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Abstract—What is the round and communication complexity
of secure computation?

The seminal results of Chor-Kushilevitz-Beaver (STOC-1989,
FOCS-1989, DIMACS-1989) answer this question for compu-
tations with deterministic output. However, this question has
remained unanswered for computations with randomized output.
Our work answers this question for two-party secure function
evaluation functionalities.

We introduce a geometric encoding of all candidate secure
protocols for a given computation as points in a high-dimensional
space. The following results follow by analyzing the properties
of these sets of points.

1) It is decidable to determine if a given computation has a
secure protocol within round or communication constraints.

2) We construct one such protocol if it exists.

3) Otherwise, we present an obstruction to achieving security.

Our technical contributions imply new information complexity
bounds for secure computation.

Index Terms—secure computation, round complexity, commu-
nication complexity, information-theoretic security

I. INTRODUCTION

Consider the privacy-preserving mechanism design for (a
variant of) the facility location problem: Determine a facility’s
location distributed according to a (discrete) Gaussian at the
centroid of parties’ private locations. Among various privacy
metrics, secure multi-party computation (MPC), introduced
by Yao [14] and Goldreich-Micali-Wigderson [8], facilitates
the formalization of meaningful security where parties can
interactively achieve this objective without revealing non-
essential information, even a posteriori [13].

Motivated by such applications, it is natural to study an ab-
straction where Alice and Bob have private inputs * € X and
y € Y. Their objective is to interactively compute their output
sampled from the distribution f(z,y) (over some sample space
Z) without revealing additional information about their private
inputs. The computation f, represented by the output distri-
butions { f(z,y) € R?: z € X,y € Y}, is public knowledge.
Both parties have an unbounded computational power and are
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honest-but-curious, i.e., they follow the prescribed protocol;
however, they are curious to find additional information.

Question. Is there a secure protocol for a given computation?
What is its round and communication complexity?

Investigating this fundamental research problem is primarily
restricted to computations with deterministic output or where
at most one party’s input influences the output. For example,
among computations with deterministic output, the seminal
works of Chor, Kushilevitz, and Beaver [2], [6], [11] char-
acterized decomposable functions as ones admitting secure
protocols. The case of functions with randomized output has
remained unresolved ever since, barring highly specialized
computations [7], [12] (c.f., the discussion in [12]). Data and
Prabhakaran [7] characterized (1) securely realizable ternary
output functions and (2) functions with 2-round secure proto-
cols.

Even the decidability of this problem is unknown, let alone
resolving the search and optimization analogs.

A. Our contributions

We investigate the round and communication complexity of
two-party secure function evaluation. Given a computation, we
determine whether there is a secure protocol for the compu-
tation within specified round or communication constraints.
We generate one such secure computation protocol if the
feasibility test is affirmative. Otherwise, we demonstrate a
(geometric) obstruction to secure realizability within these
constraints. Our main fechnical idea is an innovative geometric
encoding of candidate secure (private-coin) protocols for a
given computation.

The round and communication studies generate (the encod-
ing of) increasingly complex candidate (private-coin) proto-
cols using an appropriate recursive geometric action, starting
from initial points that encode the base case protocols. Our
feasibility test translates into a membership test for a specific
query point in these recursively-generated sets of points. The
parse tree of how this specific query point is generated from
the base cases yields a secure protocol. If the query point is
outside these sets, then (a succinct description of) these sets
represent a geometric obstruction to secure realizability.

We study the sets of points that this geometric action recur-
sively generates through the lens of real algebraic geometry.
We show that these sets are fame' and support the features in-

IThe sets have an algebraic representation of bounded complexity.
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dicated above. Consequently, we obtain the following general
feasibility, search, and optimization results.

Theorem 1 (Round Complexity): There is a procedure that
takes as input (a) the function f: X x Y — RZ, and (b) the
interaction constraint r € {1,2, ..., }. This procedure says yes
if (and only if) there is a secure protocol for f with (at most)
r rounds.

If such a protocol exists, this procedure outputs one such
secure protocol. If no such protocol exists, this procedure
outputs a (geometric) certificate attesting to this fact.

Theorem 2 (Communication Complexity): There is a proce-
dure that takes as input (a) the function f: X x Y — RZ,
and (b) the communication constraint ¢ € {1,2,...,}. This
procedure says yes if (and only if) there is a secure protocol
for f with (at most) ¢-bit communication.

If such a protocol exists, this procedure outputs one such
secure protocol. If no such protocol exists, this procedure
outputs a (geometric) certificate attesting to this fact.

Furthermore, our proof techniques establish the following
consequences.

1) Lemma 1: Even for X = Y = {0,1}, for any r €
{1,2,...}, there are functions f: X xY — RZ requiring
rounds of interaction, and, in turn, » bits of communication,
for secure computation.

2) Corollary 1: If a function f: X x Y — RZ has a secure
r-round protocol, then there is an r-round secure protocol
where Alice communicates [lg(|X| + |Z])] bits, and Bob
communicates [lg(|Y| 4+ |Z])] bits every round.

