Journal of Mathematical Biology (2023) 86:9

https://doi.org/10.1007/500285-022-01843-y Mathematical Bi0|ogy
()]

Check for
updates

Virus-immune dynamics determined by prey-predator
interaction network and epistasis in viral fitness landscape

Cameron J. Browne'® - Fadoua Yahia'

Received: 16 June 2021 / Revised: 10 July 2022 / Accepted: 22 November 2022
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022

Abstract

Population dynamics and evolutionary genetics underly the structure of ecosystems,
changing on the same timescale for interacting species with rapid turnover, such as
virus (e.g. HIV) and immune response. Thus, an important problem in mathemati-
cal modeling is to connect ecology, evolution and genetics, which often have been
treated separately. Here, extending analysis of multiple virus and immune response
populations in a resource—prey (consumer)—predator model from Browne and Smith
(2018), we show that long term dynamics of viral mutants evolving resistance at dis-
tinct epitopes (viral proteins targeted by immune responses) are governed by epistasis
in the virus fitness landscape. In particular, the stability of persistent equilibrium
virus-immune (prey-predator) network structures, such as nested and one-to-one, and
bifurcations are determined by a collection of circuits defined by combinations of viral
fitnesses that are minimally additive within a hypercube of binary sequences repre-
senting all possible viral epitope sequences ordered according to immunodominance
hierarchy. Numerical solutions of our ordinary differential equation system, along
with an extended stochastic version including random mutation, demonstrate how
pairwise or multiplicative epistatic interactions shape viral evolution against concur-
rent immune responses and convergence to the multi-variant steady state predicted by
theoretical results. Furthermore, simulations illustrate how periodic infusions of sub-
dominant immune responses can induce a bifurcation in the persistent viral strains,
offering superior host outcome over an alternative strategy of immunotherapy with
strongest immune response.
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1 Introduction

The evolution of ecological networks depends on the underlying population dynamics,
genetics, and structure of the composite species. Interactions between populations, for
example prey-predator or competitive forces, constrain and shape the network, in con-
cert with evolution also diversifying and adapting species variants. The complexity
of these eco-evolutionary dynamics have challenged researchers to classify patterns
in rapidly evolving communities. In the single species context, theoretical models of
fitness landscapes have simplified the study of adaptation by reducing individuals to
either genotypes or phenotypes, whose reproductive success is determined by a single
trait, namely fitness. Although a multitude of evolutionary pathways exist, evolution
predictability can be driven by genetic variant constraints. A more analytically chal-
lenging scenario is the evolution or coevolution of prey-predator systems whereby the
predator range and selection of prey resistance balanced by constraints on reproduc-
tion together form a dynamic fitness landscape. Examples include phage-microbe and
virus-immune response networks, with the latter, specifically HIV, being a primary
motivation for this work.

During HIV infection, a diverse collection of viral strains, often called a quasis-
pecies, compete for a target cell population (mainly CD41 T-cells) while the host
immune response population (e.g. CD8" T-cells) predates and proliferates upon
pathogen recognition. HIV can also rapidly evolve resistance to immune response
attack at different epitopes (proteins in virus genome displayed on infected cells),
inducing a dynamic network of interacting viral and immune variants. Deciphering
patterns in the trajectories of virus and immune response populations, along with
their interactions, can advance biological theory and have applications for vaccine or
immunotherapy development Walker and Xu (2013), Chakraborty and Barton (2017).
Analogous questions in other biological systems, such as phage-microbe communities,
have mostly led to models of species compositions in the face of ecological interactions
independent of explicit genetic mutations. The properties of these ecosystem models
have classically been studied using dynamical systems, where concepts such as sta-
bility, equilibria and population persistence are used to characterize feasible species
assemblages. Recently, generalized Lotka-Volterra (L-V), chemostat and ecosystem
models have been utilized to understand how different motifs, such as nested or one-to-
one networks, are built through invading species and convergence to stable equilibria
(Jover et al. 2013; Korytowski and Smith 2015; Browne 2017). Additionally, several
works have developed polymorphic evolution sequences, where an individual based
stochastic model converges to solutions of L-V equations in the limit of small mutation
rates and large populations (Champagnat and Méléard 2011; Costa et al. 2016). How-
ever, how population dynamics, genetics and evolution together determine network
structures for rapidly evolving ecosystems is not generally established.

From an evolutionary genetics perspective, a high mutation rate allows HIV popula-
tions to change and explore sequence space on short timescales, lending themselves to
being studied as model biological systems, along with the significant clinical interest.
Disease progression, escape pathways, and treatment fate depend on viral fitness. To
estimate in vivo fitness landscapes, several evolutionary models have linked fitness to
viral genotype frequencies, for example the quasispecies model (Seifert et al. 2015)
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and multi-strain versions of a standard ithin-host virus model (Ganusov et al. 2011).
These models can be mathematically tractable, allowing for analysis of equilibria and
stability in terms of mutation rates and fitness quantities. In particular, the common
setting of finite binary sequences, the assumed form of viral genotypes in this current
paper, enables geometric or algebraic properties of the binary hypercube space to be
exploited for characterizing equilibrium distributions (Bratus et al. 2019). Inclusion of
viral mutation from multiple dynamic immune response populations complicates mat-
ters, as neither the virus strain fitness or immune response strength simply determine
epitope escape (Ganusov and De Boer 2006; Leviyang and Ganusov 2015). However,
correlation analysis (Liu et al. 2013) and a statistical physics model of viral sequences
with epistasis (discussed further below) (Barton et al. 2016) applied to HIV patient
datasets have found determinants viral evolution based on viral fitness landscapes and
immnodominance hierarchies (relative expansion levels of the responding immune
populations).

Epistasis refers to nonlinearity in the fitness landscape or dependence of fitness
change from a mutation on the genetic background. Epistatic interactions play a crit-
ical role in fitness landscape features, and ultimately evolutionary trajectories, thus
measuring epistasis has received much attention when studying evolution. However,
the large amount of interactions within a genome challenge both theoretical and exper-
imental quantification of epistasis. Several methods for computing epistasis have been
proposed (Mani et al. 2008; Ferretti et al. 2016). Here we focus on the concept of
circuits introduced by Beerenwinkel (2007) as fundamental measures of epistatic inter-
actions and underlying geometry of the fitness landscape. Circuits have been utilized
to characterize single species fitness landscapes in both theoretical and data-driven
studies (Hallgrimsdéttir and Yuster 2008; Crona 2017; Gould et al. 2018).

In this paper, we investigate how epistasis impacts evolution of prey-predator inter-
acting species, specifically how virus fitness landscapes affect the overall virus (prey)
and host immune response (predator) ecosystem dynamics. We show that connecting
population genetics and dynamics offers a way to extract biological meaningful rela-
tionships from the equilibria stability conditions of a complex network differential
equation for interacting species’ variants. We build off of our previous analysis of a
multi-variant virus-immune model (Browne and Smith 2018), which established differ-
ent regimes of attractors, each with a distinct set of viral strains persisting by extending
Lyapunov function methods first applied to generalized L-V equations (Goh 1978; Hof-
bauer and Sigmund 1998). In particular, the stability of certain equilibria structures and
associated bifurcations are sharply determined by relevant circuits, which recast strain
invasion rates as algebraic combinations of binary sequences shaping viral fitness land-
scape epistasis. Furthermore, we simulate eco-evolutionary dynamics showing that our
theoretical calculations can carry over to an extended stochastic model with mutations,
and also illustrate how distinct immunotherapies can be incorporated in our system
to shed light on potential strategies. We conclude with a discussion on how our study
supports the utility of evolutionary genetics concepts, in particular the construction of
circuits for measuring epistasis of fitness landscapes, applied to characterizing bifur-
cations in virus-immune response population dynamics, which represents a specific
example of a prey-predator ecosystem model.
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2 General model and binary sequence case

We begin by considering the following rescaled model introduced to describe a network
of viral and immune response variants during host infection (Browne and Smith 2018):

m
)'c=1—x—x27€iyi,
i=1

n
).7i=7/iyi ’Rix—l—Zaiij , i=1,...,m
j=1

m
Nt ijyi—pjl, J=1L1...,n 0

Pj i=1

Zj

Here x denotes the population of target cells, along with m competing virus strains
(y; denotes strain i infected cells), and n variants of immune response (Z;). The
parameter R; represents the basic reproduction number of virus strain i. The m x
n nonnegative matrix A = (a;;) describes the virus-immune interaction network,
which determines each immune response population’s avidity to the distinct viral
strains. Then p; represents the reciprocal of the immune response fitness excluding
the (rescaled) avidity to each strain j. Additionally, ¥; and o represent scaling factors
for corresponding viral and immune variant growth rates.

Each virus strain i (cells infected with strain i), y;, has a set of immune responses,
Z, that recognize and attack y;. We call this set the epitope set of y;, denoted by
A; where A; = {j €[l,n]:a;j > O}. Here j € A; if y; is not completely resistant
to immune response Z;. We remark that the system generally models a tri-trophic
ecosystem with a single resource consumed by m prey (or consumer) populations
subject to potential attack by n distinct predators (prey i subject to attack by any
predator j in A;). For example, this model can describe bacteria-phage communities in
a chemostat (or single resource environment), where the set A; classifies the infection
network (whom infects who).

In this article, we specialize system (1) to the case where each virus strain is
represented by a binary sequence of length n, exactly coding the loci (epitopes) for
which n specific immune responses can recognize and attack. Note that consideration
of binary sequences is perhaps the most common way to represent distinct variants
which can differ at some loci of their genome (e.g. quasispecies, haploid models).
A major goal of this work is to connect concepts in evolution and genetics with
population dynamics, so this special case is an appropriate setting. Here the n viral
epitopes have two possible alleles: the wild type (0) and the mutated type (1) which
has escaped recognition from the cognate immune response. For each virus strain y;,
we associate a binary sequence of length n, y; ~ i = (i1, ia, ..., i) € {0, 1}"*, coding
the allele type at each epitope. We assume that each immune response (Z ;) targets its
specific epitope at the specific rate a; for virus strains containing the wild-type (allele
0) epitope j, whereas Z; completely loses ability to recognize strains with the mutant
(allele 1) epitope j, i.e.
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Vie[l,m],y,- ~i$aij:(l —ij)clj (or aij = daj if jeAi, a,-j=00therwise),

2

with A; the epitope set defined earlier for model (1) (see Fig. 1). We also use binary
sequence vector notation for viral strains, yj, and associated sets. With assumption (2),
we can define an immune reproduction number corresponding to each Z:

aj
Zj = —. (3)
Pj

Then there are m = 2" possible viral mutant strains, each distinguished by binary
sequence i = (i, i2, ..., i) and denoted yj, governed by the following system:

x=1—x—x Z Riyi,
i€{0,1}"

n
Vi = Yidi Rix—l—z(l_ij)zj , iefo, ",
j=l1

. Oj . .
ZjZS—J'Zj Z A—=ipyi—sj|, j=1....n )
/ ic{0,1)"

where z; =a;Zjands; = 1/Z;.

