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ABSTRACT Latency sensitive IoT (Internet of Things) applications at the edge are designed using a
microservice-based architecture. This architecture is comprised of a set of microservices, each implement-
ing a simple functionality with clearly-defined interfaces, and applications are constructed by selecting
and interconnecting appropriate microservices. To understand the performance implications of using a
microservice-based architecture for constructing IoT applications at the edge, this paper provides a detailed
evaluation based on an actual prototpye implementation and performance measurement. In our setup, an edge
server fulfills dual roles of being an administrative controller of the IoT infrastructure and satisfying
application’s latency and privacy constraints. We demonstrate the utility of this architecture by isolated and
independent implementation of different microservices, constructing an IoT application by interconnecting
these microservices, and potential sharing of microservices between different IoT applications running
simultaneously to enhance interoperability. Finally, we provide an extensive performance evaluation focusing
on application latency as well as CPU and memory consumption.

INDEX TERMS Containers, Docker, edge computing, Internet of Things (IoT), microservice, virtualization.

I. INTRODUCTION
The Internet of Things (IoT) promise to interconnect bil-
lions of geographically-distributed heterogeneous devices
has unleashed myriad of applications in the fields of smart
cities, smart health monitoring, industrial IoT (IloT), smart
agriculture, and several other areas. By immersing an envi-
ronment with sensors and actuators, businesses gather enor-
mous volume of multimodal, live-streaming data that is then
fed to smart decision systems to enable efficient and smart
operations. Cloud computing is utilized by IoT solutions
to aid in storage and analytics for such a large volume of
data. In particular, the elasticity of cloud service provisions,
an ability to automatically scale up or down based on IoT
workloads allows IoT applications to tap into the abundant
storage and computation resources that cloud services pro-
vide in a cost-effective way.

However, utilizing cloud resources in IoT applications
suffers from two limitations: high latency and high network
bandwidth consumption. Indeed, it is expected that the Inter-
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net backbone networks will be overwhelmed by the amount
of data streamed to cloud servers as IoT applications become
mainstream. As a result, edge computing (also known as fog
computing) has been proposed to overcome the two limita-
tions of utilizing cloud resources [1]. Fog nodes (also known
as edge servers) [2] are defined as virtualized platforms
placed at the edge of the network to bring cloud services
closer to IoT nodes. The local processing introduced by the
resultant Cloud-Fog-IoT architecture provides great benefits
such as supporting latency-sensitive applications, enhanced
privacy, and reduced workloads reaching the backbone of the
network.

Despite these benefits, building and integrating IoT appli-
cations on top of a Cloud-Fog-IoT infrastructure is inherently
challenging due to its dispersed nature. Consequently, IoT
vendors opt for implementing IoT solutions as end-to-end
silos to fully control the application flow. Indeed, a major
challenge hindering wide adoption of IoT is the lack of a
standard to enable interoperability among different solutions
and components of IoT applications. Popular IoT applications
that are commercially available at present, such as intelli-
gent door locks, camera-based home surveillance systems,
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smart home temperature control systems, and even smart
city applications and services are implemented as islands.
They follow an end-to-end design spanning smart sensors,
fog nodes and cloud providers without any possibility of
component/code reuse. For example, a generic temperature
sensor used in a smart home application cannot be shared with
another application that serves the purpose of a fire alarm.
Similarly, a face detection component in a home surveillance
application cannot be reused by another application, e.g.
a smart home temperature control system.

To address this limitation, a microservice-based architec-
ture has been proposed [3]. In this architecture, an application
is built from a selection of individually isolated microser-
vices, where each microservice is a self-contained piece of
software with clearly-defined interfaces implementing a sim-
ple and well-defined functionality. Compared to a traditional
monolithic model, such an architecture promotes modularity,
code reuse, scalability and resiliency [4]. Figure 1 illustrates
a motivating example of this architecture, comprised of six
microservices.
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FIGURE 1. An example of a microservices-based architecture.

In this example, the six microservices are used to compose
two applications, one to operate A/C control settings and the
other to detect if there is a fire and develop an evacuation
plan. The Data Filter (Temperature Control) microservice
detects changes in temperature to control AC as well as abrupt
changes in temperature indicating possible fire. The A/C
Controller microservice controls the A/C settings based on
data received from the Data Filter (Temperature Control)
microservice while the Evacuation Planner microservice
develops an evacuation plan based on the data received from
the Data Filter (Temperature Control) and Data Filter
(Face Detection) microservices. Of course, the fire-alarm
functionality of the architecture is oversimplified for the
sake of example clarity. A full-fledged fire-alarm/evacuation
system would have so much more details into it beyond our
scope.