B. Overview of the paper.

Section II introduces the notation and some minimal def-
initions and Section III presents our technical approach and
illustrates it using an example. Section IV summarizes the re-
duction of the cryptographic problem to a geometric problem.
Section V and Section VI demonstrate that the geometric prob-
lem is computable. Section VIII provides secure functionalities
with arbitrarily large round complexity. Section IX states all
the key lemmas needed for the proof of our main results.

II. PRELIMINARIES

This section defines our model and introduces the notation
and basic definitions to facilitate our discussions.

A. System model

We consider the Blum-Schub-Smale model of computa-
tion [3] and the two-party full information model. Alice and
Bob have unbounded computation power, and a synchronous
communication channel connects them. Parties have access
to an unbounded number of independent private random bits
with arbitrary biases. For example, a party can have a private
random bit that is 1 with a probability of 1/7. In an interactive
protocol, a round corresponds to one party sending a message
to the other party.

B. Secure function evaluation functionalities

Alice and Bob have private inputs * € X and y € Y, re-
spectively. A secure function evaluation functionality samples
(za,zp) according to a distribution f(z,y), and outputs z4
to Alice and zg to Bob.

Among these functionalities, a symmetric secure function
evaluation (SSFE) samples z according to a distribution
f(z,y) and outputs z to both Alice and Bob. It suffices to
restrict our investigation to only symmetric functions [12], [7].

C. Security model

We denote two identical distributions D and D' by D = D’.
Our work considers perfect security against honest-but-curious
(semi-honest) adversaries, i.e., adversaries who follow the
protocol honestly but are curious to find additional information
about the honest party’s input.

Definition 1 (Semi-honest Security): 11 is a perfectly semi-
honest secure protocol for a function f: X x Y — RZ if the
following conditions hold.

1) Correctness. Every complete transcript 7 of the protocol
IT is associated with an output out(r) € Z. Let T'(z,y)
represent the random variable corresponding to the com-
plete transcript of the protocol II when parties have private
inputs z and y. Then, the following identity holds for every
(z,y) e X xY.

out (T(z,y)) = f(x,y).

2) Security against corrupt Alice. The protocol transcript
provides Alice with no additional information about Bob’s
private input beyond their output. That is, there is a
simulator Sim 4 such that the following identity holds for
all (z,y) e X xY.

SimA(xa f(l',’l/)) = T(l'ay)'

Intuitively, the Markov chain Y — (X, f(X,Y))-T(X,Y)
holds.

3) Security against corrupt Bob. There is a simulator Sim g
such that the following identity holds for all (z,y) € X x
Y.

SimB(ya f($, y)) = T(xa y)

This definition coincides with Canetti’s universally compos-
able security definition [4] where the simulator has an un-
bounded computational power.

D. Round and communication complexity

Our work considers worst-case notions of round and com-
munication complexity for interactive protocols. A protocol
has round complexity (at most) r, if for all Alice input x
and her private randomness, and Bob input y and his private
randomness, the protocol II exchanges (at most) r messages.
Similarly, a protocol has communication complexity (at most)
¢, if for all Alice input x and her private randomness, and
Bob input y and his private randomness, the protocol II
communicates (at most) ¢ bits.
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F(1,0) = 515(26,40,96,54) | f(1,1) = 51<(13,50,72,81)

1
216

1 _ 1
216 216

£(0,0) = -1 (52,80,48,36) | f(0,1) (26,100, 36, 54)

Fig. 1: Definition of the representative example function f: {0,1} x
{0,1} — REV2343,

III. TECHNICAL OVERVIEW

This section presents a high-level summary of our technical
ideas underlying our proof strategy to determine whether a
given two-party SSFE has an r-round secure protocol or not.
An illustrative worked-out representative example accompa-
nies this presentation, showing that the example function of
Figure 1 has a 4-round secure protocol and no 3-round secure
protocol.

Step 0: Standardization. Prior results [7], [12] show that one
needs to consider only symmetric secure function evaluation
(SSFE) f: X x Y — RZ of a specific standardized form.
Among all SSFE, one needs to consider only those where
there are A € RX*Z B e RY*Z and V € RZ such that the
following identities hold (see Lemma 2 in Section IX).

f(xay)z = Am,z . Byﬁz . Vz

S Ap=1

zeX

> B,.=1

yey

(forallz e X,ye Y,z € 2)
(for all z € Z2)

(for all z € 2)

Consider our example SSFE f: X x Y — RZ in Figure 1,
where X =Y = {0,1} and Z = {1,2,3,4}. This function
satisfies the standardization constraints as evidenced by A €
RX*Z B e RY*Z and V € RZ below.

~ J A1 =(1/3,1/3,2/3,3/5) € R” W
| Ao =(2/3,2/3,1/3,2/5) € RZ

5o {31 =(1/3,5/9,3/7,3/5) € R? .
By =(2/3,4/9,4/7,2/5) € R?

