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Graphene moiré superlattices show an abundance of correlated insulating, 

topological, and superconducting phases. Whereas the origins of strong correlations and non-

trivial topology can be directly linked to flat bands, the nature of superconductivity remains 

enigmatic. Here we demonstrate that magic-angle devices made of twisted tri-, quadri-, and 

pentalayer graphene placed on monolayer tungsten diselenide exhibit flavor polarization and 

superconductivity. We also observe insulating states in the trilayer and quadrilayer arising at 

finite electric displacement fields. As the number of layers increases, superconductivity 



emerges over an enhanced filling-factor range and in pentalayer extends well beyond the 

filling of four electrons per moiré unit cell. Our results highlight the importance of the 

interplay between flat and more dispersive bands in extending superconducting regions in 

graphene moiré superlattices.   

 

Rich phase diagrams of quantum electronic phases have been realized in many graphene 

superlattice structures, but robust superconductivity is so far exclusive to twisted bilayer 

graphene (TBG)[1, 2] and twisted trilayer graphene (TTG)[3, 4]. Strikingly, TTG exhibits greater 

electric-field tunability[3, 4], Pauli limit violation[5], and more strongly coupled 

superconductivity[3, 4] in comparison to TBG. While these observed differences may serve as 

clues in identifying the superconducting origin of these systems, our ability to identify the truly 

universal features is ultimately limited by the dearth of robust superconducting moiré materials, 

suggesting that further progress lies in the discovery of other moiré superconducting systems. 

We investigate twisted graphene multilayers where each successive layer is twisted by an 

angle ±𝜃 relative to the previous one in an alternating sequence (Fig. 1A). For an even number 𝑛  of layers, the spectrum at zero displacement field 𝐷  is expected to separate into 𝑛/2 

independent TBG-like bands, each characterized by a different effective twist angle. When the 

number of layers 𝑛 is odd, in addition to (𝑛 − 1)/2 TBG-like bands, one monolayer-graphene-

like (MLG-like) band (essentially a Dirac cone) is expected[6] (see left column of Fig. 1B for 

examples when 𝑛  is 3, 4 and 5). The system may be conveniently modified through the 

application of a displacement field 𝐷, which controllably hybridizes the different bands (Fig. 1B, 

right column). Experimentally, we explore the properties of alternating twisted trilayer, 



quadrilayer, and pentalayer graphene (TTG, TQG, TPG) structures with 𝜃 = 1.52 ± 0.02  

(device D1, trilayer), 𝜃 = 1.80 ± 0.04   (D2, quadrilayer), and 𝜃 = 1.82 ± 0.05   (D3, 

pentalayer), respectively[7]. These twist angles all lie close to the theoretically predicted “magic” 

values needed to obtain one set of flat TBG-like bands (𝜃୘்ீ୫ୟ୥୧ୡ = √2𝜃୘஻ீ୫ୟ୥୧ୡ ≈ 1.53, 𝜃୘ொீ୫ୟ୥୧ୡ =
(√5 + 1)𝜃୘஻ீ୫ୟ୥୧ୡ/2 ≈ 1.75 , and 𝜃୘௉ீ୫ୟ୥୧ୡ = √3𝜃୘஻ீ୫ୟ୥୧ୡ ≈ 1.87  assuming an effective TBG twist 

angle 𝜃୘୆ୋ୫ୟ୥୧ୡ = 1.08[6]; see section 4.1 in [7]). We find that TTG, TQG, and TPG all exhibit 

hallmark signatures of strong correlations (Fig. 1, C to E), including robust superconductivity and 

flavor symmetry breaking as revealed by pronounced resistance peaks around certain integer 

filling factors 𝜈 (number of electrons per moiré site; see section 1 in [7] for assignment of 𝜈). 

In addition to the symmetry-breaking transitions previously reported in TTG[3, 4, 8], our 

TTG structure (coupled to a tungsten diselenide (WSe  ଶ) monolayer[9]) exhibits a previously 

unobserved correlated insulating state near 𝜈 = +2 at finite 𝐷 (Fig. 1C, inset; see also Fig. S4. 

1B right column; see sections 3 and 4 in [7]) and is instead attributed to the interplay between 

an interaction-driven cascade transition and hybridization induced by the 𝐷  field (e.g., as 

captured by Refs. [10, 11]). We have also detected an insulating state developing at finite 𝐷 

fields in TQG near charge neutrality (Fig. 1D, inset, and Fig. 1G). However, in contrast to TTG, the 

TQG insulating state can be explained through the 𝐷-induced hybridization only. Importantly, 

the detection of insulating gaps in TTG and TQG implies a low level of disorder in our samples 

(see also Fig. S1). 

The superconducting regions in all three structures extend over significantly larger filling 

factor ranges in comparison to TBG[2, 12, 9, 13] where superconductivity is typically observed 

within 2 < |𝜈| < 3. Moreover, superconductivity emerges over successively broader regions of 



phase space, reaching 𝜈 ≈ +5 on the electron side for TPG (Fig. 1, C to E). Along with a zero 

longitudinal resistance 𝑅௫௫ observed in the characteristic 𝜈 vs. 𝑇 dome (Fig. 1, H to J), we also 

measure large critical currents (∼ 400 nA) and occasionally see oscillations in critical current 

caused by  superconducting interference, substantiating the robustness of phase coherence [7]. 

Moreover, we measure high critical perpendicular magnetic fields 𝐵௖  (typically ∼ 0.8 T; see 

Fig. S3), indicating that the corresponding Ginzburg–Landau coherence lengths 𝜉ୋ୐ 

(approximately 10 − 30 nm) are significantly smaller than those observed in TBG and deviate 

from the weak-coupling prediction, 𝜉ୋ୐ ≈ ℏ𝑣ி/𝜋Δ with Δ ≈ 1.76𝑘஻𝑇௖; this suggests a strong-

coupling origin of superconductivity[3, 4] (see section 2 in [7]). When combined with other recent 

experiments[5, 14, 15], these observations affirm the unconventional nature of 

superconductivity within the entire class of graphene moiré systems. Further, the measurements 

on three to five layers indicate that the addition of layers promotes superconductivity over a 

broader filling window despite the coexisting dispersive bands as well as the ostensibly increased 

vulnerability to disorder—both from the additional twist angles as well as from the sensitivity to 

the relative displacement between layers (Fig. S14). 

In addition to the pronounced 𝜈-dependence, the observed superconducting pockets are 

highly tunable with electric displacement field 𝐷 (Fig. 2). A comparison of the three structures 

reveals, however, that TQG and TPG are more tunable than TTG. This is apparent both in the 𝐷-

dependent evolution of the filling range where superconductivity is measured (Fig. 2, A to C) as 

well as in the critical temperature 𝑇௖ (Fig. 2, D to F). Notably, superconductivity in TQG and TPG 

is fully quenched for all fillings at 𝐷/𝜖଴ = 0.75 Vnmିଵ and 𝐷/𝜖଴ = 0.6 Vnmିଵ, respectively. 

In the case of TTG, however, superconductivity is present up to the maximum accessible electric 



field 𝐷/𝜖଴ = 1 Vnmିଵ. Nevertheless, 𝑅௫௫ versus 𝐷 and temperature measurements do show 

that superconductivity is suppressed for large 𝐷 fields at optimal doping (the doping at which 

superconducting 𝑇௖  is the highest) in all three heterostructures; further, they reveal that 𝑇௖ 

forms a 𝐷 symmetric dome maximized at small finite 𝐷 (Fig. 2, D to F, for electron-side data 

showing similar behavior see Fig. S5). We also note that TTG, TQG, and TPG all exhibit a similar 

variation of 𝑇௖ when viewed as a function of the potential difference 𝑈 between the top and 

bottom layers (Fig. S5, D and E; see also section 3 in [7] for the energy conversion from 𝐷 to 𝑈). 

This layer-number invariance is consistent with non-interacting continuum-model calculations 

tracking the evolution of the inverse of the flat-band bandwidth with 𝑈 (Fig. 2G, bottom). The 

dependence of 𝑇௖ on 𝐷 in all devices qualitatively matches the predictions of Ref. [16] for TTG 

with one marked exception: the observed vanishing of superconductivity and the decay of 𝑇௖ 

appears to be linear in 𝐷 (Fig. 2, E and F, and Fig. S5), in line with predictions for multilayer 

graphene with rhombohedral stacking[17] and in contrast to the exponential ‘tail’ typically 

expected from the weak-coupling theory (and seen in the model of Ref. [16]). 

Comparing the location of the superconducting regions with the evolution of the Hall 

density as a function of 𝐷 and 𝜈 in TTG, TQG, and TPG provides further insight into the intricate 

relationship between the superconducting phase and the correlation-modified Fermi surface 

(Fig. 3). As in previous TBG and TTG measurements, we observe symmetry-breaking electronic 

transitions (a ‘cascade’ of transitions) that are signalled by sudden drops in the Hall density 

magnitude (a ‘reset’) without a change in sign. These resets (see dashed lines in Fig. 3, A to D) 

indicate a rearrangement of spin/valley sub-bands and typically occur near integer fillings of the 

flat bands[18, 19]. At low 𝐷 fields, superconducting pockets onset around the |𝜈| = 2 resets 



(purple dashed line), and the filling extent of superconductivity varies depending on the presence 

or absence of a |𝜈| = 3 flavor symmetry-breaking transition (grey dashed line). For electron- 

and hole-doped TTG as well as for electron-doped TQG (Fig. 3, A, B, D), a flavor symmetry-

breaking transition appears around |𝜈| = 3 and superconductivity accordingly terminates, as 

previously noted in TTG[3]. By contrast, when signatures of the |𝜈| = 3 reset are completely 

absent (for example in hole-doped TQG, Fig. 3C, or in TPG), superconductivity extends much 

further. Combined, these observations suggest that superconductivity is favored when only two 

out of the four flavors are predominantly populated (|𝜈| = 2 cascade) and suppressed beyond |𝜈| = 3 resets. This behavior can be understood within the simplest iteration of the cascade 

scenario: resets associated with |𝜈| = 3 produce spin- and valley-polarized bands[20, 21, 22] 

and naturally disfavor Cooper pairing of time-reversed partners. 

At high 𝐷  fields, signatures of the cascade vanish and instead van Hove singularities 

(vHs) become more prominent, reflecting qualitative changes in the band structure (see yellow 

lines in Fig. 3, A to D, and Fig. S6 that track the vHs). Consistent with previous TTG 

measurements[3, 4], the vHs in our TTG sample (as well as in TPG, see Fig. 3, E and F) crudely 

bound the superconducting regions. By contrast, the vHs in TQG cross well into the 

superconducting pockets—in fact, for electron doping, 𝑇௖ reaches its maximum exactly at the 

position of the vHs (Fig. 3D, orange dot, and Fig. S7,D to F). The interplay between the vHs and 

superconducting boundaries, as revealed in Hall density measurements, is complex: 𝑇௖ can be 

both enhanced and suppressed at the vHs depending on the layer number and possibly other 

details such as the precise twist angle (see Fig. S11 for data from the second TQG device). 

Pentalayer measurements provide additional signatures that point towards a close 



relation between superconductivity and flavor symmetry-breaking cascades (Fig. 3, E and F). In 

contrast to TTG, in TPG we can access 𝐷  fields that are large enough to stifle 

superconductivity—which occurs simultaneously with the onset of the vHs and the apparent 

suppression of the cascade transitions (see red and light blue lines in Fig. 3F that mark the 

superconducting boundaries and the cascade transitions, respectively). For example, at low 𝐷 

fields (|𝐷|/𝜖଴ < 0.6 Vnmିଵ) around 𝜈 = +2, the Hall density resets close to zero, in line with a 

nearly complete flavor symmetry-breaking polarization. However, at higher 𝐷 fields (|𝐷|/𝜖଴ >0.6 Vnmିଵ), the Hall density is dominated by a vHs around 𝜈 = +2, and the cascade signatures 

are diminished. Superconductivity accordingly also vanishes. For hole doping, the disappearance 

of superconductivity similarly coincides with the weakening of the cascade. This on/off 

correspondence between the two phenomena suggests that they either share a common origin, 

such as a large DOS, or that the cascade serves as a prerequisite for robust superconductivity in 

graphene moiré superlattices. 

