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Abstract—Side-channel attacks have repeatedly falsified the
assumption that cryptosystems are black boxes. Leakage-resilient
cryptography studies the robustness of cryptographic construc-
tions when an unforeseen revelation of information occurs.
In this context, recently, Benhamouda, Degwekar, Ishai, and
Rabin (CRYPTO-2018) motivated the study of the local leakage
resilience of secret-sharing schemes against an adversary who
obtains independent leakage from each secret share.

Motivated by applications in secure computation, Ben-
hamouda et al. (CRYPTO-2018) initiated the study of the local
leakage resilience of Shamir’s secret-sharing scheme, an essential
primitive for nearly all threshold cryptography. The objective is
to achieve local leakage resilience with as small a fractional re-
construction threshold as possible. Previously, Benhamouda et al.
showed that the reconstruction threshold % being at least 0.907
times the number of parties n is sufficient for Shamir’s secret-
sharing scheme to be resilient against arbitrary single-bit local
leakage from each secret share. After that, Maji et al. (CRYPTO-
2021) and Benhamouda et al. (Journal of Cryptology—2021)
independently lowered this threshold to k/n > 0.8675 and
k/n > 0.85, respectively.

This paper contributes to this line of research and proves
that k/n > 0.78 is sufficient. Next, motivated by applications
in GMW-style leakage-resilient secure computation, our work
extends this bound to a more general adversary who corrupts
some parties (obtaining their entire secret shares) and obtains
leakage from the remaining honest parties’ secret shares.

Our technical analysis proceeds by Fourier analysis and
accurately estimates an exponential sum arising in this analysis.

I. INTRODUCTION

Starting with the works of Kocher et al. [1], [2], innovative
and sophisticated side-channel attacks have repeatedly falsified
the assumption that cryptosystems are impervious black-boxes.
Leakage-resilient cryptography formalizes and provides prov-
able security guarantees against such information leakages,
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including unforeseen ones. Substantial research has examined
the feasibility and efficiency of leakage-resilient cryptography
against diverse models of potential leakages during the last
few decades (refer to the excellent survey [3]).

In this context, recently, Benhamouda, Degwekar, Ishai, and
Rabin [4] motivated the study of the local leakage resilience
of secret-sharing schemes against an adversary who obtains
independent leakage from each secret share (this primitive
was also implicitly defined in [5]). A locally leakage-resilient
secret-sharing scheme ensures that the leakage’s joint distri-
bution is statistically independent of the secret. Intriguingly,
this concept is closely related to the fascinating problem of
repairing codes; c.f., for example, Guruswami and Wootter’s
reconstruction algorithm [6], [7] and subsequent works [8]—
[11]. The adversary does not need to reconstruct the entire
secret to preclude leakage-resilience; obtaining any partial
information to distinguish two secrets suffices. For example,
over characteristic-two fields, an appropriate one-bit leakage
from each share of a linear secret-sharing scheme, deter-
mines the least significant bit of the secret. The construc-
tion of leakage-resilient secret-sharing schemes [12]-[20] and
the characterization of leakage-resilience of prevalent secret-
sharing schemes [21]-[25] has been fairly challenging.

Secret-sharing schemes are typical in GMW-style [26] se-
cure multi-party computation protocols. Motivated by this
application, Benhamouda et al. [4] initiated the study of the
local leakage-resilience of Shamir’s secret-sharing scheme,
an essential primitive for nearly all threshold cryptography.
The goal is to achieve local leakage resilience with the
minimum ratio k/n, where n is the number of parties and
k is the reconstruction threshold. Reducing this fractional
reconstruction threshold k/n entails that a smaller fraction
of honest parties can ensure the security of the GMW-style
MPC protocol. Benhamouda et al. [4] proved that Shamir’s
secret-sharing scheme over prime fields is locally leakage-
resilient against arbitrary one-bit leakage from each secret
share when k/n > 0.907. After that, Maji et al. [27] and
Benhamouda et al. [28] independently improved this lower
bound to k/n > 0.8675 and k/n > 0.85, respectively.

