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Graphene moiré superlattices show an abundance of correlated insulating,
topological, and superconducting phases. Whereas the origins of strong correlations and non-
trivial topology can be directly linked to flat bands, the nature of superconductivity remains
enigmatic. Here we demonstrate that magic-angle devices made of twisted tri-, quadri-, and
pentalayer graphene placed on monolayer tungsten diselenide exhibit flavor polarization and
superconductivity. We also observe insulating states in the trilayer and quadrilayer arising at

finite electric displacement fields. As the number of layers increases, superconductivity



emerges over an enhanced filling-factor range and in pentalayer extends well beyond the
filling of four electrons per moiré unit cell. Our results highlight the importance of the
interplay between flat and more dispersive bands in extending superconducting regions in

graphene moiré superlattices.

Rich phase diagrams of quantum electronic phases have been realized in many graphene
superlattice structures, but robust superconductivity is so far exclusive to twisted bilayer
graphene (TBG)[1, 2] and twisted trilayer graphene (TTG)[3, 4]. Strikingly, TTG exhibits greater
electric-field tunability[3, 4], Pauli limit violation[5], and more strongly coupled
superconductivity[3, 4] in comparison to TBG. While these observed differences may serve as
clues in identifying the superconducting origin of these systems, our ability to identify the truly
universal features is ultimately limited by the dearth of robust superconducting moiré materials,
suggesting that further progress lies in the discovery of other moiré superconducting systems.

We investigate twisted graphene multilayers where each successive layer is twisted by an
angle +6 relative to the previous one in an alternating sequence (Fig. 1A). For an even number
n of layers, the spectrum at zero displacement field D is expected to separate into n/2
independent TBG-like bands, each characterized by a different effective twist angle. When the
number of layers n is odd, in additionto (n — 1)/2 TBG-like bands, one monolayer-graphene-
like (MLG-like) band (essentially a Dirac cone) is expected[6] (see left column of Fig. 1B for
examples when n is 3, 4 and 5). The system may be conveniently modified through the
application of a displacement field D, which controllably hybridizes the different bands (Fig. 1B,

right column). Experimentally, we explore the properties of alternating twisted trilayer,



qguadrilayer, and pentalayer graphene (TTG, TQG, TPG) structures with 6 = 1.52 + 0.02
(device D1, trilayer), 8 = 1.80 + 0.04 (D2, quadrilayer), and 6 = 1.82 £+ 0.05 (D3,
pentalayer), respectively[7]. These twist angles all lie close to the theoretically predicted “magic”

magic magic magic

values needed to obtain one set of flat TBG-like bands (0, = \/EHTBG ~ 1.53, HTQG =
(V5 + I)H%afic/Z ~ 1.75, and Hg,aagic = \/§9¥;3a6gic ~ 1.87 assuming an effective TBG twist
angle G%acgic = 1.08[6]; see section 4.1 in [7]). We find that TTG, TQG, and TPG all exhibit
hallmark signatures of strong correlations (Fig. 1, C to E), including robust superconductivity and
flavor symmetry breaking as revealed by pronounced resistance peaks around certain integer
filling factors v (number of electrons per moiré site; see section 1 in [7] for assignment of v).

In addition to the symmetry-breaking transitions previously reported in TTG([3, 4, 8], our
TTG structure (coupled to a tungsten diselenide (WSe ;) monolayer[9]) exhibits a previously
unobserved correlated insulating state near v = 42 atfinite D (Fig. 1C, inset; see also Fig. S4.
1B right column; see sections 3 and 4 in [7]) and is instead attributed to the interplay between
an interaction-driven cascade transition and hybridization induced by the D field (e.g., as
captured by Refs. [10, 11]). We have also detected an insulating state developing at finite D
fields in TQG near charge neutrality (Fig. 1D, inset, and Fig. 1G). However, in contrast to TTG, the
TQG insulating state can be explained through the D-induced hybridization only. Importantly,
the detection of insulating gaps in TTG and TQG implies a low level of disorder in our samples
(see also Fig. S1).

The superconducting regions in all three structures extend over significantly larger filling
factor ranges in comparison to TBG[2, 12, 9, 13] where superconductivity is typically observed

within 2 < |v| < 3. Moreover, superconductivity emerges over successively broader regions of



phase space, reaching v = +5 on the electron side for TPG (Fig. 1, C to E). Along with a zero
longitudinal resistance R,, observed inthe characteristic v vs. T dome (Fig. 1, HtoJ), we also
measure large critical currents (~ 400 nA) and occasionally see oscillations in critical current
caused by superconducting interference, substantiating the robustness of phase coherence [7].
Moreover, we measure high critical perpendicular magnetic fields B, (typically ~ 0.8 T; see
Fig. S3), indicating that the corresponding Ginzburg-Landau coherence lengths &g
(approximately 10 — 30 nm) are significantly smaller than those observed in TBG and deviate
from the weak-coupling prediction, g1 = hvp/mA with A = 1.76kgT,; this suggests a strong-
coupling origin of superconductivity[3, 4] (see section 2 in [7]). When combined with other recent
experiments[5, 14, 15], these observations affirm the unconventional nature of
superconductivity within the entire class of graphene moiré systems. Further, the measurements
on three to five layers indicate that the addition of layers promotes superconductivity over a
broader filling window despite the coexisting dispersive bands as well as the ostensibly increased
vulnerability to disorder—both from the additional twist angles as well as from the sensitivity to
the relative displacement between layers (Fig. $14).

In addition to the pronounced v-dependence, the observed superconducting pockets are
highly tunable with electric displacement field D (Fig. 2). A comparison of the three structures
reveals, however, that TQG and TPG are more tunable than TTG. This is apparent both in the D-
dependent evolution of the filling range where superconductivity is measured (Fig. 2, A to C) as
well as in the critical temperature T, (Fig. 2, D to F). Notably, superconductivity in TQG and TPG
is fully quenched for all fillings at D/e, = 0.75Vnm™! and D/e, = 0.6 Vnm™1, respectively.

In the case of TTG, however, superconductivity is present up to the maximum accessible electric



field D/ey, = 1 Vnm™1. Nevertheless, R,, versus D andtemperature measurements do show
that superconductivity is suppressed for large D fields at optimal doping (the doping at which
superconducting T, is the highest) in all three heterostructures; further, they reveal that T,
forms a D symmetric dome maximized at small finite D (Fig. 2, D to F, for electron-side data
showing similar behavior see Fig. S5). We also note that TTG, TQG, and TPG all exhibit a similar
variation of T, when viewed as a function of the potential difference U between the top and
bottom layers (Fig. S5, D and E; see also section 3 in [7] for the energy conversion from D to U).
This layer-number invariance is consistent with non-interacting continuum-model calculations
tracking the evolution of the inverse of the flat-band bandwidth with U (Fig. 2G, bottom). The
dependence of T, on D in all devices qualitatively matches the predictions of Ref. [16] for TTG
with one marked exception: the observed vanishing of superconductivity and the decay of T,
appears to be linear in D (Fig. 2, E and F, and Fig. S5), in line with predictions for multilayer
graphene with rhombohedral stacking[17] and in contrast to the exponential ‘tail’ typically
expected from the weak-coupling theory (and seen in the model of Ref. [16]).

Comparing the location of the superconducting regions with the evolution of the Hall
density asafunctionof D and v inTTG, TQG, and TPG provides further insight into the intricate
relationship between the superconducting phase and the correlation-modified Fermi surface
(Fig. 3). As in previous TBG and TTG measurements, we observe symmetry-breaking electronic
transitions (a ‘cascade’ of transitions) that are signalled by sudden drops in the Hall density
magnitude (a ‘reset’) without a change in sign. These resets (see dashed lines in Fig. 3, A to D)
indicate a rearrangement of spin/valley sub-bands and typically occur near integer fillings of the

flat bands[18, 19]. At low D fields, superconducting pockets onset around the |v| = 2 resets



(purple dashed line), and the filling extent of superconductivity varies depending on the presence
or absence of a |v| = 3 flavor symmetry-breaking transition (grey dashed line). For electron-
and hole-doped TTG as well as for electron-doped TQG (Fig. 3, A, B, D), a flavor symmetry-
breaking transition appears around |v| = 3 and superconductivity accordingly terminates, as
previously noted in TTG[3]. By contrast, when signatures of the |v| = 3 reset are completely
absent (for example in hole-doped TQG, Fig. 3C, or in TPG), superconductivity extends much
further. Combined, these observations suggest that superconductivity is favored when only two
out of the four flavors are predominantly populated (|v| = 2 cascade) and suppressed beyond
|v| = 3 resets. This behavior can be understood within the simplest iteration of the cascade
scenario: resets associated with |v| = 3 produce spin- and valley-polarized bands[20, 21, 22]
and naturally disfavor Cooper pairing of time-reversed partners.

At high D fields, signatures of the cascade vanish and instead van Hove singularities
(vHs) become more prominent, reflecting qualitative changes in the band structure (see yellow
lines in Fig. 3, A to D, and Fig. S6 that track the vHs). Consistent with previous TTG
measurements[3, 4], the vHs in our TTG sample (as well as in TPG, see Fig. 3, E and F) crudely
bound the superconducting regions. By contrast, the vHs in TQG cross well into the
superconducting pockets—in fact, for electron doping, T, reaches its maximum exactly at the
position of the vHs (Fig. 3D, orange dot, and Fig. S7,D to F). The interplay between the vHs and
superconducting boundaries, as revealed in Hall density measurements, is complex: T, can be
both enhanced and suppressed at the vHs depending on the layer number and possibly other
details such as the precise twist angle (see Fig. S11 for data from the second TQG device).

Pentalayer measurements provide additional signatures that point towards a close



relation between superconductivity and flavor symmetry-breaking cascades (Fig. 3, E and F). In
contrast to TTG, in TPG we can access D fields that are large enough to stifle
superconductivity—which occurs simultaneously with the onset of the vHs and the apparent
suppression of the cascade transitions (see red and light blue lines in Fig. 3F that mark the
superconducting boundaries and the cascade transitions, respectively). For example, at low D
fields (|D|/€o < 0.6 Vnm™1) around v = +2, the Hall density resets close to zero, in line with a
nearly complete flavor symmetry-breaking polarization. However, at higher D fields (|D|/€y, >
0.6 Vnm™1), the Hall density is dominated by a vHs around v = +2, and the cascade signatures
are diminished. Superconductivity accordingly also vanishes. For hole doping, the disappearance
of superconductivity similarly coincides with the weakening of the cascade. This on/off
correspondence between the two phenomena suggests that they either share a common origin,
such as a large DOS, or that the cascade serves as a prerequisite for robust superconductivity in
graphene moiré superlattices.