As mentioned above, for low 𝐷  fields in TPG, the superconducting pockets are 

extraordinarily large, spanning −4 ≲ 𝜈 < −2 for hole doping and +2 ≲ 𝜈 ≲ +5 for electron 

doping (Fig. 1E, Fig. 2C, and Fig. 4). In particular, the electron-side range corresponds roughly to 

a density window of 6 × 10ଵଶ cmିଶ , which is the largest filling range so far reported in a 

graphene-based superconductor. The observed superconductivity exhibits similar values of 𝑇௖ 

and 𝐵௖ (Fig. S3) as the trilayer and quadrilayer samples and is likewise accompanied by a weak 

oscillating pattern of critical current (Fig. 4C, inset), confirming superconducting phase 

coherence. We emphasize that the unprecedented persistence of superconductivity across a 

large filling factor range in TPG (and also TQG in comparison to TTG or TBG) cannot be explained 



in a minimal framework of alternating twisted graphene multilayers[6, 23] without invoking the 

non-trivial role of the additional bands. 

The role of the additional bands in TPG deserves careful consideration because of the 

implications for the strength of interactions (such as Hartree effects) and the types of 

superconductivity the bands can plausibly support. Explanations for the enlarged 

superconducting intervals can generically be organized into three scenarios depending on the 

filling of the flat TBG-like bands 𝜈୤୪ୟ୲, relative to the total filling 𝜈୫ୟ୶ at which superconductivity 

terminates (𝜈୫ୟ୶ = +5 for electron-doped TPG and |𝜈୫ୟ୶| = 4 for TQG and hole-doped TPG). 

In scenario (𝑖) , 𝜈୫ୟ୶  corresponds to 𝜈୤୪ୟ୲ ≈ +3 , the flat-band filling at which 

superconductivity is typically suppressed in TBG, suggesting that the superconducting phase 

space is largely the same for different multilayer magic-angle structures when considering just 

the flattest TBG-like bands. In scenario (𝑖𝑖), 𝜈୫ୟ୶ coincides with 𝜈୤୪ୟ୲ ≈ +4, precluding any 

simple analogy with TBG, although superconductivity can still be attributed to the flat bands. 

Finally, scenario (𝑖𝑖𝑖)  assumes full filling of the flat bands before superconductivity is 

suppressed at 𝜈୫ୟ୶ . This scenario includes the possibility that the distinction between the 

different TBG- and MLG-like bands breaks down even at 𝐷 = 0 owing to hybridization as well 

as potential multi-band superconductivity [24, 25, 26, 27]. In this case, superconductivity in TPG 

is a more general phenomenon than in TBG because it occurs in either mixed bands or new, more 

dispersive bands (see section 5 in [7]). 

From the perspective of the non-interacting band structure, the three scenarios all seem 

implausible, therefore interactions must play a crucial role. In particular, although the presence 

of the dispersive bands implies that |𝜈| − |𝜈୤୪ୟ୲| > 0, this effect is much smaller than needed for 



either scenario (𝑖) or (𝑖𝑖). Coulomb interactions can significantly enhance |𝜈| − |𝜈୤୪ୟ୲|, either by 

evening out the spatial charge distribution[28, 29, 30, 31, 32] or symmetry breaking. A simple 

model for TPG incorporating these mechanisms (section 4.5 in [7]) suggests a minimal flat-band 

occupation 𝜈୤୪ୟ୲ ≳ +3.8 at 𝜈 ≈ +5, diminishing the plausibility of scenario (𝑖) for electron-

doped TPG which has 𝜈୫ୟ୶ ≈ +5. The relevance of this scenario is further undermined by the 

observation of vHs at 𝜈 ≈ +6  (Fig. S10D): under the reasonable assumption that the non-

interacting band structure remains valid for the dispersive TBG-like bands (apart from a Hartree 

shift), scenario (𝑖) would instead place the observed vHs near 𝜈 ≈ +5. Taken together, these 

arguments effectively rule out scenario (𝑖). Note, however, that the presented line of reasoning 

is not straightforward for the other superconducting pockets (see section 5 in [7]). 

Both scenarios (𝑖𝑖) and (𝑖𝑖𝑖) are indicative of the non-trivial role of additional bands in 

stabilizing superconductivity. Assuming well-defined flat and dispersive bands, in scenario (𝑖𝑖𝑖) 

the former bands are completely filled, and superconductivity is supported fully by the latter non-

flat bands. This assertion is at odds with the large dispersion of the remaining TBG- and MLG-like 

bands. However, although the exact mechanism underlying scenario (𝑖𝑖𝑖)  is difficult to pin 

down, it is not without experimental support. For instance, a natural interpretation of the Hall 

density minimum around 𝜈 ≈ +4 for |𝐷| ≲ 0.4 Vnmିଵ is that it marks the complete filling of 

the flat bands, 𝜈୤୪ୟ୲ ≈ +4 (Fig. 4E, Fig. S9 and section 5 in [7]). 

One possible realization of scenario (𝑖𝑖𝑖) consistent with the experimental observations 

is that the division of the electronic states into simple TBG- and MLG-like bands fails—obviating 

our very definition of 𝜈୤୪ୟ୲  and potentially allowing flavor polarization, and accompanying 

superconductivity, to persist well beyond 𝜈 = +4. Whereas such hybridization is expected for 



finite 𝐷 fields, mixing between flat, dispersive TBG- and MLG-like bands for |𝜈| < |𝜈୫ୟ୶| may 

occur even at 𝐷 = 0  thanks to, for example, proximity to WSe  ଶ , layer-to-layer charge 

inhomogeneity or distant-layer coupling (see sections 4.4 and 4.5.3 in [7]). 

Our measurements demonstrate the increasing predominance of superconductivity in 

twisted graphene multilayer structures as the number of layers is increased from three to five 

and highlight the close relationship between the flavor symmetry-breaking transitions and 

superconductivity. Moreover, our findings suggest a scenario in which the symmetry-broken 𝜈 =±2  state strongly favors the formation of the superconducting state whereas the cascade 

corresponding to 𝜈 = ±3 suppresses it. Interestingly, this scenario is consistent not only with 

previous TBG[2, 12, 13, 9, 33, 34] and TTG[3, 4, 8] observations but also in part with the recently 

investigated ABC trilayers[35] and Bernal bilayers without[36] and with a WSe ଶ substrate [37] 

where superconductivity is observed near or within phases in which two out of four flavors are 

predominantly filled. These commonalities suggest that symmetry-broken states with similar 

types of polarization underlie superconductivity in all these graphene-based superconductors. In 

this context, the discovery of superconductivity in TQG and TPG together with recent work on 

untwisted bi- and trilayers dramatically expands the scope of graphene-based superconductors. 

This expansion holds promise for resolving important questions related to the nature of the 

pairing mechanism in these systems and provides guidance for developing novel graphene-based 

superconductors and their applications. 

Note added: After submission of this report, we have become aware of related work [38]. 
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Figure  1:  Superconductivity and correlated insulators in alternating twisted graphene 

multilayers. (A) Schematics of the alternating twisted graphene multilayers where each 

successive layer is twisted by an angle ±𝜃  relative to the previous one in an alternating 

sequence. (B) Band structure of twisted trilayer, quadrilayer, and pentalayer graphene (from top 

to bottom) for angles close to the theoretical magic angle at zero 𝐷 field (left) and 𝐷/𝜖଴ ≈0.4 Vnmିଵ (right) for valley K (section 4 in [7]). (C to E) Line cuts of 𝑅௫௫ versus filling factor 𝜈 

for a range of temperatures (shown are traces taken first at 25 mK, then every 0.25 K from 0.25 K to 2 K, followed by every 1 K from 3 K to 7 K), from top to bottom measured at 𝐷/𝜖଴ = 0.22 Vnmିଵ  (C), −0.15 Vnmିଵ  (D), and 0 Vnmିଵ  (E), respectively. Inset of (C) is 

conductance versus 𝑇ିଵ  for TTG showing thermal activation behavior (𝐷/𝜖଴ = 0.26 Vnmିଵ, 

section 3 in [7]). Inset of (D) shows charge-neutrality insulators in TQG at larger electric fields. (F) 𝑅௫௫  versus temperature and 𝜈  for the trilayer focusing around 𝜈 = +2  at 𝐷/𝜖଴ =0.26 Vnmିଵ. (G) 𝑅௫௫ versus temperature and 𝐷 field for the quadrilayer focusing near charge 

neutrality. (H to  J) 𝑅௫௫ versus temperature and 𝜈 for hole doping, showing superconducting 

domes around 𝜈 = −2 in the same systems and for the same 𝐷 fields as in (C) to (E). 

 

 

 

 

 

 

 



Figure  2:  TTG, TQG and TPG phase diagrams and electric field-tunable superconductivity. (A 

to C) 𝑅௫௫ versus filling factor 𝜈 and displacement field 𝐷 for twisted trilayer (A), quadrilayer 

(B), and pentalayer (C) graphene, respectively. All data are taken at 25 mK, and the dark blue 

regions signal superconductivity. For electron-doped TTG and TQG, superconducting regions 

extend towards 𝜈 = +1 at intermediate 𝐷 field. (D to  F) 𝑅௫௫  versus temperature and 𝐷 

(or equivalent potential difference 𝑈 between layers, see section 3 in [7]) for the filling factors 

indicated by arrows in (A) to (C). Critical temperature 𝑇௖  is indicated by a dashed line that 

delineates 10% of the normal state resistance (section 2 in [7]). 𝑇௖ is maximized at finite 𝐷 

fields. Overall, superconductivity is suppressed more easily with 𝐷  as the layer number is 

increased for both hole (D to F) and electron (Fig. S5) doping. (G) Theoretical calculations of the 

inverse of the flat-band bandwidth for twisted trilayer, quadrilayer, and pentalayer graphene as 

a function of 𝐷/𝜖଴ (top) and potential difference 𝑈 (bottom). For a fixed 𝐷, the bandwidth of 

the flat bands is larger for systems with more layers, but when expressed as a function of 𝑈, the 

flat-band broadening follows a similar trend across the different structures (section 4.1 in [7]). 

 

 

 

 

 

 

 

 



Figure  3:  Interplay between superconductivity, flavor symmetry-breaking transitions and 

van Hove singularities in TTG, TQG and TPG. (A and  B) 𝐷 field and 𝜈 dependence of 𝑅௫௫ 

(top) and Hall density (bottom, measured at 𝐵 = 0.9 T) for TTG at 25 mK. Purple and grey 

dashed lines mark the filling factors where flavor symmetry-breaking transitions associated with |𝜈| = 2 and |𝜈| = 3 happen, respectively. The yellow line in (A) delineates the evolution of the 

vHs. (C and  D) 𝐷 field and 𝜈 dependence of 𝑅௫௫ (top) and Hall density (bottom, measured 

at 𝐵 = 1.5 T) for TQG at 25 mK. Superconducting 𝑇௖ reaches its maximum (orange dot in (D)) 

exactly at the position of the vHs. When present, flavor symmetry-breaking transitions around |𝜈| ≈ 3  coincide with the termination of superconductivity (A, B, D). By contrast, 

superconductivity extends much further in the absence of a |𝜈| ≈ 3 reset (C). (E) 𝐷 field and 𝜈 dependence of Hall density for TPG measured at 𝑇 = 25 mK and 𝐵 = 1.5 T. (F) Schematic 

of Hall density (E) and 𝑅௫௫ (Fig. 2C) features for the pentalayer, including the boundary of the 

superconducting region (red), vHs/‘gap’ (dark blue), cascade (light blue), and |𝜈୤୪ୟ୲| = 4 Hall 

density reset (light purple). Sketches of the DOS around 𝜈 = +2 for different 𝐷  fields are 

shown on the right. The middle panel illustrates the flavor symmetry polarization observed in 

regions that support superconductivity. Flavor symmetry is preserved at higher 𝐷  fields, as 

shown in the top and bottom panels.  