The 2" potential virus strains can be viewed in a fitness landscape; each strainiis a
vertex in an n-dimensional hypercube graph with fitness Rj, as shown in Fig. 1a and
d in the case of n = 3 and n = 2 epitopes. Viral strains y; and yk are connected by
an edge, if the sequences i and k differ in exactly one bit, i.e. their Hamming distance
— denoted by d(yi, yk) — is one. We define the wild-type (founder) virus strain as
the unique strain which is susceptible to attack by all immune responses, denoted yy,
characterized by the sequence of all zeroes, 0 = (0,0, ..., 0), or equivalently the
epitope set Ag = {1, ..., n}. Each mutation from 0 to 1 of an epitope incurs a fitness
cost associated with gaining resistance to the corresponding immune response, SO we
constrain the collection of viral reproduction numbers (fitness landscape) to satisfy
the following condition:

If d(yi, k) = 1 and d (i, yo) < d(yk. yo), then Rj > Ry. ®)
The occurrence of fitness costs (in reproduction rate) for gaining resistance to preda-
tion is a general concept in eco-evolutionary systems, for example in bacteria-phage
networks. Finally we say that an immune response z j is immunodominant over another
immune response zi if Z; > Z; and assume, without loss of generality, the ordered

immunodominance hierarchy;

2Dy >-->1y, ie. 51 <5<+ < 5. (6)
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immune cells targeting epitope j
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Fig. 1 a The virus-immune network on n = 3 epitopes for model (4) overlying the hypercube. Here each
viral strain y;, i = 0, ..., 7, is associated with a unique binary string i € {0, 13 coding their allele type,

susceptible (0) or resistant (1), at each epitope. Inmune response z; attacks y; ~ iifi; = 0, or equivalently
if j is in epitope set of y; (j € A;). The wild-type virus, yg ~ 000, can evolve resistance to each epitope-
specific immune response z; by successive single epitope mutations forming a path in the hypercube graph
to the completely resistant viral strain (111). The number of epitope mutations which viral strain y; has
accumulated is d(y;, yo) (Hamming distance between i and 000). Note that system (4) does not explicitly
include mutation between viral strains. b The perfectly nested network, as a subgraph of the hypercube. In
this case, sequential mutations of epitopes appear in immunodominance order with specialist to generalist
virus (prey) resistance and immune (predator) attack. ¢ The one-to-one network, with strain-specific immune
responses, is representative of a completely modular ecosystem. d The network with at most one mutation
signifies constrained evolution. All three subgraphs appear as feasible equilibrium structures of the system
and are analyzed in Sect.4

System (4) generalizes many previous model structures in the sense that they can
be seen as subgraphs of our “hypercube network”. For instance, the “strain-specific”
(virus-immune response) network (Nowak and Bangham 1996) (also called “one-to-
one network” in phage-bacteria models (Jover et al. 2013; Korytowski and Smith
2015)) is equivalent to restricting (4) to the m = n viral strains which have mutated
n — 1 epitopes (Fig. 1c). The “perfectly nested network™ restricts (4) tothe m = n+ 1
viral strains which have sequential epitope mutations in the order of the immunodom-
inance hierarchy (Fig. 1b). Nested networks were considered in HIV models (Browne
2017), along with phage-bacteria models (Korytowski and Smith 2015), and may be
a common persistent structure in ecological communities (Gurney et al. 2017). The
network with at most one mutation, or “at most one mutation” network, denoted by
S 1 with n + 1 strains yj such that d(i, 0) < 1, is an example of constrained immune
escape steady state (Fig. 1d) considered in Browne and Smith (2018) and the current
study. The “full hypercube network’ has been considered for modeling immune escape
patterns in HIV infected individuals (Althaus and Boer 2008; Deutekom et al. 2013).
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3 Necessary population dynamics/genetics definitions and results
3.1 Stability and persistence

First we review some relevant definitions and results on the equilibria and asymptotic
dynamics valid in the general model (1) that are further detailed in prior work (Browne
and Smith 2018). For a non-negative equilibrium point, £* = (x*, y*, Z*) € Rfr+m+" s
define the “persistent variant sets” associated with £* as:

2,=2,(E =i e[l,m]:y} >0} and szﬂz(é’*):[je[l,n]:Z;f>O}.
@)

In addition, define the following subsets of R fm .

R=2E={.9.2) 1yi.2;>0, i€y, )€},
Fo=2n0{y.,z;=0,i¢2,, )¢}

Here Iy, consisting of only those state vectors having the same set of positive and
zero components as equilibrium £*, is called the positivity class of £*. Notice that
the dimension of the subset Iy is 1 + |£2y] + |£2;|, where the notation [£2y| (|£2;])
denotes the cardinality of the set £2, (£2;). We denote A’ as the m’ x n’ interaction
matrix consisting of the m’ virus strains and n” immune responses which have positive
values at equilibrium £*, where |£2,| = m’ and |£2;| = n’. The equilibrium £* must
satisfy the following equations:

D aiyi=pj, Jj€ (8)
i€f2y
Y aiZi=Rix*—1, i€, )
JER;
1
L+ ) Rof = — (10)
i€f2y

Note thatif i € £2, (y;k > 0), then R; > 1 must hold, even in the absence of immune
response, although R; is not sufficient for positivity of the component.

The following proposition provides the condition for uniqueness of an equilibrium
within a positivity class, and shows that in such equilibria the number of virus strains
either is equal to or exactly one more than the number of immune responses.

Proposition 1 (Browne and Smith 2018) Suppose the equilibrium E* = (x*, y*, Z*)
exists in positivity class I'q, where (y*, Z*) satisfy the linear system of Eq. (8)-(9).
Then £* is the unique equilibrium in To, i.e. v = (y*, Z*)T is the unique solution
1o (8)-(9), if and only if Ker(A")T N R+ = {0} and Ker(A') = {0}. Moreover, if
E* is not unique in its positivity class ', then I'q contains an infinite number (a
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continuum) of equilibria. Conversely, if £* is unique in a positivity class I (with m’

and n' persistent virus and immune responses), then one of the following holds:

(i) m'=n',and x* =1/ (1 + (p)T (AH~IR).

(ii) mM" = n' + 1, and x* = lTC(;}H), where C(71}+1)
(n' + 1) x (0’ + 1) matrix inverse of C = (A’ 'R,')T.

is the last column in the

This proposition, along with prior results on competitive exclusion, demonstrate that
virus (prey) or ecosystem diversity in our model is entirely mediated by the immune
response (predator) populations. Thus the model provides a good system for exploring
how prey-predator ecosystems can diversify and patterns in their underlying structure.

Next we are concerned with the stability of equilibria, and which populations persist
in the long run. First, based on the idea of being “weakly stable” against missing
species (Hofbauer and Sigmund 1998), we call an equilibrium £* = (x*, y*, Z*) of
(1) saturated if the following holds:

R =Rix*—1- Y ayZi<0,Vi¢ 2, L
ViVi| : 0jZj
e JEQZ E*
=Y aijyf —pj <0, Vj ¢ %2 (11)
i€f2y

Here each term in (11) gives the sign of the “invasion rate” of a missing species. For
a notion of persistent populations, define §2,, persistence as

e > 0and T(wo) such that y; (1), Z;(t) > €, i € £2y, j € £, ¥t > T(wy), and
tlim i), Zjt) =0, i ¢ 2y, j ¢ 2, forevery solution with initial condition wo € 2.
—00

We describe the individual populations i € £2y, j € £2; in the above definition of £2y,
persistence as being uniformly persistent. Now we state a main theorem of Browne
and Smith (2018) concerning the stability of equilibria and persistence of viral and
immune variants of model (1).

Theorem 1 (Browne and Smith 2018) Suppose that £* = (x*, y*, Z*) is a non-
negative equilibrium of system (1) with positivity class I'q. Suppose further that £* is
saturated, i.e. the inequalities (11) hold. Then £* is locally stable and x(t) — x* as
t — oQ.

Furthermore, if £* is the unique equilibrium in its positivity class I'q and the
inequalities (11) are strict, then y;, Z; — O foralli ¢ $2y,j & $2,. Ifi € §2y and
aij =0Vj e 2, ie. AjNQ2, =0, theny; — y! and x* = 1/R,;. In addition,
assuming positive initial conditions, for each i € §2y, j € §2;, y; and Z; persist (the
system is §2y, persistent) with asymptotic averages converging to equilibria values,
ie.

t t
.1 .1 ‘
tl_l)rgo;/y,-(s)ds =y, tl_l)fgo;/zj(s)ds =7,

0 0
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In the case that there are less than or equal to two persistent viral strains with non-
empty epitope sets (restricted to $2), i.e. | {i €0, A N2, # (ZJ} | <2, then £* is
globally asymptotically stable.

Note that the global convergence of the persistent variants to equilibria values is still
an open question when there are more than two persistent immune responses. In
Browne and Smith (2018), we conjecture the global stability of an equilibrium £* of
(1) which is strictly saturated (11) and unique in its positivity class I'g, regardless
of I'p dimension, based on the following observations. First, we proved Theorem 1
by showing solution dynamics asymptotically satisfy Lotka-Volterra (L-V) predator—
prey differential equations, which in isolation need not have global convergence to
&*, but there is an additional algebraic constraint of solutions to a hyperplane which
may force global convergence to £*. Furthermore, all of our numerical simulations of
(1) support global stability of £*, although convergence can be rather oscillatory and
slow.

3.2 Fitness and epistasis

In the rest of this article we consider the “binary sequence” case of model (1), which
leads to the simplified system (4) through assumption (2). For our virus-immune
ecosystem, we are considering the situation where n immune response populations z
each target the corresponding epitope j in the virus strains at a rate solely dependent
on the allele type of epitope j; the rate being positive for (0) wild-type or zero for (1)
mutated form conferring full resistance to z;. The avidity of immune response z; and
(wild-type) epitope j is described by the immune reproduction number Z; given by
(3), and are ordered according to the immunodominance hierarchy (6). As opposed
to this simple immune fitness ordering, the collection of virus reproduction numbers
(fitnesses) in our model can have much more complex relationships among each other
depending on the fitness landscape, formally defined below.

Consider the space of binary sequences of length n, {0, 1}"*, which contain all
possible 2" virus strains. For a given strain i with sequencei € {0, 1}"*, we also denote
its reproduction number in terms of binary sequence; R;. The reproduction numbers
can be described in terms of the fitness cost (relative to wild-type fitness R ) associated
with the corresponding combinations of epitope mutations. The fitness landscape
is defined as the precise map between the virus sequences and their reproduction
numbers:

w:{0,1}" - R, w(=7R;
The set of all reproduction numbers is the image of the fitness landscape,
Fi=w ({0, 1}") = (Rikico.1y = (Ridig "
where we can utilize either the sequence or integer indices for viral strains. An impor-

tant special case of a fitness landscape is when w is additive. In an additive fitness
landscape,
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Ri:Ro—C'i, (12)

where ¢ = (c1, ¢, ..., ¢,) 1s the vector of individual fitness costs for mutating each
epitope, with the assumption that ¢ - 1 < R¢ and ¢; > 0, so that all viral reproduction
numbers remain positive and decrease with mutation satisfying (5).

Whereas an additive fitness landscape is solely determined linearly by the wild-type
and single-mutant fitness values, the concept of epistasis allows for combinations of
mutations to have more general nonlinear fitness landscapes. Informally, a system has
epistasis if the effect of a mutation depends on genetic background. Here we generally
define epistasis as a deviation from additivity. A common way to incorporate epistasis
is via pairwise interactions between loci, as in the quadratic Ising or Pott’s model
(Stadler 2002) which has been used in applications to HIV-immune data (Barton et al.
2016). Let B be a strictly upper triangular matrix encoding (possibly random) pairwise
interactions and define

n
Ri=Ro—c-i+» i; > ixBy. ief{0,1)", (13)
j=1  k>j

where B, ¢ are suitable to fit our requirements for the viral fitness (cost) landscape (5),
i.e. all viral reproduction numbers remain positive and decrease with mutation.

To study epistasis in general, first consider a subset of the sequence space S C
{0, 1}" and associated fitness landscapes, w(S) = {Ri}jcs. Motivated by the concept
of interaction coordinates (Beerenwinkel 2007; Crona 2017), we measure genetic
interactions among the sequences in S by specifying a type of linear functional from
the space of all possible fitness landscapes to R:

Definition 1 Let a vanishing linear form on S be a linear form g = ), _ g ax Rk with
integer coefficients «, which is zero for any fitness landscape w that is additive, and
satisfies ) ) . g ok = 0 with some o # 0.

Note that an equivalent definition, can be formed from the following observation
upon consideration of additive fitness (12):

g=Zak'szZak(Ro—C~k)=—Zakc-k=—C-Zakk

keS keS keS keS
=>g=0VceR”©Zakk=0.
keS

So a vanishing linear form on S C {0, 1}" equivalently satisfies ) ", .5 oxk = 0 and
Y kes @k = 0 with not all ax = 0. The two conditions can be combined by adding
to every binary sequence in {0, 1} a 1 at the end of the sequence. Considering each
extended binary sequenceil = (i1 ...i,1)asavectorin R"*! existence of a vanishing
linear form on S C R™*! simply signifies S to be a linearly dependent set of vectors.

Vanishing linear forms are similar to the notion of additive dependence relations,
along with interaction coordinates and Walsh coefficients; more commonly used epis-
tasis measures, which are Fourier transforms on the group (Z;)" measuring total
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Fig. 2 In the case n = 2 epitopes, the circuit of all binary sequences with corresponding vanishing linear
form A delineates cases (diagrams from left to right) of (i) negative epistasis (A < 0), (ii) additive (A = 0),
(iii) positive epistasis (A > 0), which determine fitness landscape shape (figure considers positive fitness
contributions due to mutations from 0 allele to 1 allele in loci, as opposed to negative fitness costs (5)
assumed in our model)

k—way epistasis for 2 < k < n (Weinreich et al. 2013; Crona 2017). In this work,
Definition 1 and the provided equivalences readily allow us to introduce circuits
(Beerenwinkel 2007), which give a fundamental description of epistatic interactions
in fitness landscapes and relate to bifurcations in our model.

Definition 2 A circuit C C {0, 1}" is a minimal set which has a vanishing linear form.
In other words, there exists a vanishing linear form on a circuit C and no proper subset
of C has a vanishing linear form.