As mentioned above, for low D fields in TPG, the superconducting pockets are
extraordinarily large, spanning —4 < v < —2 for hole doping and +2 S v < +5 for electron
doping (Fig. 1E, Fig. 2C, and Fig. 4). In particular, the electron-side range corresponds roughly to
a density window of 6 x 1012 cm™2, which is the largest filling range so far reported in a
graphene-based superconductor. The observed superconductivity exhibits similar values of T,
and B. (Fig. S3) as the trilayer and quadrilayer samples and is likewise accompanied by a weak
oscillating pattern of critical current (Fig. 4C, inset), confirming superconducting phase
coherence. We emphasize that the unprecedented persistence of superconductivity across a

large filling factor range in TPG (and also TQG in comparison to TTG or TBG) cannot be explained



in a minimal framework of alternating twisted graphene multilayers[6, 23] without invoking the
non-trivial role of the additional bands.

The role of the additional bands in TPG deserves careful consideration because of the
implications for the strength of interactions (such as Hartree effects) and the types of
superconductivity the bands can plausibly support. Explanations for the enlarged
superconducting intervals can generically be organized into three scenarios depending on the
filling of the flat TBG-like bands vg,, relative to the total filling v, at which superconductivity
terminates (Vyax = +5 for electron-doped TPG and |vy,.x| = 4 for TQG and hole-doped TPG).
In scenario (i) , Vmax corresponds to vg,e = +3 , the flat-band filling at which
superconductivity is typically suppressed in TBG, suggesting that the superconducting phase
space is largely the same for different multilayer magic-angle structures when considering just
the flattest TBG-like bands. In scenario (ii), Vmax coincides with vg,e = +4, precluding any
simple analogy with TBG, although superconductivity can still be attributed to the flat bands.
Finally, scenario (iii) assumes full filling of the flat bands before superconductivity is
suppressed at vy,.x. This scenario includes the possibility that the distinction between the
different TBG- and MLG-like bands breaks down even at D = 0 owing to hybridization as well
as potential multi-band superconductivity [24, 25, 26, 27]. In this case, superconductivity in TPG
is a more general phenomenon than in TBG because it occurs in either mixed bands or new, more
dispersive bands (see section 5 in [7]).

From the perspective of the non-interacting band structure, the three scenarios all seem
implausible, therefore interactions must play a crucial role. In particular, although the presence

of the dispersive bands implies that |v| — |vga¢| > 0, this effect is much smaller than needed for



either scenario (i) or (ii). Coulomb interactions can significantly enhance |v| — |vpatl, either by
evening out the spatial charge distribution[28, 29, 30, 31, 32] or symmetry breaking. A simple
model for TPG incorporating these mechanisms (section 4.5 in [7]) suggests a minimal flat-band
occupation vgye = +3.8 at v = 45, diminishing the plausibility of scenario (i) for electron-
doped TPG which has v ,x ® +5. The relevance of this scenario is further undermined by the
observation of vHs at v = +6 (Fig. S10D): under the reasonable assumption that the non-
interacting band structure remains valid for the dispersive TBG-like bands (apart from a Hartree
shift), scenario (i) would instead place the observed vHs near v = +5. Taken together, these
arguments effectively rule out scenario (i). Note, however, that the presented line of reasoning
is not straightforward for the other superconducting pockets (see section 5 in [7]).

Both scenarios (ii) and (iii) are indicative of the non-trivial role of additional bands in
stabilizing superconductivity. Assuming well-defined flat and dispersive bands, in scenario (iii)
the former bands are completely filled, and superconductivity is supported fully by the latter non-
flat bands. This assertion is at odds with the large dispersion of the remaining TBG- and MLG-like
bands. However, although the exact mechanism underlying scenario (iii) is difficult to pin
down, it is not without experimental support. For instance, a natural interpretation of the Hall

density minimum around v = +4 for |D| < 0.4 Vnm™?

is that it marks the complete filling of
the flat bands, vp,: = +4 (Fig. 4E, Fig. S9 and section 5 in [7]).

One possible realization of scenario (iii) consistent with the experimental observations
is that the division of the electronic states into simple TBG- and MLG-like bands fails—obviating

our very definition of vg,; and potentially allowing flavor polarization, and accompanying

superconductivity, to persist well beyond v = +4. Whereas such hybridization is expected for



finite D fields, mixing between flat, dispersive TBG- and MLG-like bands for |v| < |Vpax| may
occur even at D =0 thanks to, for example, proximity to WSe ,, layer-to-layer charge
inhomogeneity or distant-layer coupling (see sections 4.4 and 4.5.3 in [7]).

Our measurements demonstrate the increasing predominance of superconductivity in
twisted graphene multilayer structures as the number of layers is increased from three to five
and highlight the close relationship between the flavor symmetry-breaking transitions and
superconductivity. Moreover, our findings suggest a scenario in which the symmetry-broken v =
+2 state strongly favors the formation of the superconducting state whereas the cascade
corresponding to v = +3 suppresses it. Interestingly, this scenario is consistent not only with
previous TBG[2, 12, 13, 9, 33, 34] and TTG[3, 4, 8] observations but also in part with the recently
investigated ABC trilayers[35] and Bernal bilayers without[36] and with a WSe , substrate [37]
where superconductivity is observed near or within phases in which two out of four flavors are
predominantly filled. These commonalities suggest that symmetry-broken states with similar
types of polarization underlie superconductivity in all these graphene-based superconductors. In
this context, the discovery of superconductivity in TQG and TPG together with recent work on
untwisted bi- and trilayers dramatically expands the scope of graphene-based superconductors.
This expansion holds promise for resolving important questions related to the nature of the
pairing mechanism in these systems and provides guidance for developing novel graphene-based
superconductors and their applications.

Note added: After submission of this report, we have become aware of related work [38].
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Figure 1: Superconductivity and correlated insulators in alternating twisted graphene
multilayers. (A) Schematics of the alternating twisted graphene multilayers where each
successive layer is twisted by an angle +6 relative to the previous one in an alternating
sequence. (B) Band structure of twisted trilayer, quadrilayer, and pentalayer graphene (from top
to bottom) for angles close to the theoretical magic angle at zero D field (left) and D /ey, =
0.4 Vnm™? (right) for valley K (section 4 in [7]). (C to E) Line cuts of R,, versus filling factor v
for a range of temperatures (shown are traces taken first at 25 mkK, then every 0.25 K from
0.25 Kto 2 K, followed by every 1 K from 3 Kto 7 K), from top to bottom measured at
D/ey = 0.22Vnm™! (C), —0.15Vnm™! (D), and 0Vnm™! (E), respectively. Inset of (C) is
conductance versus T~! for TTG showing thermal activation behavior (D/e, = 0.26 Vnm™1,
section 3 in [7]). Inset of (D) shows charge-neutrality insulators in TQG at larger electric fields. (F)
R,, versus temperature and v for the trilayer focusing around v =42 at D/ey, =
0.26 Vnm™1. (G) R,, versustemperatureand D field for the quadrilayer focusing near charge

neutrality. (Hto J) R,, versustemperature and v for hole doping, showing superconducting

domes around v = —2 in the same systems and for the same D fields as in (C) to (E).



Figure 2: TTG, TQG and TPG phase diagrams and electric field-tunable superconductivity. (A
to C) R,, versus filling factor v and displacement field D for twisted trilayer (A), quadrilayer
(B), and pentalayer (C) graphene, respectively. All data are taken at 25 mK, and the dark blue
regions signal superconductivity. For electron-doped TTG and TQG, superconducting regions
extend towards v = +1 at intermediate D field. (D to F) R,, versus temperature and D
(or equivalent potential difference U between layers, see section 3 in [7]) for the filling factors
indicated by arrows in (A) to (C). Critical temperature T, is indicated by a dashed line that
delineates 10% of the normal state resistance (section 2 in [7]). T, is maximized at finite D
fields. Overall, superconductivity is suppressed more easily with D as the layer number is
increased for both hole (D to F) and electron (Fig. S5) doping. (G) Theoretical calculations of the
inverse of the flat-band bandwidth for twisted trilayer, quadrilayer, and pentalayer graphene as
a function of D/e, (top) and potential difference U (bottom). For a fixed D, the bandwidth of
the flat bands is larger for systems with more layers, but when expressed as a function of U, the

flat-band broadening follows a similar trend across the different structures (section 4.1 in [7]).



Figure 3: Interplay between superconductivity, flavor symmetry-breaking transitions and
van Hove singularities in TTG, TQG and TPG. (A and B) D field and v dependence of R,
(top) and Hall density (bottom, measured at B = 0.9 T) for TTG at 25 mK. Purple and grey
dashed lines mark the filling factors where flavor symmetry-breaking transitions associated with
|[v] =2 and |v| = 3 happen, respectively. The yellow line in (A) delineates the evolution of the
vHs. (Cand D) D field and v dependence of R,, (top)and Hall density (bottom, measured
at B =15 T)forTQGat 25 mK. Superconducting T, reaches its maximum (orange dotin (D))
exactly at the position of the vHs. When present, flavor symmetry-breaking transitions around
|v] = 3 coincide with the termination of superconductivity (A, B, D). By contrast,
superconductivity extends much further in the absence of a |v| = 3 reset (C). (E) D field and
v dependence of Hall density for TPG measured at T = 25 mK and B = 1.5 T. (F) Schematic
of Hall density (E) and R,, (Fig. 2C) features for the pentalayer, including the boundary of the
superconducting region (red), vHs/‘gap’ (dark blue), cascade (light blue), and |vga:| = 4 Hall
density reset (light purple). Sketches of the DOS around v = 42 for different D fields are
shown on the right. The middle panel illustrates the flavor symmetry polarization observed in
regions that support superconductivity. Flavor symmetry is preserved at higher D fields, as

shown in the top and bottom panels.



Figure 4: Extended superconducting pocketsin TPG. (A) R,, versus v and temperature at
zero D field for twisted pentalayer graphene. (B) R,, versus temperature and v on the
electron side at D/e, = 0.17, 0.32, and 0.44 Vnm™1. The evolution of the superconducting
domes and resistance peaks near v = +2 and v = +4 with D isshown. (Cand D) D field
and v dependence of R,, (C) and Hall density (D, measured at B =1.5 T) at 25 mK,
showing the region around the electron-side superconducting pocket. The grey line in (C) marks
the vHs originating from the dispersive TBG-like bands (see also Fig. S10). The inset shows the
evolution of dV/dI asafunctionof I and B at v =+4.6, D/e, = 0.12 Vnm™! (marked by
a yellow dot in the main panel), confirming the robustness of the superconductivity above v =
+4. (E) Line cuts of R,, (top, measuredat T = 25 mK) and Hall density (bottom, measured at
T=15 K, B=0.5 T) versus v for a range of D fields (traces are shown for every
0.05Vnm™! for both R,, and Hall density). Both the presence of Hall density resets around
v = 44 and the development of superconductivity extending from v = +2 to +5 are shown
to persist for a wide range of D fields. (F) Schematic of scenario (ii) with a Hartree correction
for superconductivity at v = +5. The Hartree correction shifts the dispersive TBG- and MLG-like
bands down in energy, which causes the flat TBG-like bands to fill more slowly with doping, thus

allowing them to host superconductivity at v > +4.
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Materials and Methods

Device fabrication: All devices were fabricated using a ‘cut and stack’ method, in which
graphene flakes were separated into pieces using a sharp tip (made out Platinum-Iridium); this
approach prevents unwanted twisting and strain during tearing while allowing more control
over the flake size and shape. After cutting, stacking procedure was as follows: first, a thin
hBN flake (10 — 30 nm) is picked up using a propylene carbonate (PC) film previously placed
on a polydimethylsiloxane (PDMS) stamp. Then the hBN flake is used to pick up an exfoliated
monolayer of WSe, (commercial source, HQ graphene) before approaching the graphene. After
picking up the first piece of the graphene flake, the following layers are twisted by an angle -6
relative to the previous one in an alternating sequence. Transfer stage rotation # overshoots the
target angle by 0.1 — 0.2° to construct the measured angles. Care was taken to approach and
pick up each stacking step slowly. In the last step, a thicker hBN (30 — 70 nm) is picked up,
and the whole stack is dropped on a predefined local gold back gate at 150°C while the PC
is released at 170°C. The PC is then cleaned off with N-Methyl-2-Pyrrolidinone (NMP). The
final geometry is defined by dry etching with a CHF3/O; plasma and deposition of ohmic edge
contacts (Ti/Au, 5 nm/100 nm) and top gate.