Summary of our results. This work contributes to this
research and proves that Shamir’s secret-sharing scheme is
one-bit locally leakage-resilient if k/n > 0.78. More gen-
erally, in secure multi-party computation, an insider attacker
can corrupt a subset of parties and obtain their secret shares.
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In this scenario, the secret-sharing scheme must remain se-
cure even against these stronger adversaries who obtain the
secret shares of the corrupted parties and leakage from the
honest parties’ secret shares. Motivated by this application,
our work extends the leakage-resilience bound for Shamir’s
secret-sharing scheme to these more general adversaries. Our
technical analysis proceeds by Fourier analysis over a prime
field and accurately estimates an exponential sum arising in
this analysis.

II. OUR CONTRIBUTION

This section, first, introduces some notations to facilitate
a high-level presentation of our results (refer to the full
version for details). Let F' represent an arbitrary finite field
and F), represent the prime field of order p. Fix an n-
party secret-sharing scheme for arbitrary secrets in F' and
each party gets a secret share in F. An (n,m) local leak-
age function T = (11,72,...,T,) is a collection of m-bit
leakage functions 7;: ' — {0,1}", for i € {1,...,n}.
Let 7(s) be the joint distribution of (the output of) the
(n,m) leakage function 7 over the sample space ({0,1}"")"
defined by the experiment: (i) sample random secret shares
(h1,ha,...,hy,) € F™ for the secret s € F and (ii) output the
leakage (71(h1),72(ha), ..., Tn(hn)) € ({0,1}™)". A secret-
sharing scheme is (m,e)-locally leakage resilient if for any
m-bit leakage function 7 = (71, 72,...,7,), and for any pair
of secrets sg, s1 € F, the statistical distance between the joint
leakage distributions 7(sg) and 7(s1) is at most .

Leakage resilience of Shamir’s secret-sharing. Our work
considers Shamir secret-sharing schemes involving n par-
ties with a reconstruction threshold £ over F),, denoted as
ShamirSS(n, k). Our first result shows that ShamirSS(n, k) is
leakage-resilient if k£ > 0.78n against eavesdropping attackers
who obtain local leakage from all secret shares.

Theorem 1. Let k > (2log, ™ —1)/(3log, ™ — 2) =: c. For
any n,k € N and prime p > po(k) satisfying 1 > k/n >
k, ShamirSS(n, k) over F, is (1,¢)-locally leakage resilient,
where ¢ = 2~ (3108 m=2)(r—c)n

For example, in the theorem above, x = 0.78 suffices.

Extension to insider attacks. Consider a more general
adversary who corrupts € parties indexed by the size- subset
© C {1,...,n}. The adversary obtains their entire secret
shares, and gets m-bit leakage from the secret share of each
uncorrupted party. To study this leakage model, consider a
leakage function 7 = (71,72, . . ., T» ), parameterized by a size-
0 subset © C {1,...,n} of corrupted parties. The functions
satisfy 7;(z) = x (for i € ©) and 7;: F — {0,1}" (for
j € {1l,...,n}\ ©). A secret-sharing scheme is (0, m,e)-
locally leakage resilient if the statistical distance between the
joint leakage distributions 7(sg) and 7(s;) is at most € for any
two secrets sg, s1 € F' and leakage function 7 corresponding
to any size-0 subset O. In particular, the leakage model of
Theorem 1 corresponds to the case § = 0.

Theorem 2. Let k > (2log, ™ —1)/(3logy, ™ — 2) =: ¢. For
any n,k,0 € N and prime p > po(k) satisfying 1 > (k —
0)/(n — 0) > Kk, ShamirSS(n, k) over F), is (0,1, ¢)-locally
leakage resilient, where ¢ = 2~ (31082 7=2)(r—c)(n—0)

Despite the possibility that the insider attacker on
ShamirSS(n, k) may be more potent than the eavesdropping
attacker on ShamirSS(n — 6,k — 6), our proof bounds both
distinguishing advantages by an identical quantity.

