

Improved Bound on the Local Leakage-resilience of Shamir's Secret Sharing

Hemanta K. Maji*, Hai H. Nguyen*, Anat Paskin-Cherniavsky†, Mingyuan Wang‡

*Purdue University {hmaji, nguye245}@purdue.edu

†Ariel University anatpc@ariel.ac.il

‡UC Berkeley mingyuan@berkeley.edu

Abstract—Side-channel attacks have repeatedly falsified the assumption that cryptosystems are black boxes. Leakage-resilient cryptography studies the robustness of cryptographic constructions when an unforeseen revelation of information occurs. In this context, recently, Benhamouda, Degwekar, Ishai, and Rabin (CRYPTO–2018) motivated the study of the local leakage resilience of secret-sharing schemes against an adversary who obtains independent leakage from each secret share.

Motivated by applications in secure computation, Benhamouda et al. (CRYPTO–2018) initiated the study of the local leakage resilience of Shamir's secret-sharing scheme, an essential primitive for nearly all threshold cryptography. The objective is to achieve local leakage resilience with as small a fractional reconstruction threshold as possible. Previously, Benhamouda et al. showed that the reconstruction threshold k being at least 0.907 times the number of parties n is sufficient for Shamir's secret-sharing scheme to be resilient against arbitrary single-bit local leakage from each secret share. After that, Maji et al. (CRYPTO–2021) and Benhamouda et al. (Journal of Cryptology–2021) independently lowered this threshold to $k/n \geq 0.8675$ and $k/n \geq 0.85$, respectively.

This paper contributes to this line of research and proves that $k/n \geq 0.78$ is sufficient. Next, motivated by applications in GMW-style leakage-resilient secure computation, our work extends this bound to a more general adversary who corrupts some parties (obtaining their entire secret shares) and obtains leakage from the remaining honest parties' secret shares.

Our technical analysis proceeds by Fourier analysis and accurately estimates an exponential sum arising in this analysis.

I. INTRODUCTION

Starting with the works of Kocher et al. [1], [2], innovative and sophisticated side-channel attacks have repeatedly falsified the assumption that cryptosystems are impervious black-boxes. Leakage-resilient cryptography formalizes and provides provable security guarantees against such information leakages.

Hemanta K. Maji, Hai H. Nguyen, and Mingyuan Wang are supported in part by an NSF CRII Award CNS-1566499, NSF SMALL Awards CNS-1618822 and CNS-2055605, the IARPA HECTOR project, MITRE Innovation Program Academic Cybersecurity Research Awards (2019–2020, 2020–2021), a Ross-Lynn Research Scholars Grant (2021–2022), a Purdue Research Foundation (PRF) Award (2017–2018), and The Center for Science of Information, an NSF Science and Technology Center, Cooperative Agreement CCF-0939370. Anat Paskin-Cherniavsky is supported by the Ariel Cyber Innovation Center in conjunction with the Israeli National Cyber Directorate in the Prime Minister's Office. Mingyuan Wang is also supported in part by DARPA under Agreement No. HR00112020026, AFOSR Award FA9550-19-1-0200, NSF CNS Award 1936826, and research grants by the Sloan Foundation, and Visa Inc. Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the United States Government or DARPA.

including unforeseen ones. Substantial research has examined the feasibility and efficiency of leakage-resilient cryptography against diverse models of potential leakages during the last few decades (refer to the excellent survey [3]).

In this context, recently, Benhamouda, Degwekar, Ishai, and Rabin [4] motivated the study of the *local leakage resilience of secret-sharing schemes* against an adversary who obtains independent leakage from each secret share (this primitive was also implicitly defined in [5]). A locally leakage-resilient secret-sharing scheme ensures that the leakage's joint distribution is statistically independent of the secret. Intriguingly, this concept is closely related to the fascinating problem of repairing codes; c.f., for example, Guruswami and Wootters' reconstruction algorithm [6], [7] and subsequent works [8]–[11]. The adversary does not need to reconstruct the entire secret to preclude leakage-resilience; obtaining any partial information to distinguish two secrets suffices. For example, over characteristic-two fields, an appropriate one-bit leakage from each share of a linear secret-sharing scheme, determines the least significant bit of the secret. The construction of leakage-resilient secret-sharing schemes [12]–[20] and the characterization of leakage-resilience of prevalent secret-sharing schemes [21]–[25] has been fairly challenging.

Secret-sharing schemes are typical in GMW-style [26] secure multi-party computation protocols. Motivated by this application, Benhamouda et al. [4] initiated the study of the local leakage-resilience of Shamir's secret-sharing scheme, an essential primitive for nearly all threshold cryptography. The goal is to achieve local leakage resilience with the minimum ratio k/n , where n is the number of parties and k is the reconstruction threshold. Reducing this fractional reconstruction threshold k/n entails that a smaller fraction of honest parties can ensure the security of the GMW-style MPC protocol. Benhamouda et al. [4] proved that Shamir's secret-sharing scheme over prime fields is locally leakage-resilient against arbitrary one-bit leakage from each secret share when $k/n \geq 0.907$. After that, Maji et al. [27] and Benhamouda et al. [28] independently improved this lower bound to $k/n \geq 0.8675$ and $k/n \geq 0.85$, respectively.

Summary of our results. This work contributes to this research and proves that Shamir's secret-sharing scheme is one-bit locally leakage-resilient if $k/n \geq 0.78$. More generally, in secure multi-party computation, an *insider* attacker can corrupt a subset of parties and obtain their secret shares.

In this scenario, the secret-sharing scheme must remain secure even against these stronger adversaries who obtain the secret shares of the corrupted parties and leakage from the honest parties' secret shares. Motivated by this application, our work extends the leakage-resilience bound for Shamir's secret-sharing scheme to these more general adversaries. Our technical analysis proceeds by Fourier analysis over a prime field and accurately estimates an exponential sum arising in this analysis.