Measurements: All measurements were performed in a dilution refrigerator (Oxford Triton)
with a base temperature of ~ 25 mK, using standard low-frequency lock-in amplifier tech-
niques. Unless otherwise specified, measurements are taken at the base temperature. Frequen-
cies of the lock-in amplifiers (Stanford Research, models 830 and 865a) were kept in the range
of 7 — 20 Hz in order to measure the device’s DC properties and the AC excitation was kept
< 5 nA (most measurements were taken at 0.5 — 1 nA to preserve the linearity of the system
and avoid disturbing the fragile states at low temperatures). Each of the DC fridge lines pass
through cold filters, including 4 Pi filters that filter out a range from ~ 80 MHz to > 10 GHz,
as well as a two-pole RC low-pass filter.

Supplementary Text

1 Device Uniformity, Effect of WSe, and Twist Angle Assignment

Device homogeneity and effect of WSe,: All devices investigated here show a high degree of
twist angle homogeneity as characterized by four-point measurements between different pairs
of contacts. Fig. S1 shows I, versus carrier density with fixed top-gate voltage (V,, =0 V),
revealing that almost every pair of contacts shows superconductivity. More importantly, super-
conducting pockets from different pairs significantly overlap in the filling range, and resistance
peaks at |v| = 4 appear at the same density. Moreover, all findings related to the extent of
the superconducting phase and the occurrence of the symmetry-breaking transitions in the v—D
phase diagram are highly reproducible. This also includes the observation of a gapped corre-
lated insulator at v = +2 in TTG, which has not been reported previously. In this context, we



note that any significant twist-angle disorder would create conducting percolation pathways that
quickly suppress insulating behavior.

We attribute the low level of disorder to the use of monolayer WSe, during device stacking, pre-
sumably originating from the increased lateral friction between WSe, and graphene (compared
to the friction at the hBN-graphene interface). We note that this additional layer does not change
the magic-angle condition (9, 40), and the induced spin-orbit interaction (SOI) energy scale is
~ 1 meV in twisted bilayers (9). Therefore, SOI is likely too small to significantly affect the
overall band structure and directly impact the cascade physics at the magic angle (though may
play a more important role for stabilizing superconductivity far away from the magic angle (9)).
Finally, we note that, in general, SOI is expected to manifest differently when the sign of D
field is reversed, a feature that has not been observed in the experiment. The absence of D-field
asymmetry is probably due to the small energy scale of SOI compared to the interactions and
the weak tendency to polarize wavefunctions with D field in magic-angle graphene multilayers.

Twist angle assignment in multilayers: Twist angles were determined from high B field data
and corresponding Landau-fan diagrams in a similar way as in TBG. From the slope of the
Landau fan at charge neutrality (which is directly proportional to the gate-sample capacitance)
and the voltage difference between charge-neutrality point (CNP) and |v| = 4 filling, the corre-
sponding || = 4 electron density is obtained. We used two separate criteria for the assignment
of |v| = 4. First, at high D fields, resistive features (peaks) emerge (Fig. 2, A to C). We inter-
pret these peaks presumably as the opening of the hybridization ‘gaps’ and corresponding full
filling (J»| = 4) of the ‘gapped’ bands. Second, at high B fields, quantum Hall insulating states
develop around |v| = 4, which typically cover a broader filling range where Hall conductance
is quantized in accordance with the expectations from the dispersive bands (Fig. S2, also see
discussion below). Electron density of |v| = 4 directly determines the twist angle in the low-
angle approximation 62 ~ \/§a2n|y|z4 /8, where a = 0.246 nm is the graphene lattice constant.
While twist angle uncertainty is introduced by the relatively broad experimental features in
Landau fan diagram, this uncertainty can not explain the observed superconductivity reaching
v = +5 in the case of TPG. We note that signatures of the dispersive bands are also observed
in Landau-fan diagrams and vHs (Fig. S2 and Fig. S10). For example, emerging Landau lev-
els from the dispersive bands are typically observed through oscillations at low magnetic field.
Since at low energies, the dispersive bands (Fig. 1B left) can be effectively treated as decoupled
MLG-like bands when considering the Landau level spectrum (4/), and the corresponding Hall
conductance around |v| = 4 will be quantized in a way that depends on the number of layers
(see Fig. S2, G to M, for Hall conductance line cuts). Furthermore, both TQG and TPG devices
show vHs signatures at || ~ 6, consistent with the expectation for vHs from roughly half filling
of the dispersive TBG-like bands (see Fig. S10).

The above discussions implicitly assume that during fabrication process, errors in twist angles
of successive layers are not large. In the following, we argue that this assumption holds in our
devices to a large degree. When multiple, distinct twist angles are present (42), the resulting
band structure is expected to become very complex (notably, no sense of single moiré periodic-



ity remains) and deviates significantly from the observed experimental results. Our calculations
have suggested similar complexity with varying stacking arrangements. Importantly, the result-
ing band structures noticeably deviate from the ones described in Fig. 1B, where for n layers at
zero D field, there are n/2 (for even n) or (n — 1)/2 (for odd n) sets of overlapping TBG-like
bands (one flat) and 1 Dirac cone if n is odd. Although the parameter space is too large to
provide a thorough analysis, we provide some references with varying geometries that do not
agree with our experimental observations (43—45). Finally it is important to note that, under
the condition that the twist angles don’t vary much between successive stacking steps, previous
TTG studies have shown that the lattice arrangement is energetically favorable in the A-twist-A
stacking configuration (where the A sublattice from the first layer aligns with the third layer
instead of being offset) and uniform twist angle between top and bottom layers (75, 46).

2 Determining T. and Hall Density

T. and the coherence length: 7. is determined by the following procedures. First, the high
temperature R, data is fitted using a linear function R(7T') = AT+ B. Then, T, is defined by the
value where R, (T) is a certain fraction (typically 10% as in Fig. 2) of R(T"). Ginzburg-Landau
coherence lengths g1, are obtained from the B dependence of 7., by fitting the Ginzburg-
Landau relation 7./ Ty = 1 — (27€3;, /@) B, where @, = h/(2e¢) is the superconducting flux
quantum and T, is the critical temperature at zero magnetic field. We get {1, from the T vs.
B linear fit, where the intercept at the B axis is equal to ®q/(27&%;,). Following Ref. (3), we
use T, defined by 40% of the normal state resistance to evaluate the coherence length data in
Fig. S3E (corresponding error bars are evaluated by using 7. defined by 30% and 50% of the
normal state resistance). As mentioned in the main text, g1, (B.) is much smaller (higher) in
the twisted graphene multilayers compared to TBG. One possibility for the reduction of £y, is
the relative decrease of the characteristic moiré wavelength (see Fig. S3F).

Hall density analysis: Hall density shown in Fig. 3 is obtained by converting the anti-symmetric
part of the ?,, data, i.e., by subtracting data measured at positive and negative magnetic fields.
We used either |[B| = 0.9 T or 1.5 T in order to fully suppress superconductivity. Previously,
it was found that in TTG (3), at high D fields superconductivity is bounded by regions corre-
sponding to vHs, i.e., when Hall density changes sign. We approximately find a similar trend
in our TTG and TPG structures, although vHs occasionally intrude superconducting pockets
slightly. We note that the exact positions of vHs depend on the precise magnetic field used in
the measurements (for example, see Fig. S9, A and C); however, this effect is relatively small
relative to the observed intrusions. More importantly, TQG behavior is qualitatively different,
as we find that positions of vHs and boundaries of superconducting pockets are independent.
We also note that resets associated with the flavor polarization do not move in the B fields
(B =~ 1T) used to extract Hall density evolution. The occasional shift of these resets from
integer v values, may be attributed to either effects of interactions (i.e. Hartree correction, see
section 4.5) or the details of cascade physics (/8) at finite temperatures (47, 48).
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3 Insulating Behavior in TTG and TQG

v = +2 correlated insulators in TTG: In our TTG device, we observed a previously uniden-
tified v = 42 correlated insulator state (Fig. 1F and Fig. 1C inset). This assignment is based
on the activating behavior reflected in exponential suppression of conductance with 1/7", which
is not expected from a Dirac semimetal; see Fig. S4 for detailed D and v dependence. The
two-temperature scale in conductance is in line with the behavior of TBG correlated insula-
tor where transport at higher temperature and lower temperature is governed by activation and
variable-range hopping, respectively (see blue dashed line in Fig. 1C inset).

Also, the insulating behavior is suppressed by an out-of-plane B field of B, > 0.4 T but is
mostly insensitive to the in-plane B field (the weak suppression by the in-plane B field could
possibly originate from a non-ideal in-plane-field alignment of the sample). These experimental
observations are highly indicative of a gap that originates from strong interactions in TTG. We
note, however, that formation of the fully gapped states in TTG requires a mechanism that
additionally gaps out the MLG-like band, which may explain the presence of the gap only at
finite D fields. Moreover, suppression of the gap with an out-of-plane magnetic field is at
odds with the C'; breaking scenario (49, 50) and is more in line with incommensurate Kekulé
spiral (57) or intervalley-coherent (10, 11, 52, 53) orders in the flat bands. The insensitivity
to in-plane field is suggestive of a spin-polarized insulator or otherwise insensitive to in-plane
magnetic field. Finally, we can not rule out that the gap originates from induced SOI, since
it is still possible that SOI promotes instabilities that favor the formation for certain v = +2
insulating states in TTG. Future work will address the nature of this state in more detail.

