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Abstract

Population dynamics and evolutionary genetics underly the structure of ecosystems,

changing on the same timescale for interacting species with rapid turnover, such as

virus (e.g. HIV) and immune response. Thus, an important problem in mathemati-

cal modeling is to connect ecology, evolution and genetics, which often have been

treated separately. Here, extending analysis of multiple virus and immune response

populations in a resource—prey (consumer)—predator model from Browne and Smith

(2018), we show that long term dynamics of viral mutants evolving resistance at dis-

tinct epitopes (viral proteins targeted by immune responses) are governed by epistasis

in the virus fitness landscape. In particular, the stability of persistent equilibrium

virus-immune (prey-predator) network structures, such as nested and one-to-one, and

bifurcations are determined by a collection of circuits defined by combinations of viral

fitnesses that are minimally additive within a hypercube of binary sequences repre-

senting all possible viral epitope sequences ordered according to immunodominance

hierarchy. Numerical solutions of our ordinary differential equation system, along

with an extended stochastic version including random mutation, demonstrate how

pairwise or multiplicative epistatic interactions shape viral evolution against concur-

rent immune responses and convergence to the multi-variant steady state predicted by

theoretical results. Furthermore, simulations illustrate how periodic infusions of sub-

dominant immune responses can induce a bifurcation in the persistent viral strains,

offering superior host outcome over an alternative strategy of immunotherapy with

strongest immune response.
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1 Introduction

The evolution of ecological networks depends on the underlying population dynamics,

genetics, and structure of the composite species. Interactions between populations, for

example prey-predator or competitive forces, constrain and shape the network, in con-

cert with evolution also diversifying and adapting species variants. The complexity

of these eco-evolutionary dynamics have challenged researchers to classify patterns

in rapidly evolving communities. In the single species context, theoretical models of

fitness landscapes have simplified the study of adaptation by reducing individuals to

either genotypes or phenotypes, whose reproductive success is determined by a single

trait, namely fitness. Although a multitude of evolutionary pathways exist, evolution

predictability can be driven by genetic variant constraints. A more analytically chal-

lenging scenario is the evolution or coevolution of prey-predator systems whereby the

predator range and selection of prey resistance balanced by constraints on reproduc-

tion together form a dynamic fitness landscape. Examples include phage-microbe and

virus-immune response networks, with the latter, specifically HIV, being a primary

motivation for this work.

During HIV infection, a diverse collection of viral strains, often called a quasis-

pecies, compete for a target cell population (mainly CD4+ T-cells) while the host

immune response population (e.g. CD8+ T-cells) predates and proliferates upon

pathogen recognition. HIV can also rapidly evolve resistance to immune response

attack at different epitopes (proteins in virus genome displayed on infected cells),

inducing a dynamic network of interacting viral and immune variants. Deciphering

patterns in the trajectories of virus and immune response populations, along with

their interactions, can advance biological theory and have applications for vaccine or

immunotherapy development Walker and Xu (2013), Chakraborty and Barton (2017).

Analogous questions in other biological systems, such as phage-microbe communities,

have mostly led to models of species compositions in the face of ecological interactions

independent of explicit genetic mutations. The properties of these ecosystem models

have classically been studied using dynamical systems, where concepts such as sta-

bility, equilibria and population persistence are used to characterize feasible species

assemblages. Recently, generalized Lotka-Volterra (L-V), chemostat and ecosystem

models have been utilized to understand how different motifs, such as nested or one-to-

one networks, are built through invading species and convergence to stable equilibria

(Jover et al. 2013; Korytowski and Smith 2015; Browne 2017). Additionally, several

works have developed polymorphic evolution sequences, where an individual based

stochastic model converges to solutions of L-V equations in the limit of small mutation

rates and large populations (Champagnat and Méléard 2011; Costa et al. 2016). How-

ever, how population dynamics, genetics and evolution together determine network

structures for rapidly evolving ecosystems is not generally established.

From an evolutionary genetics perspective, a high mutation rate allows HIV popula-

tions to change and explore sequence space on short timescales, lending themselves to

being studied as model biological systems, along with the significant clinical interest.