II. OUR CONTRIBUTION

This section, first, introduces some notations to facilitate a high-level presentation of our results (refer to the full version for details). Let F represent an arbitrary finite field and F_p represent the prime field of order p . Fix an n -party secret-sharing scheme for arbitrary secrets in F and each party gets a secret share in F . An (n, m) *local leakage function* $\vec{\tau} = (\tau_1, \tau_2, \dots, \tau_n)$ is a collection of m -bit leakage functions $\tau_i: F \rightarrow \{0, 1\}^m$, for $i \in \{1, \dots, n\}$. Let $\vec{\tau}(s)$ be the joint distribution of (the output of) the (n, m) leakage function $\vec{\tau}$ over the sample space $(\{0, 1\}^m)^n$ defined by the experiment: (i) sample random secret shares $(h_1, h_2, \dots, h_n) \in F^n$ for the secret $s \in F$ and (ii) output the leakage $(\tau_1(h_1), \tau_2(h_2), \dots, \tau_n(h_n)) \in (\{0, 1\}^m)^n$. A secret-sharing scheme is (m, ε) -*locally leakage resilient* if for any m -bit leakage function $\vec{\tau} = (\tau_1, \tau_2, \dots, \tau_n)$, and for any pair of secrets $s_0, s_1 \in F$, the statistical distance between the joint leakage distributions $\vec{\tau}(s_0)$ and $\vec{\tau}(s_1)$ is at most ε .

Leakage resilience of Shamir's secret-sharing. Our work considers Shamir secret-sharing schemes involving n parties with a reconstruction threshold k over F_p , denoted as $\text{ShamirSS}(n, k)$. Our first result shows that $\text{ShamirSS}(n, k)$ is leakage-resilient if $k \geq 0.78n$ against *eavesdropping* attackers who obtain local leakage from all secret shares.

Theorem 1. *Let $\kappa > (2 \log_2 \pi - 1)/(3 \log_2 \pi - 2) =: c$. For any $n, k \in \mathbb{N}$ and prime $p \geq p_0(\kappa)$ satisfying $1 \geq k/n \geq \kappa$, $\text{ShamirSS}(n, k)$ over F_p is $(1, \varepsilon)$ -locally leakage resilient, where $\varepsilon = 2^{-(3 \log_2 \pi - 2)(\kappa - c)n}$.*

For example, in the theorem above, $\kappa = 0.78$ suffices.

Extension to insider attacks. Consider a more general adversary who corrupts θ parties indexed by the size- θ subset $\Theta \subseteq \{1, \dots, n\}$. The adversary obtains their entire secret shares, and gets m -bit leakage from the secret share of each uncorrupted party. To study this leakage model, consider a leakage function $\vec{\tau} = (\tau_1, \tau_2, \dots, \tau_n)$, parameterized by a size- θ subset $\Theta \subseteq \{1, \dots, n\}$ of corrupted parties. The functions satisfy $\tau_i(x) = x$ (for $i \in \Theta$) and $\tau_j: F \rightarrow \{0, 1\}^m$ (for $j \in \{1, \dots, n\} \setminus \Theta$). A secret-sharing scheme is (θ, m, ε) -*locally leakage resilient* if the statistical distance between the joint leakage distributions $\vec{\tau}(s_0)$ and $\vec{\tau}(s_1)$ is at most ε for any two secrets $s_0, s_1 \in F$ and leakage function $\vec{\tau}$ corresponding to any size- θ subset Θ . In particular, the leakage model of Theorem 1 corresponds to the case $\theta = 0$.

Theorem 2. *Let $\kappa > (2 \log_2 \pi - 1)/(3 \log_2 \pi - 2) =: c$. For any $n, k, \theta \in \mathbb{N}$ and prime $p \geq p_0(\kappa)$ satisfying $1 \geq (k - \theta)/(n - \theta) \geq \kappa$, $\text{ShamirSS}(n, k)$ over F_p is $(\theta, 1, \varepsilon)$ -locally leakage resilient, where $\varepsilon = 2^{-(3 \log_2 \pi - 2)(\kappa - c)(n - \theta)}$.*

Despite the possibility that the insider attacker on $\text{ShamirSS}(n, k)$ may be more potent than the eavesdropping attacker on $\text{ShamirSS}(n - \theta, k - \theta)$, our proof bounds both distinguishing advantages by an identical quantity.

Remark. Theorem 1 and Theorem 2 extend to the *Massey secret-sharing scheme* [29] corresponding to any *maximum distance separable* [30] linear codes over prime fields. For clarity of presentation, this draft interprets the consequences of our technical result using applications to Shamir's secret-sharing scheme.

Leakage resilience of maximum distance separable (MDS) codes. For a distribution X over the sample space F_p^n and a leakage function $\vec{\tau}$, the joint distribution $\vec{\tau}(X)$ is defined by the experiment: (i) sample \vec{x} from X and (ii) output the leakage $(\tau_1(x_1), \tau_2(x_2), \dots, \tau_n(x_n))$. For any code $C \subseteq F_p^n$, we overload our notation and use C to represent the uniform distribution over the code C . The following technical result leads to Theorem 1 and Theorem 2.

Theorem 3. *Let C be an $[n, k]_{F_p}$ MDS code. Let $\vec{\tau} = (\tau_1, \tau_2, \dots, \tau_n)$ be a local leakage function, where $\tau_i: F_p \rightarrow \{0, 1\}$. Then, the following bound holds.*

$$2\text{SD}(\vec{\tau}(C), \vec{\tau}(F_p^n)) \leq \left(2 - \frac{1}{p^2}\right)^{n-k} \left(\frac{2}{p \sin(\pi/p)}\right)^{3k-2n+1}$$

Note that the bound is not meaningful (bigger than one) when $k < (2n - 1)/3$. This upper-bound expression yields meaningful bounds even for specific values of p . For example, (assuming $n = p - 1$) (1) for $\kappa = 0.99$, any prime $p \geq 5$ is sufficient, (2) for $\kappa = 0.85$, any $p \geq 13$ suffices, and (3) for $\kappa = 0.78$, any $p \geq 1531$ works (refer to www.desmos.com/calculator/buataebkvb for the plot).