Charge-neutrality gaps in TQG and conversion between U and D: Fig. S4, F and G, shows
the charge-neutrality gap of TQG as a function of D field or potential difference U (between the
top and the bottom graphene layer). From the continuum model, a gap in TQG is expected when
finite D field is applied. However, the details of the gap evolution depend on the precise twist
angle. When the twist angle is below the magic-angle value, a charge-neutrality gap opens as
soon as a finite D field is applied. On the other hand, when the twist angle is above the magic-
angle value, a gap opens only at much higher D fields. The gap opening at D /ey ~ 1.1 V nm™!
in our TQG structure is consistent with the device being slightly above the magic angle. Note
that the charge-neutrality gap is a good reference for matching the experimental D field with
the potential difference U used in calculations since the interaction-driven Hartree correction
vanishes at CNP. For a direct comparison, we enforce a more realistic flat-band bandwidth of
~ 20 meV in the continuum model by slightly tuning away from the magic angle, and geta U-
dependent gap size (Fig. S4G). A good match between the experimental and the calculated gap
is found when converting D into U with an empirical factor: U = 0.1 x (n—1) x0.33 nm x eD,
where e is the electron charge and n — 1 is the number of graphene interfaces. This conversion
is used for the other parts of the paper, for example, 7. versus U in Fig. S5. We note, however,
that relative comparison (i.e. scaling) between TTG, TQG, and TPG (in the context of 7.) does
not rely on the precise D to U conversion.



4 Theoretical Calculations

In this section, we describe the non-interacting continuum model for multilayers and how sym-
metry considerations and various interaction terms affect the band structure of TTG, TQG, and
TPG.

4.1 Continuum model

Band structure calculations are performed using a straightforward generalization of the TBG
continuum model (54, 55) extended to multilayer graphene systems (6, 56-58). As discussed
above, we consider graphene multilayer systems with nj,,.. = 3,4, and 5 layers (n in the
main text) in which the graphene sheets are twisted by alternating angles. In particular, we
can envision grouping the layers into even and odd sets and then rigidly twisting these two
groups by the twist angle 0; equivalently, each layer £ = 1,... njaye iS twisted by an angle
6, = (—1)%0/2. For the moment, we focus on the case where the layers are all AA stack (i.e.
stacked directly on top of one another) prior to twisting (see below, section 4.2).

It is appropriate to approximate the dispersion of the underlying graphene monolayers with
the two Dirac cones about the valleys at K and K’. Note that because of the twist, the Dirac
cones are located at slightly different momenta depending on whether the layer ¢ is even or
odd, and we have denoted the Dirac cones’ momenta here as K, and K. We thus define the
spinors 1, k() in terms of the microscopic graphene operators via fy(r) = e, g (r) +
"By 1 (r). Equivalently, in momentum space, we can write ¢, x (k) = fo(k + K g))
provided k is sufficiently close to K g). In our definition of v, (and f,) both an A/B sublattice
index and a spin index have been suppressed. Importantly, the small twist angle only mediates
a very small momentum exchange between the neighboring layers so that states originating
proximate to one valley do not mix with those originating proximate to the other. We thus
focus for the moment on valley K and suppress the valley subscript until mentioned otherwise,

Yo — Y.

The band structure model can be separated into a sum of two parts: H.ont = Hp + Hiyyn. The
first term, Hy, is the intralayer Dirac term:

Nlayer
Hp = Z /d2r U () o (P)e(r), hpe(r) = voe"”i(0,0" + 9,0, (SD)
(=1

Here, vy ~ 105 m/s is the Fermi velocity of the Dirac cones and ¢®¥* are Pauli matrices acting
on the A/B sublattice indices of the spinors ¢/,. In our simulations, we assume that the Fermi
velocity of the graphene monolayers does not differ layer to layer. Note that this assumption,
specifically does not take into account effects such as graphene velocity renormalization that
can occur in the top layer due to tunnelling between the graphene monolayer and the WSe,



substrate, as we do not expect these effects to be large enough to have appreciable impact on
the resulting band structure.

We assume that tunnelling only occurs between adjacent layers and that it takes the form

Mayer —1
Hym = Y / Pr ) (r) Ty (7)o (1) + hec. (S2)
/=1

where

—(~1)%ig; T
Topr(r) = Z e VT

j=1,2,3
4 2m 0
9 =37 R (g(] - 1)) (_1) :
t=w +w (6—27r(j—1)i/30+ 4 6—27r(j—1)i/30_—) . (S3)

Here, R(¢) = e " is a 2 x 2 rotation matrix acting on vector indices, Ly; = a/[2sin(6/2)]
is the moiré lattice constant, and 0 = (0% £ i0¥)/2 act on the sublattice indices. The param-
eters w’ and w set the interlayer tunnelling strength; we discuss their values below. It will be
convenient to define the dimensionless ratios

w w

77 = —> o =
w voks

, (S4)

where kg = 47 /(3Ly) = 2sin(6/2) - 47 /(3a). The total Hamiltonian may be written in matrix
form as

Mayer
HTnlayerG = HD + Htun - Z /d2r @ZJ;(T’) [hcont(r)]f,fl ¢K’ (r)

0r=1
hpa(r) Tia(r) 0

h _ Ti5(r) hpa(r) Tas(r)

Ty G(T) = 0 Tig(’l“) hp 3(T)

(85)

As currently written, the diagonal Dirac terms, hp ¢(7), as well as the off-diagonal tunnelling
terms, 7, (7), depend only on whether ¢ is even or odd. We can thus simplify the above
expression by writing the Dirac terms as hpos—1(r) = hp1(7), hpae(r) = hpo(r) and the
tunnelling terms as Toy_1 9¢(7) = T(7), Tores1(r) =TT (7).

It has been shown (6) that a block diagonal form exists for Hamiltonians of the form Eq. (S5).
We provide the specific transformations used for three, four, and five layers below.



4.1.1 Twisted bilayer graphene

Since the spectrum of the twisted multilayers breaks into independent sets of TBG- and MLG-
like bands, we first briefly review the Hamiltonian of TBG. Thus, we start with

) I

Provided that inversion and time reversal symmetries are preserved, the Dirac cones described
by hp () at K, are preserved even when the interlayer tunnelling is added. Nevertheless, this
tunnelling term breaks the (effective) continuous translation symmetry of hp,. Consequently,
the set of conserved momenta are confined to reduced moiré Brillouin zone (BZ). Like the
original monolayer graphene BZ, the moiré BZ forms a hexagon with the Dirac cones located
at the corners. Here, we define K1 = k and K, = Kk’ (for the other valley, K ’1 =r, K ’2 = K).

For small twist angles, the intralayer Dirac terms are nearly identical, hp (7)) ~ hp(r) =
v9(10,0% + i0,0Y)—namely, the rotation in Eq. (S1) may be neglected to first order. In this
case, the spectrum depends solely on the ratios n = w'/w and o« = w/(hvoky), where kg =
47 /(3Lyys) is the distance separating x and «’. Further, as shown in Ref. (55), the spectrum
close to Dirac points at x and ' can be approximated using a simple perturbative scheme. In
particular, in momentum space one finds

1—3a?

- . S7
Y = 1302 (1 ) (57)

ha(k + V) = v, (keo® + kY0¥,

The magic angle is defined (55) by the condition v, , = 0, which we see here should occur for

a%l/\/g.

4.1.2 Twisted trilayer graphene

The Hamiltonian for the three layer system is

hpi(r)  T(r) 0
hTTg(’r’) = TT(’I") hD’Q(T‘) TT<T‘) . (SS)
0 T(r) hpa(r)

It maybe be transformed into a block diagonal form as
- b .
hrra(r) = VItTGhTTG(T)VTTG — ( \/ia,n,e( ) ) 7
hD,l (T‘)

L (1 01
Vite =—= [0 v2 0 |. $9
6 = 5 1 \6_ 0 (59)

First, we note that the TTG spectrum separated into independent sets of bands—a TBG-like
set described by the two-layer Hamiltonian % s, , , (an 8 X 8 object when sublattice and spin
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are included) and an MLGe-like Dirac cone described by hp ;. Using the reasoning above, we
expect a set of flat TBG-like bands to occur when v/2a = 1 / /3. Equivalently, we can assign an
effective TBG twist angle describing these bands, 055, = 6/+/2 where § is the physical twist
angle of the system. If 6<%, is expected to yield flat bands in TBG, then we would similarly
expect v/205% , to yield a set of flat bands in TTG.

4.1.3 Twisted quadrilayer graphene

For four layers, we start with

hDJ('r) T(’I’) 0 0
| T(r)  hpa(r) TT(r) 0
haa(r) =1~ 0" Tr) hpa(r) T(r) (S10)
0 0 T'(r) hpa(r)
With the appropriate change of basis, we obtain
7 _ _ [ Peama(T)
hraa(r) = Vigahraa(r)Vrac = ( hgo_loc,nﬁ(r)) ,
1 0 —p 0
B 1 0 ¢ 0 -1
01 0 o

where ¢ = (1 4 1/5)/2 is the golden ratio. In this case, we therefore expect the TQG spectrum
to possess two sets of TBG-like bands characterized by effective TBG twist angles /¢ and

0/p~t.
4.1.4 Twisted pentalayer graphene

The final system considered is the twisted pentalayer graphene. In the original layer basis, the
Hamiltonian is

h,D71 ’l“) T('I“) 0 0 0
Tt (r) hpa(r) Ti(r) 0 0
th(;( ) = 0 T(’l") hD 1(7") T(T’) 0 . (812)
0 0 T'(r) hpa(r) T'(r)
0 0 0 T(r) hpi(r)

Once more, independent, co-existing TBG- and MLG-like subsystems are revealed with the



appropriate change of basis:

- h\/ﬁa,n,e("'>
hrpa(r) = VTTthTPG(T')VTPG = hp1(r)
hoamﬁ("“)

0
V3 0 V3
0 —/2
V3 0
0 2 —V3

There are now mwo independent TBG-like bands characterized by effective twist angles 6/ V3
and 6 in addition to a MLG-like Dirac cone.

4.1.5 Model Parameters

w

1

Vrpa = %

V2 V30
0
0 (S13)
0

w

= Sl ==
OSO
w

As indicated in Eq. (S7), the magic-angle value is essentially determined by the velocity of
monolayer graphene vy and the interlayer tunnelling amplitude w. We fix v, for all considered
configurations. The magnitude of the interlayer tunnelling amplitude is typically estimated to
be around ~ 100 meV. In case of TQG, a gap is expected to open at charge neutrality when
finite D field is applied. However, it onsets for any |D| > 0 when the physical angle 6 is less
than @ie&’, where 0% is the magic angle for TBG (as determined by vy and w). When 6
is larger than <p0§3§g§, a gap still opens, but only above certain finite D fields. As Fig. S4 and
Fig. S7J show, the latter scenario is observed in the TQG, device D2 (twist angle 1.8°), leading
us to select w = 108 meV near the value used in Ref. (55). In particular, in the left panel of
Fig. S7J, the R,, is plotted as a function of D field, displaying non-monotonic behavior—a
resistance dip around D /ey ~ 0.5 V nm~! followed by a steep increase at higher D, signalling
the development of an insulating gap. Analogous trends are repeated on the right of Fig. S7J,
which shows an increase in v = 0 DOS (corresponding to the resistance dip) followed by a

decrease to zero DOS.

