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Late-stage clinical trials have been conducted primarily to establish the
efficacy of a new treatment in an intended population. A corollary of popula-
tion heterogeneity in clinical trials is that a treatment might be effective for
one or more subgroups, rather than for the whole population of interest. As
an example, the phase III clinical trial of panitumumab in metastatic colorec-
tal cancer patients failed to demonstrate its efficacy in the overall population,
but a subgroup associated with tumor KRAS status was found to be promis-
ing (Peeters et al. (Am. J. Clin. Oncol. 28 (2010) 4706-4713)). As we search
for such subgroups via data partitioning based on a large number of biomark-
ers, we need to guard against inflated type I error rates due to multiple testing.
Commonly-used multiplicity adjustments tend to lose power for the detection
of subgroup treatment effects. We develop an effective omnibus test to detect
the existence of,, at least, one subgroup treatment effect, allowing a large num-
ber of possible subgroups to be considered and possibly censored outcomes.
Applied to the panitumumab trial data, the proposed test would confirm a
significant subgroup treatment effect. Empirical studies also show that the
proposed test is applicable to a variety of outcome variables and maintains
robust statistical power.

1. Introduction. The primary purpose of a late-stage clinical trial is to establish effi-
cacy of a new treatment measured by the overall treatment effect in an intended population.
However, it is quite common that treatment effects are sufficiently heterogeneous across sub-
groups such that a treatment might be most effective for one subgroup of patients when
the overall treatment effect is marginal. Identification of subgroups in clinical settings is rou-
tinely carried out with seemingly promising findings. For example, eight-week treatment with
ledipasvir/sofosbuvir was found to be effective for chronic hepatitis C subjects with certain
genotypes (O’Brien, Kuhs and Pfeiffer (2014)). The medicine Vectibix (panitumumab) for
metastatic colorectal cancer was approved for patients without RAS gene mutation when the
overall treatment effect was much less promising (Peeters et al. (2010, 2015)).

In this paper we focus on the randomized phase III study of panitumumab in metastatic col-
orectal cancer (mCRC) patients (Peeters et al. (2010)). Panitumumab is a fully human antiepi-
dermal growth factor receptor (EGFR) monoclonal antibody that improves progression-free
survival in chemotherapy-refractory mCRC. This trial evaluated the efficacy and safety
of panitumumab plus fluorouracil, leucovorin, and irinotecan (FOLFIRI), compared with
FOLFIRI alone, after failure of the initial treatment for mCRC. Besides the treatment assign-
ment, the data contain other patient characteristics such as age, sex, and Kirsten rat sarcoma
virus (KRAS) gene mutation status. The primary endpoint is the progression free survival,
and the secondary endpoint is the binary clinical response. Both endpoints were considered
in our analysis.

In the aforementioned panitumumab trial, given that the treatment did not pass the regula-
tory approval for the general population, investigators naturally asked if there is any patient
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subgroup that benefits from the treatment more significantly. To this end, attempts have been
made to explore the potential for further refinement of patient selection using data from the
original study (Peeters et al. (2015)). It is well recognized that, if the same trial data are
used to identify subgroups and to evaluate treatment effects for the selected subgroup, we
must account for the selection bias in the post hoc analysis; see Naggara et al. (2011) and
Dmitrienko et al. (2020). When a large number of possible subgroups are searched over, sim-
ple multiplicity adjustments (e.g., the Bonferroni adjustment) often lead to a substantial loss
of statistical power. An omnibus test on the treatment effects of subgroups would strengthen
statistical support to further analysis and validation of certain subgroup(s) for the experimen-
tal treatment. Our goal is to develop a formal statistical test on the existence of favorable
subgroups.

Several methods have been studied in the literature for identifying subgroups with differ-
ential treatment effects based on decision trees. For example, a generalized unbiased interac-
tion detection and estimation algorithm was discussed in Loh (2009) and Loh, He and Man
(2015). Coupled with the extensive tree-split search, this method uses multiple significance
tests on main effects and interactions to reduce the size of the tree structures and to improve
precision of the splits. Sies, Demyttenaere and Mechelen (2019) focused on identifying sub-
groups with heterogeneous treatment effects and discussed performances of several existing
methods. Ondra et al. (2016) reviewed various methods on identification of subgroups with
heterogeneous treatment effects. Dmitrienko, Millen and Lipkovich (2017) reviewed multi-
plicity adjustment methods in confirmatory subgroup analysis based on prespecified patient
subpopulations.

The evaluation of the subgroup effects has also attracted attention in the recent literature.
Guo and He (2021) developed a debiasing resampling approach to the evaluation of the best
selected subgroup without being (unnecessarily) protective against other subgroups. Wager
and Athey (2018) developed a nonparametric causal forest for estimating heterogeneous treat-
ment effects based on random forest algorithms. Joshi et al. (2019) discussed the problem of
estimating a treatment subgroup, based on a single biomarker, and that of testing for treatment
effect in the identified subgroup.

