2⋃

b=1

〈

S(i) ×ϕb
S(i) ×ϕb

· · · ×ϕb
S(i)

︸ ︷︷ ︸

(d+1)-times

, Λ(d)

〉

Recall that a semi-algebraic subset of Rd is any subset that

is defined by a Boolean formula with atoms of the form P >
0, P = 0, where P ∈ R[X1, . . . , Xk]. A semi-linear subset

additionally has deg(P ) � 1.

Remark 2: If ϕ1, ϕ2 are relaxed to be arbitrary functions,

then one can construct “ill-behaved” functions to ensure testing

membership in S(i) is undecidable. Therefore, the result below

crucially relies on the fact that ϕ1, ϕ2 are “well-behaved”, and

also that the initial set S(i) is tame (at least semi-algebraic).

Theorem 3: Let d ∈ {2, 3, . . . }, d′ ∈ {1, 2, . . . },

ϕ1, ϕ2 : R
d → Rd′

be linear maps, S(0) ⊆ Rd a semi-algebraic

subset, and r ∈ {0, 1, . . . }. Given a query point Q ∈ Rd, the

problem of determining whether Q ∈ S(r) or not is decidable.

Moreover, if Q ∈ S(r), there exists an algorithm which outputs
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a witness tree, whose nodes are labelled by points in Rd,

and edges labelled by real numbers in [0, 1] satisfying the

following property:

1) The root node is labelled by Q;

2) each leaf node is labelled by a point in S(0);

3) a node at height i is labelled by a point x ∈ S(i), and it

has (d + 1) children each of which is labelled by points

y(1), . . . ,y(d+1) ∈ S(i−1), with the corresponding edges

labelled by p1, . . . , pd+1 ∈ [0, 1], such that

p1 + · · ·+ pd+1 = 1,

x = p1y
(1) + · · ·+ pd+1y

(d+1).

Moreover, the complexities of the decision problem and of

the algorithm producing the witness tree are bounded by

(Nd)d
O(r)

, where N is the size of a quantifier-free formula

describing the semi-algebraic set S(0) measured by the product

of the number of polynomials appearing in it and the maximum

degree of these polynomials.

Proof 1: We will use the fact that the first order theory of

the reals is decidable. Let Φ0(X), where X = (X1, . . . , Xd)
denote the formula in the language of the first order theory of

reals whose realization is the set S(0) ⊆ Rd. Now, for i > 0,

we will inductively define a formula Φi(X) whose realization

is S(i) ⊆ Rd. Suppose, Φi−1(X) has already being defined.

We define Φi(X) as follows.

Φi(X) := Φi,1(X) ∨ Φi,2(X),

where for j = 1, 2,

Φi,j(X) := (∃Z)(∃Y(1)) · · · (∃Y(d+1))Θ1 ∧ Θ2,j ∧ Θ3

where

Y(k) = (Y
(k)
1 , . . . , Y

(k)
d ), 1 � k � d+ 1,

Z = (Z1, . . . , Zd+1),

and

Θ1 :=
d+1∧

k=1

Φi−1(Y
(k)),

Θ2,j :=
d∧

k=1

(

φj(Y
(k)) = φj(Y

(k+1))
)

,

Θ3 :=
d∧

�=1

(
d+1∑

k=1

Zk · Y
(k)
� = X�

)

.

It is clear from the definition of Φi, that the realization of

Φi in Rd equals S(i) ⊆ Rd.

Note that each Φi is an (existential) formula in the first order

theory of the reals. Using the Tarski-Seidenberg theorem there

exists a quantifier-free formula Ψi(X) (i.e. a quantifier-free

Boolean formula whose atoms are polynomial equalities and

inequalities) which is equivalent to Φi (i.e. their realizations

in Rd are equal). Moreover, there exists effective algorithms

to compute Ψi from Φi, which yields a procedure to check

membership in S(i) ⊆ Rd since the truth of the formula Ψi

can be decided directly given a point in Rd as input since it

has no quantifiers.

The number Nr of existentially quantified variables in the

formula Φr satisfies the recurrence

Nr = r(d+ 1)2 + (d+ 1)Nr−1,

N0 = 0.

Hence,

Nr = r(d+ 1)2 + (r − 1)(d+ 1)3 + · · · = dO(r).

The degrees of the polynomials appearing in Φr is bounded

by max(2, N), and the number of polynomials is bounded by

NdO(r). Using the effective version of quantifier-elimination

in the theory of real closed field (see for instance [1, Algorithm

14.5]), the complexity of computing Ψr, and also of deciding

membership in S(r) is bounded by

(

NdO(r)
)dO(r)

= (Nd)d
O(r)

.

In order to compute the witness tree, we observe that the

formula Φr(Q) is an existential sentence. Using the algorithm

for computing sample points ( [1, Theorem 13.22]) which

is an intermediate step in the algorithm for deciding the

existential theory of reals, it is possible to obtain a tuple of

witness points and the corresponding probabilities giving the

edge weights using the structure of the existential sentence

Φr. These corresponds to the existentially quantified variables

Y(i)’s giving the labels of the nodes in the witness tree, and

the variables Zi’s giving the edge weights. Note that these are

produced as real algebraic numbers whose descriptions are

output as Thom encodings (see [1, page 42] and Remark 3

below).