Disease progression, escape pathways, and treatment fate depend on viral fitness. To

estimate in vivo fitness landscapes, several evolutionary models have linked fitness to

viral genotype frequencies, for example the quasispecies model (Seifert et al. 2015)
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and multi-strain versions of a standard ithin-host virus model (Ganusov et al. 2011).

These models can be mathematically tractable, allowing for analysis of equilibria and

stability in terms of mutation rates and fitness quantities. In particular, the common

setting of finite binary sequences, the assumed form of viral genotypes in this current

paper, enables geometric or algebraic properties of the binary hypercube space to be

exploited for characterizing equilibrium distributions (Bratus et al. 2019). Inclusion of

viral mutation from multiple dynamic immune response populations complicates mat-

ters, as neither the virus strain fitness or immune response strength simply determine

epitope escape (Ganusov and De Boer 2006; Leviyang and Ganusov 2015). However,

correlation analysis (Liu et al. 2013) and a statistical physics model of viral sequences

with epistasis (discussed further below) (Barton et al. 2016) applied to HIV patient

datasets have found determinants viral evolution based on viral fitness landscapes and

immnodominance hierarchies (relative expansion levels of the responding immune

populations).

Epistasis refers to nonlinearity in the fitness landscape or dependence of fitness

change from a mutation on the genetic background. Epistatic interactions play a crit-

ical role in fitness landscape features, and ultimately evolutionary trajectories, thus

measuring epistasis has received much attention when studying evolution. However,

the large amount of interactions within a genome challenge both theoretical and exper-

imental quantification of epistasis. Several methods for computing epistasis have been

proposed (Mani et al. 2008; Ferretti et al. 2016). Here we focus on the concept of

circuits introduced by Beerenwinkel (2007) as fundamental measures of epistatic inter-

actions and underlying geometry of the fitness landscape. Circuits have been utilized

to characterize single species fitness landscapes in both theoretical and data-driven

studies (Hallgrímsdóttir and Yuster 2008; Crona 2017; Gould et al. 2018).

In this paper, we investigate how epistasis impacts evolution of prey-predator inter-

acting species, specifically how virus fitness landscapes affect the overall virus (prey)

and host immune response (predator) ecosystem dynamics. We show that connecting

population genetics and dynamics offers a way to extract biological meaningful rela-

tionships from the equilibria stability conditions of a complex network differential

equation for interacting species’ variants. We build off of our previous analysis of a

multi-variant virus-immune model (Browne and Smith 2018), which established differ-

ent regimes of attractors, each with a distinct set of viral strains persisting by extending

Lyapunov function methods first applied to generalized L-V equations (Goh 1978; Hof-

bauer and Sigmund 1998). In particular, the stability of certain equilibria structures and

associated bifurcations are sharply determined by relevant circuits, which recast strain

invasion rates as algebraic combinations of binary sequences shaping viral fitness land-

scape epistasis. Furthermore, we simulate eco-evolutionary dynamics showing that our

theoretical calculations can carry over to an extended stochastic model with mutations,

and also illustrate how distinct immunotherapies can be incorporated in our system

to shed light on potential strategies. We conclude with a discussion on how our study

supports the utility of evolutionary genetics concepts, in particular the construction of

circuits for measuring epistasis of fitness landscapes, applied to characterizing bifur-

cations in virus-immune response population dynamics, which represents a specific

example of a prey-predator ecosystem model.
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2 General model and binary sequence case

We begin by considering the following rescaled model introduced to describe a network

of viral and immune response variants during host infection (Browne and Smith 2018):

ẋ = 1 − x − x

m∑

i=1

Ri yi ,

ẏi = γi yi

⎛
⎝Ri x − 1 −

n∑

j=1

ai j Z j

⎞
⎠ , i = 1, . . . , m

Ż j =
σ j

ρ j

Z j

(
m∑

i=1

ai j yi − ρ j

)
, j = 1, . . . , n. (1)

Here x denotes the population of target cells, along with m competing virus strains

(yi denotes strain i infected cells), and n variants of immune response (Z j ). The

parameter Ri represents the basic reproduction number of virus strain i . The m ×

n nonnegative matrix A =
(
ai j

)
describes the virus-immune interaction network,

which determines each immune response population’s avidity to the distinct viral

strains. Then ρ j represents the reciprocal of the immune response fitness excluding

the (rescaled) avidity to each strain j . Additionally, γi and σ j represent scaling factors

for corresponding viral and immune variant growth rates.