Statistical tests for the existence of heterogeneous or differential subgroups have limited
coverage in the literature. Shen and He (2015) introduced a structured logistic-normal mixture
model framework to perform a confirmatory statistical test for the existence of subgroups.
Shen and Qu (2020) expanded the work to handle longitudinal data where the heterogeneous
treatment effect is modeled as a random effect from a two-component mixture model. Behr
et al. (2020) presented a statistical test on association between the response variable and all
levels of the tree hierarchy based on given tree structures. These methods, however, focus
on differential subgroup effects which is broader than the existence of any subgroup with
significant treatment effects.

In the present paper we propose an omnibus test on the existence of a subgroup with
favorable treatment effects. More specifically, we focus on subgroups that are induced
through partitions based on covariates. The proposed test, supported by the recent theory
on high-dimensional bootstrap-based tests of Chernozhukov, Chetverikov and Kato (2013)
and Chernozhukov, Chetverikov and Kato (2019), permits a large number of possible parti-
tions and works with common measures of treatment effects with various types of outcome
variables. The proposed method allows a flexible form of covariate adjustments in the calcu-
lation of treatment effects and works with high dimensional covariates as well. Simulation
studies demonstrate that the proposed method preserves type-I error rates well in a variety of
scenarios.

The rest of the paper is organized as follows. Section 2 describes the proposed framework
and the construction of a nonparametric omnibus test for subgroup treatment effects using
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the bootstrap. Section 3 provides an extension of the proposed method to censored survival
outcomes. Section 4 presents comparative simulation studies, and Section 5 revisits the phase
III trial data on panitumumab to see what we can learn from the proposed test. We provide
some concluding remarks in Section 6.

2. Method. Let Y be the outcome of interest, and assume without loss of generality that
a greater value of Y is a more favorable outcome. Let X = (X1, ..., X ) be a p-dimensional
vector of covariates. The covariates may include demographic factors, biomarkers, and their
low-order interactions. Denote by T the binary treatment indicator, where T =1 indicates
treatment and 7 = 0 indicates control. In this paper we focus on randomized trials where
the treatment assignment 7 is independent of the covariates X. We consider testing the
null hypothesis of no treatment effect in any subpopulation, based on the observed data
{X;, Y, T;), i =1,...,n}, as independent realizations from the joint probability distribu-
tionof (X, Y, T).

2.1. The proposed test statistic. We consider J potential subgroups of interest, G ;, where
j=1,...,J.Each of them is a subset of the sample space of X and may take various forms.
For example, {X : X} > ¢} for some cut-off points cx (k =1, ..., p) and their complements
can form subgroups. The entire population is also considered as a subgroup of interest. The
total number of subgroups J could be greater than p. Our null hypothesis of interest is

Hy: the conditional distribution of Y, given (X € G;, T), does not vary with T for any j.

To reduce the variability in the outcome variable, we consider adjusting for X by subtract-
ing a function of X, denoted by f, from Y and use Y — f(X) as the adjusted outcome. A
specific form of f will be described later. We then rely on an estimated treatment effect on
the adjusted outcome for subgroup j,

Bi=E[lY — FXOMT =1,XeGH]E{I(T =0,X€G)))
—E[{Y - FXOM(T =0,X e GHE{I(T =1,Xe€G))},

where E denotes the empirical expectation based on the observed data. Note that ,B} is an
estimate of the scaled treatment effect

Bio=ci(E[[Y - FX} I T=1.X €G]~ E[{Y - FX)} I T =0.X €G)),

where ¢; = P(T =0,X e G;)P(T =1,X € Gj). The reason we use the scaled quantity here
is to avoid instability issues in the estimation of the conditional expectations when few cases
are under the treatment in one of the subgroups. Since 7 is independent of X in randomized
trials, we also have Bjo =c;{E(Y |T =1,X€G;)— E(Y |T =0,X € G;)} which is free of
/- Under the null hypothesis we have ;0 =0

Note that 8¢ can be interpreted as a scaled difference in the conditional expectations for
subgroup j, and more importantly, B\j is a convenient summary statistic for comparison of
the conditional distributions. Since the mean can be expressed as an integral of the survival
function, 8o can be viewed as the integral of the difference in two survival functions scaled
by ¢;. One may also consider a more general class of statistics for testing equality of distri-
butions, defined as the integral of the weighted difference in the estimated survival functions
of the treated and control subjects in group j (see, e.g., Pepe and Fleming (1991)). Another
possible type of statistics is discussed in Section 3. For simplicity, we focus on B\j defined
in (1), and similar arguments apply to many other test statistics; each of which would aim to
detect a specific form of the deviations from the null hypothesis.