V = (13/24,5/4,7/6,25/24) € R? 3)

What does the state-of-the-art tell us about this function?
This function avoids Kilian’s obstruction [10] and does not
have a 2-round protocol [7].

Step 1: Security experiment. Suppose II is a perfectly secure
protocol for f. Let II(7) represent the residual protocol of 11
continuing from the partial transcript 7.2 For example, when
7 = () (the empty transcript), then TI") = II, and when 7 is
a complete transcript, then II(”) is a 0-round protocol where
the output is out(7), irrespective of the parties’ inputs.

2The formal description of the protocol TI(™) (z,y) is as follows. Alice
reverse-samples a random local private randomness consistent with her private
input = and the public transcript 7. Bob reverse-samples a random local private
randomness consistent with his private input y and the public transcript 7.
Starting with these private views, Alice and Bob follow the protocol II to
generate the next messages and extend the protocol transcript 7.
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Let f(7): X x Y — RZ represent the randomized function
such that f(7)(x, y) is identical to the output distribution of
the protocol TI(7) (x, y), for all (z,y) € X x Y. For example,
f® = f and, for a complete transcript 7, the function f(7) =
e(z), a function that outputs z with probability 1 (irrespective
of the inputs), where z = out(7) and e(z) € {0,1}7 is the
vector indicating the output z € Z.

Consider an environment that samples x uniformly at ran-
dom from X, samples y uniformly (and independently) at
random from Y, sends = to Alice and sends y to Bob. For
a partial transcript 7 of the protocol, let 7(7) € RX represent
the conditional distribution of Alice’s input conditioned on
IT generating the partial transcript 7. Likewise, let p(7) € RY
represent the conditional distribution of Bob input conditioned
on II generating 7.

Remark 1: Security in cryptographic context is inherently a
worst case notion — a protocol’s insecurity is the maximum
insecurity over all possible inputs of the parties. However,
for perfect security, a distribution notion of security is also
equivalent to the worst case security. When the environment
samples the inputs independently and uniformly at random
for the two parties, each input pair is picked with probability
1/1X| - [Y]. So, if a protocol is € insecure in the worst case,
then it is at least £ /| X |-|Y'| insecure when interacting with our
environment. Therefore, for perfect security, these two notions
are identical.

We define the pertinent information corresponding to the
partial transcript T as (7(™), p(7), (7)) . Our objective is to
characterize all candidate pertinent information systematically.

Step 2: Structure for inductive geometric characterization.
We inductively prove a function structure result showing that
the following invariant holds for some appropriate V(") € RZ,
and forall z € X,y € Y,z € Z (see Lemma 6).

f(T)(Ia Y): = AFLT; . Bffz) . VZM, where 4)

e [Ave/m? it >0
o 0 otherwise,
B _ [ Bes /o7 it ) >0
v 0 otherwise,

That is, (7(7), p(7, V(D) € RY x RY x RZ determines
the function f(7), represented by f(7 = (7(7), p(T) V(7))
Consequently, henceforth, (7(7), p(™), V(7)) € RX x RY xR?
represents the pertinent information of 7.

Simultaneously, we inductively prove a geometric embed-
ding. Let Q(7) represent the set of all partial transcripts that
are one-round extensions of 7. Then, the following geometric
embedding holds

(<O VO) = T ) (1), ), 7)),

TeQ(n)
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where {p(T/)} o is a probability distribution over (™)
(see Lemma 4).T e

If Alice extends the partial transcript 7, then p(7) = p(T/),
for all 7/ € Q(7), because she cannot reveal additional infor-
mation about Bob’s input (beyond what the partial transcript 7
already reveals). Similarly, if Bob extends the partial transcript
7, then 77 = 7("") for all ' € Q7).

We prove the function structure and the geometric embed-
ding results simultaneously using induction on the height of
the partial transcript 7, which is naturally defined. A complete
transcript has height 0, and the height of any partial transcript
is one more than the maximum height of the partial transcripts
in Q7).

Step 3: Base cases. Fix a complete transcript 7 such that
out(r ) z € Z. By the security of the protocol, observe
that i) = A,., for all z € X, and p§) = B,.., for all
Yy e Y (see Lemma 5). Furthermore, the function f(7) = =e(z),
therefore V(™) = e(z) ensures that f(7) = (7(7), p(") V(7))
Observe that the pertinent information of the complete tran-
script 7 depends solely on f and is independent of the
transcript itself.
For all output z € Z, define the point

P = ((AI,Z; z€X), (By.:yeY), e(z)) 3)
e RY x RY x RZ.

For our example, we have (refer to Equation 1 for the values
of A and B)

PW = ((2/3,1/3),(2/3,1/3),e(1)) ,

P® = ((2/3,1/3),(4/9,5/9),¢(2)) ,
P® = ((1/3,2/3),(4/7,3/7),¢(3)) ,

PW = ((2/5,3/5),(2/5,3/5),e(4)).