Considering the extended binary sequences in R”*!, a circuit is a minimally linearly
dependent collection of vectors, i.e. a linearly dependent collection of vectors in which
any proper subset is linearly independent (Crona 2020). Circuits allow for detection
of sign epistasis relative to a vanishing linear form. In particular, suppose C is a circuit
with vanishing linear form g = )} - ak Rk, then the circuit C has sign epistasis for
fitness landscape w if ), .o iRk # 0. In a strictly additive fitness landscape the
vanishing linear forms on each circuit would all be zeros, i.e. vanish. How to classify
positive epistasis (or negative) on the circuit C depends on the non-unique assignment
of signs of the coefficients for the linear form.

The simplest class of circuits measure the conditional epistasis of a pair of loci
against a fixed background of the other loci. For example, the classical example of
two loci (n = 2), has a single circuit distinguishing between positive, additive and
negative epistatic fitness landscapes, depicted in Fig. 2. Here, the vanishing linear form
A = Rpo—Ri10—Ro1 +R11 is positive for a fitness landscape whenever the pairwise
interaction between epitopes 1 and 2 are synergistic, so that the double mutant has
larger reproduction number than it would have under additivity. As noted in Crona
(2017), circuits are possibly a more fundamental epistasis measure than say interaction
coordinates. For example in the case n = 3, the “u10” interaction coordinate, #1190 =
Az + A}, = Rooo — Rioo — Roto + Ri10 + Root — Rio1 — Rot1 + Riit, is the
sum of circuit linear forms, A2 and A,, giving the conditional epistasis of the first
two loci against the third locus fixed at O and fixed at 1, respectively, and u11g is a
vanishing linear form, but does not form a circuit because it does not satisfy minimal
dependence property. We can identify how the “pairwise interaction fitness landscape”
(13) directly relates to these conditional epistasis circuits in any dimension n. Consider
loci 1 < j < k < n. A circuit measuring the conditional epistasis of j, k against any
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Fig.3 For n = 2 epitopes, a single circuit of all viral strain binary sequences with corresponding linear
combination of reproduction numbers determines epistasis and steady state in the case of persistent immune
responses z1 and z5. a The 2-d hypercube is displayed with distinct feasible persistent virus strain sequences
depicted, where the vanishing linear form A := Rgp — R10 — Ro1 +R11 (positive A > 0 versus negative
A < 0) decides stable nested equilibrium (82 or 52 containing {OO 10} persmtent strain set) versus stable

one-to-one or network with at most one mutation equilibrium (52 R Sg or 52 containing {10, 01} persistent
strain set). b Bifurcation at A = 0 (additive fitness landscape) presents line of equilibria connecting nested

52 and one-to-one 8% (or at most on mutation é\z), projected on y3, y2 (yg) axis. Here, the (colored) curves
represent solution paths of (4) with different initial conditions converging to distinct points on line of
equilibria, predicted by Propo%ltlon 2) for A = 0. ¢ A > 0 = solutions converge to £&.d A < 0 =

solutions converge to 5 (or 52)

background will resolve as follows; A j; := —=R.0.0. + R.1.0. + R.0.1. = R.1.1. = Bji,
where the changing alleles occur in the j, k positions.

Another class of circuits relates marginal epistases of two pairs of loci (defined by
interaction coordinates Beerenwinkel 2007). An example is the circuit which can be
given by linear form A(w) = —Rooo + Roo1 + R110 — R111, and also can be thought
of as calculating conditional epistasis of the first 2 loci (as a block) and the third
locus. Both conditional and “marginal” epistasis classes of circuits are comprised,
against a background where a subset of loci are fixed, of two distinct pairs of (ones’)

complement sequences, defined to be sequences k and k where k + k = 1 for a
subset of loci J C [1, n]. Note that because the sum of coefficients and weighted sum
of sequences must vanish, along with a circuit being minimal, the number of binary
sequences in a “(ones’) complement” circuit must be four. Other types of circuits
measure higher order epistasis, and will be discussed later. In general, the number of
circuits rapidly grows with n (there are 20 circuits for n = 3, 1348 circuits for n = 4
Eble et al. 2020) and can be interpreted geometrically in terms of shapes formed by
vertices of the n-cube (Beerenwinkel 2007).
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4 Main results

In this section, we present our main theorems and their ramifications. Proofs to new
results appear in the Appendix. Our major goal is to rigorously connect the concept of
circuits with bifurcations and stable equilibria in model (4). First, in order to demon-
strate a general link between circuits and the dynamical system, we establish that
persistent viral strains comprise a circuit only in a critical case. In particular, we show
that a circuit has positive components in a feasible equilibrium only when this circuit
is additive with respect to fitness landscape, in which case a degenerate infinite dimen-
sional subspace of equilibria appears. Indeed, the following proposition generalizes
a previous result in Browne and Smith (2018) on degeneracy of equilibria forming a
cycle in virus sequence hypercube.

Proposition 2 Consider the binary sequence model (4) with 2" viral strains identified
in {0, 1}". Suppose that C C {0, 1} is a circuit, has vanishing linear form g =
Y kec axw(K) for any additive fitness landscape w, and consider the fixed fitness
landscape with image (reproduction numbers) denoted by Ry for k € {0, 1}*. If
Y kec Rk # O, then there does not exist an equilibrium £* = (x*,y*, z*) with
Yk > 0 forallk € C. On the other hand if ) y .c axRx = 0 and there exists an
equilibrium with y;: > 0 for all k € C, then there are infinitely many equilibria, y, in
the positivity class of y*, with components parametrized by yx = y;; + Box for some
B eR

The proposition implies that any equilibrium with persistent strains forming a circuit
must be unstable, in particular as part of a continuum of equilibria. The dimension of
the infinite dimensional subspace of equilibria is the number of linearly independent
vanishing forms corresponding to the circuit, where the dimension can be greater than
one if the circuit contains distinct (sub-) circuits as subsets. Although unstable, the lines
of equilibria will be seen in the ensuing sections as bifurcations where certain types
of stable equilibria are invaded with strain replacement and stability being sharply
determined by signed epistasis of the corresponding circuits.

4.1 Nested network determined by epistasis

Next, we focus on (perfectly) nested equilibria, which describe sequential mutations
of epitopes in the order of the immunodominance hierarchy and persistence of all
strains along this pathway. The successive rise of more broadly resistant prey (coming
with a fitness cost) and weaker but more generalist predators, in a nested fashion,
has been proposed in bacteria-phage communities (Jover et al. 2013; Korytowski
and Smith 2015; Weitz et al. 2013), and there is some evidence that nestedness is
a feature of HIV and immune response dynamics (Kessinger et al. 2015; Liu et al.
2013; Deutekom et al. 2013). Furthermore, this specialist-generalist structure is a
well studied pattern in a variety of ecosystems, in particular nested networks are of
interest in explaining the biodiversity and structure of mutualistic (e.g. plant-pollinator)
communities (Bascompte et al. 2003).

First, we describe equilibria of model (4), where the persistent network is con-
strained to be nested, which were described in Jover et al. (2013), Korytowski and
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Smith (2015), Browne (2017). We introduce a “nested priority” indexing for the viral
strains, which allows convenient definition of threshold quantities for nested networks.
The n + 1 binary sequences contained in nested equilibria are of the form 1¥0" ¥ (in
power notation for the length n binary string), where 0 < k < n. Let y; denote the
viral strain with binary sequence 1%0"=* 0 < k < n. Then, for each k € [1, n], define
the following nested equilibria:

~ 1 (o)

= (X.7.2), 55:727,(’ yj=sj41—s; for 0<j <k, 7/(:1—77,(, (14)

- Ri-1—R; -~ ~ ~ . .

zj:# for 1 <j<k zZx=0, yj=2;=0 fork<j=<n

_ 1

& =X, 9,2), )E:Q—, yj =sj41—sj for 0<j <k, (15)
k

Ri-1—R; Ri—
z,:% for 1<j <k %= Q"k‘ —1, §,=2;=0 for k<j<n,
where Qi = Qr—1+ 5k —Sk—DRi—1, Qo =1,50 =0,5¢ = 1/Iy. (16)

Equilibrium & represents the appearance of escape mutant y; from the equilibrium &
containing k viral strains yo, ..., yx—1 and immune responses 71, . .. Zx. Notice that
Ok = Qk—1 + Ri—1y{_,» and thus can be interpreted as the additional reproductive
fitness contributed by the k" nested strain scaled by its frequency at equilibrium. The
stability of these equilibria restricted within the nested network (non-nested strains
Yn+1, - - . Yan_1 are set to zero) was proved to be determined by the largest k such that
Ri—1 > Oy and if equilibrium (14) is positive (if Ry > Q) (Browne 2017), which
we will expand upon below in our main result of this section, Theorem 2.

Before we present our new result, observe that, along with the specialist to general-
ist ordering in nested equilibria, nested networks are evolutionary pathways in the full
fitness landscape hypercube. As opposed to some other feasible equilibria, such as the
one-to-one network, the persistent strains in the nested equilibria form a path from the
wild-type to the most resistant strain as single mutations accumulate in stepwise fash-
ion. In a single (quasi-)species system, the underlying viral fitness landscape, which is
generally shaped by epistatic interactions, determines evolutionary trajectories. When
another trophic level is added, as immune response (predators) here, the overall viral
fitnesses are expected to be dynamic since they depend upon the immune response
populations. However, here we show that the nested trajectory in our system is solely
dependent on the relevant epistasis in the viral fitness landscape.

In order to define the appropriate viral fitness landscape epistasis corresponding to
equilibrium stability, we introduce “invasion circuits” below.

Definition 3 For an equilibrium £* and missing strain y; (where y* = 0, i.e.
i ¢ A;), let an invasion circuit be a circuit (def. 2), C;, containing exactly the
yi binary sequence, i, and some positive £* component strain sequences (sub-
set S; C {k € {0, 1} : corresponding component y; > 0}). The vanishing linear
form, A;, is taken as negative of the scaled relative invasion rate in (11), namely

A —f—’ , and we say C; has positive epistasis if A; > 0.
2
g*
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The interpretation of this definition is that each of these circuits represent potential
alternate pathways, which correspond to strain invasion in the model. Thus, we say that
a certain equilibrium assemblage of strains on the hypercube of binary sequences has
positive epistasis if every invasion circuit corresponding to a missing strain has posi-
tive epistasis. Theorem 2 (below) proves that the nested network is stable and persistent
if and only if it has positive epistasis as a pathway in the viral fitness landscape. In par-
ticular, we decode the general saturated equilibria inequalities (11) conferring stability
and persistence by Theorem 1 into biological meaningful conditions on sign epistasis
of associated invasion circuits. The utility of introducing invasion circuits is two-fold.
First, because circuits measure epistasis, our ensuing equilibrium stability/persistence
results connect evolutionary genetics with ecological dynamics principles. Second,
we will see that by formulating as sign epistasis of circuits, a missing strain’s scaled
invasion rate at equilibrium with n or n 4 1 persistent strains simplifies to a linear
combination of the much smaller subset of persistent strain fitnesses and invader fit-
ness which are connected through the circuit. Moreover, which equilibrium strain
can be replaced resolves further based on corresponding coefficients of the circuit
linear form. Although our model does not explicitly include mutation, the persistent
variants of stable equilibria can still represent evolutionary outcomes, as later simula-
tions show. Thus the following theorem suggests a necessary and sufficient condition
based on epistasis in the viral fitness landscape for a nested trajectory in a generalized
eco-evolutionary version of model (4).