Similar reasoning can be applied to the TTG and TPG samples, although it is slightly more
nebulous since a non-interacting gap is not expected to open in TTG and TPG for any D value
at the CNP. Instead, when 6 > +/2055%° for TTG and § > /3075%° for TPG, the system
should become metallic with increasing I), whereas in the converse situation, the D field should
immediately gap out all states except for a dispersive MLG-like Dirac cone. Following this line
of reasoning, the results of Fig. S7 suggest that the twist angle in TTG is below the magic
angle, whereas the one in the TPG sample is above the magic angle. Accordingly, we select
w = 110 meV for TTG and w = 102 meV for TPG modeling. Notably, the resistance behavior
and theoretical DOS shown in Fig. S7TK for TPG are very similar to the results in Fig. S7J
with the primary distinction being that the high-displacement field state does not display the
activated transport of an insulator. Similarly, although not obvious from the DOS plot itself, the
band structure of TPG at large D is semimetallic (as opposed to insulating).
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The value of the interlayer AA hopping w’ is expected to be less than the interlayer AB hop-
ping, as a result of lattice relaxation (see next section). We chose w’ = 60 meV for all three
multilayers considered, which is in agreement with the estimates of Ref. (23) and similar to
values used previously for TBG/WSe, structures (9).

We note that, while consistent with experiment in the fashion outlined about, other factors could
be also at play, modifying the behavior at CNP in ways not captured by our analysis. Ultimately,
however, the choices made here are not expected to greatly influence any of the results in this
section.

4.2 Relative stacking

An important distinction between TBG and graphene moiré heterostructures containing addi-
tional layers is the band structure dependence of the relative layer displacement. Not only must
the graphene sheets be stacked with alternating angles, as discussed in the main text and in the
previous section, but moreover, the emergence of independent TBG- and Dirac-like bands only
occurs when all odd (even) layers are AA stacked, i.e., stacked directly on top of one another.
As stated above, we envision grouping the layers into odd and even sets, each stacked rigidly
atop one another. The two sets are then twisted relative to one another by the twist angle . We
have assumed that this stacking was realized in the previous presentation and now argue for the
feasibility of this assumption.

In TTG, it has been numerically shown that this situation is energetically preferable: the system
naturally relaxes into the odd/even aligned stacking configuration (56). This result is further
experimentally verified in transport (3) and local probe (/5) measurements. A simple heuristic
supports these results and permits a generalization to additional layers. Starting from a bilayer
system, the moiré superlattice is manifest on the microscopic lattice scale as the periodic varia-
tion of the relative interlayer stacking: one has AA regions at the moiré hexagon centres, while
AB and BA stacking regions represent the moiré hexagon vertices. The AA regions have a
relatively high energy compared to the Bernal-like region and the lattice accordingly responds
by relaxing to minimize their area. We now consider adding a third layer with the same relative
twist angle as the first layer, but for the moment arbitrarily displaced from that layer. A moiré
superlattice is of course also generated between the new layer and the second layer, and the sys-
tem once again seeks to minimize (maximize) the area of the AA (AB/BA) regions. Crucially, if
the first and third layers are misaligned, the AA regions between the first and second layers are
misaligned from the AA regions between the second and third layers, frustrating the ability of
the lattice to relax. Only when the first and third layers are aligned will the AA region occur at
the same locations and only then can the system optimize its energy through relaxation. These
arguments clearly generalize to quadrilayer and pentalayer systems—we need only consider the
moiré pattern generated by each adjacent pair of graphene sheets to conclude that relaxation is
optimized by an odd/even aligned configuration. (A complementary explanation is that TTG is
necessarily an intermediate step in the construction of the TQG and TPG devices, and thus the
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odd alignment is already baked into a subset of the layers.)

4.3 Mirror symmetry

In the systems with an odd number of layers, an onsite mirror symmetry is present, which acts
as

¢( ) U(nlaycr w(’r)v Nyayer Odd, (814)

mirror

where
[Uﬁfi«ii’;r sz = Ot miayer—t+1- (S15)

Here, ¢, ¢’ label the system’s layers. Effectively, this operator simply flips the layers around, for
instance, interchanging layers 1 and 3 in TTG, while keeping the middle layer fixed. In terms

of the matrices, this invariance manifests simply as the relation [hrrg(7), U, 3) ] = 0 and

[hrpa(r), Uéi)mr] = (0. As we see below, the preservation of this symmetry is inextricably tied
to the block dlagonal form of the TTG continuum model presented in Eq. (S9). In particular,
rotating Umlrror to the subsystem basis defined by Vg returns Umlrror =Via UmmorVTTG

diag(1,1, —1). The TBG-like subsystem corresponds precisely to the even parity sector (i.e.,
has eigenvalue +1 under the action the mirror symmetry) whereas the dispersive MLG-like
subsystem belongs to the odd parity sector (i.e., has eigenvalue —1 under the action the mir-
ror symmetry). The TBG- and MLG-like bands thus cannot hybridize without breaking this

symmetry.

We can similarly rotate the TPG operator, U _ . ®) tothe subsystem basis U = VTTPGU Vrea,

yielding Umlm]r = diag(1,1,1,—1, —1). Comparing against Eq. (S13), we observe that both
the TBG-like subsystem with effective twist angle #/1/3 and the MLG-like subsystem belong
to the even parity sector, whereas the subsystem with effective twist angle 6 belongs to the odd
parity sector. The mirror symmetry therefore only protects the latter subsystem—which is no-
tably not at the magic angle in the experiment. In other words, in TPG with mirror symmetry,
flat TBG-like band and MLG-like band can hybridize (while the dispersive TBG-like band is

protected).

A mirror-like symmetry also exists for even-layered systems like TBG and TQG, but it does not
act in an onsite fashion. Instead, we have

’QD( ) U(”layer w<RyT)7 nlayer even, (816)

mirror

where R, = diag(1, —1) and

mirror mirror mirror

U(T_llaycr) _ J:U nlaycr) |:U(T.L1aycr):|£€l _ 5Z,nlayer—€’+1' (817)
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Here, ¢, ' again indicate the system layers and o acts on the sublattice indices. The fact that
this symmetry is not onsite means that we cannot generically partition the system into even and
odd parity sectors like we did for TTG and TPG. For TQG, hybridization between subsystems
is therefore not prohibited by symmetry.

4.4 Band mixing

In obtaining the independent TBG- and MLG-like bands (subsystems) listed above, a number
of assumptions were made and one may be concerned about the relative robustness of these re-
sults. For TTG, at least, this question may be dismissed so long as mirror symmetry is present;
above, we showed that this mirror symmetry protects the block diagonal subsystem form ob-
tained for TTG. Similarly, mirror symmetry disallows mixing in TPG between certain (but not
all) subsystems. However, the mirror symmetry is explicitly broken by the application of a
displacement field as well as by the WSe, substrate used in the experiment. Below, we show
that these modifications induce mixing between all subsystems. We additionally consider other
mirror-preserving effects that may result in subsystem mixing in TQG and TPG.

Besides the displacement field, we find that the subsystem-mixing energy scales discussed be-
low are relatively small compared to the input parameters of the continuum model, i.e., com-
pared to an interlayer tunnelling of w and w’. More importantly, they are also smaller than
the observed bandwidth of TBG, which spectroscopic measurements indicate is ~ 40 meV for
samples close to the magic angle (59-62). The subleading magnitude of the effects we explore
below thus bolsters our use of the alternating-angle continuum model, at least as a starting point.
We note that the relatively small subsystem hybridization discussed here could be significantly
magnified by interactions.

4.4.1 Effect of displacement field
In the main text, we allude to the fact that a finite displacement field mixes the TBG- and MLG-

like subsystems obtained in the previous sections. This effect is included in the Hamiltonian
through the addition of

Nlayer
Prayer Hrayer 1 (-1
Hdisp = Z /d2’l” 1/}2(7‘) |:h((hslp )i|€€’ 1/)2/(7.); |:h’fhslp )]Ze' = Ué&g/ <§ — —1) .

£,0'=1 Mayer —
(S18)
Specifically, we have h{) = (U/2)diag(1,0,~1), hy) = Udiag(1/2,1/6,~1/6, —1/2), and
h((fi’ip = Udiag(1/2,1/4,0,—1/4,—1/2). Here, the scale U is defined as outlined in section 3.
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Focusing first on the odd-layered systems, TTG and TPG, we observe that this perturbation ex-
plicitly breaks the mirror symmetry introduced in the previous section. In particular, hdlsp and

h((fiip anticommute with Umwror and UmmOr respectively: {hdlsp, Uéi)mr} = 0 and {hdlsp, Hi)rmr} =
0. The displacement field therefore allows subsystems within different parity sectors to hy-

nlayer)

bridize. The effect of this addition is apparent when h;
basis of Egs. (S9) and (S13):

is tranformed to the subsystem

U 001 Parity-even sector
(3 3 -
héigp = V'ItTGh’EiingTTG = 5 000 Y
1 0 0/ } Parity-odd sector
0 0 0 2 0
0 0 0 0 V3 Parity-even sector
ONERVRNG U NG
disp = VrpcdispVTPG = m 0 0 0 2v2 0 (S19)
2 0 2v2 0 0 Pari
arity-odd sector
0v3 0 0 0

We thus explicitly see the way in which the displacement field induces mixing between subsys-
tems.

It is worth noting that the precise manner in which the addition of hfﬁ’gp and hé?ip break the
respective mirror symmetries has important consequences for the U/-dependence of the theory.
In particular, the unitary operators Urﬁrmr and Um‘rﬁmr map hdlsp and hé?ip to minus themselves.
Given the invariance of the remaining parts of the Hamiltonian under this symmetry, we con-
clude that the systems at +U and —U (i.e., +D and —D) have identical spectra. (Although
not discussed yet, the interaction terms are also mirror-invariant and so this argument is not

restricted to the single-particle description, see section 4.5.)

Subsystem mixing is also a natural consequence of the displacement field in TQG. The Hamil-
tonian in Eq. (S18) takes the form hgilgp = Udiag(1/4,1/6,—1/6,1/4), which becomes

Subsystem with 05%, = ©f

. U
Y = (14 ¢?)

S20
disp — 30 © ( )

-4 0 ¢ 0

0 —4 0 _903 } SUbSYStCm with QTBG — 90_19

in the subsystem basis.

Although the mirror symmetry described in Eq. (S16) for TQG is not onsite, it still satisfies
{hggp, U} = 0. We conclude that the spectra at +U and —U (+D and — D) are identical.

mirror
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4.4.2 Proximity-induced spin-orbit coupling

One of the exterior layers of the samples considered here is placed adjacent to WSe,. This
type of construction was first shown to induce spin-orbit coupling in twisted bilayer graphene in
Ref. (9). The presence of WSe, breaks not only the spin symmetry, but also the mirror symmetry
in systems considered here and possibly induces subsystem mixing. Similarly, the invariance
of the spectrum under U — —U (D — — D) will also no longer strictly hold. Nevertheless, the
magnitude of the induced spin-orbit scale has been measured to be approximately 1 — 5 meV in
TBG, smaller than the other scales of the theory (e.g., the bandwidth). In effect, in rotating to
the subsystem basis, the spin-orbit terms are “spread” across an increasing number of layers by
the unitary transformations Vrra, Vrqa, Vrec.