Therefore, the pertinent information of all transcripts of
height O (i.e., the complete transcripts) lie in the set

SO .— {P(Z):ZGZ}QRXXRYXRZ.

Step 4: Recursive generation of increasingly complex
protocols. For i € {0,1,...}, let S C RX x RY x R?
represent the set of all candidate pertinent information of
partial transcripts at height < <. Assume that we already have
computed the set S, Our objective is to define the set SU+1)

recursively.

For ¢ € {1,2,...}, consider arbitrary ¢
points QM. Q® ... QW € S@W,  such  that
QW = (x®) pk), V(k)) for k € {1,2,...,t}. Let
Q = (mp, V") = Sp_ 0™ - Q™ be a convex linear

combination of the points Q(l)7 QY. ...,QW,

Suppose Alice extended the partial transcript correspond-
ing to @ into the partial transcripts corresponding to
QW ., QP ... QM. Then, it must be the case that p
p) = p@ = ... = p() We prove that the converse is
also true. That is, if p(V) = p) = ... = p(t) then Alice
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can securely extend the partial transcript corresponding to )
into the partial transcripts Q. Q® ... .Q®. For brevity,
we say Alice fuses the points Q. Q@ ... Q®). Likewise,
if 7 = 7@ = . = 7® then Bob fuses the points
QW, Q(2) Q(t)

Define llnear maps 1: RY x RY x R?
02: RX x RY x RZ — RY as follows.

ng(’/T,p, V/) : (6)

Therefore, the set S¢+1) is recursively defined in Figure 2.

— RX and

=T 992(7T7P7V/) = p.

For t € {1,2,...} and any points
QW,QW,...,Q"W € SO satisfying

21QW) = p1(QP) =+ = 1(QW), or
02(QW) = p2(QP) =+ = 2 (QW)

add all possible convex linear combinations of
QW . Q@ ... QW to the set SGHD),

Fig. 2: Recursive procedure to construct S+ from S,

Figure 3 assists in visualizing the evolution of the sets
SO - SM 5 ... for our example. In our case, these
sets are subsets of R2+2+4, which is challenging to visualize.
Consider the projection of a point (m,p, V') € RO} x
RO » RIL23:4} to (7, py). Figure 3 demonstrates the
evolution of the sets S0 — S — ... — S® under this
projection. Observe that fusing Q. ..., Q® is permissible
if and only if 7V = ... = 7 or p(V = ... = p®),

When, X =Y {O 1}, this constraint (equivalently)
becomes: fusmg QW . Q(t> is (permlsmble if and only if
P 0 or (1)

1 T P1 .

Step 5: Protocol reconstruction. Recall that our objective is
to determine whether f has an (at most) r-round protocol. The
pertinent information of the empty transcript is represented by

1
Q(f) = (UX,UY,W V> GRX X RY XRZ7 (7)

where Ux is the uniform distribution over X, Uy is the
uniform distribution over Y, and V is the vector determined
in Equation 3 of the standardization step.

In our example function, we have (refer to Equation 3 for
the value of V)

QU — ((1/2, 1/2).(1/2,1/2).

(13/96,5/16,7/24725/96))
€ R* xRY x RZ.
Therefore, f has an (at most) r-round protocol if and only
if Q) e 8. 1f QU) ¢ S, then the descriptions of
the query point Q) and the set S(") are a novel geometric

certificate that f does not have an r-round secure protocol. For
our example, Q(f) e S®; however, Q(f> &Z S® (clear from
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Axis-1 Axis-1 Axis-1

23

1”2 ®
13
131 a3 AXS2 131 o A2 o 1p o AXis2
proj(s(©) proj(S™) proj(S®)
Axis-1 Axis 1
3 3
12 ® n
13 13
oo s A2 1o s AXS2
proj(S®)) proj(s™)

Fig. 3: Plot of the projection of the points in S (f) for 0 < i < 4.
The @ mark represents the projection of the query point QY (defined
in Equation 7), where f is defined in Figure 1. The geometric action
allows the following. For any two points in S ) one can add the
line segment joining them to SUY) if the two points have identical
first or second coordinates.

Figure 3) — proving that our function has a 4 round protocol
and 3 rounds are insufficient.

We show that every step of the inductive construction
of a point Q € SUtVD by fusing QM,...,QHW e SO
translates into a protocol that extends a partial transcript
corresponding to () into partial transcripts corresponding to
QW,....Q®. These transition probabilities are determined
by {p }ke{l ot} and {7r }k€{1,2, 4 (refer to Sec-
tion VII for the reconstruction algorithm) Using this step
recursively, one recovers the protocol for f using a witness
explaining the membership of the point Q(f) € S().

For our example, let us visualize how Q(f ) e 8@, For
points (7, p, V') € RIO1} x RI01} 5 R{1:2:34} we continue to
represent the projected point (71, p1). For some critical points,
we also mention the corresponding payload V' € R{%2:3:4},
Figure 4 demonstrates the witness of Q) € S,

Functions with an arbitrarily high round complexity.
Fix any r € {1,2,...}. We show that there are functions
f:{0,1}x{0,1} — RZ such that a secure protocol for f must
have r rounds. In our example |Z| = (r 4+ 1). The idea is to
construct S(©) such that the query point Q) = (1/2,1/2,-) ¢
S(=1, proving Lemma 1. Section VIII presents this function
construction.