The above described example architecture illustrates
three important characteristics of a microservices-based
architecture. First, each microservice has been designed and
implemented independent of other mocroservices. Second,
different applications can be constructed by interconnecting
these microservices appropriately. Finally, a microservice
can be reused and shared by multiple applications running
simultaneously.

Indeed, there have been several research efforts in
recent years that address different aspects of building
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a microservice-based architecture ranging from efficient
microservice implementation, architecture scalability, distri-
bution and load balancing, orchestration and other system
level services [5], [6], [7], [8], [9], [10], [11], [12], [13], [14].
An overview of this work is provided in Section II. Despite
a plethora of work in this area recently, there is a lack of
evaluation of a microservice-based architecture based on an
actual prototpye implementation and performance measure-
ment. This paper addresses this issue.

In particular, this paper evaluates the design, implemen-
tation and performance of a microservice-based architecture
of an edge server to implement end-to-end IoT applications.
In particular, we provide a microservice-based design and
implementation of an edge server architecture and demon-
strate its utility by constructing multiple IoT applications and
evaluate their performance. The paper makes the following
important contributions:

1) We provide a detailed design and implementation of
an edge server architecture that fulfills dual roles of
(1) being an administrative controller of an [oT infras-
tructure, and (2) satisfying application’s latency and
privacy constraints by acting as computing and com-
munication continuum between low end sensor devices
and the high end cloud resources.

2) We demonstrate the utility of a microservice-based
edge server architecture illustrating isolated and inde-
pendent implementation of different microservices,
constructing an IoT application by interconnect-
ing these microservices, and potential sharing of
microservices between different IoT applications run-
ning simultaneously. This design leads to enhanced
interoperability.

3) We provide an extensive performance evaluation of
the edge server architecture focusing on application
latency as well as CPU and memory consumption.

Il. RELATED WORK

A. GENERAL LITERATURE REVIEW

This paper utilizes a mixture of techniques and concepts
discussed in literature to tackle the issue of fragmentation
in IoT environments thereby enabling resource sharing and
enhancing interoperability among IoT solutions. We begin by
discussing research works tackling the lack of interoperability
in IoT environments, which is the main issue hindering wide
adoption of IoT technologies and our main goal to tackle in
this paper. The survey paper by Noura et al. [15] provides a
summary of research works in this area and discusses open
issues. It lists adopting the edge computing paradigm as a
contributor for enhanced interoparbility in IoT. We share the
same vision in our architecture by employing an edge server
for coordination and orchestration of service sharing in the
IoT environment. The BIG IoT API [16] provides an archi-
tecture for tackling the problem of lack of standards for IoT
interoperability based on lessons learned from the IoT EPI
project [17]. The presented architecture provides standard
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APIs, resource descriptors and a marketplace to monetize
access to IoT resources as a means for building a holistic IoT
ecosystem. Our architecture similarly employs APIs with the
focus on resource sharing in the IoT environment but mainly
focuses on utilizing the edge server for this means. Another
architecture presented by Aloi et al. [18] envisions the smart-
phone to play a central role in enabling IoT interoperability.
A smartphone gateway application is provided to handle
various communication protocols and manage IoT devices.
We also adopted the smartphone for representing user inter-
ests in the [oT environment in our previous work [19] but our
focus in this work is on the IoT deployment owner interests
represented by the edge server in our architecture. Finally,
the Hypercat [20] and SGS [21] are also solutions directed at
enhanced IoT interoparability. However, the focus of these
middlewares is building standard semantics for gathering
information about the IoT environment while we focus on
the systems aspects of utilizing containers to support service
sharing.

Another research area related to our work is about utilizing
microservices that run on edge servers or clouds to facilitate
running IoT applications. Morabito et al. [22] proposed a
gateway running on single-board computers SBCs to manage
heterogeneity in IoT. An evaluation for the performance of
this architecture is then presented. Our architecture has simi-
lar approach but we employ our solution on a high-end edge
server and implement the temperature pipeline as an example
application to utilize it. Alam et al. [23] also proposed a
microservices architecture utilizing Docker to support IoT
applications. The presented architecture runs on the Cloud-
Fog-Edge continuum with the aim of enhanced modularity
and providing fault tolerance. We share the same techincal
vision of using Docker to decompose the IoT application
into microservices for better modularity. But, we utilize an
edge server to run the architecture with the aim of bringing
cloud-like hardware performance near the vicinity of the typ-
ically low-end edge devices in resemblance to cloudlets [24].
More recently, Con-Pi [25] was introduced to enable resource
sharing in edge/fog computing environments by running loT
applications as microservices, which is similar to our objec-
tive. However, Con-Pi is targeted towards running containers
on SBCs while our presented architecture runs on a high-
end edge server (i.e. cloudlet paradigm). Finally, a work by
Ahmed and Pierre [26] looked onto improving the perfor-
mance of Docker to better run microservices on microcon-
trollers such as the Raspberry Pi.