III. TECHNICAL OVERVIEW

This section presents a high-level overview of our technical approach. We refer the readers to [31] for Fourier basics. Fix an arbitrary $[n, k]_F$ MDS code C . Fix the local leakage function $\vec{\tau} = (\tau_1, \tau_2, \dots, \tau_n)$ that leaks 1-bit from every secret share. Let $\mathbb{1}_{i, \ell_i}$ be the indicator function of the set $\{x: \tau_i(x) = \ell_i\} \subseteq F$. Choose arbitrary secrets $s_0, s_1 \in F$. As established in [4], [24], [27], both $2\text{SD}(\vec{\tau}(C), \vec{\tau}(F_p^n))$ and $\text{SD}(\vec{\tau}(s_0), \vec{\tau}(s_1))$ are upper-bounded by the following Fourier-analytic proxy.

$$\sum_{\vec{\ell} \in \{0, 1\}^n} \sum_{\vec{\alpha} \in C^\perp \setminus \{\vec{0}\}} \prod_{i=1}^n \left| \widehat{\mathbb{1}_{i, \ell_i}}(\alpha_i) \right|. \quad (1)$$

Next, we utilize the Fourier properties of 1-bit leakage function (see Claim 3) to rewrite the proxy as follows.

$$\sum_{\vec{\ell} \in \{0, 1\}^n} \sum_{\vec{\alpha} \in C^\perp \setminus \{\vec{0}\}} \prod_{i=1}^n \left| \widehat{\mathbb{1}_{i, \ell_i}}(\alpha_i) \right| = \sum_{\vec{\alpha} \in C^\perp \setminus \{\vec{0}\}} \prod_{i=1}^n b_{i, \alpha_i}, \quad (2)$$

where $b_{i,\alpha_i} := 1$ if $\alpha_i = 0$, and $b_{i,\alpha_i} := 2 \cdot |\widehat{\mathbb{1}_{i,\ell_i}}(\alpha_i)|$, otherwise (Lemma 2). This rearrangement of terms removes (i) the summation over all possible leakage values $\vec{\ell} \in \{0, 1\}^n$, and (ii) the necessity to bound the Fourier coefficients of the functions $\mathbb{1}_{i,\ell_i}$ at 0. This step is the key to precisely estimating this exponential sum. To obtain the above equation, we partition the set of codewords in $C^\perp \setminus \{\vec{0}\}$ into sets A_I that contains codewords in $C^\perp \setminus \{\vec{0}\}$ whose indices of non-zero coordinates are exactly in I , and then extensively apply the Fourier properties (see Claim 3) of one-bit leakage functions.

After that, we use a similar idea as in [4]. That is, we partition the set $\{1, \dots, n\}$ into three sets I_1, I_2, J , where I_1 and I_2 are information sets of the dual code C^\perp . For brevity, let $D' = C^\perp \setminus \{\vec{0}\}$. Then, by the Cauchy-Schwarz inequality, the quantity $\sum_{\vec{\alpha} \in D'} \prod_{i=1}^n b_{i,\alpha_i}$ is upper bounded by

$$\sqrt{\sum_{\vec{\alpha} \in D'} \prod_{i \in I_1} b_{i,\alpha_i}^2} \cdot \sqrt{\sum_{\vec{\alpha} \in D'} \prod_{i \in I_2} b_{i,\alpha_i}^2} \cdot \max_{\vec{\alpha} \in D'} \prod_{i \in J} b_{i,\alpha_i}$$

Finally, we bound individual terms separately using Fourier properties of leakage functions and properties of the MDS code C^\perp . We bound the first two terms (Claim 1) using (1) I_1 and I_2 are information sets, and (2) the L_2 norm of the Fourier coefficients of the leakage function are bounded using Parseval's identity. The upper bound on the final term follows from the upper bound of $2/\pi$ on the non-zero Fourier coefficients b_{i,α_i} (see Imported Lemma 2).

IV. TECHNICAL PROOFS

This section proves Theorem 1 and Theorem 2 from Theorem 3, and then proves Theorem 3.

A. Proofs of Theorem 1 and Theorem 2

Observe that Theorem 1 follows from Theorem 2 by fixing $\theta = 0$. Therefore, it suffices to prove Theorem 2. First, we prove the following lemma required for the proof.

Lemma 1. Fix a size- θ subset $\Theta \subseteq \{1, \dots, n\}$, and a leakage function $\vec{\tau} = (\tau_1, \tau_2, \dots, \tau_n)$ such that $\tau_i(x) = x$ for every $x \in F$ and $i \in \Theta$, and $\tau_i: F \rightarrow \{0, 1\}$ for every $i \in [n] \setminus \Theta$. Define $\mathbb{1}_{i,\ell_i}(x) = 1$, if $\tau_i(x) = \ell_i$; otherwise, $\mathbb{1}_{i,\ell_i}(x) = 0$. Let $C \subseteq F^n$ be the set of all secret shares of the secret 0. Then, for any secrets $s_0, s_1 \in F$, the following bound holds.

$$\text{SD}(\vec{\tau}(s_0), \vec{\tau}(s_1)) \leq \sum_{\vec{\ell} \in \{0, 1\}^{n-\theta}} \sum_{\vec{\alpha} \in D^\perp \setminus \{\vec{0}\}} \prod_{i \notin \Theta} |\widehat{\mathbb{1}_{i,\ell_i}}(\alpha_i)|,$$

where D^\perp is the code obtained from puncturing all indices in the subset Θ of every codeword in C^\perp .

Intuitively, the statistical distance is bounded by the Fourier analytic proxy corresponding to ShamirSS($n - \theta, k - \theta$). We remark that D is a (punctured) generalized Reed-Solomon code. Observe that a punctured MDS code is MDS as well.

Proof of Lemma 1. Observe that $\mathbb{1}_{i,\ell_i}(x) = 1$ if and only if $x = \ell_i$, for leakage value ℓ_i and $i \in \Theta$. Therefore, the magnitude of every Fourier coefficients of the function $\mathbb{1}_{i,\ell_i}$

is constant. That is, $|\widehat{\mathbb{1}_{i,\ell_i}}(\alpha)| = 1/p$ for every $i \in \Theta$, $\ell_i \in F$, $\alpha \in F$. For brevity, let $\Omega = [n] \setminus \Theta$. Note that $\vec{\ell} = (\ell_1, \ell_2, \dots, \ell_n)$, where $\ell_i \in F$ for every $i \in \Theta$ and $\ell_j \in \{0, 1\}$ for every $i \in \Omega$. Thus, we have