Suppose nj/n converges to a constant, and g is the limiting value of ,8 j as n — 00. The

statistic f(ﬂj Bjo) has an approximately linear form, f(,Bl Bjo) = n—1/2 _1 Qji +

(D
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7 jn, where ¢ ;; are zero mean random variables (with finite variance) and rj, is a higher-order
term that converges to zero. Hence, +/n(f i — Bjo) converges in distribution to N (0, sz),

where o*j2 =FE ¢Jz.l.. If the covariates have heavy tails or if the estimator is an extreme statistic
or a mode estimator in nature, its limiting distribution may become irregular and fall out
of our considerations here. With 3 j defined in (1), the influence function ¢;; has the form
¢ji ={Yi — fXDH (T =1, X; e GHE{I(T =0,Xe Gl + E[{Y — fXOMU(T =1,X¢€
GO (T =0,X; €G)) — {Yi — FXDI (T =0.X; € GHE{I(T =1, X € G))} — E[{Y —
FXOM(T=0,XeG)I(T; =1,X; € Gj) —2Bjo. Suppose G is an estimator for o; under
the null hypothesis of no treatment effect in any subgroup. In practice, ; can be obtained
using the bootstrap method, as discussed in Section 2.3. We propose to use the statistic

T, = «/ﬁsup(ﬁj/aj)-
J

Under the null hypothesis the distribution of 7;, is approximated by the distribution
of the supremum of J zero-mean normally distributed random variables, as shown by
Chernozhukov, Chetverikov and Kato (2013) for high-dimensional supremum-type statis-
tics. We reject the null hypothesis at a given level of significance if 7, exceeds the critical
value to be determined later.

2.2. Implementation of the test. The proposed test described above works for various
choices of f. A simple choice would be f(X) = 0 for all X so that the outcome is not

adjusted. We find that the test tends to have better finite-sample power when sz are smaller

under Hy, and the suggested use of f(X) is to make the resulting ojz’s more favorable for the
test.

To explain how the adjustment based on f improves power, we take, for example, a data
generative model Y = fo(X) + yoT + €, where € represents an independent noise. If we
average the outcome Y over all the subjects in subgroup j for T =1 or T = 0, the inherent
variability in ,B\j consists of those of X in subgroup j and €. The variances o> would be
reduced if f(X) captures part of fy(X). Of course, it would be ideal to set f = fy in this
stylistic case, but this would be unrealistic in real applications.

In practice, the function f can be estimated from the data. To strike a balance between
simplicity and efficacy, we regress Y on a prespecified subset of variables in X, denoted
by s(X). More specifically, we take f(X) = 5TS(X), where 8 is obtained from minimizing
Y (Y —6) — 0 "s(X;))%. When p is small, we use s(X) = X. When p is large, one can
choose a small subset of predictive covariates based on domain knowledge. A data-driven
approach that choose s(X), based on adaptive lasso (Zou (2006)), was investigated in our
simulation studies and yielded reasonably good performances. The relevant asymptotic be-
havior of the adaptive lasso estimator can be found in Lu, Goldberg and Fine (2012). Our
proposed method does not require “correctly” selecting all the predictive variables to guaran-
tee the type I error rate, but sensible choices of s(X) may yield better powers of the test. Our
operational estimate for subgroup j is given as

o Bi=E[Y - FONT =1,XeGH]E{I(T =0,X G)))
—E[{Y - FXOH(T =0,XeGH]E{I(T =1,XeG))}.

We note that the underlying model of Y, given X, in the absence of treatment is un-
known and not necessarily linear. However, the least squares objective function, E(Y — 6p —
GTS(X))z, has a unique minimizer (6, 0*) as long as the distributions of X and Y are not
degenerate. Then, /n (5 — ™) converges to a zero mean normal random vector, and the esti-
mated function f(x) converges to f(x) = 0+ s (x) in the limit. Under the null hypothesis of
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no treatment effect and the assumption that 7' is independent of X, the influence function ¢ ;
for ,3 j in (2) is the same as that when f is known, because the variability, due to estimating
f, in the first and second terms in ,8 ;j cancel out.

The distribution of 7, under the null hypothesis does not have a Gaussian limit, but as a
supremum statistic over J subgroups, it has been investigated in Chernozhukov, Chetverikov
and Kato (2013), Chernozhukov, Chetverikov and Kato (2017). As long as B\j is asymp-
totically linear, we know from the literature that 7, is bootstrap-able, even as J increases
subexponentially with n. For this reason we propose to use the bootstrap to calculate the
critical value of T,,.

2.3. Use of the bootstrap. A bootstrap sample is a random sample of n subjects drawn
with replacement from the original sample. We shall use E * to denote the empirical mean
and f* to denote the estimate of f based on the bootstrap sample. Define

B =E*[{y — f*X)}(T =1,XeGH]E{I(T =0,XeG))}
—E*[{Yy = FFXOM(T =0,X e GH]E*{I(T =1,XeG))}

which replace the empirical estimates in (2) with the estimates from the bootstrap sample. The

standard deviation of \/n ﬁ;" computed from a sufficiently large number of ﬂ;‘ consistently

estimates o; and may be a possible choice for G;. Another choice of 5; is given below.
Although the bootstrap distribution of /7 sup; j (ﬁ ﬂ j)/0j approximates the sampling

distribution of /n sup; j (Bi 7/0;) under the null hypothes1s and thus leads to approximate va-
lidity of the proposed test, we cannot say much about the power when the null hypothesis is
not true for the original data. We note that the power of the test can be potentially improved
if we replace Y by a globally adjusted outcome Y=Y - g(T,X), where g(T, X) is a regres-
sion estimate that approximates the treatment effects such that g(7', X) ~ 0 under the null
hypothesis. A convenient choice of the global adjustment takes the form

8T, X) =T +7 52X)T,

where 55 (X) is a prespecified subset of covariates in X, 7 and ¥ denote the estimated regres-
sion coefficients based on a working model ¥ = ng + nTsz X) + T + yTsz (X)T + €. 1In
practice, s2(X) can include variables in s(X) as well as other variables that potentially affect
the treatment effect. Denoted by (13, #*, v, ¥»*) the minimizer of E(Y — no — n's(X) —
voT —y "52(X)T)?, then g (¢, x) converges to the function g (¢, x) = Yot + y*Tsz(x)t. Under
the null hypothesis of no treatment effect, we have y; =0 and y* = 0.