   

 

 

 

 



Figure  4:  Extended superconducting pockets in TPG. (A) 𝑅௫௫ versus 𝜈 and temperature at 

zero 𝐷  field for twisted pentalayer graphene. (B) 𝑅௫௫  versus temperature and 𝜈  on the 

electron side at 𝐷/𝜖଴ = 0.17, 0.32, and 0.44 Vnmିଵ. The evolution of the superconducting 

domes and resistance peaks near 𝜈 = +2 and 𝜈 = +4 with 𝐷 is shown. (C and  D) 𝐷 field 

and 𝜈  dependence of 𝑅௫௫  (C) and Hall density (D, measured at 𝐵 = 1.5  T) at 25  mK, 

showing the region around the electron-side superconducting pocket. The grey line in (C) marks 

the vHs originating from the dispersive TBG-like bands (see also Fig. S10). The inset shows the 

evolution of 𝑑𝑉/𝑑𝐼 as a function of 𝐼 and 𝐵 at 𝜈 = +4.6, 𝐷/𝜖଴ = 0.12 Vnmିଵ (marked by 

a yellow dot in the main panel), confirming the robustness of the superconductivity above 𝜈 =+4. (E) Line cuts of 𝑅௫௫ (top, measured at 𝑇 = 25 mK) and Hall density (bottom, measured at 𝑇 = 1.5  K, 𝐵 = 0.5  T) versus 𝜈  for a range of 𝐷  fields (traces are shown for every 0.05 Vnmିଵ for both 𝑅௫௫ and Hall density). Both the presence of Hall density resets around 𝜈 = +4 and the development of superconductivity extending from 𝜈 = +2 to +5 are shown 

to persist for a wide range of 𝐷 fields. (F) Schematic of scenario (𝑖𝑖) with a Hartree correction 

for superconductivity at 𝜈 ≈ +5. The Hartree correction shifts the dispersive TBG- and MLG-like 

bands down in energy, which causes the flat TBG-like bands to fill more slowly with doping, thus 

allowing them to host superconductivity at 𝜈 > +4.  
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Materials and Methods

Device fabrication: All devices were fabricated using a ‘cut and stack’ method, in which

graphene flakes were separated into pieces using a sharp tip (made out Platinum-Iridium); this

approach prevents unwanted twisting and strain during tearing while allowing more control

over the flake size and shape. After cutting, stacking procedure was as follows: first, a thin

hBN flake (10 − 30 nm) is picked up using a propylene carbonate (PC) film previously placed

on a polydimethylsiloxane (PDMS) stamp. Then the hBN flake is used to pick up an exfoliated

monolayer of WSe2 (commercial source, HQ graphene) before approaching the graphene. After

picking up the first piece of the graphene flake, the following layers are twisted by an angle ±θ
relative to the previous one in an alternating sequence. Transfer stage rotation θ overshoots the

target angle by 0.1 − 0.2° to construct the measured angles. Care was taken to approach and

pick up each stacking step slowly. In the last step, a thicker hBN (30 − 70 nm) is picked up,

and the whole stack is dropped on a predefined local gold back gate at 150°C while the PC

is released at 170°C. The PC is then cleaned off with N-Methyl-2-Pyrrolidinone (NMP). The

final geometry is defined by dry etching with a CHF3/O2 plasma and deposition of ohmic edge

contacts (Ti/Au, 5 nm/100 nm) and top gate.

Measurements: All measurements were performed in a dilution refrigerator (Oxford Triton)

with a base temperature of ∼ 25 mK, using standard low-frequency lock-in amplifier tech-

niques. Unless otherwise specified, measurements are taken at the base temperature. Frequen-

cies of the lock-in amplifiers (Stanford Research, models 830 and 865a) were kept in the range

of 7 − 20 Hz in order to measure the device’s DC properties and the AC excitation was kept

< 5 nA (most measurements were taken at 0.5 − 1 nA to preserve the linearity of the system

and avoid disturbing the fragile states at low temperatures). Each of the DC fridge lines pass

through cold filters, including 4 Pi filters that filter out a range from ∼ 80 MHz to > 10 GHz,

as well as a two-pole RC low-pass filter.

Supplementary Text

1 Device Uniformity, Effect of WSe2 and Twist Angle Assignment

Device homogeneity and effect of WSe2: All devices investigated here show a high degree of

twist angle homogeneity as characterized by four-point measurements between different pairs

of contacts. Fig. S1 shows Rxx versus carrier density with fixed top-gate voltage (V
tg

= 0 V),

revealing that almost every pair of contacts shows superconductivity. More importantly, super-

conducting pockets from different pairs significantly overlap in the filling range, and resistance

peaks at |ν| = 4 appear at the same density. Moreover, all findings related to the extent of

the superconducting phase and the occurrence of the symmetry-breaking transitions in the ν–D
phase diagram are highly reproducible. This also includes the observation of a gapped corre-

lated insulator at ν = +2 in TTG, which has not been reported previously. In this context, we

2



note that any significant twist-angle disorder would create conducting percolation pathways that

quickly suppress insulating behavior.

We attribute the low level of disorder to the use of monolayer WSe2 during device stacking, pre-

sumably originating from the increased lateral friction between WSe2 and graphene (compared

to the friction at the hBN-graphene interface). We note that this additional layer does not change

the magic-angle condition (9, 40), and the induced spin-orbit interaction (SOI) energy scale is

∼ 1 meV in twisted bilayers (9). Therefore, SOI is likely too small to significantly affect the

overall band structure and directly impact the cascade physics at the magic angle (though may

play a more important role for stabilizing superconductivity far away from the magic angle (9)).

Finally, we note that, in general, SOI is expected to manifest differently when the sign of D
field is reversed, a feature that has not been observed in the experiment. The absence of D-field

asymmetry is probably due to the small energy scale of SOI compared to the interactions and

the weak tendency to polarize wavefunctions with D field in magic-angle graphene multilayers.

Twist angle assignment in multilayers: Twist angles were determined from high B field data

and corresponding Landau-fan diagrams in a similar way as in TBG. From the slope of the

Landau fan at charge neutrality (which is directly proportional to the gate-sample capacitance)

and the voltage difference between charge-neutrality point (CNP) and |ν| = 4 filling, the corre-

sponding |ν| = 4 electron density is obtained. We used two separate criteria for the assignment

of |ν| = 4. First, at high D fields, resistive features (peaks) emerge (Fig. 2, A to C). We inter-

pret these peaks presumably as the opening of the hybridization ‘gaps’ and corresponding full

filling (|ν| = 4) of the ‘gapped’ bands. Second, at high B fields, quantum Hall insulating states

develop around |ν| = 4, which typically cover a broader filling range where Hall conductance

is quantized in accordance with the expectations from the dispersive bands (Fig. S2, also see

discussion below). Electron density of |ν| = 4 directly determines the twist angle in the low-

angle approximation θ2 ≈
√
3a2n|ν|=4/8, where a = 0.246 nm is the graphene lattice constant.

While twist angle uncertainty is introduced by the relatively broad experimental features in

Landau fan diagram, this uncertainty can not explain the observed superconductivity reaching

ν = +5 in the case of TPG. We note that signatures of the dispersive bands are also observed

in Landau-fan diagrams and vHs (Fig. S2 and Fig. S10). For example, emerging Landau lev-

els from the dispersive bands are typically observed through oscillations at low magnetic field.

Since at low energies, the dispersive bands (Fig. 1B left) can be effectively treated as decoupled

MLG-like bands when considering the Landau level spectrum (41), and the corresponding Hall

conductance around |ν| = 4 will be quantized in a way that depends on the number of layers

(see Fig. S2, G to M, for Hall conductance line cuts). Furthermore, both TQG and TPG devices

show vHs signatures at |ν| ≈ 6, consistent with the expectation for vHs from roughly half filling

of the dispersive TBG-like bands (see Fig. S10).

The above discussions implicitly assume that during fabrication process, errors in twist angles

of successive layers are not large. In the following, we argue that this assumption holds in our

devices to a large degree. When multiple, distinct twist angles are present (42), the resulting

band structure is expected to become very complex (notably, no sense of single moiré periodic-
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ity remains) and deviates significantly from the observed experimental results. Our calculations

have suggested similar complexity with varying stacking arrangements. Importantly, the result-

ing band structures noticeably deviate from the ones described in Fig. 1B, where for n layers at

zero D field, there are n/2 (for even n) or (n − 1)/2 (for odd n) sets of overlapping TBG-like

bands (one flat) and 1 Dirac cone if n is odd. Although the parameter space is too large to

provide a thorough analysis, we provide some references with varying geometries that do not

agree with our experimental observations (43–45). Finally it is important to note that, under

the condition that the twist angles don’t vary much between successive stacking steps, previous

TTG studies have shown that the lattice arrangement is energetically favorable in the A-twist-A

stacking configuration (where the A sublattice from the first layer aligns with the third layer

instead of being offset) and uniform twist angle between top and bottom layers (15, 46).

2 Determining Tc and Hall Density

Tc and the coherence length: Tc is determined by the following procedures. First, the high

temperatureRxx data is fitted using a linear functionR(T ) = AT+B. Then, Tc is defined by the

value whereRxx(T ) is a certain fraction (typically 10% as in Fig. 2) ofR(T ). Ginzburg-Landau

coherence lengths ξGL are obtained from the B dependence of Tc, by fitting the Ginzburg-

Landau relation Tc/Tc0 = 1− (2πξ2GL/Φ0)B⊥, where Φ0 = h/(2e) is the superconducting flux

quantum and Tc0 is the critical temperature at zero magnetic field. We get ξGL from the Tc vs.

B linear fit, where the intercept at the B axis is equal to Φ0/(2πξ
2
GL). Following Ref. (3), we

use Tc defined by 40% of the normal state resistance to evaluate the coherence length data in

Fig. S3E (corresponding error bars are evaluated by using Tc defined by 30% and 50% of the

normal state resistance). As mentioned in the main text, ξGL (Bc) is much smaller (higher) in

the twisted graphene multilayers compared to TBG. One possibility for the reduction of ξGL is

the relative decrease of the characteristic moiré wavelength (see Fig. S3F).

Hall density analysis: Hall density shown in Fig. 3 is obtained by converting the anti-symmetric

part of the Rxy data, i.e., by subtracting data measured at positive and negative magnetic fields.

We used either |B| = 0.9 T or 1.5 T in order to fully suppress superconductivity. Previously,

it was found that in TTG (3), at high D fields superconductivity is bounded by regions corre-

sponding to vHs, i.e., when Hall density changes sign. We approximately find a similar trend

in our TTG and TPG structures, although vHs occasionally intrude superconducting pockets

slightly. We note that the exact positions of vHs depend on the precise magnetic field used in

the measurements (for example, see Fig. S9, A and C); however, this effect is relatively small

relative to the observed intrusions. More importantly, TQG behavior is qualitatively different,

as we find that positions of vHs and boundaries of superconducting pockets are independent.

We also note that resets associated with the flavor polarization do not move in the B fields

(B ≈ 1T) used to extract Hall density evolution. The occasional shift of these resets from

integer ν values, may be attributed to either effects of interactions (i.e. Hartree correction, see

section 4.5) or the details of cascade physics (18) at finite temperatures (47, 48).
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3 Insulating Behavior in TTG and TQG

ν = +2 correlated insulators in TTG: In our TTG device, we observed a previously uniden-

tified ν = +2 correlated insulator state (Fig. 1F and Fig. 1C inset). This assignment is based

on the activating behavior reflected in exponential suppression of conductance with 1/T , which

is not expected from a Dirac semimetal; see Fig. S4 for detailed D and ν dependence. The

two-temperature scale in conductance is in line with the behavior of TBG correlated insula-

tor where transport at higher temperature and lower temperature is governed by activation and

variable-range hopping, respectively (see blue dashed line in Fig. 1C inset).