4.4.3 Mirror-symmetric, nonuniform charge distribution

The chemical potentials of the different layers may also differ in a way that is symmetric under
onsite mirror actions U'*>) of Eq. (S15). In particular, we may have h,(ﬁ)var = diag(dp1, O o, dpia, Opi1),

mirror

which takes the subsystem-basis form

-1 0 -2 0
~ op [ 0 =1 0 2
4 7
hu—var \/5 ) 0 1 01’ (SZI)
0o 2 0 1

where dp = oy = —d 9. Similarly, for TPG, a term like h,(ff)var = diag(op1, O o, Opiz, Sfig, Ofi1)
also preserves the mirror operator Urfi)rror but can be shown to induce inter-subsystem mixing
within the even parity sector. As we demonstrate in section 4.5, such a term is naturally gen-
erated by the Coulomb interaction. We specify to TPG in that section, but the reasoning is
analogous for TQG (and for TTG, although this term will not induce mixing between sectors

because of the mirror symmetry).

Although generically present, the Coulomb interaction-generated terms of this form are rela-
tively small compared to the other terms present. The calculations presented below estimate
that values of |0uy] < 5 — 10 meV for TPG are generated as one dopes away from charge
neutrality. We expect the results for TQG to follow the same trend.

4.4.4 Next-nearest layer tunnelling

Our Hamiltonian so far only includes tunnelling between neighboring layers. Generically, how-
ever, hopping between next-nearest neighboring layers occurs as well. For TQG, we could
therefore consider hopping between layers 1 (2) and 4 (3):
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0 0 T, O
0 0 0 T
A — no (S22)
ml = b0 000
o 7. 0 0

Assuming for simplicity that 7,,,; = Tinl, in the subsystem basis, this term takes the form

2]jnnl 0 — 4 nnl 0
il(4) — i 0 2irnnl 0 Tnnl
nnl \/5 _Tnnl 0 _2Tnnl
0 Tnnl 0 _2Tnnl

(S23)

Note that because we assume next-nearest layers are stacked AA relative to one another, to first
order, no spatial dependence is expected in 7,,,;. The subsystems are similarly mixid with the
five-layer analogue hf;)l. Reference (56) computed the values of 7., expected in TTG (where it
will not induce subsystem mixing) and found that a typical scale | T}y, ~ 5 — 10 meV, which
translates to |T5,1:5]/ V5 ~ 3 —5meV (i and J are sublattice indices).

4.4.5 Lattice relaxation

As mentioned in section 4.2, the moiré lattice relaxes in order to minimize AA regions and max-
imize AB/BA regions. This relaxation effect ultimately depresses the value of w’ (interlayer AA
tunnelling) relative to w (interlayer AB/BA tunnelling) as a result of out-of-plane corrugation.
For interior layers, which neighbor more than a single sheet, the effects of relaxation are nat-
urally stronger than for exterior layers. Consequently, the value of n = w'/w appropriate for
tunnelling to and from interior layers is reduced. Our assumption below Eq. (S5) that 7 ;1 (r)
depended only on whether ¢ was even or odd is no longer valid. Unsurprisingly, this effect once
again mixes the subsystems in TQG and TPG. Reference (23) estimated the magnitude of this
effect and determined that it should be in the range 5 — 10 meV for the twist angles considered
here.

4.5 The role of interactions in TPG

The presence of flat-band subsystem in the low-energy theory of the multilayer graphene struc-
tures necessitates the consideration of interaction-driven band structure corrections. In the fol-
lowing, we focus specifically on the case of TPG as its phase diagram demonstrates the strongest
deviation from the minimal paradigm that a multilayer structure maybe thought of as a TBG-
like Hamiltonian with spectating additional bands. Rather, as we argue, the dispersive TBG- and
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MLG-like subsystems play a crucial role in extending the filling range of the superconducting
pocket in accordance with scenario (22) and (2:z7). Here, we consider three types of interaction
corrections: (a) an in-plane Hartree correction; (b) a two-parameter effective model mimicking
generic Hartree-Fock modifications of band structure; (c) an out-of-plane Hartree correction
allowing for inhomogeneous charge distribution between the layers. We demonstrate that these
effects generically lead to two consequences for the electronic spectrum: promoting charge re-
distribution to the non-flat bands and also leading to possible symmetry breaking between the
non-flat and flat bands.

4.5.1 Hartree correction

We begin with an in-plane Hartree effect. As demonstrated experimentally in previous work on
TBG (32) and TTG (15), filling-dependent interaction effects, specifically Hartree and Fock
corrections, drastically alter the electronic dispersion. Here we incorporate only a Hartree
mechanism (28-317) in the analysis, arguing that its key effect, a relative shift of flat bands
up in energy with respect to the non-flat bands, is the simplest mechanism through which the
size of the superconducting pocket in TPG is extended. We then supplement this discussion
with a phenomenological Hartree-Fock-like theory. Before proceeding, we stress that the main
purpose of the analysis in this section is to demonstrate that scenario () wherein flat bands are
filled only to vg,y ~ 43 at v ~ 45 is highly unlikely, thus highlighting the non-trivial role
played by the dispersive TBG- and MLG-like bands.

The foundations of the Hartree calculation in TPG described below are identical to the analysis
in Refs. (32) and (/5). We reproduce them here for the convenience of the reader. We introduce
the Coulomb interaction into the system through

He = % / & d*r' Sp(r)V (r — r')op(r’). (S24)

In section 4.1, we introduced creation and annihilation operators, () and v (r), that cor-
respond to the non-interacting eigenstates given by the Hamiltonian of Eq. (S5). Here and
in what follows, we suppress the layer, valley, sublattice and spin subscripts. In Eq. (S24),
V(r) = €2/(e|r|) is the Coulomb potential and 6p(r) = 9T (r))(r) — pex (), where pex(r) =
(T(r)(r)) o is the expectation value of the density at the charge-neutrality point. The use of
dp(r) instead of p(r) in the interaction is motivated by the expectation that the input parameters
of the model Hry,, .. = Hecont already include the effect of interactions at the charge-neutrality
point. The dielectric constant € in the definition of V() is used as a fitting parameter; see dis-
cussion below for details.

We study the effect of the interacting continuum model of magic-angle TPG through a self-
consistent Hartree mean-field calculation. Instead of solving the many-body problem, we ob-
tain the quadratic Hamiltonian that best approximates the full model when only the symmetric

17



contributions of H¢ are included, i.e., the Fock term is neglected. Thus instead of H... + H¢,
we study the Hamiltonian

1

Hyip = Heons + Hif = Z(Hi").. (S25)
where H I({V) is the Hartree term at filling v,
Y = [ V@WK - el k)0 - q) (326)
k.k q

and the last term in Eq. (S25) simply ensures there is no double counting when one calculates
the total energy. In the above equation, V(q) = 2me?/(e|q|) is the Fourier transform of the
Coulomb interaction V (r) in Eq. (S24), and the expectation value (O), = (O)oec — (O)cx only
includes states that are filled up to v relative to charge neutrality, as defined by diagonalizing
the Hamiltonian HISI%

Typically, for a “jellium”-like model, the expectation value in Eq. (S26) vanishes save for ¢ =
0, which is subsequently cancelled by the background charge—allowing one to set V(q =
0) = 0 and completely ignore the Hartree interaction. However, because the moiré pattern
breaks continuous translation symmetry, momentum is only conserved modulo a reciprocal
lattice vector. We therefore obtain

oY ZV /w*k’+G b)) /w ok — Q). (S27)

where the prime above the summation over the moiré reciprocal lattice vectors indicates that
G = 0 is excluded. The self-consistent procedure begins by assuming some initial value of
HI({”) and diagonalizing the corresponding mean-field Hamiltonian HIEZ% to obtain the Bloch
wavefunctions and energy eigenvalues. These quantities are then used to re-compute the expec-
tation values that define I({V) and thus H 1&% subject to the cascade treatment described above.
This process is repeated until one obtains the quadratic Hamiltonian A ﬁd) that yields the corre-
lation functions (-), used in its definition.

Due to the accumulation of electronic density at the AA sites of the stacking sequence, the
Hartree potential is dominated by the first ‘star’ of moiré reciprocal lattice vectors (28, 63),
which in our conventions corresponds to G, = R(2m(n — 1)/6) = —(1,0)" forn =1,....,6,
with R(¢) a rotation matrix. The restriction to the G,,’s palred w1th the 27 /6 rotation sym-

metry of the continuum model greatly simplifies the calculation of the Hartree term. Notably,
G) [, (V! (k' + G)i(K')), must be the same for all G,,, and, instead of Eq. (S27), we use
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6

SV(G) [ WK+ Gk, (528)

n=1

=

6
7Y =0y / SRk — Gy), V) —
n=1

The self-consistent procedure in this case is identical to that described in the previous paragraph,
but due to the reduced number of reciprocal lattice vectors that are included in the summation,
the calculation is computationally easier. Convergence is typically reached within ~ 6 itera-
tions.

We now proceed to discuss the precise effect of the Hartree correction. Since the Hartree cor-
rection couples bare graphene states at momenta k and k + G, its effect is most pronounced for
subsystems of the Hamiltonian whose eigenstates require multiple bare graphene states origi-
nating from multiple moiré BZs, e.g. k + G states with G extending beyond the second BZ.
As such, Hartree affects the flat-band subsystem most severely since its eigenstates deviate the
most from the bare graphene states, while the MLG-like subsystem is affected the least. As a
result, this correction gives rise to an energy offset that shifts the flat bands upwards in energy
with respect to the rest of the energy spectrum (technically the dispersive TBG-like subsystem
is also shifted slightly with respect to the MLG-like subsystem). This effect has been seen both
theoretically and experimentally in TTG (/5, 64) Thus we expect it to be present in TPG, as is
confirmed through our simulations; see Fig. S12, A and B. Physically, this effect arises simply
because the charge distribution from the non-flat subsystems is more homogeneous in the unit
cell and, therefore, it contributes less to the potential of Eq. (S26).

We now discuss what happens when one starts from charge neutrality and electron dopes the
system. Due to the shift of the flat band upwards in energy relative to the non-flat bands, more
charge can enter the non-flat bands upon doping (increasing ) than a naive non-interacting
model predicts. As a result, the filling range of the flat TBG-like band superconducting pocket
may be extended since the filling of the flat bands vg,; can continue to lie in the range amenable
to superconductivity, whilst the total filling v increases by adding charge to the non-flat bands.
This is the central idea behind the scenarios (z) and (%) discussed in section 5.