We now summarize the proposed bootstrap implementation to determine the critical values
of T,,. By working with {(IZ-, X;, T;),i =1,...,n}, we estimate the function f, as described
in the preceding subsection with the resulting estimate f . Then, we obtain the quantities

Bi=E[{Y - FXO(T =1,XeGp|E{I(T =0,X €G)))
—E[{Y - FXOM(T =0.X e GHE{I(T =1.X € G},
Br=EY - FFON(T =1, XeGpIE*{I(T =0.X € G))
— E*[{Y - F* O (T =0,X e GIE{I(T =1,X e G},

where ““*” refers to estimators constructed using the bootstrap samples. Let &; be the stan-
dard deviation of ﬁ B* calculated using a sufficiently large number of bootstrap samples. The
bootstrap test statistic is given as 7, = \/n sup j (B* ; — B, 7)/6j. Under the null hypothesis, & ;

consistently estimates o;. Then, we can use &; in T, and take 7, = /n sup; (B;/}). On the
other hand, when the null hypothesis is not true, ; can be quite different from the standard
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deviation of ﬁ;“ Under the null hypothesis the bootstrap sampling distribution of 7, approx-
imates the sampling distribution of 7,. The 1 — « quantile of 7, is used as the critical value
for T, at the significance level .

REMARK. Note that the bootstrap procedure uses g(7', X) to reduce the possible treat-
ment effects, and the proposed test uses f (X) and f (X) to adjust the outcome in the
original sample and the bootstrap sample, respectively. If the true model takes the form
Y = fo(X)+ f1(X)T + €, where € is an independent error, the proposed adjustment g can be
viewed as removing some variability, due to f1(X)7, so that the bootstrap distribution after
the adjustment can better approximate the distribution of 7,, were there no treatment effects.
However, the validity of the proposed test (under the null hypothesis) does not require the
specific forms of f and g to reflect the true data generation model, and only the finite-sample
power of the test varies with the adjustments.

3. Extension to survival data. Consider the outcome Y as a survival time of interest
which is common in clinical studies. In practice, the survival time is often subject to right
censoring due to loss to follow-up or natural study termination. Let C be the censoring time,
Z = min(Y, C) the follow-up time, and A = I (Y < C) the event indicator. We assume C is
independent of (Y, X, T), where X € R” is the covariate and T is the treatment indicator,
as in the previous section. We also assume 7 is independent of X. We consider testing the
null hypothesis of no treatment effect on Y in any subpopulation, based on the observed data
{(Xi, Zi, A, Ty), i =1, ..., n}, which are independent realizations from the joint probability
distribution of (X, Z, A, T).

For right-censored data, a natural choice for B\J is the weighted log-rank test statistic. We
also suggest using the adjusted outcome Y exp{— f(X)}, instead of Y, in constructing the test
statistic. The function f can be estimated from a working accelerated failure time (AFT)
model logY = 0Ts(X) + €, where s(X) is a prespecified subset of the variables in X and

€ is a random error. We set f(X) = gTs(X), where 6 are obtained by solving the weighted
log-rank estimating equations (Tsiatis (1990)). Denote by 6* the solution of the limiting
estimating equation, then f(x) converges to the function f(x) = 0*Ts(x). One may also
consider other choices of f as appropriate. It is worth pointing out, as discussed in Section 2,
the validity of our test does not require the working model to be correctly specified.

Define the counting process N (u; f) =AI(Z exp{—f(X)} < u) and the at-risk process
R(u; f) =1(Z exp{—f(X)} > u). The treatment effect in subgroup j can be quantified by

Ej:/m[E{I(Tzl)R(u;ﬂ |X eG;)E{dNu; f) | X € G}
(3)
—E{Ru; ) IXeG;JE{I(T =1)dN®u; f) | X € G;}].

The statistic B j can be viewed as an analogue of the weighted log-rank test statistic with the
Gehan weight (Gehan (1965)). As n — oo, B; converges to its limiting value ;o with