Also, the insulating behavior is suppressed by an out-of-plane B field of B⊥ > 0.4 T but is

mostly insensitive to the in-plane B field (the weak suppression by the in-plane B field could

possibly originate from a non-ideal in-plane-field alignment of the sample). These experimental

observations are highly indicative of a gap that originates from strong interactions in TTG. We

note, however, that formation of the fully gapped states in TTG requires a mechanism that

additionally gaps out the MLG-like band, which may explain the presence of the gap only at

finite D fields. Moreover, suppression of the gap with an out-of-plane magnetic field is at

odds with the C2 breaking scenario (49, 50) and is more in line with incommensurate Kekulé

spiral (51) or intervalley-coherent (10, 11, 52, 53) orders in the flat bands. The insensitivity

to in-plane field is suggestive of a spin-polarized insulator or otherwise insensitive to in-plane

magnetic field. Finally, we can not rule out that the gap originates from induced SOI, since

it is still possible that SOI promotes instabilities that favor the formation for certain ν = +2
insulating states in TTG. Future work will address the nature of this state in more detail.

Charge-neutrality gaps in TQG and conversion between U and D: Fig. S4, F and G, shows

the charge-neutrality gap of TQG as a function ofD field or potential difference U (between the

top and the bottom graphene layer). From the continuum model, a gap in TQG is expected when

finite D field is applied. However, the details of the gap evolution depend on the precise twist

angle. When the twist angle is below the magic-angle value, a charge-neutrality gap opens as

soon as a finite D field is applied. On the other hand, when the twist angle is above the magic-

angle value, a gap opens only at much higher D fields. The gap opening at D/ϵ0 ≈ 1.1 V nm−1

in our TQG structure is consistent with the device being slightly above the magic angle. Note

that the charge-neutrality gap is a good reference for matching the experimental D field with

the potential difference U used in calculations since the interaction-driven Hartree correction

vanishes at CNP. For a direct comparison, we enforce a more realistic flat-band bandwidth of

∼ 20 meV in the continuum model by slightly tuning away from the magic angle, and get a U -

dependent gap size (Fig. S4G). A good match between the experimental and the calculated gap

is found when convertingD into U with an empirical factor: U = 0.1×(n−1)×0.33 nm×eD,

where e is the electron charge and n− 1 is the number of graphene interfaces. This conversion

is used for the other parts of the paper, for example, Tc versus U in Fig. S5. We note, however,

that relative comparison (i.e. scaling) between TTG, TQG, and TPG (in the context of Tc) does

not rely on the precise D to U conversion.
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4 Theoretical Calculations

In this section, we describe the non-interacting continuum model for multilayers and how sym-

metry considerations and various interaction terms affect the band structure of TTG, TQG, and

TPG.

4.1 Continuum model

Band structure calculations are performed using a straightforward generalization of the TBG

continuum model (54, 55) extended to multilayer graphene systems (6, 56–58). As discussed

above, we consider graphene multilayer systems with nlayer = 3, 4, and 5 layers (n in the

main text) in which the graphene sheets are twisted by alternating angles. In particular, we

can envision grouping the layers into even and odd sets and then rigidly twisting these two

groups by the twist angle θ; equivalently, each layer ℓ = 1, . . . , nlayer is twisted by an angle

θℓ = (−1)ℓθ/2. For the moment, we focus on the case where the layers are all AA stack (i.e.

stacked directly on top of one another) prior to twisting (see below, section 4.2).

It is appropriate to approximate the dispersion of the underlying graphene monolayers with

the two Dirac cones about the valleys at K and K ′. Note that because of the twist, the Dirac

cones are located at slightly different momenta depending on whether the layer ℓ is even or

odd, and we have denoted the Dirac cones’ momenta here as Kℓ and K ′
ℓ. We thus define the

spinors ψℓ,K(′) in terms of the microscopic graphene operators via fℓ(r) = eiKℓ·rψℓ,K(r) +

eiK
′

ℓ·rψℓ,K′(r). Equivalently, in momentum space, we can write ψℓ,K(′)(k) = fℓ(k + K
(′)
ℓ )

provided k is sufficiently close to K
(′)
ℓ . In our definition of ψℓ (and fℓ) both an A/B sublattice

index and a spin index have been suppressed. Importantly, the small twist angle only mediates

a very small momentum exchange between the neighboring layers so that states originating

proximate to one valley do not mix with those originating proximate to the other. We thus

focus for the moment on valley K and suppress the valley subscript until mentioned otherwise,

ψℓ,K → ψℓ.

The band structure model can be separated into a sum of two parts: Hcont = HD + Htun. The

first term, HD is the intralayer Dirac term:

HD =

nlayer
∑

ℓ=1

∫

d2r ψ†
ℓ(r)hD,ℓ(r)ψℓ(r), hD,ℓ(r) = v0e

iθℓσ
z

i
(

∂xσ
x + ∂yσ

y
)

, (S1)

Here, v0 ∼ 106 m/s is the Fermi velocity of the Dirac cones and σx,y,z are Pauli matrices acting

on the A/B sublattice indices of the spinors ψℓ. In our simulations, we assume that the Fermi

velocity of the graphene monolayers does not differ layer to layer. Note that this assumption,

specifically does not take into account effects such as graphene velocity renormalization that

can occur in the top layer due to tunnelling between the graphene monolayer and the WSe2
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substrate, as we do not expect these effects to be large enough to have appreciable impact on

the resulting band structure.

We assume that tunnelling only occurs between adjacent layers and that it takes the form

Htun =

nlayer−1
∑

ℓ=1

∫

d2r ψ†
ℓ(r)Tℓ,ℓ+1(r)ψℓ+1(r) + h.c. (S2)

where

Tℓ,ℓ+1(r) =
∑

j=1,2,3

e−(−1)ℓiqj ·rtj,

qj =
4π

3LM

R

(

2π

3
(j − 1)

)(

0
−1

)

,

tj = w′ + w
(

e−2π(j−1)i/3σ+ + e−2π(j−1)i/3σ−) . (S3)

Here, R(ϕ) = e−iϕσy

is a 2 × 2 rotation matrix acting on vector indices, LM = a/[2 sin(θ/2)]
is the moiré lattice constant, and σ± = (σx ± iσy)/2 act on the sublattice indices. The param-

eters w′ and w set the interlayer tunnelling strength; we discuss their values below. It will be

convenient to define the dimensionless ratios

η =
w′

w
, α =

w

v0kθ
, (S4)

where kθ = 4π/(3LM) = 2 sin(θ/2) · 4π/(3a). The total Hamiltonian may be written in matrix

form as

HTnlayerG = HD +Htun =

nlayer
∑

ℓ,ℓ′=1

∫

d2r ψ†
ℓ(r) [hcont(r)]ℓ,ℓ′ ψℓ′(r)

hTnlayerG(r) =











hD,1(r) T1,2(r) 0 . . .

T †
1,2(r) hD,2(r) T2,3(r) . . .

0 T †
2,3(r) hD,3(r) . . .

...
...

...
. . .











(S5)

As currently written, the diagonal Dirac terms, hD,ℓ(r), as well as the off-diagonal tunnelling

terms, Tℓ,ℓ′(r), depend only on whether ℓ is even or odd. We can thus simplify the above

expression by writing the Dirac terms as hD,2ℓ−1(r) = hD,1(r), hD,2ℓ(r) = hD,2(r) and the

tunnelling terms as T2ℓ−1,2ℓ(r) = T (r), T2ℓ,2ℓ+1(r) = T †(r).

It has been shown (6) that a block diagonal form exists for Hamiltonians of the form Eq. (S5).

We provide the specific transformations used for three, four, and five layers below.
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4.1.1 Twisted bilayer graphene

Since the spectrum of the twisted multilayers breaks into independent sets of TBG- and MLG-

like bands, we first briefly review the Hamiltonian of TBG. Thus, we start with

hα,η,θ(r) ≡ hTBG(r) =

(

hD,1(r) T (r)
T †(r) hD,2(r)

)

. (S6)

Provided that inversion and time reversal symmetries are preserved, the Dirac cones described

by hD,ℓ(r) at Kℓ are preserved even when the interlayer tunnelling is added. Nevertheless, this

tunnelling term breaks the (effective) continuous translation symmetry of hD,ℓ. Consequently,

the set of conserved momenta are confined to reduced moiré Brillouin zone (BZ). Like the

original monolayer graphene BZ, the moiré BZ forms a hexagon with the Dirac cones located

at the corners. Here, we define K1 = κ and K2 = κ′ (for the other valley, K ′
1 = κ′, K ′

2 = κ).

For small twist angles, the intralayer Dirac terms are nearly identical, hD,ℓ(r) ≈ hD(r) =
v0(i∂xσ

x + i∂yσ
y)—namely, the rotation in Eq. (S1) may be neglected to first order. In this

case, the spectrum depends solely on the ratios η = w′/w and α = w/(ℏv0kθ), where kθ =
4π/(3LM) is the distance separating κ and κ′. Further, as shown in Ref. (55), the spectrum

close to Dirac points at κ and κ′ can be approximated using a simple perturbative scheme. In

particular, in momentum space one finds

hfl(k + κ(′)) ≈ vα,η(kxσ
x + kyσy), vα,η =

1− 3α2

1 + 3α2(1 + η2)
v0. (S7)

The magic angle is defined (55) by the condition vα,η = 0, which we see here should occur for

α ≈ 1/
√
3.

4.1.2 Twisted trilayer graphene

The Hamiltonian for the three layer system is

hTTG(r) =





hD,1(r) T (r) 0
T †(r) hD,2(r) T †(r)
0 T (r) hD,1(r)



 . (S8)

It maybe be transformed into a block diagonal form as

h̃TTG(r) = V †
TTGhTTG(r)VTTG =

(

h√2α,η,θ(r)
hD,1(r)

)

,

VTTG =
1√
2





1 0 1

0
√
2 0

1 0 −1



 . (S9)

First, we note that the TTG spectrum separated into independent sets of bands—a TBG-like

set described by the two-layer Hamiltonian h√2α,η,θ (an 8 × 8 object when sublattice and spin
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are included) and an MLG-like Dirac cone described by hD,1. Using the reasoning above, we

expect a set of flat TBG-like bands to occur when
√
2α = 1/

√
3. Equivalently, we can assign an

effective TBG twist angle describing these bands, θeffTBG = θ/
√
2 where θ is the physical twist

angle of the system. If θeffTBG is expected to yield flat bands in TBG, then we would similarly

expect
√
2θeffTBG to yield a set of flat bands in TTG.

4.1.3 Twisted quadrilayer graphene

For four layers, we start with

hTQG(r) =









hD,1(r) T (r) 0 0
T †(r) hD,2(r) T †(r) 0
0 T (r) hD,1(r) T (r)
0 0 T †(r) hD,2(r)









. (S10)

With the appropriate change of basis, we obtain

h̃TQG(r) = V †
TQGhTQG(r)VTQG =

(

hφα,η,θ(r)
hφ−1α,η,θ(r)

)

,

VTQG =
1

√

1 + φ2









1 0 −φ 0
0 φ 0 −1
φ 0 1 0
0 1 0 φ









, (S11)

where φ = (1 +
√
5)/2 is the golden ratio. In this case, we therefore expect the TQG spectrum

to possess two sets of TBG-like bands characterized by effective TBG twist angles θ/φ and

θ/φ−1.