Remark. Theorem 1 and Theorem 2 extend to the Massey
secret-sharing scheme [29] corresponding to any maximum
distance separable [30] linear codes over prime fields. For
clarity of presentation, this draft interprets the consequences
of our technical result using applications to Shamir’s secret-
sharing scheme.

Leakage resilience of maximum distance separable
(MDS) codes. For a distribution X over the sample space F}}
and a leakage function 7, the joint distribution 7(X) is defined
by the experiment: (i) sample & from X and (ii) output the
leakage (71(x1),72(x2),...,Tn(zy)). For any code C C F,
we overload our notation and use C' to represent the uniform
distribution over the code C. The following technical result
leads to Theorem 1 and Theorem 2.

Theorem 3. Let C be an [n,k|p, MDS code. Let 7 =
(11,7T2,...,Tn) be a local leakage function, where T;: F,, —
{0,1}. Then, the following bound holds.

1 >7L—k‘ < 2 )3k—2n+1
P’ psin(r/p)

Note that the bound is not meaningful (bigger than one)
when k < (2n — 1)/3. This upper-bound expression yields
meaningful bounds even for specific values of p. For exam-
ple, (assuming n = p — 1) (1) for k = 0.99, any prime
p = 5 is sufficient, (2) for k = 0.85, any p > 13 suffices,
and (3) for k = 0.78, any p > 1531 works (refer to
www.desmos.com/calculator/buatuebkvb for the plot).

25D (7(C) , 7(F})) < <2 —

III. TECHNICAL OVERVIEW

This section presents a high-level overview of our technical
approach. We refer the readers to [31] for Fourier basics.
Fix an arbitrary [n, k]r MDS code C. Fix the local leakage
function 7 = (1,72,...,7n) that leaks 1-bit from every
secret share. Let 1;,, be the indicator function of the set
{z: 7;(x) = ¢;} C F. Choose arbitrary secrets sg,s; € F.
As established in [4], [24], [27], both 25D (F(C) , F(Fg))
and SD (7(so) , 7(s1))) are upper-bounded by the following
Fourier-analytic proxy.

DRI

7e{0,1}™ acCcL\{0} =1

(1)

Ti g, ().

Next, we utilize the Fourier properties of 1-bit leakage function
(see Claim 3) to rewrite the proxy as follows.

> Y I — Y I @

le{0,1}" aec+\{0} =1 aect\{o} i=1

L, ()
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where b; o, :=1if a; = 0, and b; o, =2 - ]l/i,\o(ai) , oth-
erwise (Lemma 2). This rearrangement of terms removes (i)
the summation over all possible leakage values (e {0,1}",
and (ii) the necessity to bound the Fourier coefficients of
the functions 1;,, at 0. This step is the key to precisely
estimating this exponential sum. To obtain the above equation,
we partition the set of codewords in C-\ {0} into sets A; that
contains codewords in C'- \ {0} whose indices of non-zero
coordinates are exactly in I, and then extensively apply the
Fourier properties (see Claim 3) of one-bit leakage functions.

After that, we use a similar idea as in [4]. That is, we
partition the set {1,...,n} into three sets I, I, J, where I3
and I, are information sets of the dual code C'-. For brevity,
let D’ = C-\ {0}. Then, by the Cauchy-Schwarz inequality,
the quatity Y. []i—; bi o, is upper bounded by

Z H 1,00 Z H 1,005 max bl et
aebD’
aeD’iely aeD’ iel; i€J

Finally, we bound individual terms separately using Fourier
properties of leakage functions and properties of the MDS
code C+. We bound the first two terms (Claim 1) using
(1) I and I are information sets, and (2) the L, norm of
the Fourier coefficients of the leakage function are bounded
using Parseval’s identity. The upper bound on the final term
follows from the upper bound of 2/7 on the non-zero Fourier
coefficients b; ., (see Imported Lemma 2).

IV. TECHNICAL PROOFS

This section proves Theorem 1 and Theorem 2 from Theo-
rem 3, and then proves Theorem 3.