$$\begin{aligned} & \text{SD}(\vec{\tau}(s_0), \vec{\tau}(s_1)) \\ & \leq \sum_{\vec{\ell}} \sum_{\vec{\alpha} \in C^\perp \setminus \{\vec{0}\}} \prod_{i=1}^n |\widehat{\mathbb{1}_{i,\ell_i}}(\alpha_i)| \quad (\text{Fourier-analytic proxy}) \\ & = \sum_{\vec{\ell}_\Omega \in \{0, 1\}^{n-\theta}} \sum_{\vec{\alpha} \in C^\perp \setminus \{\vec{0}\}} \sum_{\ell_\Theta \in |F|^\theta} \prod_{i=1}^n |\widehat{\mathbb{1}_{i,\ell_i}}(\alpha_i)| \\ & = \sum_{\vec{\ell}_\Omega \in \{0, 1\}^{n-\theta}} \sum_{\vec{\alpha} \in C^\perp \setminus \{\vec{0}\}} \prod_{i \in \Omega} \frac{1}{p^\theta} \prod_{i \in \Theta} |\widehat{\mathbb{1}_{i,\ell_i}}(\alpha_i)| \\ & = \sum_{\vec{\ell}_\Omega \in \{0, 1\}^{n-\theta}} \sum_{\vec{\alpha} \in C^\perp \setminus \{\vec{0}\}} \prod_{i \in \Omega} |\widehat{\mathbb{1}_{i,\ell_i}}(\alpha_i)| \\ & = \sum_{\vec{\ell} \in \{0, 1\}^{n-\theta}} \sum_{\vec{\alpha} \in D^\perp \setminus \{\vec{0}\}} \prod_{i \notin \Theta} |\widehat{\mathbb{1}_{i,\ell_i}}(\alpha_i)|. \end{aligned} \quad \square$$

Proof of Theorem 2. Consider ShamirSS(n, k) over F (a prime field of order p). Let $C \subseteq F^n$ be the set of all possible secret shares of the secret $s = 0$ in ShamirSS(n, k). Note that C is an $[n, k - 1]_F$ MDS code and C^\perp is an $[n, n - k + 1]_F$ MDS code. Let Θ be an arbitrary size- θ subset of $\{1, 2, \dots, n\}$. Let D^\perp be the code obtained from puncturing all coordinates in Θ of every codeword in C^\perp . Observe that D^\perp is an $[n - \theta, n - (k - \theta) + 1]_F$ MDS code, and D is an $[n - \theta, (k - \theta) - 1]$ MDS code. By Lemma 1, we have

$$\text{SD}(\vec{\tau}(s_0), \vec{\tau}(s_1)) \leq \sum_{\vec{\ell} \in \{0, 1\}^{n-\theta}} \sum_{\vec{\alpha} \in D^\perp \setminus \{\vec{0}\}} \prod_{i \notin \Theta} |\widehat{\mathbb{1}_{i,\ell_i}}(\alpha_i)|.$$

Applying Theorem 3 to the MDS code D , the statistical distance is upper-bounded by

$$\left(2 - \frac{1}{p^2}\right)^{(n-\theta)-(k-\theta-1)} \cdot \left(\frac{2}{p \sin(\pi/p)}\right)^{3(k-\theta-1)-2(n-\theta)+1}.$$

Asymptotically, as the prime $p \rightarrow \infty$, the right-hand side expression tends (from above) to

$$\begin{aligned} & 2^{(n-\theta)-(k-\theta)} \cdot (2/\pi)^{3(k-\theta)-2(n-\theta)} \\ & = 2^{(n-\theta)(2 \log_2 \pi - 1) - (k-\theta)(3 \log_2 \pi - 2)}. \end{aligned}$$

Therefore, if $(k - \theta)/(n - \theta) > (2 \log_2 \pi - 1)/(3 \log_2 \pi - 2) \approx 0.7795$, the ShamirSS(n, k) is locally leakage-resilient for sufficiently large p . \square

B. Proof of Theorem 3

This section states the claims needed to prove Theorem 3. We prove these claims in the subsequent subsections.

Imported Lemma 1 ([4]). Let C be any $[n, k]_F$ MDS code. Let $\vec{\tau} = (\tau_1, \tau_2, \dots, \tau_n)$ be any 1-bit leakage functions where

$\tau_i: F \rightarrow \{0, 1\}$. Define $\mathbb{1}_{i, \ell_i}(x) = 1$, if $\tau_i(x) = \ell_i$; otherwise, 0. Then, the following bound holds.

$$2\text{SD}(\vec{\tau}(C), \vec{\tau}(F_p^n)) \leq \sum_{\vec{\ell} \in \{0,1\}^n} \sum_{\vec{\alpha} \in C^\perp \setminus \{\vec{0}\}} \prod_{i=1}^n \left| \widehat{\mathbb{1}_{i, \ell_i}}(\alpha_i) \right|.$$

We remark that, for any two secrets $s_0, s_1 \in F$, the quantity $\text{SD}(\vec{\tau}(s_0), \vec{\tau}(s_1))$ is also bounded by the Fourier-analytic proxy above. One does not need to apply a triangle inequality, use the bound in the imported lemma, and incur a multiplicative factor-2 loss in the upper bound.

Lemma 2. Let C be any $[n, k]_F$ MDS code. Let $\vec{\tau} = (\tau_1, \tau_2, \dots, \tau_n)$ be any 1-bit leakage function where $\tau_i: F \rightarrow \{0, 1\}$. Define $\mathbb{1}_{i, \ell_i}(x) = 1$, if $\tau_i(x) = \ell_i$; otherwise, 0. Then, it holds that

$$\sum_{\vec{\ell} \in \{0,1\}^n} \sum_{\vec{\alpha} \in C^\perp \setminus \{\vec{0}\}} \prod_{i=1}^n \left| \widehat{\mathbb{1}_{i, \ell_i}}(\alpha_i) \right| = \sum_{\vec{\alpha} \in C^\perp \setminus \{\vec{0}\}} \prod_{i=1}^n b_{i, \alpha_i},$$

where, for $i \in \{1, \dots, n\}$ and $\alpha_i \in F$, we have

$$b_{i, \alpha_i} := \begin{cases} 1, & \text{if } \alpha_i = 0, \text{ and} \\ 2 \cdot \left| \widehat{\mathbb{1}_{i, 0}}(\alpha_i) \right|, & \text{otherwise.} \end{cases}$$