Theorem 2 Consider the binary sequence model (4) with 2" viral strains and n immune
responses ordered by immunodominance (6). Assume that Rog > Q) (at least one
virus strain and immune response persists). Let k be the largest integer in [1, n] such
that Rg—1 > Qk. The conclusions of Theorem 1 at nested equilibria (14) hold’vzf
each of 2¥ — k — 1 invasion circuits has positive epistasis. In particular, £ (or &
if Rie > Q) is stable with uniformly persistent strains yg, yi, ..., Yk (and Yi41
if Rk > Qk) if each invasion circuit consisting of a non-nested strain ({y;}, i €
[n+1, ..., 2"—1]) contained in the k— dimensional (sub-)hypercube (binary sequence
has ixy1 = ...iy = 0) union a subset of nested strains (S; C {yo, ¥, ..., Yk}), has
positive vanishing linear form, A;, where A; is proportional t _%lg*-

We provide two proofs of the above theorem, given in the appendix. First, we
prove the stability condition pattern by adopting a linear algebra approach where each
binary sequence is extended by an additional fixed bit. This leads to a solvable system
of equations for the linear forms and circuits determining nested equilibria stability.
Second, we apply a combinatorial technique to find the strains in the nested network
forming the circuit and linear form for each possible invading strain not in the nested
network. In particular, we distinguish a “non-nested sequence” i by existence of a (01)
string, and utilize an induction argument on the number of such strings. Each method
yields equivalent, yet distinct, characterizations of the critical circuits C; and linear
forms A;. Furthermore, when R, > Q,,, in the case of the full nested network (n + 1
strains persistent), the equilibrium &, becomes unstable with the non-positivity of an
invasion circuit, yielding an “if an only if”” condition for stability. These extended
results are summarized below in a corollary to Theorem 2.
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Fig. 4 Convergence to nested network assuming multiplicative viral fitness landscape. a Persistent viral
strains is reduced to nested network (inblue) as# — oo in Prop. 5. b Viral strain components yo (¢), . .., y2(¢)

persist as system (4) converges to equilibrium £3

Corollary 1 Suppose R,, > Qp, so that, the equilibrium &, is feasible. A necessary
and sufficient condition for stability ofgn is the positivity of 2" — n — 1 linear forms
A; corresponding to circuits C;, each containing a single missing strain y;, i €
[n 41, 2" — 1], along with strains in the nested network dependent on the y; sequence
i=(i1...iy) in the following equivalent ways:

i Define the sequence (aj), J=0,1,....n, whereap =1 —1iy, aj =i; —ij

forj=2,...,n—1,a, =i, Let J; be the nonzero terms in sequence (c;), i.e.
Ji = {j €l0,n]:aj 750}, where aj = %1 for aj € J;. Then

CizyiU{yj}jejl_, AiZ—R[-I-ZOéjRj. (17)

jedi
ii LetO <mj < py <mp <--- < py <msy| < ndenote the positions p1, ..., Ds
beginning the s (01) strings and positions m1, ..., ms+1 of the last “1” before
and after the (01) strings. In other words, the sequence i in “power notation” is

given by
i=mopr—mypm=rr  QPsTMs [P+ Then

Ci=yU {)’mj, Yp; };:l Uy, =iU {lml‘on—m,‘, 1PiQr—Pi }j'=1 U 171 (s
s+1

Ai=—Ri+ ) Ru, —ZR,,/.. (18)
=1

j=1

Thus, the n + 1 strain nested network equilibrium is stable if and only if it has positive
epistasis.

In order to illustrate Theorem 2 and accompanying Corollary 1, we first discuss
the model dynamics in the case n = 2, which is depicted in Fig. 3a and was found to
have precisely 10 distinct feasible persistent variant sets (global asymptotic stability
in 8 of these regimes) in Browne and Smith (2018). In this case, there is just one
“non-nested” strain, yo1, with the single mutation escaping the second (subdominant)
immune response z». The single circuit consists of this strain together with the nested
strains, totaling the whole sequence space, i.e. C = {01, 00, 10, 11}, along with the
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corresponding linear form 4 = Roo — R10 — Ro1 + R11. Thus the sign of the single
quantity A determines the stability and persistence of the nested network. Here A > 0
implies that the persistent strains and positive components of the stable equilibria lie
within the nested network N = {00, 10, 11}. The precise persistence structure when
A > 0 depends upon which of equilibria (14) and (15) are positive. In particular,
the diversity increases stepwise from just the wild-type virus yg to both immune
responses 71, zo and three nested strains yy, . . ., yx based upon the largest k such that
Ri—1 > O and whether Ry > Qg,k = 1, 2, where 71, 72 persist when R > Q,.On
the other hand when A < 0 (which implies R| > Q) and z1, 7 persist), the nested
equilibrium is invaded by y3 (01). Yet y; (10) always persists when any immune escape
occurs, independent of the sign of A and even when y3 would have a larger escape
rate in the single epitope case. Thus, we suggested in Browne and Smith (2018) that
immunodominance may be the most important factor in multi-epitope escape, which
was also inferred from data analysis in a previous study of HIV (Liu et al. 2013).

The feasible strain invasions obtained for n = 2 in previous work (Browne and
Smith 2018) can be seen as the simplest example of a more general pattern for bifur-
cations from nested equilibria obtained from Theorem 2 and Proposition 2. When the
(sign) epistasis in one of the circuits defining the nested pathway becomes negative,
the nested network becomes unstable and a transcritical bifurcation occurs. In par-
ticular, a missing strain invades the nested network when the corresponding circuit
goes from positive to negative epistasis. In the critical case of zero epistasis, or circuit
additivity, there is a line of equilibria, given by Proposition 2, which connects the
nested equilibrium with the invasion equilibrium. Indeed consider the nested equi-
librium &,. We arrange the (persistent) nested virus components, together with the
invading strain, in the vector 7 = (¥, 0)7, where the ¥ is from (14) and the last
component is the invading strain, y;, which is zero when at equilibrium &,. In the
critical case, where the linear form 4; corresponding to circuit C; is zero, there is a
line of equilibria given by v* = V — Ba where « is the (circuit) coefficients of A;
and0 < 8 < Cwith C = min {a;yx : o > 0,k =0, 1,...,n}. Thus, in the bifur-
cation where y; invades &,, the invading strain replaces one of the nested strains in
the circuit with positive coefficient (o > 0), in particular the above “C-minimizing”
nested strain, arg min ({o V¢ : ax > 0,k =0, 1, ..., n}). By the proof of Theorem 2,
the positive coefficients correspond to a subset of nested strains given in order as:
Ymi» i=1,...,5,where0 <mj < p; <mpy <--- < py < msy1 <n+1countthe
maximal position of a 1 before each of s 01 strings (each at position py, ..., ps)inthe
sequence of the missing strain. Which of these feasible strains are replaced depends
on the model parameters. Notice that if oy = 1 for all k such that oy > 0, then in
a feasible equilibrium after invasion by y;, the replaced strain would be the “circuit
positive coefficient” nested strain with smallest value at the nested equilibrium. Thus,
the replaced strain must have the property of being the inferior competitor in the nested
hierarchy with a positive coefficient in circuit linear form. In the following subsection,
we will see a similar principle in invasion of another equilibria structure besides the
nested structure, namely the one-to-one network.

A major advantage of investigating the critical case of virus strain y; invading a
known equilibria structure (here the nested network) is that new equilibria can be
obtained by application of Proposition 2, the circuit coefficients, and known equi-
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libria values. The line of equilibria (virus and immune components denoted by y
and z) remain positive in some neighborhood around the bifurcation parameter set
where the circuit linear form, A;, is zero. Indeed, the values of z remain constant
throughout the line of equilibria for .4; = 0, so the positive components in the
boundary nested equilibrium carry over to the boundary equilibrium of the new
invasion equilibrium. For the simple case of n = 2 described above, the loss of
stability of & when A = 0 results in strain y3 (01) replacing either yg (00) if
Yo < ¥, 0r yo (11) if 3o > ¥, (displayed in Fig.3b). By (14), the strain which is
replaced depends upon the sign of s1 — 1 + % In the case of n = 3, there are

23 — 3 — 1 = 4 circuits corresponding to a non-nested invading strain. Explicitly the
circuits, characterized by the corresponding linear form (with the non-nested strain
term appearing first), are as follows: (i) A4 = —Ro10 + Rooo — R10o + Ri10, (i)
As = —=Roo1 + Rooo — Ri1o + R, (i) As = —Rio1 + Rioo — Riio + Ri1t,
@iv) A7 = —Ro11 + Rooo — Ri1oo + Ri11- Thus, Theorem 2 implies the nested
equilibrium is stable if and only if all of the quantities (i)-(iv) are positive. Further-
more, in each case that a single inequality fails, the following bifurcation occurs
where the missing strain replaces a nested strain y; where j is determined by
(i) argmin =0 2(¥;), (ii) argmin;j—o 3(y;), (iii) argmin;=; 3(y;), (iv) argmin;—o 3
(5j), where y; are defined in terms of viral and immune response fitness quantities in
(14). For example, if a bifurcation from nested equilibrium &£ occurs through inequal-
ity (iii) switching sign, then yg (101) replaces either y; or y3, depending on whether
VI < y3,iesp < 1— % In the case this inequality holds and y; is replaced, the new
stable equilibrium will consist of persistent strain (sequence) set {101, 000, 110, 111}.
For n = 4, there are 11 circuits determining stability of nested network, 10 of which
consist of 4 strains (ones’ complement circuits) and one that has 6 strains in the cir-
cuit, Ap1o1 := —Ro101 + Roooo — Riogg + Ri100 — Ri110 + Rii11- Thus in the case
of invasion of the nested equilibrium & by strain 0101, there are 3 possible strain
replacements and (in terms of integer indexing) arg min j— 2 4(y;) determines which
nested strain is replaced.

We can expand upon our observation of the importance of immunodominance
in determining viral evolution. We notice that in any of the invasion scenarios, a
viral strain containing minimal sequential mutations to the most immunodominant
responses will remain in the equilibrium, no matter the fitness costs. For n = 2, we
had observed that y; (strain 10) always persists. Forn = 3, the only invasion scenario
where y; does not persist can be the case of 101 invasion with invasion equilibrium
consisting of gtrain sequences {000, 110, 101, 111}. For the nested equilibrium with
n+1 strains, &,, replacement of the immunodominant resistant strain y; only can occur
with invasion by a non-nested strain with resistance at the first epitope (sequence of
form 10 ... with atleasttwo “1” alleles), so that all strains will have at least 2 mutations.

4.2 One-to-one network determined by epistasis
Now we turn to another possible persistent equilibrium assemblage of virus and

immune response variants; the one-to-one (or strain-specific) network. Consider the
viral strains that have gained resistance to n or n — 1 immune response, forming a
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subsystem of (4) with the m = n 4 1 strains containing more than n — 1 mutations
(n — 1 ones in binary sequence). For convenience, we index the strains according
to the position of the susceptible epitope (zero in binary sequence), so that in more
general Eq. (1), y;, i = 1,...,n + 1 has epitope set A; = {i} or A,4+; = P and A
isan + 1 x n matrix comprised of the diagonal matrix diag (ay, ..., a,) and a row
of zeros. This subsystem of a “one-to-one” interaction network, where each immune
response population attacks a unique specific viral strain, has been considered in
Wolkowicz (1989), Korytowski and Smith (2015), Bobko and Zubelli (2015). Stabil-
ity and persistence results, analogous to Browne (2017) for the nested subsystem, were
proved in Wolkowicz (1989) for the one-to-one network (strains y;, i = 1,...,n+1,
without hypercube) under the assumption of strictly decreasing strain reproduction
numbers. Although relaxing their assumption of decreasing reproduction numbers
allows for multiple saturated degenerate equilibria (with “persistent strains” as sub-
sets of [1,n + 1]) in the n 4 1 strain one-to-one network, we previously proved in
Browne and Smith (2018) that the fitness assumptions (5) of our 2" strain model (4)
permit one of two feasible “one-to-one network™ equilibria to be saturated (or stable)
in the larger hypercube. Indeed, define the following equilibria with persistent strains

Viseens Vn (5;{), and with persistent strains yi, ..., Yy+1 (EEH), where:
1 : . R . P
P _ i _ P_ i - P _ n
Xt = s =y, U= -1, i=1,...,n, =1- s
Rori’ 07 TR Tntl R+
1 - Ri -
xsz—n, v =si, zjzp—;—l, i=1,...,n, WithP,lzl-i-ZskRk, sy = 1/Zy.

k=1
19)

Expanding upon our prior results, we prove the stability of the one-to-one network is
determined by 2" — n — 1 circuits corresponding to potential invading strains.