Modification: Determining communication complexity. In
the geometric problem, bounding ¢ < 2 in the recursive
definition of Figure 2 ensures that Q) € S() if and only
if f has an (at most) c-bit secure protocol.

IV. CRYPTOGRAPHIC REDUCTION

Suppose we are investigating the round/communication
complexity of a general (two-party) secure function evaluation.

Axis-1 e + She@) + £e@) + Ze@

se)+ Le@) + Le)

12 Be) + Fe@) + He@®) + Be@

13

e(1)+ e(2) 6(1)+ e(2)

Alice Fu:m

Be)+ Fe@) + LeBG) + 22e@

Bob Fusmv Bob Fusing
Te) + F5e@) + {5 T o(3) + Ze@ e+ 2e@

YA

A]lce Fusing

dee() + Fe(2) + 2e3) e e e®
Bob Fusmg
(3 de(r) + Ze(2)

VAN

e(1) e(2)

Fig. 4: For the function f in Figure 1, this figure displays the
payload of “critical points” in proj <S(4)>. Recall that e(1) =
(1,0,0,0),e(2) = (0,1,0,0),e(3) = (0,0,1,0), and e(4) =
(0,0,0,1), the payloads of the pomts in the base case Furthermore,
note that V(@ = =IxIxV==2el)+ Ze(2)+ Le(3)+ Le(4).
The tree presents the (shallowest tree) producing the payload from
e(1),e(2),e(3), and e(4), generating the (unique) most efficient
secure protocol for f.

If this function has Kilian’s obstruction [9], [10], there is
no secure protocol. However, avoiding Kilian’s obstruction
does not imply the existence of a secure protocol (for exam-
ple, the famous Kushilevitz function). If the function avoids
Kilian’s obstruction, then studying its round/communication
complexity is equivalent to studying the round/communication
complexity of a related standardized SSFE [7], [12].

Consequently, without loss of generality, consider a stan-
dardized function f: X x Y — RZ defined in step 0 of
Section III. Let A € RX*Z B € RY*Z V € RZ be the
appropriate vectors. Define Q(/) as in Equation 7. For every
z € Z, define P(*) as in Equation 5. Define the linear maps
(1,2 as in Equation 6.

Round Complexity. Initialize the base case set S(® =
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{P®:z€Z}. Foreveryic{0,1,...

te{l,2,...},
QWM. Q@ ... 8O

}, recursively define

t
SE = 43 Q. P p®,. .(.k,)p(“ >0,
=1 2= P =1
P1(QW) =+ =1 (QW) or
0o (QM) =+ = p(QW)
(®)

The following statements hold.

1) An r-round semi-honest secure protocol for f exists if and
only if Q) € (),

2) Given a witness for Q) € S, one can construct an (at
most) r-round secure protocol for f.

3) The descriptions of the point Q) and the set S") C RX x
RY x RZ are a geometric obstruction for r-round secure
protocols for f when Q) & S().

Communication Complexity. Initialize the set 7(® .=
{P#): 2z € Z}. Forevery i € {0,1,...}, recursively define

QW Q@ e TO®,
p(l)’p(2) >0,
p(M) 4 p@ =1,
<P1(Q(1>) = 801(Q(2)) or
p2(QW) = 2(QP)
)

T Z ] 000 4 @0,

The following statements hold.

1) A c-bit semi-honest secure protocol for f exists if and only
if QU) e 79,

2) Given a witness for Q) € 7(9), one can construct an (at
most) c-bit secure protocol for f.

3) The descriptions of the point Q) and the set 7(9 C
RX xRY xRZ are a geometric obstruction for c-bit secure
protocols for f when Q) ¢ T(),

What remains? Since ¢ is unbounded in the recursive def-
inition of the set SU*+1), it is unclear whether one can test
Q) e 8. Section V upper bounds ¢ in the recursive def-
inition of SU*+1). Subsequently, Section VI demonstrates that
membership testing, witness extraction, and the descriptions
of the sets S and 7 are finite.

Proof overview of Theorem 1 and Theorem 2. Theorem 1
follows as a consequence of (a) the reduction of the round
complexity problem to the geometric problem in this section,
(b) the upper bound on ¢ in the recursive definition of S(+1)
in Section V, and (c) Theorem 3 proving the tameness of
the S sets. Theorem 2 follows as a consequence of (a) the
reduction of the communication complexity problem to the
geometric problem in this section and (b) Theorem 3 proving
the tameness of the 7 sets.