Cloud platforms have also been utilized to host software
infrastructure to support IoT applications [27]. In this solu-
tion, cloud resources were utilized for better processing and
storage of IoT stream data. It is true that cloud infrastructure
should ultimately provide the final destination for processing
and storage of IoT data. Nonetheless, the edge server in our
work provides staged processing before reaching to the cloud.
Our objective is to utilize this unique position to address
heterogeneity in IoT environments. Last, [oTDoc [28] utilizes
IoT devices to promptly form a mobile cloud for running a

90036

TABLE 1. Comparison of our work to generic microservice-based edge
frameworks for loT.

Main Focus
Objective(s)

Evaluation

Service Orchestration
Interoperability
Scalability
Trust, Privacy and Security
Fault Tolerance
[Energy/Resource Optimization|
Quality of Service
Prototype Implementation
Performance Evaluation
Simulation
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Filip
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Gaur
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Jin
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Alam

et al. 23]
Morabito
et al. [22]
Mahmud
et al. [25]
Pallewatta
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Islam
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Toini and
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Javed
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Our
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docker-based architecture to support IoT applications. The
provided solution is more cost-efficient when compared to
cloud usage. Indeed, cost is an important factor when design-
ing systems for the Cloud-Fog-Edge continuum. The business
viability of our approach of installing cloudlets is discussed
in a survey paper [29] by Shaukat et al.

B. COMPARISON TO OTHER FRAMEWORKS

This section illustrates our contributions by juxtaposing our
work to relevant literature as shown in Table 1. We included
in this survey generic microservice-based edge frameworks
supporting IoT. Frameworks targeting special IoT use cases
such as industrial IoT (IIoT) or mobile health (mHealth) were
excluded. As seen in the table, we listed service orchestra-
tion as one of the objectives to reflect to readers that all
works utilize it to achieve a single or combination of goals
to tackle well know IoT challenges. Service orchestration
is the automated management of service lifecycle includ-
ing service starting, deployment, scaling up and termina-
tion. As expected, acheiving energy/resource optimization
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and providing QoS (i.e. better time performance and respon-
siveness) are the most prevalent goals for the various frame-
works, which is due to the resource-limited nature of edge
devices. Other objectives include scalability, security and
fault tolerance. We notice that only our work and the work by
Morabito et al. [22] focused on interoperability. To evaluate
their proposed framework, most works focused on measuring
the performance (time, CPU utilization and memory foot-
print) of implemented microservices over limited-resource
edge devices. This is done by deploying containers on single
board computers SBCs such as the raspberry pi. Using pure
simulation was also another option to evaluate the proposed
ideas. Similar to our experimental work, a prototype imple-
mentation involving an actual IoT application utilizing sen-
sors and edge devices was also explored by other researchers.
The contribution we provide over similar works presented
in Table 1 stems from providing a step-by-step detailed
prototype implementation and evaluation for the proposed
architecture. The provided details inform other researchers
while architecting implementations specific to their use case.

1ll. DESIGN
We adopt a microservice-based architecture for edge servers
to tackle the complexity of developing dispersed IoT appli-
cations to run on the Cloud-Fog-IoT continuum. In essence,
microservice-based architectures [30] have been suggested
in software engineering industry as a means for replacing
monolithic architectures by decomposing any application into
a set of independent services. This proposal brings in great
flexibility since microservices can be written using differ-
ent programming languages and by different development
teams. A microserivce implements a clearly defined unit of
functionality and defines a communication channel based on
a lightweight mechanism, typically HTTP, to integrate with
other microservices and to interact with the outside world.
In our design, an edge server serves dual purposes. First,
it has a low-latency connection of one wireless hop to all
sensing and actuating devices in an IoT environment (e.g.
a home, a building, an agricultural field, etc.), and is typi-
cally located close to these devices. Thereby, it has a birds-
eye-view of the entire IoT environment and can coordinate
access, sharing and operation of all these devices among
multiple IoT applications running concurrently. In this role,
the edge server is a part of the administrative domain [31]
of the IoT environment and represents the administrators
by enforcing their admission control and security policies.
Second, the edge server provides an intermediate computing
and communication platform that IoT applications may use
for computing or pre-processing in accordance with their
latency, privacy, storage and/or cost constraints.