Theorem 3 Consider system (4) on the full network with n epitopes (m = 2" virus
strains) and fitness costs (5). Suppose the viral strains, y; i = 0,...,2" — 1, are
ordered sothat Aj = {j}for j =1,...,nand Apy1 =) (Where A denotes strain j
epitope set (2)). If 5:[ or Sf 1 with corresponding positive epistasis invasion circuits,
A; > 0, then 5,;( (if Ruy1 < Pn) or 55“ (if Rn+1 > Pn) is stable with persistent
strains yi, ..., ¥n (Yut1 also if Rys1 > Pp). The vanishing linear forms A; and
invasion circuits Ci corresponding to missing strains y;, i =0,n+2,...2" — 1, are
characterized below:

G=yU{ylo. A=-Ri—(Al=DRui+ )Y R; (ellnl.
JEA;
(20)

Furthermore, these are the only scenarios of stable “one-to-one network” equilibria
and the above positive epistasis of n+1 strain positive equilibrium, Ej 41> Isanecessary
and sufficient condition for its stability.
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Note the proof of this theorem is in Appendix, and here we make a few remarks
to interpret the result. First, observe that the reproduction number R; of a potential
invading strain y;, depends on its epitope set A;. Because each mutation comes with
a fitness cost (5), R; roughly correlates with number of susceptible (non-mutated)
epitopes, | A; |, and thus both negative terms and the positive summation in (20) increase
with | A;|. Therefore, there is no general rule for determining the sign of invading
strain circuits corresponding to the one-to-one network, each depending on the relevant
combinations of fitness costs, i.e. epistasis. We can discuss possible strain replacements
forinvasion of 6’2 41 as before. In this case, we find that the replaced strain is ymin(je 4;).
i.e. the strain susceptible to strongest immune response among the susceptible epitopes
of strain i, since this strain has lowest value in equilibrium corresponding to positive
coefficient in circuit. Compared to the n + 1 strain nested network (&,), the “invasion
circuit” and strain replacement of the n 4 1 strain one-to-one network (Ef 1) 1s simpler

to determine. Note that invasion of the n strain E,I can result in addition of the new
strain rather than replacement, and the critical case does not correspond to a line of
equilibria as with the n + 1 strain equilibria. As an example of the invasion circuits
(20), consider the case n = 3, where the missing strains with a single (0 — 1)
mutation have vanishing linear forms: Ajgp = —R100 — R111 +Rio1 + R110, Aoio =
—Ro10—Ri11+Ro11+R110. Aot = —Roo1 —R111+Ro11+R101. Each corresponds
to an embedded 2-cube measuring marginal epistasis with their single 1-allele fixed.
Note that 41990 = —.Ag, where Ag also is the circuit corresponding to invasion of
nested equilibrium by (101). Now consider potential invasion by the wild-type strain
(000) given by Agoo = —Rooo — 2R 111 + Ro11 + Rio1 + Ri10, which biologically
tells us how the three (0 — 1) two-mutation sequences combine with respect to fitness
in comparison to the three-mutation combination (111). Of note, the sign of this circuit
does not have a two-locus interpretation, making them truly of higher-order (Gould
et al. 2018).

4.3 Other equilibrium network structures and open questions

The full utility of the circuit analysis comes with bifurcations of equilibria with n + 1
strains, as our above examples illustrate, because the critical state corresponds to
persistent strains forming a circuit in Proposition 2. How far can we go with this
analysis? Can we generalize to all equilibrium structures? Observe from the proofs of
Theorem 2 and Theorem 3 that the two equilibrium networks considered, nested and
one-to-one, with n + 1 strains (gn and Ej +1) form a basis of R**! when the strains
are considered as binary sequences with a one addended at the the end of sequences,
and moreover every binary sequence has integer coordinates with respect to this basis.
This directly leads to the “invasion circuits”, and this is generalized to any assemblage
of n + 1 strain sequences in the following proposition (proof in Appendix):

Proposition 3 Suppose S C {0, 1}" is the set of binary sequences of an equilibrium,
E*, with n + 1 strains (|Ay| = n 4 1). Assume that S x {1} is a basis of R and
any addended binary sequence il € {0, 1} x {1} has integer coordinates with respect
to this basis. Then for all i € {0, 1}"\S, C = {i} U S forms a circuit with vanishing
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linear form is A; = —Rj — ZkeS akx Rk, where (ax)kes are coordinates of i with
respect to S x {1}. Furthermore, for any missing strain, y;, i ¢ Ay, the invasion rate

is given by % = —x™*A;, and thus the stability of £* is determined by the sign of Aj.

Now consider the scenario that strain k € S is replaced by i, then the new equilib-
rium sequences S’ = {i} U S\ {k} forms a basis of R"*! since any proper subset of a
circuit is linearly independent. Thus the strain replacement with invader i will result
in this new equilibrium structure S’ also forming a circuit if any sequence has integer
coordinates with respect to S’ x {1}. In this fashion, we might observe a sequence of
strain invasions determined by circuits. Notice that strain invasions of the two n + 1
strain equilibria structures explored here, nested and one-to-one networks, would result
in a strain replacement whose new equilibrium has stability determined by linear form
on circuit. Indeed, because the coordinate of any potential invader i was shown to be
+1 corresponding to the strain it can replace, it is not hard to show that the new basis
will also yield integer coordinates for any other sequence. Once we move past this
initial invasion though, it would not be clear if the circuit stability pattern continues
though.

Another consideration is whether a strain can be added to an # strain equilibrium
(where n is number of persistent immune responses) in order to have a positive n + 1
strain equilibrium which satisfies Proposition 3, i.e. forms a set S corresponding to
a basis with integer coordinates in the extended n + 1 dimensional binary sequence
space. In our examples, we add the completely resistant strain (with sequence 1) to
the n strain nested or one-to-one networks (with n persistent immune responses) to
get an n + 1 strain equilibrium satisfying the hypotheses of Proposition 3. In general,
this might not always be the case. First, we recall that determining the feasibility of
an 4+ 1 strain positive equilibrium is dependent on calculation of C = (A/ R )T by
Proposition 1, with A" as the virus-immune interaction network of the n + 1 strains
where the rows of A’ correspond to the complements (1 —1) of the viral sequences in S.
If there is a feasible n strain equilibrium with network A and reproduction numbers R,
then the complete resistance strain 1 can be added if R4 > 1+ 2 A~ 'R. However, the
calculation for adding other strain sequences is more complicated, thus the problem
of both determining feasibility and whether an equilibrium satisfies Proposition 3 may
be difficult.

As an example, consider another possible equilibrium type, the n strain 1-mutation
network: S| = {yi1 li=1,..., n} in which yl.1 has only escaped z; so that its binary
sequence is il = (84 )7 _; Where 8;; is Kronecker delta function. If we add y,, (0) to S,
then circuits determine stability, however adding 1 does not yield circuits determining
stability (in particular stability condition for invasion by 0) is not a circuit. Indeed, we
can derive some conditions for positivity of an equilibrium consisting of viral strains
S = {0}US) (see Appendix 1). Consider the case n = 3, where the circuit for invasion
of S by strain i = 1 can be calculated according to coordinate basis description in
extended sequence space:

@ Springer



9 Page220f42 C.J. Browne, F. Yahia

1 1000
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1= loo10]® = i akRk = 111 000 100 010 001
1 1111 keS

Similar, to the example circuit given in the one-to-one network, this measures
higher-order epistasis, in particular whether the one-mutation associations predict
the three-mutation combination. Here, the strain replacement would be 111 replac-
ing 001 because this sequence would have the smallest equilibrium value of positive
coefficient strains in S;. It can be shown the other invasion circuits correspond to
conditional epistasis (embedded 2-cubes), where the single non-mutated epitope of
the invader remains fixed. Indeed, using the coordinate basis method above, we have
the following proposition for invasion of the “< 1 mutation” network:

Proposition 4 Consider the network with at most one mutation, 51, consisting of wild-
type and I-mutation viral strains yo, y1, ..., yu Where the sequence of y; is j =
(651);}:1 forj=1,...,n Suppoie that there is a positive equilibrium, &,, with S)
as persistent viral strain set 2. &, is stable if and only if A; > 0, where i = n +
1,...2" — 1, and linear forms A; correspond to invasion circuits C;, as characterized
below:

Ci=yiUy U {Yj}l-le . Ai=—-Ri—(m—1A;)| =1 Ro+ Z R; (jell,n).
' JEA;
(21)

Observe that for the case of n = 3, we have now highlighted all the circuits determin-
ing stability of three equilibria structures: the nested, one-to-one, and one-mutation
network. While there are 4 corresponding linear forms for each network dictating
invasion by each missing strain, together this results in 10 distinct circuits since
C = {000, 100, 110,010} and C = {100, 110, 111, 101} are invasion circuits that the
nested network shares with the one-mutation and one-to-one network, respectively.
There are 20 total circuits forn = 3 (Beerenwinkel 2007), and we leave it to future work
as to whether the any of the other 10 circuits correspond to stability of feasible “transi-
tional equilibria” between the highlighted networks. However, the immunodominance
hierarchy will impose an effective fitness ordering on the virus genotypes so that for
example the “reverse nested” network {000, 001, 011, 111} would never be feasible.
Therefore, some circuits should not correspond to any meaningful bifurcation under
the assumptions of our model.

4.4 Special cases of fitness landscapes

While fitness landscapes on the n-dimensional hypercube generally yield a multitude
of circuits determining bifurcations and stability of equilibria, there are some sim-
ple landscapes that can be analyzed. First, consider the pairwise interaction case as
described by Eq. (13), where Rj = Rg — ¢ - i+ Z']’-zl i ij ix Bj for a (strictly)
upper triangular matrix B. If the matrix B is positive, then the fitness of any sequence
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with at least 2 mutations will always be larger than the additive case, whereas if B
is negative, the resulting fitness from a pair of mutations is less than expected under
additivity. Thus, in the former case of B positive, synergistic interactions should favor
double mutants, while in the latter antagonistic interactions might discourage consec-
utive mutations. The exact translation of these informal notions to expected results in
our model with sign-definite pairwise interactions is not obvious due to there being a
dynamic overall fitness landscape when taking into account immune response (preda-
tor) populations and other variables/parameters which might influence the viral escape
pathway. Nevertheless, we prove here that the nested network is generally stable when
pairwise loci interaction matrix B is positive, whereas a non-nested network, such as
one-to-one or “at most one mutation” network, is stable when B is negative.

Theorem 4 Consider binary sequence model (4) having pairwise interaction fitness
landscape (13) with upper triangular matrix B that is sign-definite. Assume that Ry >
Q1 (so that at least one virus strain and immune response persists). If Bji > 0 for
all k > j, then the nested network is stable with uniformly persistent strains (as in
Theorem 2). On the other hand, if Bj, < 0 for all k > j, then one-to-one network
(or network with at most one mutation) is stable against invasion and persistent if
components of associated equilibrium are positive.

Another basic example of a fitness landscape is multiplicative, where each mutation
at a fixed locus reduces the reproduction number of a strain by a fraction regardless
of the of sequence background at other loci. Thus the loci act independently, but not
additively. This multiplicative fitness landscape has been assumed in several studies of
HIV-immune evolution at multiple epitopes, e.g. Althaus and Boer (2008), Deutekom
et al. (2013). We prove the following proposition, generalizing a theorem in Browne
and Smith (2018) showing multiplicative equal fitness costs evolve a nested network.

Theorem 5 Assume that fitness costs of mutating locus j come with a multiplicative
reproductive loss fj, i.e. Ri = Ro [| fj where0 < f; <1, j =1,...,n. Then the

Lj =1
nested network is stable and persistent.

5 Simulations of and predictions for virus-immune evolution

In this section, we conduct simulations of model (4), along with a hybrid stochas-
tic/deterministic version, in order to illustrate our results. The model was coded in
MATLAB, where the built-in ODE solver ODE45 was utilized for simulations. For
the deterministic model, we find numerical solutions to (4) under the multiplicative
viral fitness landscape for n = 3 epitopes, initiating the simulation with positive con-
centrations of all virus and immune variants, y;, i = 0,...,7and z;, j = 1,2,3,
where we adopt the nested priority indexing from Sect.4.1. The immunodominance
hierarchy utilized in the simulation is 71 = 6,7 = 5.7,71 = 5.4. We assume
each epitope mutation imparts equal independent multiplicative fitness costs, i.e. if
(i1 ...in) represents the epitope sequence of strain i and R; = Ro(1 — )ittt
where Rog = 11.8 and k = 0.1 is fitness cost in our simulation. The scaling factors
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for viral and immune variant growth rates in (4) are set to: y; = 3.5,i = 0,...,3
andy; = 18.5,i =4, ..., 7. The corresponding calculations lead to positive epistasis
in the invasion circuits of the nested equilibrium &3 (Theorem 2 and Proposition 5)
and, as shown in prior work (Browne and Smith 2018), result in a sequential nested
immune escape trajectory (Fig.4).

Do the predicted patterns from our theoretical results on differential equation sys-
tem (4) hold when random mutation is included (as in HIV infection)? To answer this
question, we conduct numerical simulations of a stochastic extension of the model
using parameters representative of HIV. However, since this is a preliminary simula-
tion effort, we choose a rather large viral wild-type (basic) reproduction number R
and low death rate of immune response to better mimic virus-immune evolution for the
stochastic model, as in Rife Magalis et al. (2021). Similar to the methods in Deutekom
etal. (2013), we simulate mutations of the n loci by drawing from a binomial distribu-
tion in a hybrid ODE-stochastic algorithm. With a mutation rate of € = 1.67 x 1073
per site per day, we compute the number of mutations during replication as follows. We
update mutations at fixed time steps, taken as Ar = 1 day, where we approximate the
daily number of cells that become de novo infected per viral variant as M; = ; XY;
cells. To improve computation speed, we assume that only one of the n loci mutates
per replication, i.e. the small probability of simultaneous mutations are neglected.
Then for each viral variant i = 1,...,m and locus £ = 1, ..., n, the number of
mutations is given by Bin(M;, €). The viral populations are updated accordingly, and
the ODE solver is run for A time units and then the process repeats. In the following
simulations, we assume that initially there is just the wild-type virus, yo(0) > 0, all
other strains are absent y;(0) = 0, i = 1,...,2" — 1, and each immune response
is present, z;(0) > 0, j = 1,...,n. Thus the extended model allows for random
mutation and deterministic selection evolving from initial infection by the founder
(wild-type) strain.