4.1.4 Twisted pentalayer graphene

The final system considered is the twisted pentalayer graphene. In the original layer basis, the

Hamiltonian is

hTPG(r) =













hD,1(r) T (r) 0 0 0
T †(r) hD,2(r) T †(r) 0 0
0 T (r) hD,1(r) T (r) 0
0 0 T †(r) hD,2(r) T †(r)
0 0 0 T (r) hD,1(r)













. (S12)

Once more, independent, co-existing TBG- and MLG-like subsystems are revealed with the
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appropriate change of basis:

h̃TPG(r) = V †
TPGhTPG(r)VTPG =





h√3α,η,θ(r)
hD,1(r)

hα,η,θ(r)





VTPG =
1√
6













1 0
√
2

√
3 0

0
√
3 0 0

√
3

2 0 −
√
2 0 0

0
√
3 0 0 −

√
3

1 0
√
2 −

√
3 0













. (S13)

There are now two independent TBG-like bands characterized by effective twist angles θ/
√
3

and θ in addition to a MLG-like Dirac cone.

4.1.5 Model Parameters

As indicated in Eq. (S7), the magic-angle value is essentially determined by the velocity of

monolayer graphene v0 and the interlayer tunnelling amplitude w. We fix v0 for all considered

configurations. The magnitude of the interlayer tunnelling amplitude is typically estimated to

be around ∼ 100 meV. In case of TQG, a gap is expected to open at charge neutrality when

finite D field is applied. However, it onsets for any |D| > 0 when the physical angle θ is less

than φθmagic
TBG , where θmagic

TBG is the magic angle for TBG (as determined by v0 and w). When θ
is larger than φθmagic

TBG , a gap still opens, but only above certain finite D fields. As Fig. S4 and

Fig. S7J show, the latter scenario is observed in the TQG, device D2 (twist angle 1.8°), leading

us to select w = 108 meV near the value used in Ref. (55). In particular, in the left panel of

Fig. S7J, the Rxx is plotted as a function of D field, displaying non-monotonic behavior—a

resistance dip around D/ϵ0 ∼ 0.5 V nm−1 followed by a steep increase at higher D, signalling

the development of an insulating gap. Analogous trends are repeated on the right of Fig. S7J,

which shows an increase in ν = 0 DOS (corresponding to the resistance dip) followed by a

decrease to zero DOS.

Similar reasoning can be applied to the TTG and TPG samples, although it is slightly more

nebulous since a non-interacting gap is not expected to open in TTG and TPG for any D value

at the CNP. Instead, when θ >
√
2θmagic

TBG for TTG and θ >
√
3θmagic

TBG for TPG, the system

should become metallic with increasingD, whereas in the converse situation, theD field should

immediately gap out all states except for a dispersive MLG-like Dirac cone. Following this line

of reasoning, the results of Fig. S7 suggest that the twist angle in TTG is below the magic

angle, whereas the one in the TPG sample is above the magic angle. Accordingly, we select

w = 110 meV for TTG and w = 102 meV for TPG modeling. Notably, the resistance behavior

and theoretical DOS shown in Fig. S7K for TPG are very similar to the results in Fig. S7J

with the primary distinction being that the high-displacement field state does not display the

activated transport of an insulator. Similarly, although not obvious from the DOS plot itself, the

band structure of TPG at large D is semimetallic (as opposed to insulating).
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The value of the interlayer AA hopping w′ is expected to be less than the interlayer AB hop-

ping, as a result of lattice relaxation (see next section). We chose w′ = 60 meV for all three

multilayers considered, which is in agreement with the estimates of Ref. (23) and similar to

values used previously for TBG/WSe2 structures (9).

We note that, while consistent with experiment in the fashion outlined about, other factors could

be also at play, modifying the behavior at CNP in ways not captured by our analysis. Ultimately,

however, the choices made here are not expected to greatly influence any of the results in this

section.

4.2 Relative stacking

An important distinction between TBG and graphene moiré heterostructures containing addi-

tional layers is the band structure dependence of the relative layer displacement. Not only must

the graphene sheets be stacked with alternating angles, as discussed in the main text and in the

previous section, but moreover, the emergence of independent TBG- and Dirac-like bands only

occurs when all odd (even) layers are AA stacked, i.e., stacked directly on top of one another.

As stated above, we envision grouping the layers into odd and even sets, each stacked rigidly

atop one another. The two sets are then twisted relative to one another by the twist angle θ. We

have assumed that this stacking was realized in the previous presentation and now argue for the

feasibility of this assumption.

In TTG, it has been numerically shown that this situation is energetically preferable: the system

naturally relaxes into the odd/even aligned stacking configuration (56). This result is further

experimentally verified in transport (3) and local probe (15) measurements. A simple heuristic

supports these results and permits a generalization to additional layers. Starting from a bilayer

system, the moiré superlattice is manifest on the microscopic lattice scale as the periodic varia-

tion of the relative interlayer stacking: one has AA regions at the moiré hexagon centres, while

AB and BA stacking regions represent the moiré hexagon vertices. The AA regions have a

relatively high energy compared to the Bernal-like region and the lattice accordingly responds

by relaxing to minimize their area. We now consider adding a third layer with the same relative

twist angle as the first layer, but for the moment arbitrarily displaced from that layer. A moiré

superlattice is of course also generated between the new layer and the second layer, and the sys-

tem once again seeks to minimize (maximize) the area of the AA (AB/BA) regions. Crucially, if

the first and third layers are misaligned, the AA regions between the first and second layers are

misaligned from the AA regions between the second and third layers, frustrating the ability of

the lattice to relax. Only when the first and third layers are aligned will the AA region occur at

the same locations and only then can the system optimize its energy through relaxation. These

arguments clearly generalize to quadrilayer and pentalayer systems—we need only consider the

moiré pattern generated by each adjacent pair of graphene sheets to conclude that relaxation is

optimized by an odd/even aligned configuration. (A complementary explanation is that TTG is

necessarily an intermediate step in the construction of the TQG and TPG devices, and thus the
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odd alignment is already baked into a subset of the layers.)

4.3 Mirror symmetry

In the systems with an odd number of layers, an onsite mirror symmetry is present, which acts

as

ψ(r) → U
(nlayer)
mirror ψ(r), nlayer odd, (S14)

where
[

U
(nlayer)
mirror

]

ℓ,ℓ′
= δℓ,nlayer−ℓ′+1. (S15)

Here, ℓ, ℓ′ label the system’s layers. Effectively, this operator simply flips the layers around, for

instance, interchanging layers 1 and 3 in TTG, while keeping the middle layer fixed. In terms

of the matrices, this invariance manifests simply as the relation [hTTG(r), U
(3)
mirror] = 0 and

[hTPG(r), U
(5)
mirror] = 0. As we see below, the preservation of this symmetry is inextricably tied

to the block diagonal form of the TTG continuum model presented in Eq. (S9). In particular,

rotating U
(3)
mirror to the subsystem basis defined by VTTG returns Ũ

(3)
mirror = V T

TTGU
(3)
mirrorVTTG =

diag(1, 1,−1). The TBG-like subsystem corresponds precisely to the even parity sector (i.e.,

has eigenvalue +1 under the action the mirror symmetry) whereas the dispersive MLG-like

subsystem belongs to the odd parity sector (i.e., has eigenvalue −1 under the action the mir-

ror symmetry). The TBG- and MLG-like bands thus cannot hybridize without breaking this

symmetry.

We can similarly rotate the TPG operator, U
(5)
mirror to the subsystem basis Ũ

(5)
mirror = V T

TPGU
(5)
mirrorVTPG,

yielding Ũ
(5)
mirror = diag(1, 1, 1,−1,−1). Comparing against Eq. (S13), we observe that both

the TBG-like subsystem with effective twist angle θ/
√
3 and the MLG-like subsystem belong

to the even parity sector, whereas the subsystem with effective twist angle θ belongs to the odd

parity sector. The mirror symmetry therefore only protects the latter subsystem—which is no-

tably not at the magic angle in the experiment. In other words, in TPG with mirror symmetry,

flat TBG-like band and MLG-like band can hybridize (while the dispersive TBG-like band is

protected).

A mirror-like symmetry also exists for even-layered systems like TBG and TQG, but it does not

act in an onsite fashion. Instead, we have

ψ(r) → U
(nlayer)
mirror ψ(Ryr), nlayer even, (S16)

where Ry = diag(1,−1) and

U
(nlayer)
mirror = σxŪ

(nlayer)
mirror ,

[

Ū
(nlayer)
mirror

]

ℓ,ℓ′
= δℓ,nlayer−ℓ′+1. (S17)
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Here, ℓ, ℓ′ again indicate the system layers and σx acts on the sublattice indices. The fact that

this symmetry is not onsite means that we cannot generically partition the system into even and

odd parity sectors like we did for TTG and TPG. For TQG, hybridization between subsystems

is therefore not prohibited by symmetry.

4.4 Band mixing

In obtaining the independent TBG- and MLG-like bands (subsystems) listed above, a number

of assumptions were made and one may be concerned about the relative robustness of these re-

sults. For TTG, at least, this question may be dismissed so long as mirror symmetry is present;

above, we showed that this mirror symmetry protects the block diagonal subsystem form ob-

tained for TTG. Similarly, mirror symmetry disallows mixing in TPG between certain (but not

all) subsystems. However, the mirror symmetry is explicitly broken by the application of a

displacement field as well as by the WSe2 substrate used in the experiment. Below, we show

that these modifications induce mixing between all subsystems. We additionally consider other

mirror-preserving effects that may result in subsystem mixing in TQG and TPG.

Besides the displacement field, we find that the subsystem-mixing energy scales discussed be-

low are relatively small compared to the input parameters of the continuum model, i.e., com-

pared to an interlayer tunnelling of w and w′. More importantly, they are also smaller than

the observed bandwidth of TBG, which spectroscopic measurements indicate is ∼ 40 meV for

samples close to the magic angle (59–62). The subleading magnitude of the effects we explore

below thus bolsters our use of the alternating-angle continuum model, at least as a starting point.

We note that the relatively small subsystem hybridization discussed here could be significantly

magnified by interactions.

4.4.1 Effect of displacement field

In the main text, we allude to the fact that a finite displacement field mixes the TBG- and MLG-

like subsystems obtained in the previous sections. This effect is included in the Hamiltonian

through the addition of

Hdisp =

nlayer
∑

ℓ,ℓ′=1

∫

d2r ψ†
ℓ(r)

[

h
(nlayer)

disp

]

ℓ,ℓ′
ψ†
ℓ′(r),

[

h
(nlayer)

disp

]

ℓ,ℓ′
= Uδℓ,ℓ′

(

1

2
− ℓ− 1

nlayer − 1

)

.

(S18)

Specifically, we have h
(3)
disp = (U/2)diag(1, 0,−1), h

(4)
disp = Udiag(1/2, 1/6,−1/6,−1/2), and

h
(5)
disp = Udiag(1/2, 1/4, 0,−1/4,−1/2). Here, the scale U is defined as outlined in section 3.
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Focusing first on the odd-layered systems, TTG and TPG, we observe that this perturbation ex-

plicitly breaks the mirror symmetry introduced in the previous section. In particular, h
(3)
disp and

h
(5)
disp anticommute withU

(3)
mirror andU

(5)
mirror respectively: {h(3)disp, U

(3)
mirror} = 0 and {h(5)disp, U

(5)
mirror} =

0. The displacement field therefore allows subsystems within different parity sectors to hy-

bridize. The effect of this addition is apparent when h
(nlayer)

disp is tranformed to the subsystem

basis of Eqs. (S9) and (S13):

h̃
(3)
disp = V †

TTGh
(3)
dispVTTG =

U

2





0 0 1
0 0 0
1 0 0





}

Parity-even sector

} Parity-odd sector

h̃
(5)
disp = V †

TPGh
(5)
dispVTPG =

U

4
√
3













0 0 0 2 0

0 0 0 0
√
3

0 0 0 2
√
2 0

2 0 2
√
2 0 0

0
√
3 0 0 0



















Parity-even sector

}

Parity-odd sector

(S19)

We thus explicitly see the way in which the displacement field induces mixing between subsys-

tems.