A. ARCHITECTURE

We employ container technology [32] to design and imple-
ment individual microservices and facilitate communication
between them. Containers provide a very convenient way to
implement a microservice-based architecture, wherein each
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FIGURE 2. Solution architecture.

microservice is implemented as a separate container and
applications are constructed by interconnecting these con-
tainers as needed. Here we adopt the technique [33] of decom-
posing the application into a Directed Acyclic Graph DAG,
or simply chained services, to enable distributed execution
across the edge and the cloud. Our proposed edge server
architecture is shown in Figure 2. The edge server [1], also
known as a cloudlet [24] or a fog node [2] is a trusted,
resource-rich compute box located at the edge of network.
It is installed and managed by the owner/administrator of
an IoT environment and has one-hop wireless access with
physically co-located IoT sensor and actuator devices. The
edge server in our design runs a Container Engine installed
on top of the local hardware and operating system to provide
lightweight container-based virtualization.

As shown in the figure, our edge server architecture is
comprised of a set of microservices (containers) that can
be divided into system and application microserivces. IoT
applications are the clients to be served by this architecture.
Essentially, the main purpose of the architecture is to allow
IoT applications to discover and share services available in
the environment. We believe that, if engineered carefully,
applications will share large number of components. For
example, the camera sensor can be shared by two applica-
tions one requiring face recognition and another requiring
intruder alert only. To discover and consume the services
provided by the framework, IoT applications first contact
the Main Controller Microservice. This contact happens
only for the first time to learn the application requirements
and devise an execution plan according to the currently avail-
able resources.The Main Controller Microservice directs
new IoT client requests to the Orchestration Microser-
vice, which is the focal point for devising execution plans.
In order to come up with the best execution plan, this lat-
ter microserivce requires information about current running
microservices and applications in the system. This informa-
tion can be acquired by contacting the Registry Microservice
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FIGURE 3. Sequence diagram for serving loT App client using the architecture.

which gathers the needed information from the system by
contacting the Microservices Database. Upon devising a
new execution plan, the responsibility for executing it is
then delegated to an App Controller. Any future requests
for the same IoT application will be directed to this App
Controller, to avoid any redundancy in service execution.

So far, we have described the functions of system contain-
ers that are illustrated in green color and the corresponding
control signals by dashed arrows in Figure 2. In Section III-B
we discuss an example scenario where we draw a sequence
diagram depicting the interactions between the components
to serve a specific IoT application request. In addition to the
system containers, applications are decomposed onto appli-
cation containers or microservices (illustrated in blue color).
IoT applications require generic microservices that can be
either chained to run sequentially or in parallel depending
on the nature of the task. We envision four types of generic
application-specific microservices. First, the Data Collec-
tors microservices interface directly with the IoT nodes (sen-
sors and/or actuators) in the environment. These microser-
vices serve as a gateway for any future request to share the [oT
node resources. For example, a data collector microserivce
could represent a camera sensor and expose APIs for getting
pictures and/or videos from the camera whenever required by
an application. Second, the Data Filter microservices store
any data retrieved from the sensor in a data store and provide
any needed logic relevant to the sensor data. Using the same
camera example, the data filter stores all pictures and video
clips retrieved from the camera and exposes APIs for any
advanced processing based on this information (e.g. an API
for face detection). Third, the Event Detectors microservices
are responsible for detecting any triggers requested by the
user which could be based on raw sensor data or filters
implemented by the Data Filters. Finally, the Event Logger
microservices keep a history for earlier triggers in case they
are needed by any application in the future.

90038

B. IoT APP EXECUTION FLOW

To explain how this proposed architecture is used,
we describe in detail the interactions among various sub-
components to execute an [oT application using the sequence
diagram shown in Figure 3. First, an IoT App Client sends
a request to the Main Controller service requesting to run a
particular application that is uniquely identified by an App
ID. The Main Controller then contacts the Registry to
discover whether this request is to start a new application, or if
the requested application is already running and the client
could simply join this ongoing application. As discussed
in Section III-A, the execution of each IoT application is
handled by a corresponding App Controller. Hence, in case
the requested IoT application is found to be already running,
the request needs to be routed to the existing App Controller
serving the application. Hence, the Registry will reply with
the application information to the Main Controller which
forwards the App Controller port number to the requesting
client. After that, the IoT App Client has an ongoing com-
munication (orange dashed arrows) with the App Controller
which communicates with the application Components
implementing the application logic.