First for the stochastic extension of (4), consider n = 3 epitopes, which for sim-
plicity is much less than an actual HIV genome and taken to be a representative
cluster or sample of loci. We utilize variables and parameters from the unscaled ver-
sion of (4), system (1) in Browne and Smith (2018) X = 2x,¥; = 2y,,Z; =
%Z jpPj = 1%, oj = % in order to represent concentrations (ml/~!) of target
cells, virus and immune response, along with immune decay and scaling factor. Let
b=5x103(ml-d)~',c=001d7",6=05d7 ', 1; =0.01d"!,q; = 1.5. For the
immunodominance hierarchy, we assume that Z;, j =1, ..., n are ordered uniform
random variables in the range [3.75, 7.875]. First, assume that the viral fitnesses are
calculated as R; = [Zijzl(l —Kkj)+ Zijzl,ikzl Bjk] Ro, where additive fitness
costs k were uniformly distributed in the range [0, 0.5]. and pairwise interaction B j
is uniformly distributed (random positive epistasis) in the range [0, 1].. Then, all pair-
wise interactions, B, are positive, along with the invasion circuits which we index
i = 1,...,4 in ascending order with respect to the invading binary sequence con-
version to decimal representation. The system is expected to converge to the nested
network by Proposition 4, with asymptotic stability of equilibrium &3, persistence of
nested strains yyp, ..., y3 and extinction of remaining viral strains y, ..., y7 subject
to small perturbations caused by random mutations, as displayed in Fig. 5a. Next, we
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Fig.5 Simulations of extended model with stochastic mutation and pairwise epistatic interactions illustrate
eco-evolutionary dynamics. a Trajectories of virus strains in the case of n = 3 epitopes with uniformly
distributed viral and fitness quantities, and (random) positive pairwise interactions, Bjj, which implies
positive epistasis with respect to “nested circuits” and convergence to nested steady state containing
{000, 100, 110, 111}. b Increasing viral strain yg (101) reproduction number (R¢) changes the sign of
its invasion circuit so that epistasis is no longer positive, resulting in it replacing y3 (111) and non-nested
persistent strains. ¢ Assuming negative pairwise interactions also leads to non-nested convergence, here
to network with at most one mutation containing {000, 100, 010, 001}. Note that (110) strain persists at
low levels due to invasion circuit being close to zero, along with random mutation. Gaussian distributed
pairwise interactions (B j; random sign) result in convergence to nested network in d because positive B i
randomly drawn

increase the reproduction number of yg (101), so that the corresponding invasion cir-
cuit linear form A3 switches from positive to negative. From our feasible bifurcations
based on the circuit coefficients, we predict that (101) can replace (100) or (111).
Observe in Fig. 5b, that equilibrium &; is altered by (101) invading (111), although
the mutations allow to (010) to be only at slightly lower levels than (100) in the new
strain hierarchy.

When epistatic interactions become negative by subtracting the pairwise matrix
terms, B, from additive fitnesses, we project a non-nested pattern according to
Proposition 4. Indeed, in Fig. 5S¢, simulations converge to the network with at most one
mutation, and hence the antagonism of negative interactions between epitopes thwarts
the escape of virus at multiple epitopes. Finally, we consider Gaussian distributed pair-
wise interactions, where B j; are random normal variables with mean zero (random
signs) and variance of 0.1 affecting magnitude of epistasis. Observe that the system
may (Fig.5d) or may not converge (Fig. 6a) to the nested network depending on the
sign of the invasion circuits determining the overall epistasis encoded in the nested
pathway. Furthermore, in the latter case, simulations converge to an equilibrium struc-
ture that is not “close” to being nested, one-to-one, or “at most one mutation” network,
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Fig. 6 Simulations of model with stochastic mutation consistent with analysis of viral fitness epistasis in
deterministic system. Generally, Gaussian distributed pairwise interactions can result in trajectories con-
verging to steady states other than nested, one-to-one or “at most one mutation”, as illustrated in simulations
(a), and in (b,c,d), with n = 3 and n = 5 epitopes, respectively. Observe that the dynamics in original
(deterministic) ODE solution displayed in (b) are consistent with stochastic mutation simulations (g,h),
except for low level persistence of two strains with small negative invasion rates

indicating the presence of additional stable equilibrium structures and corresponding
circuits not analyzed in this study for the n = 3 epitope setting. We also consider
n = 5 under epitopes with the same fitness landscape structure, although a variance of
0.05 in the normally distributed pairwise epistasis is set to counteract accumulated fit-
ness cost from strains with more mutated epitopes. Simulations displayed for this case
show that numerical solutions of the (deterministic) model (4) (Fig. 6b are consistent
with the stochastic extension (Fig.6¢ and d), supporting our argument that theoreti-
cal results in the differential equations carry over to the eco-evolutionary dynamics
with random mutation. Here, the fitness costs and non-positive epistasis circuits (with
respect to nested network) prevent the dominance of strains with several mutations,
and lead to the extinction of the weakest immune response 75, along with persistence
of only 4 strains, despite the 5 epitopes.

In Fig.7, we simulate eco-evolutionary dynamics again for 5 epitopes under
Gaussian distributed pairwise interactions, where B are zero-mean normal random
variables with variance of 0.05, and all other parameter assumptions remaining the
same. The balance between immune response pressure selecting for resistance and
the fitness costs occurring with each epitope mutation results in the virus mutant
strains evolving to escape some immune responses, but the ancestral strains, includ-
ing wild-type yo can still persist (Fig.7a). In addition, “backward” mutations allow
mutated epitopes to revert back to wild-type (0) in a large proportion of viral popu-
lation (Fig.7b), even after invasion by mutant allele (1), as the sign of the invading
circuit linear form and rise of more immune response populations (Fig.7c) deter-
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Fig.7 Fixation of resistant alleles and nestedness increases when incorporating compensatory mutations.
a,b and ¢ Simulations of model (4) with random viral mutations for n = 5 epitopes under Gaussian
distributed pairwise epitope interaction fitness cost landscape show that a viral strains y;(¢), (b) allele
frequency at each epitope and (¢) immune responses z (1) converge to steady state with large prevalence
of wild-type (0) allele in viral population at each epitope. d,e and f Adding complementary loci for each
epitope to model which can compensate for 95% of fitness cost of resistance mutations. The compensatory
mutations drive d viral strains y; (¢) to rapidly converge to “nearly nested” structure as e sequential epitope
and corresponding compensatory mutations sequentially become ascendant in population, and f immune
responses Z ; (1) are escaped in order of immunodominance hierarchy

mine strain additions or replacements which result in the persistent strain structure
of the equilibrium. In HIV infection, resistance mutations often to become more
dominant in viral population with several escapes persisting in the population with-
out reversion because of compensatory mutations in linked loci which allow the
virus to regain most of the fitness cost associated with an epitope mutation (Althaus
and Boer 2008). We simulate compensatory mutations by adding a complemen-
tary loci for each epitope j = 1,...,5, which is either neutral (0), not impacting
fitness or if mutated (1) can result in the virus restoring 95% of its original fit-
ness value if the strain has mutated epitope j from wild-type (0) to resistant (1).
Indeed, consider loci 5+ j, j = 1,...,5, and viral sequence i’ with is;; =0
which has undergone mutation and fitness cost in epitope j from neighboring strain
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Fig. 8 Simulating pulse immunotherapies in two-epitope model shows priming subdominant response 7,
is more effective than therapy with dominant response z1. Viral strain y; (¢) and healthy cell x () (a), along
with immune response z(7) (b), trajectories in model (4) under no treatment initially, then periodic z;
immune infusions, followed by treatment interruption, and finally periodic z; immune infusions. Even
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{00, 10, 01}) persistent network
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i(i;=0— i/j = 1= R; > R;7). Then assuming all other epitopes remain fixed,
we suppose the strain i” gaining compensatory mutation has the following update
in fitness: i§, ; = 0 — i5,;, =1 = Ry» = Ry +.95 (1 - %) In contrast to
the case of reproduction numbers solely dependent on epitope sequence, the addition
of these complementary loci allows for sequential epitope escapes with concurrent
compensatory mutations dominating the viral population (Fig.7d,e) and suppressing
the immune response (Fig. 7f).

Finally, we numerically illustrate implications of our results for designing potential
immunotherapy strategies against an immune escaping virus such as HIV. We consider
the deterministic ODE (4) with n = 2 epitopes (diagram shown in Fig.3a), and add
periodic infusions of the immune response populations, z1(¢) and z,(¢). In particular,
we incorporate periodic infusion times, #; = 1€ j)+kt,k=1,..., N, of the immune
population z; by applying an impulsive increase of D units to the model, i.e. Dirac
delta distributions (D§(t — #)) are added to the z; component in (4), and numerically
solve in the cases of no treatment and distinct immunotherapies (see Fig. 8). The viral
fitness parameters utilized are Ro = 15, R1 =8, R, =3, R3 = 11.5,Z1 = 10, and
7, = 2.5 so that without therapy the system converges to nested equilibrium & with
Y0, Y1, 21, 22 persisting. Upon convergence to this rest point after perturbing the wild-
type (immune-free) virus equilibrium & by introducing mutant strains and immune
responses, at £{1) = 500 days we begin to pulse the dominant immune response 7
by adding D = 1 units of cells every T = 10 days (Fig.8a and b). The persistent
variants remain in the same nested structure and the system settles into a periodically
forced solution with an increase in the “z;-resistant” viral strain (y; or 10) prevalence,
decrease in yp, and modest 12.4% jump in healthy cell count. After removing the
z1-therapy and solutions returning to original state &, at t(2) = 1400 days we test
the periodic z-therapy with the same impulse magnitude of D = 1 and frequency
T = 10 days. Contrary to the first therapy, the periodic infusion of z; immune cells
causes a bifurcation from the nested to the “at most one mutation” network with
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addition of the subdominant z,-resistant strain y3 (01) into the viral quasi-species.
Furthermore, both z1 and z»> populations are enhanced and the healthy cells increase by
around 67%. In each case, the stability condition given by inequality (11) is altered, so
that even though the viral fitnesses R; are constant, the pulsed z; levels can be thought
to induce effective reproduction numbers which may change the sign of epistasis in
the circuits (17) (or (18)) corresponding to the nested equilibria. Here, the strategy
of priming the subdominant response z; tilts this effective fitness landscape toward
negative epistasis, convergence to “at most one mutation” network, and, although
invasion by the higher mutant fitness strain y3 occurs, an improved outcome for host
is obtained.

6 Discussion

In this paper, we rigorously connect population dynamics thresholds with concepts
from evolutionary genetics, which allows us to characterize distinct regimes of multi-
strain persistence, stability, and resistance pathways in a virus-immune ecosystem in a
biologically meaningful manner. The complexity of the viral (binary sequence) genetic
structure, along with dynamic virus fitness landscape and immune response popula-
tions, lead to a multitude of equilibria and general stability conditions which challenge
interpretation, classification or simplification in terms of fundamental parameters such
as reproduction number. By finding equivalent sharp thresholds based on an appro-
priate definition of epistasis in the fitness landscape governing persistent equilibrium
network structures, we are able to gain insight on eco-evolutionary dynamics. In par-
ticular, the prediction of the virus escape pathway against immune attack on multiple
epitopes is determined by epistasis in the “invasion circuits” controlling the bifurca-
tions in our dynamical system.

Our theoretical results lend support to circuits, the minimal additive combinations
of binary sequences (Beerenwinkel 2007), as the fundamental measure of epistasis
in a fitness landscape. Other ways to quantify epistasis may be simpler or offer other
advantages, but circuits underly fitness landscape shape, and here we show that they
also dictate prey-predator dynamics on top of building the phenotypic/genetic structure
of the prey (virus) population. This connection between population dynamics and
genetics naturally comes from applying linear algebra to formulate the invasion rates of
missing virus strains at an equilibrium as minimal combinations of virus reproduction
numbers. Moreover, the invasion circuit and corresponding linear form encode the
resident strains which can be replaced by a mutant strain, and together with their
equilibrium strain densities, determine the bifurcations resulting in new feasible steady
states.