V. INTERLUDE: BOUNDING COMPLEXITY

Consider Equation 8. Define d := |X|+ |Y|+ |Z|. Let Q

be a convex linear combination of {Q*)} c(1.2,.4)» Where

t > d+ 1, such that ¢, (QM) =--. = ©,(QW), for some

b € {1,2}. Carathéodory’s theorem [5] states that there are
1<i1 <ig<--- <1y <t, where 1 < ¢ < d+1, such that

Q is a convex linear combination of Q1) QU2) . . QUie),
Furthermore, ¢y (Q(“)) ==y (Q(”)). Consequently, it
suffices to consider ¢ € {1,2,...,d+ 1} in Equation 8 and in
Figure 2.

For the specific ¢; and @2 being considered in Section IV
we can obtain a better upper bound on ¢, whence the following
corollary.

Corollary 1: If the function f: X x Y — RZ has an r-
round semi-honest secure protocol then there is an r-round
protocol where every message sent by Alice requires (at most)
[lg (| X| + |Z])] bits, and every message sent by Bob requires
(at most) [lg (|Y| +|Z|)] bits.

VI. REAL ALGEBRAIC GEOMETRY PROBLEM

In this section, we consider only recursively generated
sets {S(i)}ie{o,l,...}’ which suffice to prove the bounds on
{T(i)}ie{o,l,... . Let ¢: Q — Q' be an arbitrary function. The
(¢-fold) fibre product, represented by €2 X, £ X, --- X, (2, is

(-times

defined to be the set below.
{(Wl,tdg,...,&)g): Wiy...,Wg € Qa@(wl) == QO((A)@)} .

Our ambient space is R?, where d € {2,3,...}. Let
©1,02: R? — R? be two linear maps, where d’ € {1,2,...}.
Let S( C R? be an arbitrary initial set of points. Define

(1) @+ 3 o
(d) ._ (1) (d+1) . P75 D = U,
A = {(p yee s D )‘p(1)+~o-+p(d+l):1}‘

Define the bilinear map (-,-) : (]Rd)d+1 x R — R? as
follows.

d+1
<<Q<1)7W7Q(d+1)> 7 (p(1>7 o 7p<d+1>)> =3 p®.Q),
k=1

For i € {0,1,...}, inductively define
2

S+ . U <5(z‘) X o S Xy X SO, A(d)>

b=1

(d+1)-times

Recall that a semi-algebraic subset of R? is any subset that
is defined by a Boolean formula with atoms of the form P >
0,P = 0, where P € R[Xy,...,X}]. A semi-linear subset
additionally has deg(P) < 1.

Remark 2: If 1, o are relaxed to be arbitrary functions,
then one can construct “ill-behaved” functions to ensure testing
membership in S () is undecidable. Therefore, the result below
crucially relies on the fact that ¢, o are “well-behaved”, and
also that the initial set S is tame (at least semi-algebraic).

Theorem 3: Let d € {2,3,...}, d € {1,2,...},
01, 02: RY — R? be linear maps, S(© C R? a semi-algebraic
subset, and 7 € {0,1,...}. Given a query point Q € R?, the
problem of determining whether Q € S or not is decidable.
Moreover, if Q € S (1), there exists an algorithm which outputs
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a witness tree, whose nodes are labelled by points in R,

and edges labelled by real numbers in [0, 1] satisfying the

following property:

1) The root node is labelled by @;

2) each leaf node is labelled by a point in S();

3) a node at height i is labelled by a point x € S, and it
has (d + 1) children each of which is labelled by points

y, Lyt e SG=1) with the corresponding edges
labelled by p1,...,p4t1 € [0, 1], such that
p1+-+pay1 =1,
x =piy™ 4 papy Y.

Moreover, the complexities of the decision problem and of
the algorithm producing the witness tree are bounded by
(N d)do(r), where N is the size of a quantifier-free formula
describing the semi-algebraic set S(°) measured by the product
of the number of polynomials appearing in it and the maximum
degree of these polynomials.

Proof 1: We will use the fact that the first order theory of
the reals is decidable. Let ®((X), where X = (X1,...,Xq)
denote the formula in the language of the first order theory of
reals whose realization is the set S(© C R?. Now, for i > 0,
we will inductively define a formula ®;(X) whose realization
is S C R?. Suppose, ®;_1(X) has already being defined.
We define ®;(X) as follows.

@Z(X) = <I>z71(X) V @i,2(X),

where for j = 1,2,

®;;(X) == (3Z)AYD) ... AY@H)O;, A Oy, A O
where
YR — vy 1<k<d+,
Z = (Zlv"'7Zd+1)7
and
+
0; = /\ i— 1 Y(k)
o
Oy = /\ ( (Y®) ¢j(Y<k+1))),
U
0; = A (sz.xf; >_Xg>.
=1 \k=1

It is clear from the definition of ®;, that the realization of
®; in R? equals SV C R?.

Note that each ®; is an (existential) formula in the first order
theory of the reals. Using the Tarski-Seidenberg theorem there
exists a quantifier-free formula ¥;(X) (i.e. a quantifier-free
Boolean formula whose atoms are polynomial equalities and
inequalities) which is equivalent to ®; (i.e. their realizations
in R? are equal). Moreover, there exists effective algorithms
to compute ¥; from ®;, which yields a procedure to check
membership in S C R since the truth of the formula U;
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can be decided directly given a point in R? as input since it
has no quantifiers.