Now we turn to describing the interactions that occur
when the requested application is not running currently,
which requires negotiating an execution plan and starting a
new App Controller. In this case, the application informa-
tion returned by the Registry indicates that the application
status is stopped. The Main Controller then forwards the
request to the Orchestrator who is responsible for starting
the necessary components needed to start the new applica-
tion. Here, the application has alternative DAG execution
graphs [33] and the goal of the Orchestrator is to start
a DAG graph with the most components that are already
started by currently running applications to maximize sharing
of resources. DAG information for popular applications are
known before hand while for other applications they can be

VOLUME 10, 2022



K. Alanezi, S. Mishra: Utilizing Microservices Architecture for Enhanced Service Sharing in loT Edge Environments

IEEE Access

simply provided to the framework by the requesting client.
The Orchestrator starts contacting the Registry to discover
if some of the needed components are already running. If this
was true, an opportunity for sharing these microservices
across IoT applications is exploited to bring the benefit of
conserving resources and enabling more IoT applications.
For those needed microservices that are not running, the
Registry launches those microservices. The information of
those microservices along with the already running microser-
vices is then returned to the Orchestrator. This information
is used by the Orchestrator to devise a launch configuration
and sending it to the main controller. The main controller
launches a corresponding App Controller to serve this new
application and returns the App Controller port number to
the client.

IV. IMPLEMENTATION AND EVALUATION

The proposed architecture described in Section III depends
heavily on containerization technology for virtualization.
We utilized the docker engine [32] to implement a prototype
for the proposed architecture where each docker container
is used to implement an application or system microservice.
This section provides details for this prototype along with
extensive evaluation of its performance.

A. INTER-MICROSERVICE COMMUNICATION
As the performance of the architecture is governed by the
overhead resulting from inter-docker containers communi-
cation, we started the evaluation by measuring this over-
head. When looking at the architecture shown in Figure 2,
one can identify three types of communication schemes
among microservices. Those three schemes are depicted in
Figure 4. First, the Host Inquiry scheme represents a con-
sumer microservice sending a request to a provider microser-
vice running on the same host. Here the communication
happens by means of a docker network bridge [34], which is
a software bridge that permits group of containers attached to
it to communicate. It provides isolation since other containers
running on the same host cannot communicate with the group
of containers as they are not connected to the same bridge.
Note here that the provider microservice exposes APIs for
other microservices to consume its services. For example,
a face detection microservice will expose RESTful APIs
where an image can be posted using HTTP POST and the
number of faces and their locations in the picture is returned.
In order to expose the APIs, the provider microservices typ-
ically run a web server to establish various HTTP API types
of GET, POST, PUT, UPDATE and DELETE. Those APIs
will also carry some sort of computational task provided by
libraries as needed such as the face recognition library needed
to perform face detection in the aforementioned example.
Second, the Database Inquiry communication scheme
represents a scenario where the provider microservice
requires accessing a data store before replying to the con-
sumer inquiry. This situation represents retrieving a stored
piece of data and performing some kind of computation or
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just returning the data itself. Last, the Network Inquiry rep-
resents a situation where the consumer communicates with
the provider service running on another host via wireless link
(typically Wi-Fi). This scenario is akin to the IoT application
acting as the consumer and calling the provider service run-
ning on the edge server.

We begin by depicting the time performance of these
three communication schemes in Figure 5. Note that we
have performed each experiment five times and report the
standard error for each experiment. For stress testing the
schemes, we launch tens of threads bombarding the service
with hundreds of requests as will be described later. From
the figure we see that the host inquiry takes an average of
1.8 milliseconds of round trip time. This is the time it takes
to send an HTTP get request to the API exposed by the
web server implemented in the provider microservice and
getting the response back. We deliberately did not do any
processing at the provider side so as to exclude this factor
as it hugely varies depending on the required computation
type. The reported number simply reflects the communication
cost. Note here that to implement the provider microservice,
we containerized a web application that was implemented
using Java Spring Boot [35]. This application exposed simple
APIs to resemble a provider service. Now when looking at the
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FIGURE 6. CPU utilization/response time for the Host Inquiry
configuration under varying workloads.