Claim 1. Let $k, n \in \mathbb{N}$ be such that $k \leq n \leq 2k$. Let C be any $[n, k]_F$ MDS code. Let $\vec{\tau} = (\tau_1, \tau_2, \dots, \tau_n)$ be any 1-bit leakage functions where $\tau_i: F \rightarrow \{0, 1\}$. Let I_1, I_2, J be an arbitrary partition of $\{1, 2, \dots, n\}$ such that information sets satisfy $|I_1| = |I_2| = n - k$. Then, it holds that

$$\sum_{\vec{\alpha} \in C^\perp \setminus \{\vec{0}\}} \prod_{i=1}^n b_{i, \alpha_i} \leq \left(2 - \frac{1}{p^2}\right)^{n-k} \cdot \max_{\vec{\alpha} \in C^\perp \setminus \{\vec{0}\}} \prod_{i \in J} b_{i, \alpha_i}.$$

Claim 2. The following bound holds.

$$\max_{\vec{\alpha} \in C^\perp \setminus \{\vec{0}\}} \prod_{i \in J} b_{i, \alpha_i} \leq \left(\frac{2}{p \sin(\pi/p)}\right)^{3k-2n+1}.$$

Proof of Theorem 3. We have

$$\begin{aligned} & 2\text{SD}(\vec{\tau}(C), \vec{\tau}(F_p^n)) \\ & \leq \sum_{\vec{\ell} \in \{0,1\}^n} \sum_{\vec{\alpha} \in C^\perp \setminus \{\vec{0}\}} \prod_{i=1}^n \left| \widehat{\mathbb{1}_{i, \ell_i}}(\alpha_i) \right| & & \text{(Imported Lemma 1)} \\ & = \sum_{\vec{\alpha} \in C^\perp \setminus \{\vec{0}\}} \prod_{i=1}^n b_{i, \alpha_i} & & \text{(Lemma 2)} \\ & \leq (2 - 1/p^2)^{n-k} \cdot \max_{\vec{\alpha} \in C^\perp \setminus \{\vec{0}\}} \prod_{i \in J} b_{i, \alpha_i} & & \text{(Claim 1)} \\ & \leq (2 - 1/p^2)^{n-k} \cdot \left(\frac{2}{p \sin(\pi/p)}\right)^{3k-2n+1}, & & \text{(Claim 2)} \end{aligned}$$

whence the theorem. \square

C. Proof of Lemma 2

Recall A_I is the set of all codewords in C^\perp whose non-zero coordinates are in the set I and zero coordinates are not in I . The fact that C^\perp is an $[n, n-k]_F$ MDS code implies that

$$A_\emptyset = \{\vec{0}\}, \text{ and } A_I = \emptyset \text{ for every } 0 < |I| \leq k \quad (3)$$

Let $\binom{[n]}{w}$ denote the set of all size- w subsets of $\{1, \dots, n\}$. The following properties of the Fourier coefficients of leakage functions will be the key to prove **Lemma 2**.

Claim 3. Let S and T be a partition of F . The the following statements hold.

- 1) $\widehat{\mathbb{1}_S}(0) + \widehat{\mathbb{1}_T}(0) = 1$.
- 2) $\widehat{\mathbb{1}_S}(\alpha) = -\widehat{\mathbb{1}_T}(\alpha)$, for every $\alpha \in F \setminus \{0\}$.

The proof of **Claim 3** follows from the linearity of Fourier transform and the (functional) identity $\mathbb{1}_S + \mathbb{1}_T = 1$. Using **Claim 3**, we shall prove the following result.

Claim 4. For any $I \subseteq \{1, \dots, n\}$ and any $\vec{\alpha} \in A_I$, the following identity holds.

$$\sum_{\vec{\ell} \in \{0,1\}^n} \prod_{i=1}^n \left| \widehat{\mathbb{1}_{i, \ell_i}}(\alpha_i) \right| = 2^{|I|} \cdot \prod_{i \in I} \left| \widehat{\mathbb{1}_{i, 0}}(\alpha_i) \right|.$$

Proof of Claim 4. Let $w = |I|$. Since $\vec{\alpha} \in A_I$, we know exactly the positions of Fourier coefficients at zero. Observe that the two sets $\tau_i^{-1}(0)$ and $\tau_i^{-1}(1)$ are a partition of F since τ_i is one-bit leakage function. Based on this information, the left-hand side term can be rewritten as follows.

$$\begin{aligned} & \sum_{\vec{\ell} \in \{0,1\}^n} \prod_{i=1}^n \left| \widehat{\mathbb{1}_{i, \ell_i}}(\alpha_i) \right| \\ & = \sum_{\vec{\ell}_I \in \{0,1\}^w} \left(\prod_{i \in I} \left| \widehat{\mathbb{1}_{i, \ell_i}}(\alpha_i) \right| \right) \left(\prod_{i \notin I} \left| \widehat{\mathbb{1}_{i, \ell_i}}(\alpha_i) \right| \right) \\ & = \sum_{\vec{\ell}_I \in \{0,1\}^w} \sum_{\vec{\ell}_{I^c} \in \{0,1\}^{n-w}} \left(\prod_{i \in I} \left| \widehat{\mathbb{1}_{i, \ell_i}}(\alpha_i) \right| \right) \left(\prod_{i \notin I} \left| \widehat{\mathbb{1}_{i, \ell_i}}(0) \right| \right) \\ & = \sum_{\vec{\ell}_I \in \{0,1\}^w} \left(\prod_{i \in I} \left| \widehat{\mathbb{1}_{i, \ell_i}}(\alpha_i) \right| \right) \left(\sum_{\vec{\ell}_{I^c} \in \{0,1\}^{n-w}} \prod_{i \notin I} \left| \widehat{\mathbb{1}_{i, \ell_i}}(0) \right| \right) \\ & = \sum_{\vec{\ell}_I \in \{0,1\}^w} \left(\prod_{i \in I} \left| \widehat{\mathbb{1}_{i, \ell_i}}(\alpha_i) \right| \right) \left(\prod_{i \notin I} \sum_{\ell_i \in \{0,1\}} \left| \widehat{\mathbb{1}_{i, \ell_i}}(0) \right| \right) \\ & = \sum_{\vec{\ell}_I \in \{0,1\}^w} \left(\prod_{i \in I} \left| \widehat{\mathbb{1}_{i, 0}}(\alpha_i) \right| \right) \left(\prod_{i \notin I} 1 \right) & & \text{(Claim 3)} \\ & = 2^{|I|} \cdot \prod_{i \in I} \left| \widehat{\mathbb{1}_{i, 0}}(\alpha_i) \right|. \end{aligned} \quad \square$$

Now, we are ready to prove **Lemma 2**.