It is worth noting that the precise manner in which the addition of h
(3)
disp and h

(5)
disp break the

respective mirror symmetries has important consequences for the U -dependence of the theory.

In particular, the unitary operators U
(3)
mirror and U

(5)
mirror map h

(3)
disp and h

(5)
disp to minus themselves.

Given the invariance of the remaining parts of the Hamiltonian under this symmetry, we con-

clude that the systems at +U and −U (i.e., +D and −D) have identical spectra. (Although

not discussed yet, the interaction terms are also mirror-invariant and so this argument is not

restricted to the single-particle description, see section 4.5.)

Subsystem mixing is also a natural consequence of the displacement field in TQG. The Hamil-

tonian in Eq. (S18) takes the form h
(4)
disp = Udiag(1/4, 1/6,−1/6, 1/4), which becomes

h̃
(4)
disp =

U

30φ
(1 + φ2)









φ−3 0 −4 0
0 −φ−3 0 −4
−4 0 φ3 0
0 −4 0 −φ3









}

Subsystem with θeffTBG = φθ
}

Subsystem with θeffTBG = φ−1θ
(S20)

in the subsystem basis.

Although the mirror symmetry described in Eq. (S16) for TQG is not onsite, it still satisfies

{h(4)disp, U
(4)
mirror} = 0. We conclude that the spectra at +U and −U (+D and −D) are identical.
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4.4.2 Proximity-induced spin-orbit coupling

One of the exterior layers of the samples considered here is placed adjacent to WSe2. This

type of construction was first shown to induce spin-orbit coupling in twisted bilayer graphene in

Ref. (9). The presence of WSe2 breaks not only the spin symmetry, but also the mirror symmetry

in systems considered here and possibly induces subsystem mixing. Similarly, the invariance

of the spectrum under U → −U (D → −D) will also no longer strictly hold. Nevertheless, the

magnitude of the induced spin-orbit scale has been measured to be approximately 1− 5 meV in

TBG, smaller than the other scales of the theory (e.g., the bandwidth). In effect, in rotating to

the subsystem basis, the spin-orbit terms are “spread” across an increasing number of layers by

the unitary transformations VTTG, VTQG, VTPG.

4.4.3 Mirror-symmetric, nonuniform charge distribution

The chemical potentials of the different layers may also differ in a way that is symmetric under

onsite mirror actionsU
(4/5)
mirror of Eq. (S15). In particular, we may have h

(4)
µ-var = diag(δµ1, δµ2, δµ2, δµ1),

which takes the subsystem-basis form

h̃(4)µ-var =
δµ√
5









−1 0 −2 0
0 −1 0 2
−2 0 1 0
0 2 0 1









, (S21)

where δµ = δµ1 = −δµ2. Similarly, for TPG, a term like h
(5)
µ-var = diag(δµ1, δµ2, δµ3, δµ2, δµ1)

also preserves the mirror operator U
(5)
mirror but can be shown to induce inter-subsystem mixing

within the even parity sector. As we demonstrate in section 4.5, such a term is naturally gen-

erated by the Coulomb interaction. We specify to TPG in that section, but the reasoning is

analogous for TQG (and for TTG, although this term will not induce mixing between sectors

because of the mirror symmetry).

Although generically present, the Coulomb interaction-generated terms of this form are rela-

tively small compared to the other terms present. The calculations presented below estimate

that values of |δµℓ| < 5 − 10 meV for TPG are generated as one dopes away from charge

neutrality. We expect the results for TQG to follow the same trend.

4.4.4 Next-nearest layer tunnelling

Our Hamiltonian so far only includes tunnelling between neighboring layers. Generically, how-

ever, hopping between next-nearest neighboring layers occurs as well. For TQG, we could

therefore consider hopping between layers 1 (2) and 4 (3):
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h
(4)
nnl =









0 0 Tnnl 0
0 0 0 Tnnl
T †
nnl 0 0 0

0 T †
nnl 0 0









. (S22)

Assuming for simplicity that Tnnl. = T †
nnl, in the subsystem basis, this term takes the form

h̃
(4)
nnl =

1√
5









2Tnnl 0 −Tnnl 0
0 2Tnnl 0 Tnnl

−Tnnl 0 −2Tnnl
0 Tnnl 0 −2Tnnl









. (S23)

Note that because we assume next-nearest layers are stacked AA relative to one another, to first

order, no spatial dependence is expected in Tnnl. The subsystems are similarly mixid with the

five-layer analogue h
(5)
nnl. Reference (56) computed the values of Tnnl expected in TTG (where it

will not induce subsystem mixing) and found that a typical scale |Tnnl,ij| ∼ 5− 10 meV, which

translates to |Tnnl,ij|/
√
5 ∼ 3− 5 meV (i and j are sublattice indices).

4.4.5 Lattice relaxation

As mentioned in section 4.2, the moiré lattice relaxes in order to minimize AA regions and max-

imize AB/BA regions. This relaxation effect ultimately depresses the value of w′ (interlayer AA

tunnelling) relative to w (interlayer AB/BA tunnelling) as a result of out-of-plane corrugation.

For interior layers, which neighbor more than a single sheet, the effects of relaxation are nat-

urally stronger than for exterior layers. Consequently, the value of η = w′/w appropriate for

tunnelling to and from interior layers is reduced. Our assumption below Eq. (S5) that Tℓ,ℓ+1(r)
depended only on whether ℓ was even or odd is no longer valid. Unsurprisingly, this effect once

again mixes the subsystems in TQG and TPG. Reference (23) estimated the magnitude of this

effect and determined that it should be in the range 5− 10 meV for the twist angles considered

here.

4.5 The role of interactions in TPG

The presence of flat-band subsystem in the low-energy theory of the multilayer graphene struc-

tures necessitates the consideration of interaction-driven band structure corrections. In the fol-

lowing, we focus specifically on the case of TPG as its phase diagram demonstrates the strongest

deviation from the minimal paradigm that a multilayer structure maybe thought of as a TBG-

like Hamiltonian with spectating additional bands. Rather, as we argue, the dispersive TBG- and
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MLG-like subsystems play a crucial role in extending the filling range of the superconducting

pocket in accordance with scenario (ii) and (iii). Here, we consider three types of interaction

corrections: (a) an in-plane Hartree correction; (b) a two-parameter effective model mimicking

generic Hartree-Fock modifications of band structure; (c) an out-of-plane Hartree correction

allowing for inhomogeneous charge distribution between the layers. We demonstrate that these

effects generically lead to two consequences for the electronic spectrum: promoting charge re-

distribution to the non-flat bands and also leading to possible symmetry breaking between the

non-flat and flat bands.

4.5.1 Hartree correction

We begin with an in-plane Hartree effect. As demonstrated experimentally in previous work on

TBG (32) and TTG (15), filling-dependent interaction effects, specifically Hartree and Fock

corrections, drastically alter the electronic dispersion. Here we incorporate only a Hartree

mechanism (28–31) in the analysis, arguing that its key effect, a relative shift of flat bands

up in energy with respect to the non-flat bands, is the simplest mechanism through which the

size of the superconducting pocket in TPG is extended. We then supplement this discussion

with a phenomenological Hartree-Fock-like theory. Before proceeding, we stress that the main

purpose of the analysis in this section is to demonstrate that scenario (i) wherein flat bands are

filled only to νflat ≈ +3 at ν ≈ +5 is highly unlikely, thus highlighting the non-trivial role

played by the dispersive TBG- and MLG-like bands.

The foundations of the Hartree calculation in TPG described below are identical to the analysis

in Refs. (32) and (15). We reproduce them here for the convenience of the reader. We introduce

the Coulomb interaction into the system through

HC =
1

2

∫

d2r d2r′ δρ(r)V (r − r′)δρ(r′). (S24)

In section 4.1, we introduced creation and annihilation operators, ψ†(r) and ψ(r), that cor-

respond to the non-interacting eigenstates given by the Hamiltonian of Eq. (S5). Here and

in what follows, we suppress the layer, valley, sublattice and spin subscripts. In Eq. (S24),

V (r) = e2/(ϵ|r|) is the Coulomb potential and δρ(r) = ψ†(r)ψ(r)−ρCN(r), where ρCN(r) =
⟨ψ†(r)ψ(r)⟩CN is the expectation value of the density at the charge-neutrality point. The use of

δρ(r) instead of ρ(r) in the interaction is motivated by the expectation that the input parameters

of the modelHTnlayerG = Hcont already include the effect of interactions at the charge-neutrality

point. The dielectric constant ϵ in the definition of V (r) is used as a fitting parameter; see dis-

cussion below for details.

We study the effect of the interacting continuum model of magic-angle TPG through a self-

consistent Hartree mean-field calculation. Instead of solving the many-body problem, we ob-

tain the quadratic Hamiltonian that best approximates the full model when only the symmetric
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contributions of HC are included, i.e., the Fock term is neglected. Thus instead of Hcont +HC ,

we study the Hamiltonian

H
(ν)
MF = Hcont +H

(ν)
H − 1

2
⟨H(ν)

H ⟩ν , (S25)

where H
(ν)
H is the Hartree term at filling ν,

H
(ν)
H =

∫

k,k′,q

V (q)⟨ψ†(k′ + q)ψ(k′)⟩νψ†(k)ψ(k − q), (S26)

and the last term in Eq. (S25) simply ensures there is no double counting when one calculates

the total energy. In the above equation, V (q) = 2πe2/(ϵ|q|) is the Fourier transform of the

Coulomb interaction V (r) in Eq. (S24), and the expectation value ⟨Ô⟩ν = ⟨Ô⟩occ−⟨Ô⟩CN only

includes states that are filled up to ν relative to charge neutrality, as defined by diagonalizing

the Hamiltonian H
(ν)
MF.

Typically, for a “jellium”-like model, the expectation value in Eq. (S26) vanishes save for q =
0, which is subsequently cancelled by the background charge—allowing one to set V (q =
0) = 0 and completely ignore the Hartree interaction. However, because the moiré pattern

breaks continuous translation symmetry, momentum is only conserved modulo a reciprocal

lattice vector. We therefore obtain

H
(ν)
H =

′
∑

G

V (G)

∫

k′

⟨ψ†(k′ +G)ψ(k′)⟩ν
∫

k

ψ†(k)ψ(k −G), (S27)

where the prime above the summation over the moiré reciprocal lattice vectors indicates that

G = 0 is excluded. The self-consistent procedure begins by assuming some initial value of

H
(ν)
H and diagonalizing the corresponding mean-field Hamiltonian H

(ν)
MF to obtain the Bloch

wavefunctions and energy eigenvalues. These quantities are then used to re-compute the expec-

tation values that define H
(ν)
H and thus H

(ν)
MF subject to the cascade treatment described above.

This process is repeated until one obtains the quadratic Hamiltonian H
(ν)
MF that yields the corre-

lation functions ⟨·⟩ν used in its definition.

Due to the accumulation of electronic density at the AA sites of the stacking sequence, the

Hartree potential is dominated by the first ‘star’ of moiré reciprocal lattice vectors (28, 63),

which in our conventions corresponds to Gn = R
(

2π(n− 1)/6
)

4π√
3LM

(1, 0)T for n = 1, . . . , 6,

with R(ϕ) a rotation matrix. The restriction to the Gn’s paired with the 2π/6 rotation sym-

metry of the continuum model greatly simplifies the calculation of the Hartree term. Notably,

V (G)
∫

k′⟨ψ†(k′ +G)ψ(k′)⟩ν must be the same for all Gn, and, instead of Eq. (S27), we use
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H
(ν)
H = V

(ν)
H

6
∑

n=1

∫

k

ψ†(k)ψ(k −Gn), V
(ν)
H =

1

6

6
∑

n=1

V (Gn)

∫

k′

⟨ψ†(k′ +G)ψ(k′)⟩ν . (S28)

The self-consistent procedure in this case is identical to that described in the previous paragraph,

but due to the reduced number of reciprocal lattice vectors that are included in the summation,

the calculation is computationally easier. Convergence is typically reached within ∼ 6 itera-

tions.