The persistent network structures of virus and immune response populations ana-
lyzed in this work represent distinct patterns formed by the forces of viral resistance
and fitness costs, and immunodominance. The nested network equilibria admits a
diverse ecosystem with generalist to specialist ordering in prey-predator interactions,
as opposed to the modularity of the one-to-one (strain-specific) and “at most one
mutation” network. In terms of viral escape from the immune response, the nested
pathway offers the most efficient evolution as mutant strains sequentially gain resis-
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tance to immune populations strongest to weakest. That the special case of positive
(or synergistic) pairwise interactions between epitopes presents a nested trajectory
(Proposition 4) highlights how convergence to this network coincides with the classi-
cal definition of positive epistasis favoring double mutants. While this proposition may
be expected, both the dominant epitope escape being favored even when exacting a
larger fitness cost than other epitopes and the viral (prey) fitness epistasis determining
fate of the virus-immune (prey-predator) ecosystem, are less intuitive features of the
result, along with our more general Theorem 2 on nested network equilibrium stabil-
ity. In contrast, the one-to-one and “‘at most one mutation” network are instances of
resulting dynamics for negative (antagonistic) pairwise interactions, and particularly
the “at most one mutation” structure is ideal from the host perspective of containing
multi-epitope resistance.

Numerical solution of the ordinary differential Eq. (4), along with an extended
version that includes randomly drawn mutations, demonstrate how eco-evolutionary
trajectories are determined by epistasis in the viral fitness landscape, as predicted by
our analytical results. Indeed efficient viral escape in a nested fashion occurs when
our necessary and sufficient conditions regarding positive epistasis are satisfied, and
becomes more complex as negative epistatic interactions allow different combinations
of resistance mutations to persist in the virus population. Under random epistatic
pairwise interactions, any number of equilibria structures can be realized which may
hinder multi-epitope resistance, but compensatory mutations may allow for sequential
viral escape of immune responses, as shown in Fig.7. Furthermore, our model and
results may inform upon immunotherapy for HIV. In most clinical trials of therapeutic
vaccines, potentially favorable T cell responses were of limited success due to viral
escape from epitopes used in vaccine (Pantaleo and Lévy 2013), but one possible
strategy is to immunize with a set of the most conserved (associated with high fitness
cost of resistance), subdominant epitopes (McMichael 2006; Ahmed et al. 2019).
Thus, it may be desirable to guide the virus-immune trajectory toward a non-nested
network structure by priming subdominant immune responses. Here, we illustrate that
this strategy can work even when resistance to subdominant response comes with less
fitness cost, as a bifurcation is induced to a state with viral mutant competition and
optimal healthy cells compared to an immunotherapy with the dominant response (see
Fig. ).

Future work can build upon our results in several directions. While the dynamics
for n = 2 epitopes is resolved for model (4), the case n > 3 has not been completely
classified, and our work shows that feasible stable equilibria may be discovered through
analysis of relevant circuits, although even n = 3 is challenging due to large number of
strain combinations. One way to explore how a particular ecosystem structure evolves
is to follow the convergence of stepwise mutations and selection from wild-type strain
in the hybrid stochastic/deterministic approach of polymorphic evolution sequences
(Champagnat and Méléard 2011). However, simulations conducted (not shown here)
revealed that the attracting (saturated) equilibrium was not obtained by a sequence
of viral strain and immune response invasions starting from initial infection by the 0
strain, thus multi-loci mutations and invasions are necessary, perhaps in the spirit of
the “adaptive walks” jumping between equilibria of Lotka-Volterra systems developed
in Kraut and Bovier (2019). This approach of obtaining Lotka-Volterra dynamics from
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limits of stochastic models relies on strong conditions guaranteeing global stability for
the ODE, and so it is an open problem for our system. Finally, by incorporating data
on the vial fitness landscape at multiple epitopes in the face of epistatic interactions
and concurrent immune response attack, model parameterization with calculation of
“invasion circuits” may verify theoretical results, predict eco-evolutionary trajectory,
and inform upon potential immunotherapies.
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Appendix
Proofs of Theorems

Proof of Proposition 2 Let C C {0, 1}"* be a circuit and suppose by way of contradic-
tion that £* = (x*, y*, z") is an equilibrium of (4) with y; > 0 for corresponding
sequences k € C. Adding up the relative growth rates of these nonzero components at
equilibrium in differential Eq. (4), we find the following:

_ Yk
0= éak J/kyﬁ
n
=x* ZakRk — Zak — Zak Z(l — kj)zj
keC keC keC j=1
:x*ZakRk — Zotk - Zak 1-=Kk)-z*
keC keC keC
=x*2ak72k - (1 +1~z*)2ak + Zakk A
keC keC keC
=x* ZakRk,
keC

because D o axkk = 0and ) - ok = 0O for a circuit. This contradicts assumption

Y kec @k Rk # 0 and thus proves the first statement. The next statement follows from

Proposition 1 upon assuming ) " . ak Rk = 0. Indeed, uniqueness of equilibrium in

a certain positivity class is equivalent to Ker(A’)” N"R'+ = {0}, which is equivalent
.. . T .

to the condition that the augmented matrix C = (A’ R’)" has trivial kernel (Browne

and Smith 2018). Here A’ is the m’ x n’ interaction matrix consisting of the m’ strains
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comprising the circuit and n’ (positive component) immune responses. Consider the
vector a consisting of the circuit weights. Then from the previous points, we find that
Ca = 0. Thus, there cannot be a unique equilibrium with y;* > 0 forallk € C. If such
an equilibrium exists, then the virus component vector denoted by y which satisfies
y —y* € Ker(A)T N 'R/, also satisfies equilibrium equations, and thus there are
infinitely many equilibria with componenty = y* + S« for g € R. O

Proof | of Theorem 2 In order to prove the theorem, we show that the general satu-
rated equilibria inequalities (11) reduce to vanishing linear forms of invasion circuits
(Definition 3) when evaluated at the nested network equilibria (14). Then we will
apply Theorem 1 to show stability of nested equilibrium and uniform persistence of
associated positive component strains.

Let Ro > Qo := 1 and k be the largest integer in [1, n] such that Ry—; > Q.
First, we look at the case k = n and R,, > 9, when &, is non-negative equilibrium
with positive components at the n + 1 nested strains yg, yi, ..., y». Consider a given
missing viral strain y; (i € [n + 1, 2" — 1]) with sequence i. We define a linear form,
A;, based on it’s invasion rate as follows:

. n

Lz—ﬂ, where —.Ai = R,’—Rn—Z(l—ij) ('Rj_1 —T\’,j). (22)
YiYi R =1

The telescoping sum above is determined by the following sequence: (oc j) , ] =
0,1,...,n,whereag =1 —ij,a; =i; —ijy1for j=2,...,n—1,a, = i,. Inthis
way, —A; 1= R;—>_y ;R ;.Inorder to prove that this is a vanishing linear form of
acircuit, we show that it is the linear form of a minimally linearly dependent collection
of extended binary sequences. Denote the binary sequences of nested network as
Ko, ..., K, corresponding to ordered strains yq, ..., y,. Let N' C {0, 1})"*+1 denote
the subset of nested extended binary sequences, where i=il e {0, 1)t \N and
k=kleN represent binary sequences extended by digit 1. Notice that N forms a
basis of R"H! (since the n 4+ 1 x n + 1 matrix (k,, K, —1, ..., Ko) has a triangular row
reduced eschelon form with values +1 on diagonal). Thus fori € {0, 1}*+! \N, there
is aunique set of coefficients o;, j =0, 1, 2, ..., n, yielding i as a linear combination
of the nested network vectors:

i = Oé()lA{() + Ol]lA(l R OénlA(n.
The above linear system resolves as follows:
artox+ o =i

wtaz+-Fa, =iz

Qf + Qg1+ + oy =i
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Qp =1Ip

awt+ar+--ta, =1

which leads us to the set of coefficients oy where k = 0, 1, ..., n defined by the
following:
ap=1-—1;
ay =ix —ixgyr; for k=1,...,n—1
a, =i,

Therefore the set i U iﬁ}k " is linearly dependent. Let «; be the nonzero terms in
[S

sequence (), i.e. ©; == {j € [0,n] : aj # 0}, where o = £1 for aj € ;. Since
(aj) is unique linear combination with respect to basis \/, the set iu {ﬁ} . isamin-
€0;

imal linearly dependent set. Thus we obtain the following circuit and corresponding
vanishing linear form:

Ci:yiu{)’j}je@i, AIZ—R,—Z()&]RJ
JEO;

Furthermore, if A; > 0, then 2= < O fori € [n + 1,2" — 1]. For this case k =
n, the nested equilibrium (14) include all immune response zp, ..., as positive
components. If R, > 9, then all missing species of non-negative equilibrium, &,
are the y; with index i € [n + 1, 2" — 1]. Thus, i~nequalities (11) hold strictly and the
conclusions of Theorem 1 follow, in particular, &, is stable, y, . .., y, are uniformly
persistent, and Ilﬁssing strains y;, 7 € [n+ 1, 2" — 1], go extinct. Notice in this case of
Rn > Qn, that £, becomes unstable if any of the invasion circuits’ linear forms become
non-positive. In particular, if A; < 0, then ﬁ > (0, yielding the necessary condition
of stability of &, based on sign of .4; which is stated in Corollary 1. Furthermore, by
Proposition 2, in the critical case of A; = 0, there exists a continuum of equilibria
with positive components including the circuit elements consisting of invading strain,
Yi and subset of nested strains S;, C; = {y;}US;, which connects to nested equilibrium
En.

Next, consider the case k = n but R,, < @, then we consider non-negative
equilibrium &,,. Notice that

. B n—1
Vi 1 . .
preionl K /Z:;(l —ip) (Rjm1 = Rj) = (1= i) (Ru—1 = Q)
B n—1
1
=g | Ri =Rt = 220 =ip) (Rjmt = R)) +in (Ra1 = Qo)
n i i=1

@ Springer



9 Page340f42 C.J. Browne, F. Yahia

1 n—1
=5 | Ri—Ru-i - D —ip) (Rjot = R)) +in (Rt — Ra)
n ]:1
__A
Q,’

where A; is the same vanishing linear form (22) with corresponding circuit C; as prior
case. Therefore, if A; > 0 (invasion circuit has positive epistasis), then y[y’} < - Ai
0. The only other missing species additional to y;,i € [n+1, 2" —1],is y,.Itisnot hard

yn R)l Q}l <
to see that = o = o, S 0. Thus, all saturated inequalities (11) are satisfied strictly

(except when R, = Q,), and stability of &, (and other conclusions) from Theorem 1
follow. In the case R, = Q,,, arguments from Browne (2017) give same result. Finally,
suppose k < n, so there are k positive component immune responses, 21, .. ., Zk, il
feasible nested equilibrium & or c‘fk. Consider the missing strains y;,i € [n+1,2"—1],
which are non-nested strains. Let y; be contained on the k dimensional hypercube. It
necessarily has binary sequence where ix+1 = - - - = i, = 0. Observe from above that
the invasion circuit involving y; will contain nested strains on the k dimensional (sub-
)hypercube; yo, ..., y¢. It follows that if 4; > 0, 2L < —“Ci; < 0, where Cy = Ry
when Ry > Qp and Cy = O Ry < Ok. For a stram y; not on k dimensional
hypercube, then we can find another strain y, with same sequence in first k bits, and
less mutations overall, so that R, > Rj. Then it is not hard to see that

k

yl * yl
—— =Rix*—-1-— z<Rx—1— 7 =—<0.
YiYi Zk Zk YiYi

Arguments from Browne (2017) show that 805 |
9jZj £*

1 gives the desired result. O

< Ofor j > k. Applying Theorem

Proof Il of Theorem 2 We prove the case where R,, > Q,, so that gn is feasible equi-
librium and, by same arguments in Proof I above, the other cases follow. Consider a
given missing viral strain y; (i € [n+1, 2" —1]) with sequence i. Define the following
linear form based on it’s invasion rate:

. A n
. =—2' where — Ai =Ri +R, + Z(l —ij) (Rj_l — Rj) ,
YiVi Rn o

and C,, = R, when R, > Q, and C, = Q, R, < Q,,. We claim that 4; = 0 in
additive case, and furthermore A; # 0 if any (non-zero) viral fitness is removed from
A, in the resulting sum. In other words we claim that .4; defines a circuit C containing
strain i and other strains on nested network. To test additivity, it suffices to consider
the linear form on the binary sequences:

n
—fi=mi 1" =Y —i)) (1*‘0”*/’*‘ - 1/’0”*/')

j=1
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Sinceiis notinnested network (i € [n+1, 2" —1]), there exists p € [1, n—1] such that
ip =0,ip41 = 1. In other words, there exists a 01 string in the binary sequence i. We
prove that A; defines a circuit by induction on the number of 01 strings, s. First suppose
that s = 1. Let 0 < m; < p be maximal such thati, = land p+1 < my < n be
maximal such that i,,, = 0. With these conditions, i = 1"10P~"11"27P("~"2_ Then

n
Cfmi 1T Z(l —i) (1j—10n—j+1 _ ljon—j>
j=1
—i— ln _ (lmlon—ml _ lpOn—p) _ (lmzon—mz _ ln)
= fi =i 1M 4 1P TP — 20"
= op1mp=lgrmme _ gppmop=lgrmm