Bjo=P1 >, T1=1,T,=0,min(Y, Y») <min(C;,C2) | X1 € G, X2 € Gj)
— PO >, T1=1,T,=0,min(};, Y») <min(Cy, C2) | Xi € G;, Xs € Gj),

where we denote by ); = Y;exp{— f(X;)} and C; = C; exp{— f(X;)} the adjusted survival
time and censoring time, respectively, and {(X;, 7;, Y;, C;), i = 1, 2} are independent realiza-
tions of (X, T, Y, C). In the absence of treatment effect, we have ;9 = 0. When the treatment
prolongs the survival in the jth subgroup, o is generally positive. We define the test statis-
tic as T, = </nsup; j (Bi i/0;), where G; is the standard error estimate of B ; under the null
hypothesis and is calculated using bootstrap as discussed below.
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Similar to Section 2, we may also consider using the outcome Y exp{—g (7T, X)} in the
bootstrap procedure. For example, (T, X) = 7T + 7 's2(X)T can be estimated from an-
other working AFT model logY = 0Ts2 X) + T + yTsz X)T + €, where s2(X) is a pre-
specified subset of covariates. When p is large, covariates in s2(X) can be selected based
on marglnal screemng Define Z = Zexp{—g(T, X)} N(u f)= AI(Z exp{—f(X)} <u),
and R (u; )= 1(Z exp{—f(X)} > u). Using {(X;, Z,, A, T;),i=1,...,n}, weestimate the
function f, as described above, with Z replaced by Z and denote the resulting estimate by
f. On a bootstrap sample {XF, Z* AY,TF),i=1,...,n}, we estimate f in the same way
and denote the estimator by f*. f Then we obtain the quantities

Bi= /OO[E{I(T=1)E(u;f)|Xeg,~}1§{d1\7(u;f)|Xeg,~}
— E{R(u; )| XeG;)E{I(T = )dN@u; f) | XeG;}],
§j=f0 [E*{1(T = D)R(u: F*) | X € G;}E*{dN (u; F*) | X € G;)

— E*{R(u; f*) | X e G;}E*{1(T = )dN (u; f*) | X e G;}].

The bootstrap test statistic is given as 7, = \/n sup ,(B‘j - B j)/0j, where 0 is the standard

deviation of /n E}‘ calculated using a sufficiently large number of bootstrap samples. The
1 — « quantile of 7, is used as the critical value for 7}, at the significance level «.

4. Simulation. In this section we report simulation results to evaluate the performance
of the proposed test relative to some of the obvious alternatives. In the first set of simulations,

we considered uncensored data. The vector X = (X1, ..., X50) contains 50 independent co-
variates. For k =1,...,10 and k =41, ...,50, X; was generated from a uniform distribu-
tion on [—1,1]; for k =11,...,20 and k = 31,...,40, X; was generated from a discrete

probability distribution with P(Xy = —1) = P(Xx =1) =0.5; for k =21, ...,30, X; was
generated from the normal distribution N (0, 0.52). The treatment indicator 7 was generated
from a Bernoulli distribution with success probability 0.5. The outcome Y were generated
from the following models:

D Y=X1—Xs504+aT -£EX)+¢€,EX)=1(X1 >0and Xp5 > 0);
() Y =X —Xso+aT -§X) +¢,5(X) = (X1 + X24 — Xo5 — X50+0.5)/2;
D Y =1(X, >0)—1(X50>0)+aT-S(X)+E,5(X)=(Xf+X24+X25+X50)/2;
(V) ¥ =X Xs50+aT -£(X) + ¢, £X) = (X1 + X35/2)/2;
(V) Y =exp{X| — Xos +aT -§X)} +¢,6X) =1(Xs50>0) —
(VD Y =exp{X|1 — Xos+aT - EX)} +¢€,EX)=1(X1 > 0and X»5 > 0).

The random error € was generated from a normal distribution with mean zero and standard
deviation 0.5, independent of X. We consider a total of 2p 4 1 subgroups, which were con-
structed as follows: Go =R”, Gy = {X: X > 0, X € R”}, and Gi4, = {X: X <0, X € R?}
fork=1,..., p. To obtain g, we set s(X) = X and applied linear regression with the adap-
tive lasso penalty, using (X, 7', XT') as predictors. The regularization parameter was selected
to minimize the mean squared error from the 10-fold cross-validation. Moreover, to deter-
mine variables in f ., f*, and f we set s(X) as the active variables in X in the above re-
gression model, with the one-standard-error rule applied here for parsimony. We then ap-
plied the least squares method to {(s(X; ) Y),i=1,...,n} to estimate f, similarly, we used
{(s(X;), Y),i=1,...,n} to estimate f On a bootstrapped data set, we applied the least
squares method to {(s (X¥), I~’i*), i=1,...,n} to obtain fN *. The number of bootstrap sam-
ples was 500. The proposed method was compared to two simple alternatives:
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e LM: Performs a linear regression analysis on the covariates (7, X) and rejects the null
hypothesis when T is significant (based on the one-sided Wald test at the nominal level);

e LM?2: Performs a linear regression analysis on the covariates (7', X, 7X) and rejects the
null hypothesis based on an overall F test on the effects of (T, TX).

We evaluated the proportion of rejection of different methods with the parameter a rang-
ing from O to 1. In all of the simulations, the number of simulated datasets is 5000 when
evaluating the type I error rates and is 2000 when evaluating the powers.