database inquiry scheme we can see that the average response
time is increased to 6.58 milliseconds. In this situation, when
receiving an inquiry, the provider needed to consult a data
store microservice, which we implemented as a MySQL
database [36] deployed inside a docker container. The result
is then returned back to the provider microservice, which can
perform some processing on the data before returning the
results to calling consumer. Last, we describe the situation
where the consumer service is calling the provider via the
network. The reported average time is 8.78 milliseconds. This
time also varied considerably between the five runs which we
attribute to the variability in network performance at the time
of calling the provider service. This experiment contrasted the
various time costs associated with inter-container communi-
cation schemes. Tolerating these costs depends on the type of
the application or the use case at hand. Nonetheless, utilizing
service sharing, a key design principle in our architecture,
promotes scalability as IoT applications will share similar
generic microservices and only create/reuse containers’ links
to create the DAG processing graph specific to their needs.
The inherent mobility of IoT environments means that this
architecture will be subject to varying degrees of workloads
as users joining and leaving the IoT environment send con-
current requests to access the edge server services. To study
the impact of this factor, we used JMeter [37] to perform
load testing for the three aforementioned scenarios. Results
for these experiments are depicted in Figures 6, 7 and 8.
We report in each figure the CPU utilization for the involved
containers along with the response time. This will help us
understand the behavior of the architecture when handling
different loads. In this experiment JMeter was used to sim-
ulate 1, 5, 10, 20, 50 & 100 threads sending HTTP requests
simultaneously to the provider microservice. This process
is continued for 30 seconds while measuring the CPU uti-
lization every three seconds. The average of the resultant
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10 readings, retrieved using docker stats [38], is reported in
the figures with the standard error shown on the bars. The
response time here is the average time for all HTTP calls
to return a result, which is measured by JMeter. Note that
logging the performance for 30 seconds was sufficient as
reported performance averages got saturated after that when
the same number of thread/requests is used. Figure 6 shows
the results of load testing the Host Inquiry configuration.
We see from the figure that the provider container was able
to handle the increase in number of requests by increas-
ing the CPU utilization by a factor of around 20% each
time. Similarly, a liner increase in the response time is also
observed. For example, when the number of threads got dou-
bled from 5 to 10, the provider container handled this increase
smoothly without any increase in response time. However,
the situation starts to worsen when the number of threads
sending concurrent requests goes from 50 to 100 where the
response time doubles from three to six milliseconds with the
CPU utilization reaching 151%. Note here that CPU utiliza-
tion exceeding 100% means that the container is expanded
by the docker engine to run on more than one CPU core.
Finally, for this experiment, we conclude that the provider
container is stable in handling about 50 threads sending
concurrent requests. Solutions for automatic scaling such as
docker swarm mode [39] or Kubernetes [40] can be utilized
when receiving requests more than the container can handle.
Now we look into the results for load testing the Database
Inquiry configuration. To measure the performance here,
we logged the CPU utilization of the data filter and the data
store containers and reported the sum of the two. We observe
from Figure 7 that the CPU utilization of this scenario is
maxed out at 20 threads at 199% utilization. This satura-
tion caused a dramatic increase in average response time
of more than 100% when increasing the threads after that
to 50 & 100 threads. We also note from the figure that the
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FIGURE 8. CPU utilization/response time for the network inquiry
configuration under varying workloads.

data store, which consists of a container running MySQL
image, constituted more that 50% of the CPU utilization of
the scenario. It was also the quicker microservice to saturate
and reach 100% CPU utilization at 5 threads only. This quick
saturation caused the data filter component to also saturate
beginning at 10 threads at 70% to 80% as we expect the data
store component to start queuing received requests thereby
delaying them. When comparing the performance of the data
filter component to the same component in Figure 6 when
the data store component was not introduced we see that the
CPU utilization did not exceed 100%, which means that the
component did not expand to other CPU cores. It is clear
that the data store component caused the bottleneck in this
scenario leaving no space for the filter component to increase
its performance.

Finally, we turn into inspecting the performance of the
Network Inquiry scenario shown in Figure 8. We see from
the figure that the introduction of the network factor in this
scenario throttled the rate of requests received at the ser-
vice provider side. This in turn caused an increased average
response time when comparing the performance with the host
inquiry scenario depicted in Figure 6. It also caused the CPU
utilization to increase in smaller factors. The CPU utilization
here never exceeded 100% as we have seen in the host inquiry
scenario due to the fact that the requests were delayed by the
network.

A general note from some of the figures is that a
high degree of variability is observed in CPU utilization
which is reflected in the error bars. This high variability is
attributed to the spontaneous logging of the CPU utiliza-
tion number every three seconds. However, we have not
seen this behavior to happen very frequently and hence
decided to stick with our choice of three seconds logging
frequency.
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FIGURE 9. Prototype testbed.