In the simulations for flat-band filling vg,; > +2, we consider two ways to fill the otherwise
4-fold degenerate bands: an uncascaded model where all 4-fold degenerate bands are filled
equally, and a simple cascade model where two of the flat-band flavors (say spin 1 for K, K') are
shifted down in energy such that the highest energy of the shifted bands falls on the Dirac point
of the unshifted flat bands, c.f. Fig. S12C. In the absence of Hartree-induced band inversion (as
in fact we will consider in the following section), the shifted bands (1 bands) are fully filled at
Vgat = +2 and the unshifted bands () and the dispersive bands contain the remaining v — 2
charge. With the Hartree-induced gamma point inversion, the two sets of the flat bands (shifted
- 1, unshifted - |) become partially filled near vg,; = +2. The shifted (1) band is mostly filled
and the unshifted ({) is mostly empty. This simple approach qualitatively reproduces the effect
of a cascade at |vg.¢| ~ 2 under the assumption that the specific nature of the cascade state
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(i.e. spin or valley polarized) is irrelevant for the consideration of the total filling. We caution,
however, that a cascade transition is an effect originating from an interplay between Hartree
and Fock corrections (see Ref. (32) for further discussion), and that Fock corrections, which we
neglected so far, can give rise to many effects.

The most crucial ones, including bandwidth broadening (63, 65—67) and gap opening in the flat-
band subsystem (10, 11,52, 53,60, 65, 68), may actually affect the charge distribution across the
different subsystems. These effects are neglected in the current analysis—an approximation we
will justify in the following section.

The cascade, as shown in Fig. S12G, allows charge to enter the unfilled flat bands more easily
compared to the uncascaded ground state. This behavior is expected since a cascade minimizes
the contribution of the Hartree term by redistributing charge away from parts of the flat bands
which overlap more strongly with the Hartree potential—in particular, for the parameters con-
sidered here and within the relevant range of filling factors, the cascade is the ground state
solution. Note, however, that while including only the Hartree correction is sufficient to initiate
cascade, Fock must be included in order for it to persist over the experimentally observed range
(see Ref. (32) for further discussion on the interplay of Hartree and Fock corrections and the
onset of cascade).

To quantitatively estimate the fillings of the different subsystems, it is necessary to parametrize
the strength of the Coulomb interaction, e.g., the dielectric constant e that enters into Eq. (S26).
Although, in principle, the dielectric constant is fixed primarily by the substrate and any interac-
tion corrections can be accounted for via a self-consistent treatment, in practice (28, 32, 63, 66),
it can be treated as a fitting parameter. If a bare value of the interaction is used, then the re-
sulting interaction corrections are too large and lead to unobserved predictions (15, 32). We
use the cascade near vg,; ~ +2 to constrain e. We identify vg,; = +2 with the experimental
onset of the cascade transition, which occurs near v ~ +2.15; see Fig. 4E. By choosing € so
that /g, reaches 42 at the same point the total filling v reaches +2.15 (see Fig. S12E), we find
e ~ 11.15. We emphasize that although this is an approximate fitting relying on the particular
model of a cascade, the Hartree-induced flat-band energy shift is a robust and important effect
(Fig. S12F). Using the value of € ~ 11.15, we find that at v ~ +5, the flat bands are filled to
approximate vg,; ~ +3.8 (see Fig. S12G), further demonstrating the implausibility of scenario
().

We note that due to the hybridization of different bands under a finite displacement field, the
assignment of flat TBG-, dispersive TBG- and MLG-like subsystem becomes, to some degree,
arbitrary as bands start to hybridize. For the purpose of qualitative discussion, however, we
can evaluate the spectral overlap of each finite-field eigenstate with the zero-field basis and
assign a label of “flat/dispersive TBG-like/MLG-like” based on the largest overlap. Within this
convention, we find that the displacement field enables easier charge accumulation in the “flat”
subsystem as opposed to the “non-flat” subsystems, thus suppressing the total filling range over
which superconductivity can reach (see Fig. S12H).
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4.5.2 Constraining Hartree and Fock

Preferential filling of the dispersive TBG- and MLG-like subsystems is also enabled by other in-
teraction effects, for example, gap opening due to the Fock correction. This term, as mentioned
previously, also plays a key part in the symmetry-breaking cascade as well as band broadening.
While a careful microscopic analysis of Hartree and Fock effects in multilayer devices is nec-
essary, here we introduce a simple phenomenological model intended to capture the qualitative
effects of Hartree and Fock corrections on the filling of the non-flat subsystems. We hope that
the simple parametrization of this model can be used as a benchmark for its validity against a
more rigorous analysis.

To mimic the effects of Hartree and Fock, we add two additional ingredients to the non-
interacting model of Eq. (S13): a constant energy shift of the flat-band subsystem Ay and
an intralayer sublattice potential Apo?

Aplyys + Apo® + hpa(r) V3T (r)
. V3T (r) Aploye + Apo® + hpa(r)
hrpg(r) = hpa(r)
hpi(r) T(r)
T (r)  hpa(r)
(529)

A schematic of the effect of the two added terms on the band structure is shown in Fig. S12D.
We further mimic a cascade by shifting two copies of the flat-band subsystem below the Dirac
points of the band structure and closing the ‘Fock’ gap in the cascaded bands.

We present the result of this analysis in Fig. S12I, where the filling factor of the flat-band
subsystem versus Ay and Ay is plotted for a fixed total filling v = +5 (corresponding to the
edge of the superconducting dome in TPG). We find that in order for scenario (z) to apply, i.e.
Vgat ~ +3 at ¥ = +5 in TPG, the corresponding parameters are unrealistic. Especially, a
Ar ~ 20 meV would yield an insulating gap of 40 meV, which far exceeds a typical correlated
insulating gap of few meV experimentally observed in the context of TBG (59-62). Notably,
for a Ar below ~ 5 meV, there is negligible effect of the Fock gap on the flat-band filling
redistribution, consistent with our earlier Hartree-only approximation.

4.5.3 Interlayer screening effects

In the above analysis of Hartree-induced band shifting and deformations, we only focused on
the effect of the in-plane Hartree potential, assuming a homogeneous charge distribution across
the layers. It is known, however, that in multilayer (untwisted) graphene, interlayer screening
due to inhomogeneous charge distribution over different layers can be important (69, 70). To
check the importance of this effect, we follow the self-consistent treatment in Ref. (70) and
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determine the screening-induced potentials on each layer. Particularly, in the language of the
Hamiltonian in Eq. (S5), we show that even at zero external displacement field, the induced
potentials are not uniform on all layers and can lead to hybridization between the flat TBG-like
and the MLG-like subsystems as presented above in section 4.4.3.

We model the graphene layers as parallel plates with zero thickness and respective electron
charge densities en;. The local displacement field between the ith and (i + 1)th layer is then
given by Fiip1 = e(3 5  nj — Z;V:i+1 n;)/(2¢), where N is the total number of layers, and
we take ¢ = 11.15, the same as the in-plane dielectric constant determined above. Here, we use
the in-plane dielectric constant value because electron densities are delocalized over multiple
layers and cannot be simply treated as some classical charge on a particular layer. Thus, the
effective dielectric constant should be much larger than the vacuum’s value. The above local
displacement field produces the local potential difference between the ith and the (i + 1)th
layer Vipy — V; = —edF ;1 = —e*d/(V3el3,) x (X5, v — Z;.V:Hl v;), where v; is the
filling fraction projected to the jth layer, d is the interlayer distance, and L, is the moiré lattice
constant.

The role of this mechanism is shown in Fig. S13. We find that the self-consistently generated
potential differences shift the flat bands upwards in energy. Similar to the in-plane Hartree
correction, it enables further charge filling of the dispersive TBG-like bands, which is in line
with scenario (i2) for the extended TPG superconducting pocket. We stress that unlike the in-
plane Hartree correction, the out-of-plane Hartree term leads to the hybridization of the different
subsystems. This hybridization, in addition to other effects described in the previous section,
may facilitate symmetry breaking or a breakdown of an approximate assignment of flat and
dispersive TBG-like bands (see the discussion above concerning band mixing, section 4.4.3), in
line with the condition for scenario (2:1).

5 Possible Origins of the Extended Superconducting Pocket in TPG

Here we present several scenarios that can result in the superconductivity of TPG extending to
v ~ 45, and discuss these scenarios in the context of experimental observations. We note that
in the discussion below, v denotes the total number of electrons per moiré site, and vg,; denotes
the number of electrons per moiré site added to the flat TBG-like bands.

5.1 Scenario (i): flat TBG-like bands are filled to vq,; = +3 at v = +5

For TBG and TTG, the strongest superconducting pockets normally start from |v| = 2 and
end around |v| = 3. Therefore, a conventional scenario would suggest that TPG could behave
in a similar way, i.e., flat TBG-like bands are filled to vg,; = 43 when superconductivity is
diminished at ¥ = 4-5. This scenario implies that the additional two electrons per moir€ site are
distributed in the dispersive TBG- and MLG-like bands due to the interaction effects discussed
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in section 4.5, with a large portion of the charge carriers being hosted by the dispersive TBG-
like bands. Since vHs of the dispersive TBG-like bands are normally found around half filling,
the corresponding Hall density signatures are expected to occur at the same filling, i.e., v = 45
in this scenario. However, in the experiment we observe VHs signatures originating from the
dispersive TBG-like bands near v ~ +6 instead (see Fig. S10). This line of reasoning allows
us to completely rule out scenario (7), therefore, we conclude that superconductivity exceeds
flat-band filling vg,; = +3 for electron-doped TPG.

5.2 Scenario (ii): flat TBG-like bands are filled close to vq,, = +4 at v = +5

As aresult of interactions, a fraction of electrons are preferentially distributed in the dispersive
TBG- and MLG- like bands. It is therefore possible that for total filling of v ~ +5, the flat
TBG-like bands are filled close to v, ~ +4, with the extra one electron per moiré site being
distributed in the other bands. We explored this possibility in more detail in section 4.5, which
shows the filling correspondence between vg,; and v for various interaction terms and dielectric
constants (see Fig. S12). In this scenario, the modeling suggests that the filling of the flat bands
is nearly four (vq,, > +3.8), which is well outside typical TBG behavior.

5.3 Scenario (ii7): flat TBG-like bands are fully filled to vq,; = +4 before v = +5 or
hybridization of different bands obscures the distinction between them

The last scenario suggests either that the flat TBG-like bands are fully filled before the suppres-
sion of superconductivity, in which case superconductivity would exist in the more dispersive
bands, or that the distinction between the different TBG- and MLG-like bands breaks down
due to hybridization (i.e. mixing), even at D = 0. As discussed in previous sections, such
mixing between flat, dispersive TBG- and MLG-like bands can happen when mirror symmetry
is broken. Moreover, layer-to-layer charge inhomogeneity (see Fig. S13 and section 4.5.3) or
distant-layer coupling (see section 4.4) allow for band hybridization even in the presence of
mirror symmetry.