Note that LM is simply linear regression analysis focusing on the overall treatment effect,
and LM?2 uses the interaction terms to detect subgroup treatment effects. They are quick-
and-dirty approaches for detecting the treatment effects. The proportions of rejection of the
three methods are summarized in Table 1. The proposed test and the LM test approximately
maintained the type I error rates in all the scenarios. When the true model was not a lin-
ear model, the LM test still yielded reasonably good type I error rates, while the LM2 test

TABLE 1
Simulation results in the absence of censoring

n =400 I II I
a P LM LM2 P LM LM2 P LM LM2
0 0.049 0.051 0.054 0.049 0.051 0.054 0.052 0.056 0.050
0.25 0.312 0.316 0.086 0.350 0.321 0.169 0.149 0.158 0.088
0.5 0.816 0.731 0.265 0.890 0.729 0.734 0.481 0.328 0.303
0.75 0.992 0.940 0.635 0.999 0.936 0.995 0.851 0.557 0.710
1 1.000 0.992 0.905 1.000 0.990 1.000 0.980 0.759 0.962
v v VI
a P LM LM2 P LM LM2 P LM LM2
0 0.046 0.048 0.057 0.048 0.052 0.071 0.048 0.052 0.071
0.25 0.167 0.122 0.127 0.130 0.075 0.117 0.340 0.318 0.106
0.5 0.732 0.248 0.505 0.669 0.132 0.332 0.942 0.814 0.428
0.75 0.988 0.382 0.923 0.983 0.277 0.723 1.000 0.991 0.919
1 1.000 0.519 1.000 1.000 0.532 0.950 1.000 1.000 0.999
n =800 I II I
a P LM LM2 P LM LM2 P LM LM2
0 0.047 0.047 0.053 0.047 0.047 0.053 0.047 0.051 0.046
0.25 0.562 0.506 0.165 0.618 0.509 0.424 0.262 0.230 0.160
0.5 0.994 0.953 0.690 0.996 0.952 0.997 0.804 0.569 0.747
0.75 1.000 0.999 0.982 1.000 0.998 1.000 0.996 0.838 0.999
1 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.957 1.000
v v VI
a P LM LM2 P LM LM2 P LM LM2
0 0.046 0.053 0.055 0.044 0.049 0.073 0.044 0.049 0.073
0.25 0.376 0.181 0.280 0.294 0.070 0.211 0.591 0.504 0.192
0.5 0.984 0.378 0.936 0.969 0.181 0.768 1.000 0.980 0.861
0.75 1.000 0.630 1.000 1.000 0.462 0.997 1.000 1.000 1.000
1 1.000 0.814 1.000 1.000 0.825 1.000 1.000 1.000 1.000

Note: The table reports the proportion of rejection for n = 400 and n = 800. “P” stands for the proposed omnibus
test; “LM” and “LM2” stand for testing the effects of 7" and (7, TX) under linear models, respectively.
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yielded inflated type I error rates in scenarios V and VI. Compared to the LM and LM2 tests,
the proposed omnibus test showed generally higher power in the scenarios we considered,
sometimes very substantially.

In the second set of simulations, we considered censored outcomes, such as survival times.
The survival times were generated as exp (Y), where ¥ was generated from scenarios (I)—
(VI). The censoring time was generated from log-normal distributions, where the standard
deviation of natural logarithm of the variable is fixed at 1 and the mean parameters were
chosen to yield an approximate 25% rate of censoring. To estimate f and g, we first perform
variable selection in X using censored rank independence screening proposed in Song et al.
(2014). The treatment variable 7 was not used in the screening procedure. Estimation of f
f and f f* were based on a working AFT model logY = 0's (X) + €, where s(X) includes
the top five variables from marginal screening. To estimate g, we set 57 (X) = s(X) and used
a working model logY = 0Ts2 X) +wT + yTsz (X)T + €. The fast-censored linear regres-
sion algorithm, proposed in Huang (2013), was applied to fit the AFT models. The proposed
method was compared with commonly used models, including the Cox model and the AFT
model. However, fitting AFT models with 50 covariates could be computationally unstable,
because the weighted log-rank estimating functions are neither continuous nor, in general,
monotone. Hence, we used the oracle tests where only active covariates, denoted by X4, are
included in the AFT and the Cox models. More specifically, the comparisons used against
our proposed test are:

e Oracle AFT: Performs an AFT model with covariates (T, X4) and rejects the null hypoth-
esis when T is significant (based on a one-sided test at the nominal level);

e Oracle AFT2: Performs an AFT model with covariates (T, X4, 7TX4) and rejects the null
hypothesis based on the Wald test of the effects on (7', TXy);

e Oracle Cox: Performs a Cox model with covariates (7, X4, 7X4) and rejects the null
hypothesis based on the Wald test of the effects on (7', TXy).

The Oracle AFT and Oracle Cox tests cannot be carried out in practice but are chosen here
as benchmarks for the analysis based on the AFT models and Cox models, respectively. The
proportions of rejection of the four methods under comparison are summarized in Table 2.
Due to model misspecification, the validity of variance estimates in Cox and the AFT models
is not guaranteed, and thus the type I error rates may not approximate the nominal level. The
proposed test and the Oracle AFT approach approximately maintained the type I error rates
in all the scenarios. The Oracle AFT2 approach showed inflated type I errors in Scenarios IV,
V, and VI; the Oracle Cox approach failed to maintain the appropriate type I error rates in
all the scenarios. Our proposed test had power comparable to or higher than the Oracle AFT
test.