Proof of Lemma 2. We have

$$\sum_{\vec{\ell} \in \{0,1\}^n} \sum_{\vec{\alpha} \in C^\perp \setminus \{\vec{0}\}} \prod_{i=1}^n \left| \widehat{\mathbb{1}_{i, \ell_i}}(\alpha_i) \right|$$

$$\begin{aligned}
&= \sum_{\ell \in \{0,1\}^n} \sum_{w=1}^n \sum_{I \in \binom{[n]}{w}} \sum_{\vec{\alpha} \in A_I} \prod_{i=1}^n \left| \widehat{\mathbb{1}_{i,\ell_i}}(\alpha_i) \right| \\
&= \sum_{\ell \in \{0,1\}^n} \sum_{w=k+1}^n \sum_{I \in \binom{[n]}{w}} \sum_{\vec{\alpha} \in A_I} \prod_{i=1}^n \left| \widehat{\mathbb{1}_{i,\ell_i}}(\alpha_i) \right| \quad (\text{Fact 3}) \\
&= \sum_{w=k+1}^n \sum_{I \in \binom{[n]}{w}} \sum_{\vec{\alpha} \in A_I} \left(\sum_{\ell \in \{0,1\}^n} \prod_{i=1}^n \left| \widehat{\mathbb{1}_{i,\ell_i}}(\alpha_i) \right| \right) \\
&= \sum_{w=k+1}^n \sum_{I \in \binom{[n]}{w}} \sum_{\vec{\alpha} \in A_I} \left(2^w \cdot \prod_{i \in I} \left| \widehat{\mathbb{1}_{i,0}}(\alpha_i) \right| \right) \quad (\text{Claim 4}) \\
&= \sum_{w=k+1}^n \sum_{I \in \binom{[n]}{w}} \sum_{\vec{\alpha} \in A_I} \prod_{i \in I} \left(2 \cdot \left| \widehat{\mathbb{1}_{i,0}}(\alpha_i) \right| \right) \\
&= \sum_{\vec{\alpha} \in C^\perp \setminus \{\vec{0}\}} \prod_{i=1}^n b_{i,\alpha_i}. \quad \square
\end{aligned}$$

D. Proof of Claim 1

We need the following bound for the proof of [Claim 1](#).

Claim 5. *It holds that $\sum_{\alpha_i \in F} b_{i,\alpha_i}^2 \leq 2 - 1/p^2$ for every $1 \leq i \leq n$.*

Proof of Claim 5. Let $\delta = \mathbb{E}_{x \in F} [\mathbb{1}_{i,\ell_i}(x)] = \widehat{\mathbb{1}_{i,\ell_i}}(0)$. Observe that δ is of the form a/p for some $0 \leq a \leq p$. This implies that $|1 - 2\delta| \geq 1/p$. Then, by Parseval's identity, it holds that

$$\begin{aligned}
4 \sum_{\alpha_i \in F^*} \left| \widehat{\mathbb{1}_{i,\ell_i}}(\alpha_i) \right|^2 &= 4 \left(\sum_{\alpha_i \in F} \left| \widehat{\mathbb{1}_{i,\ell_i}}(\alpha_i) \right|^2 \right) - 4 \left| \widehat{\mathbb{1}_{i,\ell_i}}(0) \right|^2 \\
&= 4(\delta - \delta^2)
\end{aligned}$$

Therefore, we have

$$\begin{aligned}
\sum_{\alpha_i \in F} b_{i,\alpha_i}^2 &= 1 + \sum_{\alpha_i \in F^*} b_{i,\alpha_i}^2 = 1 + \sum_{\alpha_i \in F^*} 4 \widehat{\mathbb{1}_{i,\ell_i}}(\alpha_i)^2 \\
&= 2 - (1 - 2\delta)^2 \leq 2 - 1/p^2.
\end{aligned}$$

The final inequality follows from $|1 - 2\delta| \geq 1/p$. \square

Proof of Claim 1. We use a similar idea as in [\[4\]](#) to prove the claim. For any vector \vec{v} and $I \subseteq [n]$, the vector \vec{v}_I represents the vector $(v_i : i \in I)$. For brevity, we denote $C^\perp \setminus \{\vec{0}\}$ as D' . Recall that C^\perp is an $[n, n-k]_F$ MDS code. This implies that any set of $n-k$ coordinates is an information set. Since $|I_1| = |I_2| = n-k$, it holds that

$$\{\vec{\alpha}_{I_1} : \vec{\alpha} \in C^\perp\} = \{\vec{\alpha}_{I_2} : \vec{\alpha} \in C^\perp\} = F^{n-k}.$$

Note that the existence of two information sets I_1 and I_2 implies that k must be at least $n/2$. Therefore, we have

$$\begin{aligned}
&\sum_{\vec{\alpha} \in D'} \prod_{i=1}^n b_{i,\alpha_i} \\
&\leq \sqrt{\sum_{\vec{\alpha} \in D'} \prod_{i \in I_1} b_{i,\alpha_i}^2} \cdot \sqrt{\sum_{\vec{\alpha} \in D'} \prod_{i \in I_2 \cup J} b_{i,\alpha_i}^2} \\
&\quad (\text{Cauchy-Schwarz's Inequality})
\end{aligned}$$

$$\begin{aligned}
&\leq \sqrt{\sum_{\vec{\alpha} \in D'} \prod_{i \in I_1} b_{i,\alpha_i}^2} \cdot \sqrt{\sum_{\vec{\alpha} \in D'} \prod_{i \in I_2} b_{i,\alpha_i}^2} \cdot \max_{\vec{\alpha} \in D'} \prod_{i \in J} b_{i,\alpha_i} \\
&\leq \sqrt{\prod_{i \in I_1} \sum_{\alpha_i \in F} b_{i,\alpha_i}^2} \cdot \sqrt{\prod_{i \in I_2} \sum_{\alpha_i \in F} b_{i,\alpha_i}^2} \cdot \max_{\vec{\alpha} \in D'} \prod_{i \in J} b_{i,\alpha_i} \\
&= (2 - 1/p^2)^{n-k} \cdot \max_{\vec{\alpha} \in D'} \prod_{i \in J} b_{i,\alpha_i} \quad (\text{Claim 5})
\end{aligned}$$

as desired. \square

E. Proof of Claim 2

We shall use the following result to prove the claim.