A. Proofs of Theorem 1 and Theorem 2

Observe that Theorem 1 follows from Theorem 2 by fixing
0 = 0. Therefore, it suffices to prove Theorem 2. First, we
prove the following lemma required for the proof.

Lemma 1. Fix a size-0 subset © C {1,...,n}, and a leakage
Sunction 7 = (711, Ta,...,Tn) such that 7;(x) = x for every
x € Fandic®, and 7;: F — {0,1} for every i € [n] \ ©.
Define 1;4,(x) = 1, if 7;(x) = {;; otherwise, 1;4,(x) = 0.
Let C' C F™ be the set of all secret shares of the secret O.
Then, for any secrets sg,s1 € F, the following bound holds.

SD (7(s0) , 7(s1)) <

7e{0,1}"~ % 3e DL\ {0} i¢©

where D is the code obtained from puncturing all indices in
the subset © of every codeword in C*.

Intuitively, the statistical distance is bounded by the Fourier
analytic proxy corresponding to ShamirSS(n — 6,k — 6). We
remark that D is a (punctured) generalized Reed-Solomon
code. Observe that a punctured MDS code is MDS as well.

Proof of Lemma I . Observe that 1;,,(z) = 1 if and only
if © = ¢;, for leakage value ¢; and i € O. Therefore, the
magnitude of every Fourier coefficients of the function 1; 4,

is constant. That is, ’m(a)‘ = 1/p for every i € O,
¢; € F, o € F. For brevity, let = [n] \ ©. Note that
7 = (l1,4a,...,¢,), where ¢; € F for every i € © and
¢; € {0,1} for every i € Q. Thus, we have

SD (7(s0) . 7(s1))
DI (0

7 aeci\{o) i=1

i () (Fourier-analytic proxy)

—0 &eC+\{0} fo€|F|9 i=1

1
2

160,137 FeC+\{0} i€ loc|F|®

> ¥ Gl

Tae{0.1}" GG\ (0} oelpe L €9

>, It

—0 qeCcL\{0} €0

zl 0[2‘

il Oéz'

Nx
03

O

7e{0,1}"~% 3e DL\ {0} i¢©

Proof of Theorem 2 . Consider ShamirSS(n,k) over F (a
prime field of order p). Let C' C F™ be the set of all
possible secret shares of the secret s = 0 in ShamirSS(n, k).
Note that C is an [n,k — 1]z MDS code and C* is an
[n,n—k+1]F MDS code. Let © be an arbitrary size-§ subset
of {1,2,...,n}. Let D+ be the code obtained from puncturing
all coordinates in © of every codeword in C. Observe that
D+ isan [n—0,n — (k—6) + 1] MDS code, and D is an
[n— 0, (k—6) — 1] MDS code. By Lemma 1, we have

SD (7(so) , T(s1)) <

7e{0,1}"~° @D+ \{0} i¢©

Applying Theorem 3 to the MDS code D ,
distance is upper-bounded by

1 (n—0)—(k—6-1) 9 3(k—0—1)—2(n—0)+1
2_ | .
( p2) (psm(ﬂ/p)>

Asymptotically, as the prime p — oo, the right-hand side
expression tends (from above) to

2(71—9)—(k—9) (2/ )S(k 0)—2(n—0)
:2(n—9)(210g27r 1)—(k—0)(3log, m— 2).

the statistical

Therefore, if (k —6)/(n —6) > (2logom — 1)/(3log, ™ —
2) ~ 0.7795, the ShamirSS(n, k) is locally leakage-resilient
for sufficiently large p. O

B. Proof of Theorem 3

This section states the claims needed to prove Theorem 3.
We prove these claims in the subsequent subsections.

Imported Lemma 1 ( [4]). Let C be any [n, k] MDS code.
Let T = (71, T2,...,Tn) be any 1-bit leakage functions where
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7i: ' — {0,1}. Define 1;4,(z) = 1, if 7;(x) = {;; otherwise,
0. Then, the following bound holds.