We now proceed to discuss the precise effect of the Hartree correction. Since the Hartree cor-

rection couples bare graphene states at momenta k and k+G, its effect is most pronounced for

subsystems of the Hamiltonian whose eigenstates require multiple bare graphene states origi-

nating from multiple moiré BZs, e.g. k + G states with G extending beyond the second BZ.

As such, Hartree affects the flat-band subsystem most severely since its eigenstates deviate the

most from the bare graphene states, while the MLG-like subsystem is affected the least. As a

result, this correction gives rise to an energy offset that shifts the flat bands upwards in energy

with respect to the rest of the energy spectrum (technically the dispersive TBG-like subsystem

is also shifted slightly with respect to the MLG-like subsystem). This effect has been seen both

theoretically and experimentally in TTG (15, 64) Thus we expect it to be present in TPG, as is

confirmed through our simulations; see Fig. S12, A and B. Physically, this effect arises simply

because the charge distribution from the non-flat subsystems is more homogeneous in the unit

cell and, therefore, it contributes less to the potential of Eq. (S26).

We now discuss what happens when one starts from charge neutrality and electron dopes the

system. Due to the shift of the flat band upwards in energy relative to the non-flat bands, more

charge can enter the non-flat bands upon doping (increasing ν) than a naı̈ve non-interacting

model predicts. As a result, the filling range of the flat TBG-like band superconducting pocket

may be extended since the filling of the flat bands νflat can continue to lie in the range amenable

to superconductivity, whilst the total filling ν increases by adding charge to the non-flat bands.

This is the central idea behind the scenarios (i) and (ii) discussed in section 5.

In the simulations for flat-band filling νflat > +2, we consider two ways to fill the otherwise

4-fold degenerate bands: an uncascaded model where all 4-fold degenerate bands are filled

equally, and a simple cascade model where two of the flat-band flavors (say spin ↑ forK,K ′) are

shifted down in energy such that the highest energy of the shifted bands falls on the Dirac point

of the unshifted flat bands, c.f. Fig. S12C. In the absence of Hartree-induced band inversion (as

in fact we will consider in the following section), the shifted bands (↑ bands) are fully filled at

νflat = +2 and the unshifted bands (↓) and the dispersive bands contain the remaining ν − 2
charge. With the Hartree-induced gamma point inversion, the two sets of the flat bands (shifted

- ↑, unshifted - ↓) become partially filled near νflat = +2. The shifted (↑) band is mostly filled

and the unshifted (↓) is mostly empty. This simple approach qualitatively reproduces the effect

of a cascade at |νflat| ≈ 2 under the assumption that the specific nature of the cascade state
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(i.e. spin or valley polarized) is irrelevant for the consideration of the total filling. We caution,

however, that a cascade transition is an effect originating from an interplay between Hartree

and Fock corrections (see Ref. (32) for further discussion), and that Fock corrections, which we

neglected so far, can give rise to many effects.

The most crucial ones, including bandwidth broadening (63,65–67) and gap opening in the flat-

band subsystem (10,11,52,53,60,65,68), may actually affect the charge distribution across the

different subsystems. These effects are neglected in the current analysis—an approximation we

will justify in the following section.

The cascade, as shown in Fig. S12G, allows charge to enter the unfilled flat bands more easily

compared to the uncascaded ground state. This behavior is expected since a cascade minimizes

the contribution of the Hartree term by redistributing charge away from parts of the flat bands

which overlap more strongly with the Hartree potential—in particular, for the parameters con-

sidered here and within the relevant range of filling factors, the cascade is the ground state

solution. Note, however, that while including only the Hartree correction is sufficient to initiate

cascade, Fock must be included in order for it to persist over the experimentally observed range

(see Ref. (32) for further discussion on the interplay of Hartree and Fock corrections and the

onset of cascade).

To quantitatively estimate the fillings of the different subsystems, it is necessary to parametrize

the strength of the Coulomb interaction, e.g., the dielectric constant ϵ that enters into Eq. (S26).

Although, in principle, the dielectric constant is fixed primarily by the substrate and any interac-

tion corrections can be accounted for via a self-consistent treatment, in practice (28,32,63,66),

it can be treated as a fitting parameter. If a bare value of the interaction is used, then the re-

sulting interaction corrections are too large and lead to unobserved predictions (15, 32). We

use the cascade near νflat ≈ +2 to constrain ϵ. We identify νflat = +2 with the experimental

onset of the cascade transition, which occurs near ν ≈ +2.15; see Fig. 4E. By choosing ϵ so

that νflat reaches +2 at the same point the total filling ν reaches +2.15 (see Fig. S12E), we find

ϵ ≈ 11.15. We emphasize that although this is an approximate fitting relying on the particular

model of a cascade, the Hartree-induced flat-band energy shift is a robust and important effect

(Fig. S12F). Using the value of ϵ ≈ 11.15, we find that at ν ≈ +5, the flat bands are filled to

approximate νflat ≈ +3.8 (see Fig. S12G), further demonstrating the implausibility of scenario

(i).

We note that due to the hybridization of different bands under a finite displacement field, the

assignment of flat TBG-, dispersive TBG- and MLG-like subsystem becomes, to some degree,

arbitrary as bands start to hybridize. For the purpose of qualitative discussion, however, we

can evaluate the spectral overlap of each finite-field eigenstate with the zero-field basis and

assign a label of “flat/dispersive TBG-like/MLG-like” based on the largest overlap. Within this

convention, we find that the displacement field enables easier charge accumulation in the “flat”

subsystem as opposed to the “non-flat” subsystems, thus suppressing the total filling range over

which superconductivity can reach (see Fig. S12H).
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4.5.2 Constraining Hartree and Fock

Preferential filling of the dispersive TBG- and MLG-like subsystems is also enabled by other in-

teraction effects, for example, gap opening due to the Fock correction. This term, as mentioned

previously, also plays a key part in the symmetry-breaking cascade as well as band broadening.

While a careful microscopic analysis of Hartree and Fock effects in multilayer devices is nec-

essary, here we introduce a simple phenomenological model intended to capture the qualitative

effects of Hartree and Fock corrections on the filling of the non-flat subsystems. We hope that

the simple parametrization of this model can be used as a benchmark for its validity against a

more rigorous analysis.

To mimic the effects of Hartree and Fock, we add two additional ingredients to the non-

interacting model of Eq. (S13): a constant energy shift of the flat-band subsystem ∆H and

an intralayer sublattice potential ∆Fσ
z

h̃TPG(r) =













∆H12×2 +∆Fσ
z + hD,1(r)

√
3T (r)√

3T †(r) ∆H12×2 +∆Fσ
z + hD,2(r)

hD,1(r)
hD,1(r) T (r)
T †(r) hD,2(r)













.

(S29)

A schematic of the effect of the two added terms on the band structure is shown in Fig. S12D.

We further mimic a cascade by shifting two copies of the flat-band subsystem below the Dirac

points of the band structure and closing the ‘Fock’ gap in the cascaded bands.

We present the result of this analysis in Fig. S12I, where the filling factor of the flat-band

subsystem versus ∆H and ∆F is plotted for a fixed total filling ν = +5 (corresponding to the

edge of the superconducting dome in TPG). We find that in order for scenario (i) to apply, i.e.

νflat ≈ +3 at ν = +5 in TPG, the corresponding parameters are unrealistic. Especially, a

∆F ≈ 20 meV would yield an insulating gap of 40 meV, which far exceeds a typical correlated

insulating gap of few meV experimentally observed in the context of TBG (59–62). Notably,

for a ∆F below ∼ 5 meV, there is negligible effect of the Fock gap on the flat-band filling

redistribution, consistent with our earlier Hartree-only approximation.

4.5.3 Interlayer screening effects

In the above analysis of Hartree-induced band shifting and deformations, we only focused on

the effect of the in-plane Hartree potential, assuming a homogeneous charge distribution across

the layers. It is known, however, that in multilayer (untwisted) graphene, interlayer screening

due to inhomogeneous charge distribution over different layers can be important (69, 70). To

check the importance of this effect, we follow the self-consistent treatment in Ref. (70) and
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determine the screening-induced potentials on each layer. Particularly, in the language of the

Hamiltonian in Eq. (S5), we show that even at zero external displacement field, the induced

potentials are not uniform on all layers and can lead to hybridization between the flat TBG-like

and the MLG-like subsystems as presented above in section 4.4.3.

We model the graphene layers as parallel plates with zero thickness and respective electron

charge densities eni. The local displacement field between the ith and (i + 1)th layer is then

given by Fi,i+1 = e(
∑i

j=1 nj −
∑N

j=i+1 nj)/(2ϵ), where N is the total number of layers, and

we take ϵ = 11.15, the same as the in-plane dielectric constant determined above. Here, we use

the in-plane dielectric constant value because electron densities are delocalized over multiple

layers and cannot be simply treated as some classical charge on a particular layer. Thus, the

effective dielectric constant should be much larger than the vacuum’s value. The above local

displacement field produces the local potential difference between the ith and the (i + 1)th
layer Vi+1 − Vi = −edFi,i+1 = −e2d/(

√
3ϵL2

M) × (
∑i

j=1 νj −
∑N

j=i+1 νj), where νj is the

filling fraction projected to the jth layer, d is the interlayer distance, and LM is the moiré lattice

constant.

The role of this mechanism is shown in Fig. S13. We find that the self-consistently generated

potential differences shift the flat bands upwards in energy. Similar to the in-plane Hartree

correction, it enables further charge filling of the dispersive TBG-like bands, which is in line

with scenario (ii) for the extended TPG superconducting pocket. We stress that unlike the in-

plane Hartree correction, the out-of-plane Hartree term leads to the hybridization of the different

subsystems. This hybridization, in addition to other effects described in the previous section,

may facilitate symmetry breaking or a breakdown of an approximate assignment of flat and

dispersive TBG-like bands (see the discussion above concerning band mixing, section 4.4.3), in

line with the condition for scenario (iii).

5 Possible Origins of the Extended Superconducting Pocket in TPG

Here we present several scenarios that can result in the superconductivity of TPG extending to

ν ≈ +5, and discuss these scenarios in the context of experimental observations. We note that

in the discussion below, ν denotes the total number of electrons per moiré site, and νflat denotes

the number of electrons per moiré site added to the flat TBG-like bands.

5.1 Scenario (i): flat TBG-like bands are filled to νflat = +3 at ν = +5

For TBG and TTG, the strongest superconducting pockets normally start from |ν| = 2 and

end around |ν| = 3. Therefore, a conventional scenario would suggest that TPG could behave

in a similar way, i.e., flat TBG-like bands are filled to νflat = +3 when superconductivity is

diminished at ν = +5. This scenario implies that the additional two electrons per moiré site are

distributed in the dispersive TBG- and MLG-like bands due to the interaction effects discussed
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in section 4.5, with a large portion of the charge carriers being hosted by the dispersive TBG-

like bands. Since vHs of the dispersive TBG-like bands are normally found around half filling,

the corresponding Hall density signatures are expected to occur at the same filling, i.e., ν = +5
in this scenario. However, in the experiment we observe vHs signatures originating from the

dispersive TBG-like bands near ν ≈ +6 instead (see Fig. S10). This line of reasoning allows

us to completely rule out scenario (i), therefore, we conclude that superconductivity exceeds

flat-band filling νflat = +3 for electron-doped TPG.

5.2 Scenario (ii): flat TBG-like bands are filled close to νflat = +4 at ν = +5

As a result of interactions, a fraction of electrons are preferentially distributed in the dispersive

TBG- and MLG- like bands. It is therefore possible that for total filling of ν ≈ +5, the flat

TBG-like bands are filled close to νflat ≈ +4, with the extra one electron per moiré site being

distributed in the other bands. We explored this possibility in more detail in section 4.5, which

shows the filling correspondence between νflat and ν for various interaction terms and dielectric

constants (see Fig. S12). In this scenario, the modeling suggests that the filling of the flat bands

is nearly four (νflat > +3.8), which is well outside typical TBG behavior.