Imported Lemma 2 ([\[4\]](#)). *It holds that $b_{i,\alpha_i} \leq \frac{2}{p \sin(\pi/p)}$ for every $\alpha_i \in F^*$.*

Proof of Claim 2. First, observe that $\vec{\alpha}$ has at least $k+1$ non-zero coordinates for any $\vec{\alpha} \in C^\perp \setminus \{\vec{0}\}$ since C^\perp is an $[n, n-k]_F$ MDS code. This implies that vector $\vec{\alpha}_J$ has at least $(k+1) - 2(n-k)$ non-zero coordinates. [Imported Lemma 2](#) and the fact that $b_{i,0} = 1$ imply that

$$\prod_{i \in J} b_{i,\alpha_i} \leq \left(\frac{2}{p \sin(\pi/p)} \right)^{3k-2n+1} \text{ as desired. } \square$$

V. COMPARISON OF TECHNICAL APPROACHES

This section compares our technical approach with relevant previous works.

(1) Benhamouda et al. [\[4\]](#), [\[28\]](#) relied on estimating the Fourier-analytic proxy ([Equation 1](#)). Our analysis, however, employs the properties of the one-bit leakage function to *simplify/rewrite the Fourier proxy*. This simplification ([Equation 2](#)) removes the summation over the leakage value $\ell \in \{0, 1\}^n$, which, in turn, results in a tighter bound after applying similar estimation techniques (e.g., Cauchy-Schwarz).

(2) Maji et al. [\[27\]](#) improved the threshold from $k \geq 0.907n$ to $k \geq 0.8675n$ for any Shamir's secret-sharing scheme. One of their technical innovations is to analyze the proxy using the precise information on the "holes in a codeword." That is, they partition the dual code C^\perp into subsets A_I , which enables a tighter bound on the summation within each subset. Our work builds on these ideas and sums over each subset A_I first. However, by additionally using special properties of one-bit leakage function, we perform an *identical transformation* to further simplify the proxy into [Equation 2](#). Therefore, our analysis yields an even tighter bound.

(3) Maji et al. [\[24\]](#) considered leakage resilience of Shamir's secret sharing schemes as well; albeit, against a significantly weaker family of leakage functions (namely, the physical-bit leakage). Their analysis is also based on the Fourier-analytic approach. However, their analysis crucially relies on that the ℓ_1 -norm of the Fourier coefficients of the physical-bit leakage being small, which *does not hold* for arbitrary leakage functions. Therefore, it is not evident whether their analysis techniques extend to arbitrary local leakage functions, the focus of our work.