Remark 3: If in Theorem 3, we assumed that the initial set

S(0) is in fact a semi-linear set (for example, a finite set of

points), then it is possible to show that each S(i) remains a

semi-linear set, and the points appearing in the witness tree

can be chosen to be have coordinates which are rational in the

coefficients of the at most linear polynomials defining S(0),

which is consistent with the Blum-Schub-Smale computation

model [3].

Starting from [6], [11], all works in this research area

consider the functions to be constant-size, i.e., the sets X,Y, Z
have constant size. Consequently, all parameters in the proof

above are constants.

VII. DECIDABILITY AND WITNESS TO PROTOCOL

RECOVERY

This section presents the decidability results. The following

ISREALIZABLE(f, r) prodcedure takes as input a function

f : X × Y → RZ and a number r ∈ N. It outputs Yes if

there is a secure protocol for f with at most r rounds, and

No otherwise. Furthermore, the procedure outputs a secure

protocol by calling the sub-procedure WITNESS in the Yes

instance and a certificate in the No instance. The certificate

is the query point Q(f) and the description of the set S(r).

Note that the set S(r) always has a succinct description since
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it is tame. In the following discussion, refer to Equation 5,

Equation 6 for the definitions of P (z), ϕ1, and , ϕ2.

ISREALIZABLE(f, r):

1) Ensure. The function f : X × Y → RZ and r ∈
{0, 1, . . . }

2) If the function f has Kilian’s obstruction:

Return False

3) Update f to be its standardized SSFE form as prescribed

in [12]

4) Define d := |X|+ |Y |+ |Z|.
5) Initialize Rd ⊇ S(0) := {P (z) : z ∈ Z} (as in

Equation 5)

6) Define linear maps ϕ1, ϕ2 as in Equation 6

7) For i ∈ {0, 1, . . . , r − 1}, recursively define

S(i+1):=

⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

d+1∑

j=1

pjQ
(j):

p1, . . . , pd+1 � 0,
∑d+1

j=1 pj = 1,

Q(1), . . . , Q(d+1) ∈ S(i),
ϕ1(Q

(1)) = · · · = ϕ1(Q
(d+1)) or

ϕ2(Q
(1)) = · · · = ϕ2(Q

(d+1))

⎫

⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

8) If Q(f) ∈ S(r):

Return Yes, Π := WITNESS(S(0), Q(f), r) as defined

in Figure 6

9) Return False, CERTIFICATE :=
(
Q(f),S(r)

)

Fig. 5: Procedure to decide the realizability.

The witness procedure is defined recursively in Figure 5.

We emphasize that in Step 2 above, one cannot use any

linear λks and Q(k)s. Although it may generate a protocol, it

may not be the optimal protocol one seeks. So, one needs to

use Theorem 3 to get those values.

VIII. FUNCTIONS WITH LARGE NUMBER OF ROUNDS

This section shows that the round complexity of secure

function evaluation could be arbitrarily large even for binary

inputs.

Lemma 1: For any r ∈ {1, 2, . . . }, there is a function

f : {0, 1} × {0, 1} → RZ , where Z = {1, 2, . . . , r + 1}, such

that f has an r-round secure protocol but no (r − 1)-round

secure protocol.

Construction and proof sketch. We give an intuitive de-

scription of the function and an informal proof using Fig-

ure 7. Fix any positive integer r. We construct an initial set

S(0) = {q(0), q(1), . . . , q(r)} as in the figure. Let q∗ be the

intersection of the vertical segment and the horizontal segment.

For example, q∗ is the intersection of the horizontal segment

incident to q(7) and the vertical segment incident to q(8) when

r = 7 or the intersection of the vertical segment incident to

q(8) and the horizontal segment incident to q(9) when r = 8.

Based on our cryptographic reduction, there is a function

f : {0, 1} × {0, 1} → Rr+1 corresponding to the point q∗.

WITNESS(S(0), Q, r):

1) If r = 0, it must hold that Q = (UX , UY , e(z)) for

some z ∈ Z. On any input x ∈ X, y ∈ Y , both parties

always output z.

2) Else: Apply Theorem 3 to get λ1, λ2, · · · , λd+1 � 0
and Q(1), Q(2), · · · , Q(d+1) ∈ S(r−1) such that

λ1 + λ2 + · · ·+ λd+1 = 1 and

Q = λ1 ·Q
(1) + λ2 ·Q

(2) + · · ·+ λd+1 ·Q
(d+1).

Let Q = (π, ρ, V ′), Q(k) = (π(k), ρ(k), V (k)) for k ∈
{1, 2, . . . , d+ 1}.

a) If π(1) = π(2) = · · · = π(d+1), then recall that

ρy = λ1 · ρ
(1)
y + λ2 · ρ

(2)
y + · · · + λd+1 · ρ

(d+1)
y . For

any y ∈ Supp(ρ), Bob sends message k to Alice

with probability λk · ρ
(k)
y /ρy and recursively calls

WITNESS(S(0), Q(k), r − 1).
b) If ρ(1) = ρ(2) = · · · = ρ(d+1), then recall that

πx = λ1 · π
(1)
x + λ2 · π

(2)
x + · · · + λd+1 · π

(d+1)
x .