Each virus strain i (cells infected with strain i), yi , has a set of immune responses,

Z j , that recognize and attack yi . We call this set the epitope set of yi , denoted by

Λi where Λi :=
{

j ∈ [1, n] : ai j > 0
}
. Here j ∈ Λi if yi is not completely resistant

to immune response Z j . We remark that the system generally models a tri-trophic

ecosystem with a single resource consumed by m prey (or consumer) populations

subject to potential attack by n distinct predators (prey i subject to attack by any

predator j in Λi ). For example, this model can describe bacteria-phage communities in

a chemostat (or single resource environment), where the set Λi classifies the infection

network (whom infects who).

In this article, we specialize system (1) to the case where each virus strain is

represented by a binary sequence of length n, exactly coding the loci (epitopes) for

which n specific immune responses can recognize and attack. Note that consideration

of binary sequences is perhaps the most common way to represent distinct variants

which can differ at some loci of their genome (e.g. quasispecies, haploid models).

A major goal of this work is to connect concepts in evolution and genetics with

population dynamics, so this special case is an appropriate setting. Here the n viral

epitopes have two possible alleles: the wild type (0) and the mutated type (1) which

has escaped recognition from the cognate immune response. For each virus strain yi ,

we associate a binary sequence of length n, yi ∼ i = (i1, i2, . . . , in) ∈ {0, 1}n , coding

the allele type at each epitope. We assume that each immune response (Z j ) targets its

specific epitope at the specific rate a j for virus strains containing the wild-type (allele

0) epitope j , whereas Z j completely loses ability to recognize strains with the mutant

(allele 1) epitope j , i.e.
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∀i ∈[1, m], yi ∼ i ⇒ ai j =(1 − i j )a j (or ai j = a j if j ∈Λi , ai j =0 otherwise),

(2)

with Λi the epitope set defined earlier for model (1) (see Fig. 1). We also use binary

sequence vector notation for viral strains, yi, and associated sets. With assumption (2),

we can define an immune reproduction number corresponding to each Z j :

I j :=
a j

ρ j

. (3)

Then there are m = 2n possible viral mutant strains, each distinguished by binary

sequence i = (i1, i2, . . . , in) and denoted yi, governed by the following system:

ẋ = 1 − x − x
∑

i∈{0,1}n

Ri yi,

ẏi = γi yi

⎛
⎝Rix − 1 −

n∑

j=1

(1 − i j )z j

⎞
⎠ , i ∈ {0, 1}n ,

ż j =
σ j

s j

z j

⎛
⎝ ∑

i∈{0,1}n

(1 − i j )yi − s j

⎞
⎠ , j = 1, . . . , n (4)

where z j = a j Z j and s j = 1/I j .

The 2n potential virus strains can be viewed in a fitness landscape; each strain i is a

vertex in an n-dimensional hypercube graph with fitness Ri, as shown in Fig. 1a and

d in the case of n = 3 and n = 2 epitopes. Viral strains yi and yk are connected by

an edge, if the sequences i and k differ in exactly one bit, i.e. their Hamming distance

– denoted by d(yi, yk) – is one. We define the wild-type (founder) virus strain as

the unique strain which is susceptible to attack by all immune responses, denoted y0,

characterized by the sequence of all zeroes, 0 = (0, 0, . . . , 0), or equivalently the

epitope set Λ0 = {1, . . . , n}. Each mutation from 0 to 1 of an epitope incurs a fitness

cost associated with gaining resistance to the corresponding immune response, so we

constrain the collection of viral reproduction numbers (fitness landscape) to satisfy

the following condition:

If d(yi, yk) = 1 and d(yi, y0) < d(yk, y0), then Ri > Rk. (5)

The occurrence of fitness costs (in reproduction rate) for gaining resistance to preda-

tion is a general concept in eco-evolutionary systems, for example in bacteria-phage

networks. Finally we say that an immune response z j is immunodominant over another

immune response zk if I j > Ik and assume, without loss of generality, the ordered

immunodominance hierarchy;