In both sets of the simulation studies, we see that the proposed test maintained type I
error rates reasonably well and had generally better power than their obvious alternatives that
maintained the type I error rates, even when the alternative methods used oracle models for
the covariates.

5. Real data analysis. We return to the randomized trial on panitumumab with FOLFIRI
for treating mCRC. The regimen FOLFIRI has been considered as the standard chemother-
apy for mCRC. Panitumumab is a monoclonal antibody directed against the EGFR and was
approved in the United States as monotherapy for mCRC after disease progression with stan-
dard chemotherapy. In this study, patients were randomly assigned to two treatment arms:
panitumumab-FOLFIRI and FOLFIRI only. The primary endpoint is the progression free
survival, defined as the time to progression or death, whichever occurs first. The progression
free survival time was subject to right censoring due to loss to follow-up and study end. The
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TABLE 2
Simulation results in the presence of censoring

n =400 I II I
a P Cox-O AFT-O AFT2-O P Cox-O AFT-O AFT2-O P Cox-O AFT-O AFT2-O
0 0.051 0.161 0.050 0.061 0.051 0.165 0.050 0.064 0.056 0.117 0.051 0.063

0.25 0.236 0311 0231 0206 0.205 0.530 0.158 0390 0.191 0.343 0.165 0.229
0.5 0.616 0.744 0583 0.664 0.532 0959 0308 0934 0419 0.817 0372 0.734
0.75 0.855 0954 0.850 0940 0.863 1.000 0.518 1.000 0.741 0.992 0.572 0.979

1 0.963 0.996 0965 099 0985 1.000 0.713 1.000 0.936 1.000 0.743  1.000
v v VI

a P  Cox-O AFT-O AFT2-O P Cox-O AFT-O AFT2-O P Cox-O AFT-O AFT2-O

0 0.060 0.082 0.052 0.081 0.055 0.192 0.053 0.076 0.055 0.181 0.051 0.077

0.25 0.150 0.380 0.111 0.380 0.088 0.342 0.054 0.230 0402 0422 0303 0.352
0.5 0.538 0915 0.190 0904 0454 0.729 0.078 0.683 0.934 0.938 0.786  0.931
0.75 0919 0999 0240 0998 0916 0963 0.145 0975 1.000 1.000 0.990 1.000

1 0.998 1.000 0.305 1.000 0997 0999 0263 1.000 1.000 1.000 1.000 1.000
n =800 I II 11

a P Cox-O AFT-O AFT2-O P Cox-O AFT-O AFT2-O P Cox-O AFT-O AFT2-O
0 0.050 0.154 0.047 0.053 0.050 0.160 0.045 0.051 0.055 0.116 0.050 0.053

0.25 0.392 0472 0368 0350 0337 0.781 0.237 0.672 0.258 0.555 0.254 0.419
0.5 0.894 0942 0.818 0919 0886 1.000 0.534 1.000 0.720 0.987 0.568 0.974
0.75 0.996 0.999 0984 1.000 0999 1.000 0.793 1.000 0.976 1.000 0.827 1.000

1 1.000 1.000 0.999 1.000 1.000 1.000 0.920 1.000 1.000 1.000 0.953  1.000
v \Y% VI

a P Cox-O AFT-O AFT2-O P Cox-O AFT-O AFT2-O P Cox-O AFT-O AFT2-O

0 0.053 0.084 0.055 0.081 0.055 0.196 0.049 0.067 0.055 0.191 0.048 0.077

0.25 0.253 0.614 0.144 0613 0.185 0.489 0.061 0.404 0.658 0.637 0.474 0.596
0.5 0906 099 0278 0995 0.856 0934 0.116 0957 1.000 1.000 0973  0.999
0.75 1.000 1.000 0.406 1.000 1.000 1.000 0.204 1.000 1.000 1.000 1.000  1.000
1 1.000 1.000 0479 1.000 1.000 1.000 0.419 1.000 1.000 1.000 1.000  1.000

Note: The table reports the proportion of rejection for n = 400 and n = 800. “P” stands for the proposed method;
“AFT-O” and “AFT2-O” stand for the oracle AFT and oracle AFT2 approach, which are testing the effects of T’
and (7, TX4) under AFT models using active covariates using Wald tests; “Cox-O” stands for testing the effects
of (T, TX4) using a Wald test.

covariates include tumor KRAS status (mutant vs. wild), sex (female vs. male), age (< 65 vs.
> 65), number of metastatic sites (< 3 vs. > 3), and Eastern Cooperative Oncology Group
(ECOQG) performance status (0 vs. > 0). The ECOG performance status is a simple measure
of functional status and determines ability of patient to tolerate therapies in serious illness.
The threshold values on age, number of metastatic sites, and ECOG follows those in Peeters
et al. (2010). KRAS mutations occur in approximately 35% to 43% of patients with mCRC.
Previous studies have demonstrated patients with mCRC with mutant KRAS tumor status do
not derive clinical benefit from anti-EGFR therapies. In our analysis we focus on 864 sub-
jects who had complete covariate data and were under follow-up for at least one day. Among
these patients, 431 of them were in the panitumumab-FOLFIRI arm (7 = 1), and 433 were
in the FOLFIRI arm (7 = 0). Moreover, 463 subjects were in the KRAS wild subgroup; 514
subjects were males; 347 subjects were older than or equal to age 65; 453 subjects had more
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TABLE 3
p-values of log rank test based on 11 subgroups