V. PROTOTYPE APPLICATION

We have focused in the previous section on evaluating the
cost of inter-container communication as it plays a major part
in the performance of the architecture. Besides that, the cost
stemming from the container (i.e the code running inside it)
can not be neglected. This cost consists of the time needed
to start any microservice before being able to call it and
receive a response. We also looked into the memory footprint
cost of loading and keeping a microservice in the memory.
To look into these aspects we needed to choose a particular
application as an example. Therefore, we implemented a
prototype consisting of the temperature pipeline of the A/C
Controller - Fire evacuation planner application described in
the introduction and shown in Figure 1.

The testbed we used for the prototype implementation is
shown in Figure 9. Also, Table 2 lists the specifications of
used hardware. We utilized a MacBook Air laptop to act as
the edge server in the setup. An Arduino UNO R3 board was
used as the micro-controller. As seen in the figure, we stacked
an ESP13 WiFi shield [41] on top of the Arduino to provide
it with WiFi access. An LM35 temperature sensor is chosen
as the sensory interface. The temperature sensor was wired
to the Arduino micro-controller by means of the electronic
breadboard also shown in the figure.

A. TEMPERATURE PIPELINE IMPLEMENTATION

The software part consisted of the minimal number of chained
microservices to implement the temperature pipeline. The
goal of this pipeline is to collect temperatures periodically
and push them to a database where there is an API exposing
them to other microservices who can request a temperature
reading at any time. We created three microservices as shown
in Figure 9 to achieve this goal. In the beginning, the Data-
Collector microservice is responsible for interfacing with the
temperature sensor and representing it in the architecture. The
implementation of this container consisted of a python TCP
server listening to port 9000 inside the container. The docker
python image was used as the parent image when building
this container in order to run the python server code at the
time of starting it.
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TABLE 2. Summary of testbed hardware.

Name Description

Edge server
Micro-controller
Ethernet Shield
Temperature Sensor

MacBook Air, CPU Apple M1 (8 cores), 8GB RAM, 256GB SSD
Arduino UNO R3, ATmega328P, 16MHz Clock Speed

ESP13 Wifi Shield from doit.com

M35 Precision Centigrade from Texas Instruments

(X ) I temperature-data-collector — -zsh — 93x5

khaledassaf@khaledassaf temperature-data-collector % docker run —name temperature-data-store
-p 3306:3306 -e MYSQL_ROOT_PASSWORD= -e MY_SQL_DATABASE=temperature_database -e

[MYSQL_USER=sa —e MY_SQL_PASSWORD= -platform linux/andé4 -d mysql

494da492058828f fe29075d0cd4d0722ea2701793142260f29941350¢013b46

khaledassaf@khaledassaf temperature-data-collector %

FIGURE 10. Command for starting the Data-Collector microservice
container.

Before starting the Data Collector microservice, it is
required to create a Docker bridge which would act as the
communication channel between this microservice and the
Data-Filter microservice. Docker bridge [34] is a software
bridge that allows containers attached to it to communicate
while isolating them from other containers running on the
same host. The command we used to create the bridge that
we named temp_bridge is as follows:

docker network create temp_bridge —driver bridge

Now after building the Data-Collector microservice con-
tainer and creating the network bridge we are finally ready
to run the container while attaching it to the bridge. The
command we used to run the Data-Collector microservice
container is shown in Figure 10.

Note from the figure that the p flag was used to indicate
forwarding traffic from port 9000 at the local host to port
9000 inside the container, which is the port that the python
TCP server script is listening to. Port forwarding allows the
microservice to receive communication requests from tem-
perature sensors through WiFi as mentioned when describing
the testbed in Figure 9. Also, notice that the microservice
container was attached to the created network bridge at the
time of starting it by setting the network to the created
temp_bridge.

Before we describe the steps needed to run the Docker-
Filter microservice, we need to work on launching the Data-
Store microservice. The dependency here comes from the
fact that the former relies on the latter for data persistence.
We choose to implement the Data-Store in a separate con-
tainer running MySQL database. To launch this container,
we need to pull it first from Docker hub using the following
command:

docker pull mysqgl

After that, we run the command shown in Figure 11 to
launch the Data-Store microservice container. This com-
mand requires setting many environment variables and con-
figuration parameters. We only describe the important ones.
First, we also set the p flag to forward network traffic to

90042

FIGURE 11. Command for starting the Data-Store microservice container.

FIGURE 12. Command for starting the Data-Filter microservice container.

port 3306 in the container. This port will be used inside
the Data-Filter to configure the Object-Relational Map-
ping ORM, which performs data-management tasks with the
use of the Data-Store. The command also creates a new
schema named temperature_database and sets it as the
default schema. Other parameters are concerned with creating
database administration accounts inside the container.