I1 ≥ I2 ≥ · · · ≥ In, i.e. s1 ≤ s2 ≤ · · · ≤ sn . (6)
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Fig. 1 a The virus-immune network on n = 3 epitopes for model (4) overlying the hypercube. Here each

viral strain yi , i = 0, . . . , 7, is associated with a unique binary string i ∈ {0, 1}3 coding their allele type,

susceptible (0) or resistant (1), at each epitope. Immune response z j attacks yi ∼ i if i j = 0, or equivalently

if j is in epitope set of yi ( j ∈ Λi ). The wild-type virus, y0 ∼ 000, can evolve resistance to each epitope-

specific immune response z j by successive single epitope mutations forming a path in the hypercube graph

to the completely resistant viral strain (111). The number of epitope mutations which viral strain yi has

accumulated is d(yi , y0) (Hamming distance between i and 000). Note that system (4) does not explicitly

include mutation between viral strains. b The perfectly nested network, as a subgraph of the hypercube. In

this case, sequential mutations of epitopes appear in immunodominance order with specialist to generalist

virus (prey) resistance and immune (predator) attack. c The one-to-one network, with strain-specific immune

responses, is representative of a completely modular ecosystem. d The network with at most one mutation

signifies constrained evolution. All three subgraphs appear as feasible equilibrium structures of the system

and are analyzed in Sect. 4

System (4) generalizes many previous model structures in the sense that they can

be seen as subgraphs of our “hypercube network”. For instance, the “strain-specific”

(virus-immune response) network (Nowak and Bangham 1996) (also called “one-to-

one network” in phage-bacteria models (Jover et al. 2013; Korytowski and Smith

2015)) is equivalent to restricting (4) to the m = n viral strains which have mutated

n − 1 epitopes (Fig. 1c). The “perfectly nested network” restricts (4) to the m = n + 1

viral strains which have sequential epitope mutations in the order of the immunodom-

inance hierarchy (Fig. 1b). Nested networks were considered in HIV models (Browne

2017), along with phage-bacteria models (Korytowski and Smith 2015), and may be

a common persistent structure in ecological communities (Gurney et al. 2017). The

network with at most one mutation, or “at most one mutation” network, denoted by

S̃1 with n + 1 strains yi such that d(i, 0) ≤ 1, is an example of constrained immune

escape steady state (Fig. 1d) considered in Browne and Smith (2018) and the current

study. The “full hypercube network” has been considered for modeling immune escape

patterns in HIV infected individuals (Althaus and Boer 2008; Deutekom et al. 2013).
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3 Necessary population dynamics/genetics definitions and results

3.1 Stability and persistence

First we review some relevant definitions and results on the equilibria and asymptotic

dynamics valid in the general model (1) that are further detailed in prior work (Browne

and Smith 2018). For a non-negative equilibrium point, E∗ = (x∗, y∗, Z∗) ∈ R
1+m+n
+ ,

define the “persistent variant sets” associated with E∗ as:

Ωy =Ωy(E
∗)=

{
i ∈ [1, m] : y∗

i > 0
}

and Ωz = Ωz(E
∗)=

{
j ∈ [1, n] : Z∗

j > 0
}

.

(7)

In addition, define the following subsets of R
1+m+n
+ :

Ω = Ω(E∗) =
{
(x, y, Z) | yi , z j > 0, i ∈ Ωy, j ∈ Ωz

}
,

ΓΩ = Ω ∩
{

yi , z j = 0, i /∈ Ωy, j /∈ Ωz

}
.

Here ΓΩ , consisting of only those state vectors having the same set of positive and

zero components as equilibrium E∗, is called the positivity class of E∗. Notice that

the dimension of the subset ΓΩ is 1 + |Ωy | + |Ωz |, where the notation |Ωy | (|Ωz |)

denotes the cardinality of the set Ωy (Ωz). We denote A′ as the m′ × n′ interaction

matrix consisting of the m′ virus strains and n′ immune responses which have positive

values at equilibrium E∗, where |Ωy | = m′ and |Ωz | = n′. The equilibrium E∗ must

satisfy the following equations:

∑

i∈Ωy

ai j y∗
i = ρ j , j ∈ Ωz (8)

∑

j∈Ωz

ai j Z∗
j = Ri x∗ − 1, i ∈ Ωy (9)

1 +
∑

i∈Ωy

Ri y∗
i =

1

x∗
(10)

Note that if i ∈ Ωy (y∗
i > 0), then Ri > 1 must hold, even in the absence of immune

response, although Ri is not sufficient for positivity of the component.