For any x ∈ Supp(π), Alice sends message k with

probability λk · π
(k)
x /πx to Bob and and recursively

calls WITNESS(S(0), Q(k), r − 1).

Fig. 6: Procedure to recover a secure protocol.

axis-2

axis-1

⊗

Q(f) = (1/2, 1/2)

q(0)q(1)

q(2)

q(3)

q(4)

q(5)

q(6)

q(7)

q(8)

q(9)

Fig. 7: An illustrative example showing that for each r ∈ {1, 2, . . . }
there is a S(0) such that S(r−1) � S(r). This implies that for each
r there exists a function that has a r-round secure protocol but not
any (r − 1)-round secure protocol.

This function has a r-round secure protocol but no (r − 1)-
round secure protocol. One can prove this inductively using

the observation that the vertical segment incident to q(t) when

t is even or the horizontal segment incident to q(t) when t is

odd is in S(t) but not in S(t−1) for any t � r.
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IX. LEMMAS NEEDED FOR THE CRYPTOGRAPHIC

REDUCTION

This section states all the lemmas that are needed for our

cryptographic reduction. The proofs of these can be found in

our full version. We first recall some notations. Let Π be a

two-party protocol with private inputs x ∈ X and y ∈ Y . For

a partial transcript τ of the protocol Π, let π(τ) ∈ RX represent

the conditional distribution of Alice’s input conditioned on Π
generating the partial transcript τ when parties start with x
drawn uniformly at random from X and y drawn uniformly at

random from Y . Similarly, define the conditional distribution

ρ(τ) ∈ RY of Bob’s input.

Lemma 2: Suppose a function f : X × Y → RZ is

maximally renamed (as defined in [12]) and avoids Kilian’s ob-

struction. Then, there are unique A ∈ RX×RZ , B ∈ RY ×RZ ,

and V ∈ RZ such that the following identities hold.

f(x, y) = Ax ∗By ∗ V for every x ∈ X, y ∈ Y ,
∑

x∈X

Ax,z = 1 for every z ∈ Z, and

∑

y∈Y

By,z = 1 for every z ∈ Z.

Lemma 3: Suppose the environment chooses x ∈ X and

y ∈ Y uniformly and independently at random. Then, for any

partial transcript τ , the following identity holds.

Pr[x, y|τ ] = π(τ)
x · ρ(τ)y .

Lemma 4: For any partial transcript τ , let Ω represent the

set of all one-round extension of τ . For τ ′ ∈ Ω, let λτ ′ =
Pr[τ ′|τ ] define a probability distribution over Ω. The following

identities hold.

1)
(

π(τ), ρ(τ)
)

=
∑

τ ′∈Ω

λτ ′ ·
(

π(τ
′), ρ(τ

′)
)

.

2) If Bob extends the partial transcript τ , then π(τ) = π(τ
′),

for all τ ′ ∈ Ω. Analogously, if Alice extends the partial

transcript τ , then ρ(τ) = ρ(τ
′), for all τ ′ ∈ Ω.

Lemma 5: In the perfectly secure protocol Π, for a complete

transcript τ , with associated output z ∈ Z, the following

identities hold.

1) For any x ∈ X , we have π
(τ)
x = Ax,z .

2) For any y ∈ Y , we have ρ
(τ)
y = By,z .

Let us introduce some notation that is needed for our next

lemma. The support of the pre-image of a functionality f at

output z is defined as

Supp
(
f−1(z)

)
:=

{

(x, y) ∈ X × Y : Pr[f(x, y) = z] > 0

}

.

The support of the product distribution π(τ) × ρ(τ) is defined

as

Supp
(

π(τ) × ρ(τ)
)

=

{

(x, y) ∈ X × Y : π(τ)
x > 0, ρ(τ)y > 0

}

.

Lemma 6: For any partial transcript τ , we define A(τ) ∈
RX × RZ , B(τ) ∈ RY × RZ , and V (τ) ∈ RZ as follows.

1) A
(τ)
x =

{

Ax/π
(τ)
x if π

(τ)
x > 0,

0 otherwise.

2) B
(τ)
y =

{

By/ρ
(τ)
y if ρ

(τ)
y > 0,

0 otherwise.

3) V (τ) =

{

e(z) if τ is a complete transcript,
∑

τ ′∈Ω λτ ′ · V (τ ′) otherwise.

Then, the following statements hold.

1) f (τ) ∼=
(
A(τ), B(τ), V (τ)

)
.

2) If V
(τ)
z > 0, then Supp

(
f−1(z)

)
⊆ Supp

(
π(τ) × ρ(τ)

)
.

Lemma 7: Any point (π, ρ, V ′) ∈ S(i) has a perfectly secure

(at most) i-round protocol, where i ∈ {0, 1, 2, . . . }.
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