The number N, of existentially quantified variables in the
formula ®, satisfies the recurrence

N, r(d+1)? + (d+1)N,_q,
Ny 0.
Hence,
N, =7r(d+1)*+ @ -1)(d+1)>+-..=d°0,
The degrees of the polynomials appearing in ®, is bounded

by max(2, N), and the number of polynomials is bounded by
NdO), Using the effective version of quantifier-elimination
in the theory of real closed field (see for instance [1, Algorithm
14.5]), the complexity of computing V¥,., and also of deciding
membership in S is bounded by

(Nao0)

In order to compute the witness tree, we observe that the
formula ®,(()) is an existential sentence. Using the algorithm
for computing sample points ( [1, Theorem 13.22]) which
is an intermediate step in the algorithm for deciding the
existential theory of reals, it is possible to obtain a tuple of
witness points and the corresponding probabilities giving the
edge weights using the structure of the existential sentence
®,.. These corresponds to the existentially quantified variables
Y ()’s giving the labels of the nodes in the witness tree, and
the variables Z;’s giving the edge weights. Note that these are
produced as real algebraic numbers whose descriptions are
output as Thom encodings (see [1, page 42] and Remark 3
below).

Remark 3: If in Theorem 3, we assumed that the initial set
S is in fact a semi-linear set (for example, a finite set of
points), then it is possible to show that each S(9 remains a
semi-linear set, and the points appearing in the witness tree
can be chosen to be have coordinates which are rational in the
coefficients of the at most linear polynomials defining S(®,
which is consistent with the Blum-Schub-Smale computation
model [3].

Starting from [6], [11], all works in this research area
consider the functions to be constant-size, i.e., the sets X, Y, Z
have constant size. Consequently, all parameters in the proof
above are constants.

prelto!

= (Na)*".

VII. DECIDABILITY AND WITNESS TO PROTOCOL
RECOVERY

This section presents the decidability results. The following
ISREALIZABLE(f,r) prodcedure takes as input a function
f: X xY — RZ and a number r € N. It outputs Yes if
there is a secure protocol for f with at most r rounds, and
No otherwise. Furthermore, the procedure outputs a secure
protocol by calling the sub-procedure WITNESS in the Yes
instance and a certificate in the No instance. The certificate
is the query point Q) and the description of the set S(").
Note that the set S(") always has a succinct description since
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it is tame. In the following discussion, refer to Equation 5,
Equation 6 for the definitions of P(*) ¢, and , @s.

ISREALIZABLE(f,T):

1) Ensure. The function f: X x Y — RZ and r €
{0,1,...}

2) If the function f has Kilian’s obstruction:
Return False

3) Update f to be its standardized SSFE form as prescribed
in [12]

4) Define d := |X|+ Y]+ |Z|.

5) Initialize R¢ D S©)
Equation 5)

6) Define linear maps ¢1, 2 as in Equation 6

7) For i € {0,1,...,r — 1}, recursively define

{P&): 2 € Z} (as in

D1, ';l' s Pd+1 > 07
+1
d+1 Z =1 p] = 17
S+, ijQ(j); Q(1)7..J.7Q(d+1) eS8,
7j=1 ©1 (Q(l)) — .. = @I(Q(d+1)) or
02 (QMW) = .. = py(QLIHD)

8) If Q1) e S:
Return Yes, IT := WITNESS(S(®, Q) 1) as defined
in Figure 6

9) Return False, CERTIFICATE := (Q(),8()

Fig. 5: Procedure to decide the realizability.
The witness procedure is defined recursively in Figure 5.

We emphasize that in Step 2 above, one cannot use any
linear \;s and Q*)s. Although it may generate a protocol, it
may not be the optimal protocol one seeks. So, one needs to
use Theorem 3 to get those values.

VIII. FUNCTIONS WITH LARGE NUMBER OF ROUNDS

This section shows that the round complexity of secure
function evaluation could be arbitrarily large even for binary
inputs.

Lemma 1: For any r € {1,2,...}, there is a function
f:{0,1} x {0,1} — R?, where Z = {1,2,...,7 + 1}, such
that f has an r-round secure protocol but no (r — 1)-round
secure protocol.

Construction and proof sketch. We give an intuitive de-
scription of the function and an informal proof using Fig-
ure 7. Fix any positive integer . We construct an initial set
SO = {gO ¢ . ¢} as in the figure. Let ¢* be the
intersection of the vertical segment and the horizontal segment.
For example, ¢* is the intersection of the horizontal segment
incident to ¢(™ and the vertical segment incident to ¢'® when
r = 7 or the intersection of the vertical segment incident to
¢® and the horizontal segment incident to ¢(¥) when r = 8.
Based on our cryptographic reduction, there is a function
f:{0,1} x {0,1} — R"*! corresponding to the point ¢*.