The Data-Filter component provides RESTful APIs for
data retrieval and processing tasks where the Data-Store
acts as the backend. These APIs will be used by the
Data-Collector microservice to persist temperature readings
received from the temperature sensor over WiFi. The Data-
Filter microservice is implemented as a spring boot Java
web application [35]. The JAR file of this application was
then containerized using Java docker container as the parent
image. The resultant container was then started using the
command depicted in Figure 12.

As seen in the figure, this command runs the Data-Filter
microservice container while attaching it to the network
bridge, which enables communication between the Data-
Collector and this microservice using the container name.
We can also see from the figure that this microservice uses
port forwarding to be able to communicate with the WiFi net-
work via port 8086. This is essential so as to allow any client
in the domain to access temperatures sensor data through
the edge server, thereby allowing the edge server to play the
intermediary role planned in the design.

B. TEMPERATURE PIPELINE EVALUATION

In this section, we evaluate the performance of the imple-
mented temperatures microservices pipeline described in

VOLUME 10, 2022



K. Alanezi, S. Mishra: Utilizing Microservices Architecture for Enhanced Service Sharing in loT Edge Environments

IEEE Access

3.5
3.0 l
2.5
- 2.0
o
2
= 1.5 3.024
1
0.5 1.036
0.038
0.0 -
0-Stopped 1-Stopped 2-Stopped
SCENARIO
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FIGURE 14. Memory footprint for shared temperature application
microservices vs. redundant services.

Section V-A. The essence of this evaluation stems from
the design principle that enabling discovery and sharing of
microservices across IoT applications improves interopera-
blity as well as saves system resources. However, this comes
at the cost of ensuring that the needed microservices are
readily available for applications to invoke them whenever
needed. We covered three scenarios to measure the time
cost associated with microservices readiness as shown in
Figure 13. The first scenario, 0-stopped, covers the best case
scenario where all three microservices are up when a client in
the environment requests a temperature reading. In this case,
the time needed to call the Data-Filter component APIs and
receive the latest temperature is 38 milliseconds. The second
scenario, 1-stopped, resembles a situation where the Data-
Collector is offline. In this case, we need to start the
Data-Collector microservice before being able to call the
Data-Filter and receive the temperature after it is posted
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by the Data-Collector. The time measured to achieve this
was 1.036 seconds. Finally, in the last scenario, 2-stopped,
both the Data-Collector and the Data-Filter were stopped.
We requested docker through Docker APIs to start both ser-
vices. After that, we measured the time needed to be able
to call the Data-Filter as it is the one with the start time
dominating the performance. The total time for this scenario
is 3.024 seconds. From this experiment, we conclude that the
time needed to start a stopped microservice depends heav-
ily on the type of implementation it provides. Hence, when
designing architectures where microservices are not expected
to be pre-started, system designers must choose components
with acceptable launch times so as not to negatively impact
the performance of the [oT application.

Lastly, we turn into evaluating the memory savings
achieved from sharing components. In Figure 14 the memory
footprint of a pipeline sharing scenario is juxtaposed with a
redundant scenario. For the former, we only launch one copy
from each microservice in the temperature pipeline whereas
for the latter, two copies from each microserivce are launched.
Predictably, the redundant configuration consumed almost
double the memory needed by the shared scenario with each
component doubling its memory usage contributing to this
result. We also notice from this figure the large memory
cost associated with the Data Store and the Data Filter
components as opposed to the Data Collector component.
The reason behind this big difference is that the Data Col-
lector component is a lightweight python code that we wrote
from scratch to receive temperatures via WiFi. On the other
hand, the other two components rely on ready made software
packages of MySQL database and the Java Spring Boot web
framework thereby requiring the large memory footprint.

VI. CONCLUSION

This paper provides the design, implementation and perfor-
mance evaluation of a microservice-based architecture of an
edge server and demonstrates its utility by constructing end-
to-end IoT applications. The proposed design categorizes the
architectures into sets of two types of containers, systems
containers and application containers. Systems containers
provide support for interacting with the clients, keeping track
of what containers and applications are running, starting and
stopping containers and applications, and sharing contain-
ers whenever feasible. The application containers implement
various functionality based on specific sensors and actua-
tors. The paper demonstrates the architecture’s utility by iso-
lated and independent implementation of different microser-
vices, constructing an IoT application by interconnecting
these microservices, and potential sharing of microservices
between different IoT applications running simultaneously.
The performance evaluation shows significant savings when
microservices are shared.
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