REFERENCES

- [1] P. C. Kocher, "Timing attacks on implementations of Diffie-Hellman, RSA, DSS, and other systems," in *CRYPTO'96*, ser. LNCS, N. Koblitz, Ed., vol. 1109. Springer, Heidelberg, Aug. 1996, pp. 104–113. [1](#)
- [2] P. C. Kocher, J. Jaffe, and B. Jun, "Differential power analysis," in *CRYPTO'99*, ser. LNCS, M. J. Wiener, Ed., vol. 1666. Springer, Heidelberg, Aug. 1999, pp. 388–397. [1](#)
- [3] Y. T. Kalai and L. Reyzin, "A survey of leakage-resilient cryptography," in *Providing Sound Foundations for Cryptography: On the Work of Shafi Goldwasser and Silvio Micali*, O. Goldreich, Ed. ACM, 2019, pp. 727–794. [Online]. Available: <https://doi.org/10.1145/3335741.3335768> [1](#)
- [4] F. Benhamouda, A. Degwekar, Y. Ishai, and T. Rabin, "On the local leakage resilience of linear secret sharing schemes," in *CRYPTO 2018, Part I*, ser. LNCS, H. Shacham and A. Boldyreva, Eds., vol. 10991. Springer, Heidelberg, Aug. 2018, pp. 531–561. [1, 2, 3, 5](#)
- [5] V. Goyal and A. Kumar, "Non-malleable secret sharing," in *50th ACM STOC*, I. Diakonikolas, D. Kempe, and M. Henzinger, Eds. ACM Press, Jun. 2018, pp. 685–698. [1](#)
- [6] V. Guruswami and M. Wootters, "Repairing reed-solomon codes," in *48th ACM STOC*, D. Wichs and Y. Mansour, Eds. ACM Press, Jun. 2016, pp. 216–226. [1](#)
- [7] —, "Repairing reed-solomon codes," *IEEE Trans. Inf. Theory*, vol. 63, no. 9, pp. 5684–5698, 2017. [Online]. Available: <https://doi.org/10.1109/TIT.2017.2702660> [1](#)
- [8] I. Tamo, M. Ye, and A. Barg, "Optimal repair of reed-solomon codes: Achieving the cut-set bound," in *58th FOCS*, C. Umans, Ed. IEEE Computer Society Press, Oct. 2017, pp. 216–227. [1](#)
- [9] V. Guruswami and A. S. Rawat, "MDS code constructions with small sub-packetization and near-optimal repair bandwidth," in *28th SODA*, P. N. Klein, Ed. ACM-SIAM, Jan. 2017, pp. 2109–2122. [1](#)
- [10] H. Dau, I. M. Duursma, H. M. Kiah, and O. Milenkovic, "Repairing reed-solomon codes with multiple erasures," *IEEE Trans. Inf. Theory*, vol. 64, no. 10, pp. 6567–6582, 2018. [Online]. Available: <https://doi.org/10.1109/TIT.2018.2827942> [1](#)
- [11] J. Mardia, B. Bartan, and M. Wootters, "Repairing multiple failures for scalar MDS codes," *IEEE Trans. Inf. Theory*, vol. 65, no. 5, pp. 2661–2672, 2019. [Online]. Available: <https://doi.org/10.1109/TIT.2018.2876542> [1](#)
- [12] D. Aggarwal, I. Damgård, J. B. Nielsen, M. Obremski, E. Purwanto, J. Ribeiro, and M. Simkin, "Stronger leakage-resilient and non-malleable secret sharing schemes for general access structures," in *CRYPTO 2019, Part II*, ser. LNCS, A. Boldyreva and D. Micciancio, Eds., vol. 11693. Springer, Heidelberg, Aug. 2019, pp. 510–539. [1](#)
- [13] A. Srinivasan and P. N. Vasudevan, "Leakage resilient secret sharing and applications," in *CRYPTO 2019, Part II*, ser. LNCS, A. Boldyreva and D. Micciancio, Eds., vol. 11693. Springer, Heidelberg, Aug. 2019, pp. 480–509. [1](#)
- [14] S. Badrinarayanan and A. Srinivasan, "Revisiting non-malleable secret sharing," in *EUROCRYPT 2019, Part I*, ser. LNCS, Y. Ishai and V. Rijmen, Eds., vol. 11476. Springer, Heidelberg, May 2019, pp. 593–622. [1](#)
- [15] A. Kumar, R. Meka, and A. Sahai, "Leakage-resilient secret sharing against colluding parties," in *60th FOCS*, D. Zuckerman, Ed. IEEE Computer Society Press, Nov. 2019, pp. 636–660. [1](#)
- [19] E. Chattopadhyay, J. Goodman, V. Goyal, A. Kumar, X. Li, R. Meka, and D. Zuckerman, "Extractors and secret sharing against bounded collusion protocols," in *61st FOCS*. IEEE Computer Society Press, Nov. 2020, pp. 1226–1242. [1](#)
- [16] A. Bogdanov, Y. Ishai, and A. Srinivasan, "Unconditionally secure computation against low-complexity leakage," in *CRYPTO 2019, Part II*, ser. LNCS, A. Boldyreva and D. Micciancio, Eds., vol. 11693. Springer, Heidelberg, Aug. 2019, pp. 387–416. [1](#)
- [17] S. Fehr and C. Yuan, "Towards optimal robust secret sharing with security against a rushing adversary," in *EUROCRYPT 2019, Part III*, ser. LNCS, Y. Ishai and V. Rijmen, Eds., vol. 11478. Springer, Heidelberg, May 2019, pp. 472–499. [1](#)
- [18] —, "Robust secret sharing with almost optimal share size and security against rushing adversaries," in *TCC 2020, Part III*, ser. LNCS, R. Pass and K. Pietrzak, Eds., vol. 12552. Springer, Heidelberg, Nov. 2020, pp. 470–498. [1](#)
- [20] P. Manurangsi, A. Srinivasan, and P. N. Vasudevan, "Nearly optimal robust secret sharing against rushing adversaries," in *CRYPTO 2020, Part III*, ser. LNCS, D. Micciancio and T. Ristenpart, Eds., vol. 12172. Springer, Heidelberg, Aug. 2020, pp. 156–185. [1](#)
- [21] C. Hazay, Y. Ishai, A. Marcedone, and M. Venkitasubramaniam, "LevioSA: Lightweight secure arithmetic computation," in *ACM CCS 2019*, L. Cavallaro, J. Kinder, X. Wang, and J. Katz, Eds. ACM Press, Nov. 2019, pp. 327–344. [1](#)
- [22] G. Candel, R. Géraud-Stewart, and D. Naccache, "How to compartment secrets," in *Information Security Theory and Practice - 13th IFIP WG 11.2 International Conference, WISTP 2019, Paris, France, December 11–12, 2019, Proceedings*, ser. Lecture Notes in Computer Science, M. Laurent and T. Giannetsos, Eds., vol. 12024. Springer, 2019, pp. 3–11. [Online]. Available: https://doi.org/10.1007/978-3-030-41702-4_1 [1](#)
- [23] F. Lin, M. Cheraghchi, V. Guruswami, R. Safavi-Naini, and H. Wang, "Leakage-resilient secret sharing in non-compartmentalized models," in *ITC 2020*, Y. T. Kalai, A. D. Smith, and D. Wichs, Eds. Schloss Dagstuhl, Jun. 2020, pp. 7:1–7:24. [1](#)
- [24] H. K. Maji, H. H. Nguyen, A. Paskin-Cherniavsky, T. Suad, and M. Wang, "Leakage-resilience of the shamir secret-sharing scheme against physical-bit leakages," in *EUROCRYPT 2021, Part II*, ser. LNCS, A. Canteaut and F.-X. Standaert, Eds., vol. 12697. Springer, Heidelberg, Oct. 2021, pp. 344–374. [1, 2, 5](#)
- [25] D. Q. Adams, H. K. Maji, H. H. Nguyen, M. L. Nguyen, A. Paskin-Cherniavsky, T. Suad, and M. Wang, "Lower bounds for leakage-resilient secret sharing schemes against probing attacks," in *IEEE International Symposium on Information Theory ISIT 2021*, 2021. [1](#)
- [26] O. Goldreich, S. Micali, and A. Wigderson, "How to play any mental game or A completeness theorem for protocols with honest majority," in *19th ACM STOC*, A. Aho, Ed. ACM Press, May 1987, pp. 218–229. [1](#)
- [27] H. K. Maji, A. Paskin-Cherniavsky, T. Suad, and M. Wang, "Constructing locally leakage-resilient linear secret-sharing schemes," in *CRYPTO 2021, Part III*, ser. LNCS, T. Malkin and C. Peikert, Eds., vol. 12827. Virtual Event: Springer, Heidelberg, Aug. 2021, pp. 779–808. [1, 2, 5](#)
- [28] F. Benhamouda, A. Degwekar, Y. Ishai, and T. Rabin, "On the local leakage resilience of linear secret sharing schemes," *Journal of Cryptology*, vol. 34, no. 2, p. 10, Apr. 2021. [1, 5](#)
- [29] J. L. Massey, "Some applications of coding theory in cryptography," *Mat. Contemp.*, vol. 21, no. 16, pp. 187–209, 2001. [2](#)
- [30] F. J. MacWilliams and N. J. A. Sloane, *The theory of error correcting codes*. Elsevier, 1977, vol. 16. [2](#)
- [31] R. O'Donnell, *Analysis of boolean functions*. Cambridge University Press, 2014. [2](#)