=0. (23)

Furthermore f; =i — 110"~ 4 170" P — 120"~ contains the viral sequences
corresponding the non-zero fitness quantities in A;. Thus A; defines a circuit since
the minimal circuit size is 4. Now for the induction step, consider s > 1. Assume that
A, defines a circuit for any sequence ¢ with s — 1 or less (01) strings, and suppose the
sequence i has s (01) strings. Let p; < pp < --- < ps be locations of the 01 strings
(with ipj =0, ipj+1 = 1). Let 0 < m| < p; be maximal such that i,,, = 1 and
p1+1 < my < pr be maximal such that i,,,, = 1. Soi = 1"/ =" 1"27P 1, i,
Then

n
fiamim 1= (1o ) = 3 (1 =iy (V0 - 1)
Jj=p1+2

n
— ]mlflopzfﬂnipz iy — 1" — Z = ij) (]j*lonfj#l _ ]jon*j)
j=p1+2
n . . . .
-1 =Y a-ip (1/*10”*1+1 - 110”*1)
j=1

wherei = 1710P2~" lip,42 .. .1, hass—1(01) strings. Thus by induction hypothesis,
we obtain f; = f; = 0. Let C; denote the collection of viral sequences corresponding
the non-zero fitness quantities in .4;. Notice that it is not hard to ascertain from the
above calculations that

C=iU {1’"1‘0"—'"1‘, 1p/‘0n—p/};:1 U s+ (M1

s+1 K
Ai =R; —Zij—i—ZR,,j, O<mp<pr<my<...<ps <mgy1 <n—+1).
j=1 j=1
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Consider an arbitrary proper subset B of C;. First, we claim that there can not be
a circuit consisting solely of sequences in the nested network. Suppose by way of
contradiction that there exists a linear form with g := Z”+1 bjj = 0. Letk =

max {1 < j <n+1|b; # 0}. Then for the k’" digit in the binary sequence of gy, we
find (g)r # 0. So there are no vanishing linear forms on the nested network. Thus it
suffices to consider the case where i € 3. Motivated from calculations above, define

i=it+ Z (=150 4 1PIQPI)
Ci\B

where i is not in nested network since B # ). Furthermore because C;\B # 0, we
obtain that i has less than s (01) strings. By induction hypothesis, A; defines a circuit

C; for the sequence i, where C = {i} U B\ {i}. Denote the vanishing linear form as

= ZZEC; as*. Now for arbitrary coefficients b},

Y bjj=bii+ Y bjj

jeB B\{i}
=bi [i= ) (=10 120" ) | + ) bjj
Ci\B B\{i}
= Z(bj —biaj)j — bi Z ajj,
B\li) J<C;

The above sum consists solely of sequences in the nested network and thus there are
no vanishing linear forms. This implies that the above sum is zero only if b; = O,
which further leads to conclusion that b; = 0 for j € B\ {i}. Thus the proper subset
B can not be a circuit for any linear form. O

Proof of Theorem 3 By Proposition 6 in Browne and Smith (2018), equivalent condi-
tions for stability of (i) E,T or (ii) Ej 4 are the following:
i Rpp1 <Pupand (|A;]| —DPr+Ri < Y. R; Vie[n+2,2"],in which case
jeA;

2y =82, =[1,n].

il. Ryt1 > Ppand (JA;| = DRup1 +Ri < Y. R; Vi € [n+2,2"], in which
JeA;

case £2y = [1,n + 1] and 2, = [1, n].
Furthermore, (i) and (ii) are the only possible stable equilibria £* with a strain-specific
subgraph, i.e. £2y, C [1, n+1], and strains y1, ..., y, (yn+1 also for (ii)) are uniformly
persistent. We remark that these prior results follow from Theorem 1. Now to prove
Theorem 3, we will show that positive epistasis of corresponding invasion circuits are
sufficient (also necessary in case (ii)) for inequalities in (i) and (ii) to hold. Fix an
invading strain y;, i € [n + 2, 2"], with binary sequence. First, note that a sufficient
condition for inequalities in cases (i) and (ii) to be satisfied is % > 0 where A; =
—Ri—(Ail = D Ru+ +Zj€Ai Rj, and K, = P, if Ry41 < Pyand K, = Ry if
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Ru+1 > Py. In particular, inequality in case (ii) is equivalent to % > 0. To show that
Ci =yiJ { yj } e is a circuit with linear form .4;, we proceed with a similar approach
to our first proof of Theorem 2. Denote the binary sequences of one-to-one network as
ki, ..., k, 41 corresponding to ordered strains y1, . .., y,+1.LetS C {0, 1}’”‘1 denote
the subset of strain-specific extended binary sequences, where i = il € {0, 1}**! \S
and kAj = k;1 € S represent binary sequences extended by digit 1. Notice that S
forms a basis of R*t!, Indeed, it is not hard to show the row reduced echelon form of
n+ 1 x n + 1 matrix is triangular. Thus fori e {0, 1}"*! \N, there is a unique set of
coefficients j, j = 1,2, ...,n + 1, yielding i as a linear combination of the nested

network vectors:
i=aki + - +apprikeyr.
The above linear system resolves as follows:

o+ o =1

2 =ik

j#k

ap+ - tapp =1

which leads us to the set of coefficients oy where k = 1, ..., n + 1 defined by the
following:

ar=1—1i; for k=1,...,n

gt =1— = i) =—(Al-1)

k=1

Thus, with analogous argument as before, we obtain the indicated circuit C; and cor-
responding linear form A4;. O

Proof of Proposition 3 Leti € {0, 1}"*\S with integer coordinates (o )kes With respect
to S x {1} as a basis of R**! and addended binary sequence il € {0, 1}" x {1}.
Clearly C x {1} = & x {1} U {il} is a linearly dependent set R+ with linear form
on fitnesses given by A;j = —R; — )y s @k Rk. Furthermore any proper subset is
linearly independent since S x {1} is a basis of R"*!. Thus C is a circuit with linear
form A;. By proof of Prop 2,

i Vi N e
vivio Yiyio o, Yee
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Yk
= ok —
kee VKK
=x* Z ax Rk
keC
n+1
=x* |:R,' + ZaeRg:|
=1
= —x*A4;.
Thus, by Theorem 1, the stability of £* is determined by the sign of A;. O
Proof of Proposition 4 We apply Proposition 3. Consider the network with at most one
mutation, S, consisting of wild-type and 1-mutation viral strains yo, v, ..., y, Where
the sequence of y; is j = (8@ J')Zzl for j =1, ..., n. First, notice that binary sequences
of yo, Vis-esYn form basis of R"t!, For missing strain, y;,i =n+1,...2" —1,i e
{0, 1} \ S, the coordinates of addended binary sequence il with respect to this basis
canbeseentobeo; =i;, j=1,...,n, ap =1~ Z’}-:] i j. Thus, by Proposition
3, = —xt A where A = Ri = X = 1R — (1= X)) Ro =
—Ri—(n—|A,~|—1)R0+Z]~¢Ai72j. O

Proof of Theorem 4 First assume that pairwise interaction matrix B is positive and
consider the stability of the nested equilibrium, &, (or £,), as characterized by circuits
in Corollary 1 (ii). We proceed by induction on the number of (01) strings denoted by
s for the invading strain. Suppose s = 1 and the invading strain is written as in prior
proof asi = 1™10P~"11"27P("~"2 and the collection of strains in the circuit is given
by C; = iU {1’”10”_’"1, 11’10”_1’1} U 120" ™2, Then since the additive elements
will sum to zero in the linear form 4;, the only remain terms come from pairwise
interactions in B and can be calculated as:

my mp my
) IS B SIS S PN
j=lk>j j=lk=p1+1 Jj=p1+1lk>j
mj mj P1 Pl map m3
—2 2 Bt ) Bik=2.) Bi
j=1k>j j=1k>j j=1k>j
pP1 Pl mj
D) I ) SIS S 3
j=1k>j j=1k>j j=mi+1k>j

pi my
Z Z Bjr <0

j=mi+1k=pi+1

Now for the induction step, suppose that i has s (01) strings. It is not hard to see that
A; = A;, for invading strain i, where i = 1"10P2~ " 1ipy42...1, has s — 1 (01)
strings. Thus by induction hypothesis —A4; < 0, or A; > O giving positive epistasis
and stability of nested network.
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Next suppose that matrix B is negative and consider the stability of 5;{ and E:f 1
consisting of strains yi, ..., yu, yp4+1 With binary sequences ki, ..., K,+1, where
Aj = {j}for j =1,...,nand A,y = . We inspect the invasion circuit of a
strain with sequence i outside the one-to-one network. Let s be the number of 1s in
sequence i, located at loci £, . .., €5, where 0 < s < n — 2. Again the additive terms

in Aj are zero and thus we have:

Ai = =Ri = (Al = DRus1 + ) R,

JEA;

N n n
== > Bix—(—1=5) > Bix+@n—s) ) By
j=lk>t; j=1k>j j=1k>j

¢—1
—Z |:ZBmk+ZBkmj|+Z ZB€k+ ZBM,
k>m j=1 1 k>¢;
n j-l s 4l
SN IIED WY
j=1k=1 j=1 k=1

>0 since B<0, s<n-—2.

Finally, for the network with at most one mutation, only the invading strain i will have
> 2 mutations, SO

Ai=—Ri—(—|Ail=DRo+ ) R;

JEA;
n
= _ZZBjk >0 since B <O.
j=lk>j
O
Proof of Theorem5 Let0 < f; <1, j =1,..., n represent the multiplicative fitness

costs for each epitope. Similar to proof of Proposition 4, we use stability formulation
by circuits in Corollary 1 (ii) and prove by induction on the number of (01) strings
denoted by s for the invading strain. Suppose s = 1 and the invading strain is written
as in prior proof as i = 110771 1"27P("~"2 and the collection of strains in the
circuit is given by C; = iU {11071, 1P10"~P1} U 1™20""2, Then the linear form
A; can be calculated as:

~Ai =Ro(fi+ fn prs1 -+ Fs = Feo o + i o = fi fo)
=7—\)‘Ofl "'fm1(1_fp1+1"'fm2)(fm1+l"'fpl - 1)
<0
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Now for the induction step, suppose that i has s (01) strings. It is not hard to see that
Ai = A;, for invading strain i, where i = 1"10P27"11i,, 5 ...i, has s — 1 (01)
strings. Thus by induction hypothesis —A; < 0, proving nested network is stable. O

The “at most one mutation” network equilibria

Consider the network with at most one mutation, S, consisting of wild-type and 1-

mutation viral strains yo, y1, ..., y, where the sequence of y; is j = (5( J')Z:i for
j = 1,...,n. First it is simpler to look at the n strain equilibrium £'* containing
positive components for y{, ..., ys, where yj = 0, i.e. leaving out the wild-type

strain. By Proposition 1 and (10), such a positive equilibrium £* = (x*, y'*, z*) of
system (4) satisfies

1
Xt = SR, — (= DRy Ay =s, Az" =R'x* -1, where A=11)7 —
j=17%v — = 0

1
— 1O =Ly ¥ =0y’ RI=RLRe, R

A71 =

with I, is the n x n identity matrix. Here we find that:

n—1
n—l—‘rZiRiSi’

Yi*:nil —(”—2)Si+Zsj , Xt = Zfzﬁ(RiX*—l)
J#
With the immunodominance hierarchy s; < s;1, then y;" >0ifsg > > ;0 (5n — si)
and z;" > 0if R; (n -1-3 s,-) > n — 1. If these conditions are satisfied, then the
equilibrium £'* is saturated in the subsystem restricted to S;. In Browne and Smith
(2018) we showed that in the larger network of viral strains, the equilibrium EM s
always unstable in the case with equal reproduction numbers R = R, = =R,.
Now consider invasion by the wild strain yp, which can result in an n + 1 strain
equilibrium £ g con51st1ng of the viral strain network S . By Proposition 1, the positive
components x*, yl*, z* of E* satisfies:

. AR
=17Cp}y), here €= <1T R0>’
. I

YR — (= DRo’
~lk T 1 -1
yr=(sT £-1)C

n
A7 =Rx* -1, Zzl* = Rox™ —

i=1

=X

The above equations are difficult to analyze in general, but when x* > 0,5 >
0,z* > 0, the n + 1 strain “at most one mutation” equilibrium will be positive. Fur-
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thermore, if the linear forms of invasion circuits (21) are positive, then by Proposition
4, E* will be stable.
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