25D (7(C) , 7(F))

7e{0,1}" acct\{0} =1

We remark that, for any two secrets sp,s1 € F|, the
quantity SD (7(so) , T(s1)) is also bounded by the Fourier-
analytic proxy above. One does not need to apply a triangle
inequality, use the bound in the imported lemma, and incur a
multiplicative factor-2 loss in the upper bound.

Lemma 2. Let C be any [n,klp MDS code. Let T =
(11,72, ...,Tn) be any 1-bit leakage function where T;: F —
{0,1}. Define 1, 4,(x) =1, if 7;(x) = £;; otherwise, 0. Then,
it holds that

= Z H bi,aw

aect\{0} i=1

(cvi)

7e{0,1}™ aeCc+\{0} i=1

where, fori € {1,...,

1,
biav =
e 9.

Claim 1. Let k,n € N be such that k < n < 2k. Let C be
any [n,k]p MDS code. Let 7 = (11,72, ...,Tn) be any 1-bit
leakage functions where 7;: F — {0,1}. Let I,15,J be an
arbitrary partition of {1,2,...,n} such that information sets
satisfy |I| = |Iz| = n — k. Then, it holds that

n n—=k
1
S Ine<(-)
Lo p
aect\{0} =1
Claim 2. The following bound holds.

Moo < (tem)

Proof of Theorem 3 . We have

7(Fy))

n} and «; € F, we have

if a; =0, and

]l/i,\o(ai) , otherwise.

max
aeC+\{0}

I1%.0.-

icJ

max
GeCH\{0} ;

25D (7(C) |

7e{0,1}™ aec+\{0} =1
(Imported Lemma 1)

= > b

(Lemma 2)
aecLt\{o} =1
<@-1/p)"* max []bias (Claim 1)
aecH\{0} ;=
2 3k—2n+1

<(2=1/p)"F. ( > ,  (Claim 2)

@=1/2"" pomtn/p)
whence the theorem. O

C. Proof of Lemma 2

Recall A; is the set of all codewords in C- whose non-zero
coordinates are in the set I and zero coordinates are not in 1.
The fact that C* is an [n,n — k] MDS code implies that

Ay = {0}, and A; = 0 for every 0 < |I| < k 3)

Let ([ ]) denote the set of all size-w subsets of {1,...,n}.
The following properties of the Fourier coefficients of leakage
functions will be the key to prove Lemma 2.

Claim 3. Let S and T be a partition of F. The the following
statements hold.

1) Lg(0) + L7(0) = 1.

2) 1s(a) = =17 («), for every a € F\ {0}.

The proof of Claim 3 follows from the linearity of Fourier
transform and the (functional) identity 1g + 1 = 1. Using
Claim 3, we shall prove the following result.

Claim 4. For any I C {1,...,
following identity holds.

> e

72|I| H
KE{O 1" i=1

Proof of Claim 4 . Let w = |I|. Since & € Aj, we know
exactly the positions of Fourier coefficients at zero. Observe
that the two sets 7, *(0) and 7, ' (1) are a partition of F' since
7; is one-bit leakage function. Based on this information, the
left-hand side term can be rewritten as follows.

n} and any & € Aj, the

i,0; av lo(al)

Ze{o,1}m =1
- 5 () (T e
Ze{o,1}n \i€l il
- Y (Mt ) 1[0
l1e{0,1}¥ fre{0,1}»—w \i igl
fre{0,1}® <1€I ) 70,1} i€l
( ) |5, 0)
fre{o,1}w \iel il l; e{o 1}
( ) (Claim 3)
fre{o,1yw \iel il
=21 T | Tio(as)]- 0
i€l

Now, we are ready to prove Lemma 2.