In the context of scenario (iii), we speculate on the polarized or un-polarized nature of the
active bands in the regime +4 < v < +5. One simple possibility is that the dispersive TBG-
like bands spontaneously break the flavor symmetries on its own, with the flat bands playing
relatively little role. Another possibility is that hybridization obviates the distinction between
flat and dispersive bands such that flvor polarization is allowed to persist far beyond. Further
experiments will be needed to help ascertain the extent of flavor polarization that persists to
v =+d.
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5.4 Experimental signatures in electron-doped TPG

Experimentally, starting from low D fields, we observe a drop in Hall density at v ~ +4 which
surprisingly does not affect superconductivity in any abrupt way (superconductivity continu-
ously evolves and is present until v ~ +5). As the D field is increased, this Hall density drop
is gradually replaced by a transition where Hall density changes sign (Fig. S9). The high D-
field transition can be interpreted as a ‘gap’ feature emerging in the band structure similar to
TTG (3). Further measurements of R, show that the corresponding v ~ +4 feature does not
shift with temperature (Fig. 4A) and is significantly broadened at high B fields, resembling the
feature associated with the flat-band gap in TTG (Fig. S2, A and E). These observations indi-
cate that the v = +4 feature is naturally explained as either marking the end of the flat bands
or resulting from band details due to hybridization, which is in line with the scenario (7i7). In
this context, the alternative possibility that v = +4 corresponds to a flavor-polarization reset at
Vaat = +3 is highly unlikely. Finally, we note that this line of argument cannot fully rule out
scenario (77) due to the potential presence of small dispersive pockets in the flat bands that may
remain unfilled near v = +4.
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Figure S1: Sample uniformity and reproducibility of the results. (A to C) Leftmost optical
images are D1-D3 mentioned in the main text. The scale bar in each panel corresponds to 5 pym.
R, versus density and displacement field (n—D) plots shown in the middle are obtained from
electrodes marked with the corresponding colored lines. The electrodes marked with purple
lines were used for measuring R, in the main text. Rightmost plots are R,, versus carrier
density with top-gate voltage fixed at V,, = 0 V (gate sweeps are along the grey dashed lines
in the n—D plots). All three devices have a high degree of homogeneity in twist angle with
the same superconducting filling range and |v| = 4 carrier density for multiple contacts. The
behavior of superconductivity and other symmetry-breaking features is highly reproducible for
different contacts.
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Figure S2: Fan diagrams at zero D field and the Hall conductance quantization around
|v| = 4. (A to F) R,, measured as a function of B field and v from trilayer to pentalayer (A,
C, E). The main sequences of the fan diagrams are labelled at the bottom of R, (B, D, F).
Landau levels from the dispersive bands are visible as R, oscillations at low B fields in the
fan diagrams. (G to M) R,, measured as a function of B field and v from trilayer to pentalayer
(G, I, K). Below these plots, we show Hall conductance around |v| = 4 (H, J, L, M). The layer
number n determines the resulting quantization. Since the dispersive bands of n-layer magic-
angle graphene consist of n — 2 Dirac-like cones (at low energies), the || = 4 quantization is
therefore expected to follow monolayer graphene sequence (+2, +6, +10,..., xe?/h) multiplied
by n — 2. The plateaus in TTG and TQG clearly show this trend, while in TPG only the first
plateau is observed. These observations however confirm the number of layers in each sample.
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Figure S3: Evolution of superconducting phase, /., B. and coherence lengths in TTG,
TQG and TPG. Column (A) shows R,, versus v and D phase diagrams, and the green dots
indicate the positions where the corresponding I versus B plots shown in (B) are measured
for D1-D3. Column (C) shows the critical current /. versus v at the optimal D fields for D1-
D3. Column (D) shows R,, versus v and B around v = —2 for D1-D3, highlighting the high
critical magnetic fields in these systems. Superconductivity in the twisted graphene multilayers
has a higher B, (~ 0.8 T or higher) than in TBG. (E) Ginzburg—Landau coherence lengths ¢y,
versus v for all three devices around |v| = 2, superimposed on the R,, versus 7" and v plots.
(F) £c1 and moiré wavelength Ly, versus twist angle of different layers, suggesting a possible
relation between the two length scales.
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Figure S4: Insulating behavior in TTG and TQG. (A) Line cuts of R,, versus v for a range
of temperatures at D/eqg = 0.26 V nm ! on the electron side for TTG. (B) R,, versus D and
temperature at v = +1.96 in TTG. (C) Line cuts at different D fields from (B). Out-of-plane
(D) and in-plane (E) B field dependence of R,, versus v at D/¢y = 0.26 Vnm™' in TTG.
The v = +2 correlated insulator is suppressed by both in-plane and out-of-plane B field. (F)
Experimental charge-neutrality gap of TQG as a function of D field. (G) The continuum-
model gap as a function of potential difference U. Inset, single-particle band structure of TQG
(slightly above the magic angle) at U = 0 meV and 150 meV, respectively. We see a good
match between experiment and theory when converting D into U with an empirical factor:
U=0.1x(n—1)x0.33nm x eD, where n — 1 is the number of graphene interfaces.
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Figure S5: Evolution of superconducting critical temperature 7, with D field around opti-
mal doping. (A to C) R,, as a function of 7" and D field for D1-D3 at filling factor v = +2.2,
+2.4, and +3.2, respectively. Superconducting 7. is indicated by a dashed line that delineates
10% of the normal state resistance (see section 2 for details). (D and E) T../T"** versus poten-
tial energy difference U for TTG, TQG, and TPG around hole-side (D) and electron-side (E)
optimal doping, respectively. U is converted from D using U = 0.1 X (n —1) x 0.33 nm X eD,
where e is the electron charge and n — 1 is the number of graphene interfaces.
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Figure S6: Hall density »—D maps and the positions of vHs/‘gap’ features. (A to F) Hall
density (A to C) and R,, (D to F) as a function of v and D for TTG, TQG, and TPG. Hall
density maps are measured at B = 0.9 T, 1.5 T, and 1.5 T, respectively. Yellow lines in (D to F)
track the evolution of vHs/‘gap’ features where Hall density changes sign. (G to I) Examples
of Hall density near the cascade transition reset (G), the vHs (H), and the ‘gap’ (I) following the

definitions in Ref. (3). Filling ranges for the line cuts are marked by the corresponding colored
dashed lines in (A and C).
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Figure S7: R,, as a function of v and D at different temperatures. (A to I) R, as a
function of v and D measured at different temperatures for TTG (A to C), TQG (D to F), and
TPG (G to I). Grey lines track the evolution of the vHs/‘gap’ features. (J) The plot on the
left shows line cut of R, versus D at charge neutrality for TQG. The plot on the right shows
corresponding density of states (DOS) at charge-neutrality point (CNP) calculated using non-
interacting continuum model. In the regions where DOS is high, resistance is expected to be
low and vice versa. (K) Equivalent plots as in (J) for TPG.
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Figure S9: Hall density and R, as a function of » and D measured at different B fields
in TPG. (A) Hall density versus D and v at B = 0.5 T. (B) Line cuts from (A). Panels below
zoom in on the evolution of Hall density resets near || = 4. (C and D) Hall density versus D
and v measured at B = 1.5 T (C) and 3 T (D), with respective line cuts shown in (F and G).
(E) R, versus D and v measured at I' = 1.5 K, B = 0.5 T (line cuts are shown in (H)). From
all the above line cuts, Hall density resets and R, resistive features consistently exist around
v = +4.
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Figure S10: Plots in a broader filling factor range and vHs of dispersive TBG-like bands
in TPG and TQG. (A and B) RR,, and R,, as a function of v and B field measured at zero
D field for TPG. The sign change in RR,, around v = +6 (marked by arrows in (A and B))
indicates vHs. (C and D) R,, (C) and Hall density (D) as a function of D and v with gray
dashed lines indicating v linecuts (at D = 0) where plots in (A and B) are taken. (E) Band
structure of TPG calculated using non-interacting model. Arrow indicates the position where
vHs from dispersive TBG-like bands is expected. (F) Hall density as a function of v and D for
TQG. As in TPG, Hall density changes sign near v = +6 indicating the vHs from dispersive
TBG-like bands in TQG.

34



D/e, =-0.29 V nm™'
0 0

4 3 2-10 1 2 3 4

T(K)

4 3 -2-10 1 2 3 4
v
E " D/g, =0V nm~*

-4 -3 -2 -1 0 7 2 3 2
v

Figure S11: Characterization of the second TQG device. (A and B) R, (A) and Hall density
(B) versus filling factor v and displacement field D for the second TQG device with twist angle
0 ~ 1.64°. Yellow lines in (A) track the evolution of vHs features in Hall density. (C and
D) R, versus v and temperature measured at D /ey = —0.29 V nm~! (C) and —0.17 Vnm™*
(D), resprectively. (E) R,, versus v and B field measured at zero D field. (F) R,, versus v
measured at zero D field and zero magnetic field.
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Figure S12: The role of interactions in TPG. (A to D) Depiction of different approximation
schemes used to understand the role of interactions in TPG. Note that the Hartree correction
shifts the flat band (purple) up in energy. Cascaded bands in (C) and (D) are shown in green.
(D) corresponds to a minimum model of Hartree and Fock effects characterized by a Hartree
shift (A ) and a Fock gap (Ar) (see section 4.5.2). (E and F) Partial filling of each subsystem
versus dielectric constant e for a fixed flat-band filling vg,; = +2 (E) and a fixed total filling
v = +5 (F), respectively. (G) Partial filling of each subsystem versus total filling v for a fixed
dielectric constant e = 11.15. Here, solid (dashed) lines correspond to a cascaded (uncascaded)
solution with the cascade solution enabling higher filling of the flat-band subsystem as discussed
in the text. (H) Similar to (G) but the solid (dashed) lines correspond to a solution at potential
difference U = 0 meV (U = 34 meV). (I) Filling of the flat-band subsystem as a function of
Apy and A at a fixed total filling v = +5 (see section 4.5.2).
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Figure S13: The role of interlayer inhomogeneous charge distribution in TPG. (A to D)
Band structure of TPG at different filling factors with an interlayer inhomogeneous charge dis-
tribution. Note that as filling is increased, the flat band is slightly shifted and also hybridizes
with the MLG-like band. (E) Partial filling of different subsystems as a function of total filling
v with the effect of interlayer inhomogeneous charge distribution. Note a small charge redis-
tribution between +2 < v < +5. Here, flat TBG-like and MLG-like subsystems are plotted
together to demonstrate the emergent hybridization.
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Figure S14: Maximum filling factor |14,,,| for which superconductivity is observed in the
literature and this work demonstrating promotion of superconductivity with the increas-
ing layer number. Data from this work are labeled with squares, while data from literature
is shown by circles (papers cited in figure). Red(blue) points are for electron-(hole-)side su-
perconductivity. The only outlier (stars) come from Ref. 71, where the twist angle (1.25°) is
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filled circles come from TQG and TPG devices reported at the Princeton Center for Theoretical
Science meeting (March 2022) (38). The diamond comes from a TBG device at 0.80°, with a
WSe, substrate, and there are very few TBG devices reported with |vy,.<| > 3. More typically
seen values are represented in, for instance, Ref. 2. |V, | is taken here at D = 0.
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