The following proposition provides the condition for uniqueness of an equilibrium

within a positivity class, and shows that in such equilibria the number of virus strains

either is equal to or exactly one more than the number of immune responses.

Proposition 1 (Browne and Smith 2018) Suppose the equilibrium E∗ = (x∗, y∗, Z∗)

exists in positivity class ΓΩ , where (y∗, Z∗) satisfy the linear system of Eq. (8)-(9).

Then E∗ is the unique equilibrium in ΓΩ , i.e. v = (y∗, Z∗)T is the unique solution

to (8)-(9), if and only if Ker(A′)T ∩ R
′⊥ = {0} and Ker(A′) = {0}. Moreover, if

E∗ is not unique in its positivity class ΓΩ , then ΓΩ contains an infinite number (a
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continuum) of equilibria. Conversely, if E∗ is unique in a positivity class ΓΩ (with m′

and n′ persistent virus and immune responses), then one of the following holds:

(i) m′ = n′, and x∗ = 1/
(
1 + (ρ)T (A′)−1

R
′
)
.

(ii) m′ = n′ + 1, and x∗ = 1 T C−1
(n′+1)

, where C−1
(n′+1)

is the last column in the

(n′ + 1) × (n′ + 1) matrix inverse of C =
(

A′
R

′
)T

.

This proposition, along with prior results on competitive exclusion, demonstrate that

virus (prey) or ecosystem diversity in our model is entirely mediated by the immune

response (predator) populations. Thus the model provides a good system for exploring

how prey-predator ecosystems can diversify and patterns in their underlying structure.

Next we are concerned with the stability of equilibria, and which populations persist

in the long run. First, based on the idea of being “weakly stable” against missing

species (Hofbauer and Sigmund 1998), we call an equilibrium E∗ = (x∗, y∗, Z∗) of

(1) saturated if the following holds:

ẏi

γi yi
∣∣
E∗

= Ri x∗ − 1 −
∑

j∈Ωz

ai j Z∗
j ≤ 0, ∀i /∈ Ωy,

s j ż j

σ j z j
∣∣
E∗

=
∑

i∈Ωy

ai j y∗
i − ρ j ≤ 0, ∀ j /∈ Ωz (11)

Here each term in (11) gives the sign of the “invasion rate” of a missing species. For

a notion of persistent populations, define Ωyz persistence as

∃ ε > 0 and T (w0) such that yi (t), Z j (t) > ε, i ∈ Ωy, j ∈ Ωz, ∀t > T (w0), and

lim
t→∞

yi (t), Z j (t) = 0, i /∈ Ωy, j /∈ Ωz, for every solution with initial condition w0 ∈ Ω.

We describe the individual populations i ∈ Ωy, j ∈ Ωz in the above definition of Ωyz

persistence as being uniformly persistent. Now we state a main theorem of Browne

and Smith (2018) concerning the stability of equilibria and persistence of viral and

immune variants of model (1).

Theorem 1 (Browne and Smith 2018) Suppose that E∗ = (x∗, y∗, Z∗) is a non-

negative equilibrium of system (1) with positivity class ΓΩ . Suppose further that E∗ is

saturated, i.e. the inequalities (11) hold. Then E∗ is locally stable and x(t) → x∗ as

t → ∞.