Proof of Lemma 2 . We have

> Y I

i4; (Oéi)
7e{0,1}™ aeC+\{0} =1
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= > > T e () (Fact 3)
ZE{O,I}" w=k+1 IE([:]]) acAyi=1
=y ¥ ( 1T ()
w=k+1 ]e([z]) acAr _‘E{O,l}" =1
n
— <2w T Ti0(c) ) (Claim 4)
w=k+1 IG([Z;]) aceAr el

aecL\{0} =1
D. Proof of Claim 1
We need the following bound for the proof of Claim 1.
Claim 5. It holds that ), b7, < 2—1/p® for every
1<i<n
Proof of Claim 5 . Let § = Eycp[l; g, ()] = ]1:2(0) Ob-
serve that ¢ is of the form a/p for some 0 < a < p. This

implies that |1 — 24| > 1/p. Then, by Parseval’s identity, it
holds that
o 2
'Y Lig () ) —4
Therefore, we have
Do, =14 > bl =1+ Y AL ()

L0, (i) Li ¢, (0)

— ‘ 2

:_, < >
a; EF
=4(0 - 6%)

a; EF*

o, €F a; EF* a; EF*
=2-(1-20)2<2—-1/p%
The final inequality follows from |1 — 26| > 1/p. O

Proof of Claim 1 . We use a similar idea as in [4] to prove the
claim. For any vector ¥ and I C [n], the vector ¥ represents
the vector (v;: i € I). For brevity, we denote C-\ {0} as
D’. Recall that C* is an [n,n — k] MDS code. This implies
that any set of n — k coordinates is an information set. Since
|I;| = |I2| = n — k, it holds that

{dn:deCt)={dy:deCt}=F""

Note that the existence of two information sets I; and Io
implies that k& must be at least n/2. Therefore, we have

> Ibe

aeD’ i=1
2 2
< )2 Iwe- /> 11 %
aeD’iely aeD’ieluJ

(Cauchy-Schwarz’s Inequality)

< Z H b?az ’ Z H b12,o/7 : géaDX’ bi,ai

aeD’ i€l aeD’ i€ls e
2 2
< 1L 22 bha J11 20 0 max ][ b
i€l o; €F i€l a; €EF iceJ
n—k .
=(2-1/p*)" " -max || bia, (Claim 5)
aeD’ -
ieJ
as desired. O

E. Proof of Claim 2

We shall use the following result to prove the claim.

Imported Lemma 2 ( [4]). It holds that b; ., < m for
every o; € F™.

Proof of Claim 2 . First, observe that @ has at least k + 1
non-zero coordinates for any @ € C-\ {0} since C* is an
[n,n— k] MDS code. This implies that vector & has at least
(k4 1) — 2(n — k) non-zero coordinates. Imported Lemma 2
and the fact that b; o = 1 imply that

2 3k—2n+1
[0 < () as desired. [
Lo < (i)

V. COMPARISON OF TECHNICAL APPROACHES

This section compares our technical approach with relevant
previous works.

(1) Benhamouda et al. [4], [28] relied on estimating the
Fourier-analytic proxy (Equation 1). Our analysis, however,
employs the properties of the one-bit leakage function to
simplify/rewrite the Fourier proxy. This simplification (Equa-
tion 2) removes the summation over the leakage value (e
{0,1}", which, in turn, results in a tighter bound after applying
similar estimation techniques (e.g., Cauchy-Schwarz).

(2) Maji et al. [27] improved the threshold from k£ > 0.907n
to k£ > 0.8675n for any Shamir’s secret-sharing scheme. One
of their technical innovations is to analyze the proxy using
the precise information on the “holes in a codeword.” That
is, they partition the dual code C' into subsets A;, which
enables a tighter bound on the summation within each subset.
Our work builds on these ideas and sums over each subset Aj
first. However, by additionally using special properties of one-
bit leakage function, we perform an identical transformation
to further simplify the proxy into Equation 2. Therefore, our
analysis yields an even tighter bound.

(3) Maji etal. [24] considered leakage resilience of
Shamir’s secret sharing schemes as well; albeit, against a
significantly weaker family of leakage functions (namely, the
physical-bit leakage). Their analysis is also based on the
Fourier-analytic approach. However, their analysis crucially
relies on that the ¢;-norm of the Fourier coefficients of the
physical-bit leakage being small, which does not hold for
arbitrary leakage functions. Therefore, it is not evident whether
their analysis techniques extend to arbitrary local leakage
functions, the focus of our work.
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