WITNESS(S, Q, r):

1) If » = 0, it must hold that Q = (Ux,Uy,e(z)) for
some z € Z. On any input z € X,y € Y, both parties
always output z.

2) Else: Apply Theorem 3 to get A, Ag, -, Agy1 = 0
and QW, Q@ ... QU+ ¢ S—1 such that

M+ A+ + A4 =1 and
Q:AI'Q(1)+)\2'Q(2)+"'+)\d+1'Q(d+l)~
Let Q = (m,p, V'), Q(k) = (W(k),p(k),v(k)) for k €

{1,2,...,d+1}.
a) If 7 = 73 = ... = 7@+ then recall that
1 2 a1
py:/\1-pg(,)+/\2~p3(,)+~~~+/\d+1~pg(,+).For

any y € Supp(p), Bob sends message k to Alice

with probability A - p§k> /py and recursively calls

WITNESS(S©@, Q) 1 — 1),

If pM = p® = ... = pld+D) then recall that
- (1) (2) (d+1)

71-mf)\l'ﬂ-z +)\2'7Tz +"’+)\d+1'ﬂ'z .

For any x € Supp(w), Alice sends message k with

probability A - ﬂg(ck)/ m, to Bob and and recursively

b)

calls WITNESS(S(©®), Q) —1).
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Fig. 6: Procedure to recover a secure protocol.

axis-1

QY =(1/2,1/2)

axis-2

Fig. 7: An illustrative example showing that for each r € {1,2,...}
there is a S such that S"™Y C S, This implies that for each
r there exists a function that has a r-round secure protocol but not
any (r — 1)-round secure protocol.

This function has a r-round secure protocol but no (r — 1)-
round secure protocol. One can prove this inductively using
the observation that the vertical segment incident to ¢(*) when
¢ is even or the horizontal segment incident to ¢(*) when ¢ is
odd is in S® but not in S*=Y for any t < r.
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IX. LEMMAS NEEDED FOR THE CRYPTOGRAPHIC
REDUCTION

This section states all the lemmas that are needed for our
cryptographic reduction. The proofs of these can be found in
our full version. We first recall some notations. Let I be a
two-party protocol with private inputs x € X and y € Y. For
a partial transcript 7 of the protocol II, let 7(7) € RX represent
the conditional distribution of Alice’s input conditioned on II
generating the partial transcript 7 when parties start with x
drawn uniformly at random from X and y drawn uniformly at
random from Y. Similarly, define the conditional distribution
p™) € RY of Bob’s input.

Lemma 2: Suppose a function f: X x Y — RZ is
maximally renamed (as defined in [12]) and avoids Kilian’s ob-
struction. Then, there are unique A € R¥xR%, B € RY xR%,
and V € RZ such that the following identities hold.

flx,y) = Ay« ByxV forevery z € X,y €Y,

Z Ay . =1 for every z € Z,and
rzeX

Z B, . =1 forevery z € Z.
yey

Lemma 3: Suppose the environment chooses z € X and
y € Y uniformly and independently at random. Then, for any
partial transcript 7, the following identity holds.

Pr(z,y|r] = {7 - p{7).

Lemma 4: For any partial transcript 7, let {2 represent the
set of all one-round extension of 7. For 7/ € Q, let A, =
Pr[7'|7] define a probability distribution over 2. The following
identities hold.

Y (Wm,pm) -3 (W(T’)m(f’)).

T'eQ

2) If Bob extends the partial transcript 7, then () = 7T(T/),
for all 7 € Q. Analogously, if Alice extends the partial
transcript 7, then p(T) = p(yT/), for all ¥ € Q.

Lemma 5: In the perfectly secure protocol 11, for a complete

transcript 7, with associated output z € Z, the following
identities hold.

1) For any x € X, we have ﬂg(gT) =A, ..
2) For any y € Y, we have pgf) =B, ..
Let us introduce some notation that is needed for our next
lemma. The support of the pre-image of a functionality f at

output z is defined as

Supp(f~'(2))

The support of the product distribution 7(™) x p(7) is defined
as

{(x,y) € X xY: Prlf(z,y) = 2] > 0}.

Supp(w(T) X p(T)) = {(x,y) eEXXY: WQ(CT) > O,pgf) > O}.
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Lemma 6: For any partial transcript 7, we define A" €
RX x RZ, B(M e RY x RZ,and V(") € RZ as follows.
(m)

b A _ A /e it el >0,
‘ 0 otherwise.
2 i _ [ Bulei” it a7 >0,
Y 0 otherwise.
3) V) = e(z) if 7 is a complete transcript,

Doreq M V() otherwise.

Then, the following statements hold.
b} f(T) o (A(T),B(T)7V(T)).
2) If v s 0, then Supp(f_l(z)) C Supp(ﬂ(T) X p(T)).

Lemma 7: Any point (7, p, V') € S has a perfectly secure
(at most) é-round protocol, where ¢ € {0,1,2,...}.
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