5.3 Scenario (iii): flat TBG-like bands are fully filled to νflat = +4 before ν = +5 or

hybridization of different bands obscures the distinction between them

The last scenario suggests either that the flat TBG-like bands are fully filled before the suppres-

sion of superconductivity, in which case superconductivity would exist in the more dispersive

bands, or that the distinction between the different TBG- and MLG-like bands breaks down

due to hybridization (i.e. mixing), even at D = 0. As discussed in previous sections, such

mixing between flat, dispersive TBG- and MLG-like bands can happen when mirror symmetry

is broken. Moreover, layer-to-layer charge inhomogeneity (see Fig. S13 and section 4.5.3) or

distant-layer coupling (see section 4.4) allow for band hybridization even in the presence of

mirror symmetry.

In the context of scenario (iii), we speculate on the polarized or un-polarized nature of the

active bands in the regime +4 < ν < +5. One simple possibility is that the dispersive TBG-

like bands spontaneously break the flavor symmetries on its own, with the flat bands playing

relatively little role. Another possibility is that hybridization obviates the distinction between

flat and dispersive bands such that flvor polarization is allowed to persist far beyond. Further

experiments will be needed to help ascertain the extent of flavor polarization that persists to

ν = +5.

23



5.4 Experimental signatures in electron-doped TPG

Experimentally, starting from low D fields, we observe a drop in Hall density at ν ≈ +4 which

surprisingly does not affect superconductivity in any abrupt way (superconductivity continu-

ously evolves and is present until ν ≈ +5). As the D field is increased, this Hall density drop

is gradually replaced by a transition where Hall density changes sign (Fig. S9). The high D-

field transition can be interpreted as a ‘gap’ feature emerging in the band structure similar to

TTG (3). Further measurements of Rxx show that the corresponding ν ≈ +4 feature does not

shift with temperature (Fig. 4A) and is significantly broadened at high B fields, resembling the

feature associated with the flat-band gap in TTG (Fig. S2, A and E). These observations indi-

cate that the ν = +4 feature is naturally explained as either marking the end of the flat bands

or resulting from band details due to hybridization, which is in line with the scenario (iii). In

this context, the alternative possibility that ν = +4 corresponds to a flavor-polarization reset at

νflat = +3 is highly unlikely. Finally, we note that this line of argument cannot fully rule out

scenario (ii) due to the potential presence of small dispersive pockets in the flat bands that may

remain unfilled near ν = +4.
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Figure S1: Sample uniformity and reproducibility of the results. (A to C) Leftmost optical

images are D1–D3 mentioned in the main text. The scale bar in each panel corresponds to 5 µm.

Rxx versus density and displacement field (n–D) plots shown in the middle are obtained from

electrodes marked with the corresponding colored lines. The electrodes marked with purple

lines were used for measuring Rxx in the main text. Rightmost plots are Rxx versus carrier

density with top-gate voltage fixed at V
tg

= 0 V (gate sweeps are along the grey dashed lines

in the n–D plots). All three devices have a high degree of homogeneity in twist angle with

the same superconducting filling range and |ν| = 4 carrier density for multiple contacts. The

behavior of superconductivity and other symmetry-breaking features is highly reproducible for

different contacts.
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Figure S2: Fan diagrams at zero D field and the Hall conductance quantization around

|ν| = 4. (A to F) Rxx measured as a function of B field and ν from trilayer to pentalayer (A,

C, E). The main sequences of the fan diagrams are labelled at the bottom of Rxx (B, D, F).

Landau levels from the dispersive bands are visible as Rxx oscillations at low B fields in the

fan diagrams. (G to M) Rxy measured as a function of B field and ν from trilayer to pentalayer

(G, I, K). Below these plots, we show Hall conductance around |ν| = 4 (H, J, L, M). The layer

number n determines the resulting quantization. Since the dispersive bands of n-layer magic-

angle graphene consist of n − 2 Dirac-like cones (at low energies), the |ν| = 4 quantization is

therefore expected to follow monolayer graphene sequence (±2, ±6, ±10,..., ×e2/h) multiplied

by n − 2. The plateaus in TTG and TQG clearly show this trend, while in TPG only the first

plateau is observed. These observations however confirm the number of layers in each sample.
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Figure S3: Evolution of superconducting phase, Ic, Bc and coherence lengths in TTG,

TQG and TPG. Column (A) shows Rxx versus ν and D phase diagrams, and the green dots

indicate the positions where the corresponding I versus B plots shown in (B) are measured

for D1–D3. Column (C) shows the critical current Ic versus ν at the optimal D fields for D1–

D3. Column (D) shows Rxx versus ν and B around ν = −2 for D1–D3, highlighting the high

critical magnetic fields in these systems. Superconductivity in the twisted graphene multilayers

has a higher Bc (∼ 0.8 T or higher) than in TBG. (E) Ginzburg–Landau coherence lengths ξGL

versus ν for all three devices around |ν| = 2, superimposed on the Rxx versus T and ν plots.

(F) ξGL and moiré wavelength LM versus twist angle of different layers, suggesting a possible

relation between the two length scales.
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Figure S4: Insulating behavior in TTG and TQG. (A) Line cuts of Rxx versus ν for a range

of temperatures at D/ϵ0 = 0.26 V nm−1 on the electron side for TTG. (B) Rxx versus D and

temperature at ν = +1.96 in TTG. (C) Line cuts at different D fields from (B). Out-of-plane

(D) and in-plane (E) B field dependence of Rxx versus ν at D/ϵ0 = 0.26 V nm−1 in TTG.

The ν = +2 correlated insulator is suppressed by both in-plane and out-of-plane B field. (F)

Experimental charge-neutrality gap of TQG as a function of D field. (G) The continuum-

model gap as a function of potential difference U . Inset, single-particle band structure of TQG

(slightly above the magic angle) at U = 0 meV and 150 meV, respectively. We see a good

match between experiment and theory when converting D into U with an empirical factor:

U = 0.1× (n− 1)× 0.33 nm× eD, where n− 1 is the number of graphene interfaces.
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Figure S5: Evolution of superconducting critical temperature Tc with D field around opti-

mal doping. (A to C) Rxx as a function of T and D field for D1–D3 at filling factor ν = +2.2,

+2.4, and +3.2, respectively. Superconducting Tc is indicated by a dashed line that delineates

10% of the normal state resistance (see section 2 for details). (D and E) Tc/T
max
c versus poten-

tial energy difference U for TTG, TQG, and TPG around hole-side (D) and electron-side (E)

optimal doping, respectively. U is converted from D using U = 0.1× (n− 1)× 0.33 nm× eD,

where e is the electron charge and n− 1 is the number of graphene interfaces.
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Figure S6: Hall density ν–D maps and the positions of vHs/‘gap’ features. (A to F) Hall

density (A to C) and Rxx (D to F) as a function of ν and D for TTG, TQG, and TPG. Hall

density maps are measured at B = 0.9 T, 1.5 T, and 1.5 T, respectively. Yellow lines in (D to F)

track the evolution of vHs/‘gap’ features where Hall density changes sign. (G to I) Examples

of Hall density near the cascade transition reset (G), the vHs (H), and the ‘gap’ (I) following the

definitions in Ref. (3). Filling ranges for the line cuts are marked by the corresponding colored

dashed lines in (A and C).
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Figure S7: Rxx as a function of ν and D at different temperatures. (A to I) Rxx as a

function of ν and D measured at different temperatures for TTG (A to C), TQG (D to F), and

TPG (G to I). Grey lines track the evolution of the vHs/‘gap’ features. (J) The plot on the

left shows line cut of Rxx versus D at charge neutrality for TQG. The plot on the right shows

corresponding density of states (DOS) at charge-neutrality point (CNP) calculated using non-

interacting continuum model. In the regions where DOS is high, resistance is expected to be

low and vice versa. (K) Equivalent plots as in (J) for TPG.
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Figure S8: Evolution of superconducting ν–T domes with displacement field D in TPG.

(A) Rxx as a function of ν and D in TPG. (B to G) Rxx versus ν and temperature at different D
fields, and D fields are marked with colored bars in (A).
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Figure S9: Hall density and Rxx as a function of ν and D measured at different B fields

in TPG. (A) Hall density versus D and ν at B = 0.5 T. (B) Line cuts from (A). Panels below

zoom in on the evolution of Hall density resets near |ν| = 4. (C and D) Hall density versus D
and ν measured at B = 1.5 T (C) and 3 T (D), with respective line cuts shown in (F and G).

(E) Rxx versus D and ν measured at T = 1.5 K, B = 0.5 T (line cuts are shown in (H)). From

all the above line cuts, Hall density resets and Rxx resistive features consistently exist around

ν = +4.

33



Figure S10: Plots in a broader filling factor range and vHs of dispersive TBG-like bands

in TPG and TQG. (A and B) Rxx and Rxy as a function of ν and B field measured at zero

D field for TPG. The sign change in Rxy around ν = +6 (marked by arrows in (A and B))

indicates vHs. (C and D) Rxx (C) and Hall density (D) as a function of D and ν with gray

dashed lines indicating ν linecuts (at D = 0) where plots in (A and B) are taken. (E) Band

structure of TPG calculated using non-interacting model. Arrow indicates the position where

vHs from dispersive TBG-like bands is expected. (F) Hall density as a function of ν and D for

TQG. As in TPG, Hall density changes sign near ν = +6 indicating the vHs from dispersive

TBG-like bands in TQG.
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Figure S11: Characterization of the second TQG device. (A and B)Rxx (A) and Hall density

(B) versus filling factor ν and displacement field D for the second TQG device with twist angle

θ ≈ 1.64°. Yellow lines in (A) track the evolution of vHs features in Hall density. (C and

D) Rxx versus ν and temperature measured at D/ϵ0 = −0.29 V nm−1 (C) and −0.17 V nm−1

(D), resprectively. (E) Rxx versus ν and B field measured at zero D field. (F) Rxx versus ν
measured at zero D field and zero magnetic field.
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Figure S12: The role of interactions in TPG. (A to D) Depiction of different approximation

schemes used to understand the role of interactions in TPG. Note that the Hartree correction

shifts the flat band (purple) up in energy. Cascaded bands in (C) and (D) are shown in green.

(D) corresponds to a minimum model of Hartree and Fock effects characterized by a Hartree

shift (∆H) and a Fock gap (∆F ) (see section 4.5.2). (E and F) Partial filling of each subsystem

versus dielectric constant ϵ for a fixed flat-band filling νflat = +2 (E) and a fixed total filling

ν = +5 (F), respectively. (G) Partial filling of each subsystem versus total filling ν for a fixed

dielectric constant ϵ = 11.15. Here, solid (dashed) lines correspond to a cascaded (uncascaded)

solution with the cascade solution enabling higher filling of the flat-band subsystem as discussed

in the text. (H) Similar to (G) but the solid (dashed) lines correspond to a solution at potential

difference U = 0 meV (U = 34 meV). (I) Filling of the flat-band subsystem as a function of

∆H and ∆F at a fixed total filling ν = +5 (see section 4.5.2).

36



Figure S13: The role of interlayer inhomogeneous charge distribution in TPG. (A to D)

Band structure of TPG at different filling factors with an interlayer inhomogeneous charge dis-

tribution. Note that as filling is increased, the flat band is slightly shifted and also hybridizes

with the MLG-like band. (E) Partial filling of different subsystems as a function of total filling

ν with the effect of interlayer inhomogeneous charge distribution. Note a small charge redis-

tribution between +2 ≲ ν ≲ +5. Here, flat TBG-like and MLG-like subsystems are plotted

together to demonstrate the emergent hybridization.
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