Group p-value Adjusted p-value
KRAS (wild) 0.011 0.123
Sex (M) 0.015 0.154
All 0.018 0.163
Age (< 65) 0.078 0.480
ECOG (> 0) 0.072 0.502
Metastatic sites (> 3) 0.090 0.541
Metastatic sites (< 3) 0.096 0.541
Age (> 65) 0.167 0.669
ECOG (0) 0.182 0.669
Sex (F) 0.553 1
KRAS (mutant) 0.681 1

Note: The adjusted p-values were obtained using Holm’s method.

than two tumors. The median follow-up time was 168 days. In addition to the progression
free survival, we also considered the response to treatment (yes/no) as a secondary endpoint.

We first applied the proposed test to the progression free survival. In this case, each of the
five covariates was used to define subgroups. Each subgroup shares the same value on one
of the covariates, resulting in five ways to partition the data and 10 subgroups. Adding in
the entire population, we have a case of J = 11. The p-value of the proposed test, described
in Section 3, was < 0.001. The subgroup with wild type KRAS status yielded the largest
standardized difference.

We also consider partitioning the data finer by using the subgroups defined based on a pair
of covariates. For example, the variable KRAS status and gender can be used to partition the
data into eight possible subgroups: wild and male, wild and female, mutant and male, mutant
and female, wild or male, wild or female, mutant or female, mutant or male. Adding the
aforementioned 11 subgroups, we consider a total of J = 91 subgroups. The proposed test
gave a p-value of 0.001. The subgroup of wild type KRAS status or male yielded the largest
standardized difference.

The p-value of the log-rank test conducted in the wild KRAS group was 0.011, but it was
no longer significant at the 0.05 level of significance if a multiplicity adjustment had been
made for searching through the 11 subgroups (see Table 3). If we searched through the 91
subgroups, based on a single covariate or a pair of covariates, the p-value for the wild or
male subgroup was 0.002 but, again, not significant enough to pass a multiplicity adjustment.
The proposed omnibus test maintained desirable power even with many subgroup candidates
considered in this case.

We also analyzed the binary response to treatment, as the secondary endpoint, using the
test proposed in Section 2. The test using partitions, based on one and two covariates, yielded
the p-value < 0.001, and the subgroup that yielded the largest standardized effect size was
once again the wild type KRAS. Applying the univariate logistic regression analysis for the
same data yielded p-values < 0.001 in the wild KRAS subgroup and 0.82 in the mutant
KRAS subgroup. Therefore, for the secondary outcome, both the proposed omnibus test and
the multiplicity adjustment (for J = 11) led to the conclusion that the treatment is effective
in the wild KRAS group.

6. Discussion. The paper introduces a formal omnibus test on the existence of a sub-
group with favorable treatment effects, where subgroups are constructed via partitions of the
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covariate space. Such partitions are frequently employed in the search of subgroups in clini-
cal trials, and the proposed test is a useful inferential tool to manage the risk of data snooping.
While the treatment effects are often measured under a specific model, we note that the valid-
ity of the test relies little on model specification. The critical values of the proposed test are
obtained via the bootstrap, and as a result, the proposed test is able to handle a large number
of covariates/partitions and can accommodate various types of outcome variables. The effec-
tiveness and robustness of the test are supported by its capability of preserving type-I error
rates and good statistical power, as demonstrated by simulation studies and an application to
clinical trial data.

When investigators look for promising results from many candidate subgroups, a common
approach to controlling the type I error is through multiple test adjustments. However, candi-
date subgroups often have overlaps, so the subgroup-specific tests are not independent. As a
result, commonly used multiplicity adjustments in p-values tend to result in loss of power. An
important advantage of the proposed omnibus test is to avoid power loss due to conservatism
in such multiplicity adjustments. When the test fails to detect subgroup effects, it suggests
strongly not to pursue subgroups from the trial. If one wishes to keep looking for subgroups,
multiplicity adjustments in the p-values need to be used.

The construction of the proposed test allows further interrogation of the specific subgroup
constructions and identifying the most promising subgroups (e.g., associated with the largest
standardized treatment effect estimates in the test statistic). However, fair quantification and
formal inference about the treatment effect in the post hoc identified subgroups requires fur-
ther investigation. We refer to Lee and Rubin (2016) and Guo and He (2021) for helpful
exploration in that direction. To confirm the subgroup effects, it is often preferred to conduct
an additional trial on a selected subgroup.
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SUPPLEMENTARY MATERIAL

Source code for “An omnibus test for detection of subgroup treatment effect via data
partitioning” (Sun, He and Hu (2022)) (DOI: 10.1214/21-AOAS1589SUPP; .zip). An R
package implementing the tests in this paper is also available online at https://github.com/
yifeisun/subgroupTEtest. The data that support the findings of the panitumumab study in
this paper are available from the Project Data Sphere’s Data Sharing Platform. The general
public can submit a request for downloading the data at the following URL: https://data.
projectdatasphere.org/projectdatasphere/html/content/263.
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