Furthermore, if E∗ is the unique equilibrium in its positivity class ΓΩ and the

inequalities (11) are strict, then yi , Z j → 0 for all i /∈ Ωy, j /∈ Ωz . If i ∈ Ωy and

ai j = 0 ∀ j ∈ Ωz , i.e. Λi ∩ Ωz = ∅, then yi → y∗
i and x∗ = 1/Ri . In addition,

assuming positive initial conditions, for each i ∈ Ωy, j ∈ Ωz , yi and Z j persist (the

system is Ωyz persistent) with asymptotic averages converging to equilibria values,

i.e.

lim
t→∞

1

t

t∫

0

yi (s) ds = y∗
i , lim

t→∞

1

t

t∫

0

Z j (s) ds = Z∗
j ,
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In the case that there are less than or equal to two persistent viral strains with non-

empty epitope sets (restricted to Ωz), i.e. |
{
i ∈ Ωy : Λi ∩ Ωz �= ∅

}
| ≤ 2, then E∗ is

globally asymptotically stable.

Note that the global convergence of the persistent variants to equilibria values is still

an open question when there are more than two persistent immune responses. In

Browne and Smith (2018), we conjecture the global stability of an equilibrium E∗ of

(1) which is strictly saturated (11) and unique in its positivity class ΓΩ , regardless

of ΓΩ dimension, based on the following observations. First, we proved Theorem 1

by showing solution dynamics asymptotically satisfy Lotka-Volterra (L-V) predator–

prey differential equations, which in isolation need not have global convergence to

E∗, but there is an additional algebraic constraint of solutions to a hyperplane which

may force global convergence to E∗. Furthermore, all of our numerical simulations of

(1) support global stability of E∗, although convergence can be rather oscillatory and

slow.

3.2 Fitness and epistasis

In the rest of this article we consider the “binary sequence” case of model (1), which

leads to the simplified system (4) through assumption (2). For our virus-immune

ecosystem, we are considering the situation where n immune response populations z j

each target the corresponding epitope j in the virus strains at a rate solely dependent

on the allele type of epitope j ; the rate being positive for (0) wild-type or zero for (1)

mutated form conferring full resistance to z j . The avidity of immune response z j and

(wild-type) epitope j is described by the immune reproduction number I j given by

(3), and are ordered according to the immunodominance hierarchy (6). As opposed

to this simple immune fitness ordering, the collection of virus reproduction numbers

(fitnesses) in our model can have much more complex relationships among each other

depending on the fitness landscape, formally defined below.

Consider the space of binary sequences of length n, {0, 1}n , which contain all

possible 2n virus strains. For a given strain i with sequence i ∈ {0, 1}n , we also denote

its reproduction number in terms of binary sequence; Ri. The reproduction numbers

can be described in terms of the fitness cost (relative to wild-type fitness R0) associated

with the corresponding combinations of epitope mutations. The fitness landscape

is defined as the precise map between the virus sequences and their reproduction

numbers:

w : {0, 1}n → R, w(i) = Ri.

The set of all reproduction numbers is the image of the fitness landscape,

F := w
(
{0, 1}n

)
= {Ri}i∈{0,1}n = {Ri }

2n−1
i=0 ,

where we can utilize either the sequence or integer indices for viral strains. An impor-

tant special case of a fitness landscape is when w is additive. In an additive fitness

landscape,
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Ri = R0 − c · i, (12)

where c = 〈c1, c2, . . . , cn〉 is the vector of individual fitness costs for mutating each

epitope, with the assumption that c · 1 < R0 and ci > 0, so that all viral reproduction

numbers remain positive and decrease with mutation satisfying (5).

Whereas an additive fitness landscape is solely determined linearly by the wild-type

and single-mutant fitness values, the concept of epistasis allows for combinations of

mutations to have more general nonlinear fitness landscapes. Informally, a system has

epistasis if the effect of a mutation depends on genetic background. Here we generally

define epistasis as a deviation from additivity. A common way to incorporate epistasis

is via pairwise interactions between loci, as in the quadratic Ising or Pott’s model

(Stadler 2002) which has been used in applications to HIV-immune data (Barton et al.

2016). Let B be a strictly upper triangular matrix encoding (possibly random) pairwise

interactions and define

Ri = R0 − c · i +

n∑

j=1

i j

∑

k> j

ik B jk, i ∈ {0, 1}n , (13)

where B, c are suitable to fit our requirements for the viral fitness (cost) landscape (5),

i.e. all viral reproduction numbers remain positive and decrease with mutation.

To study epistasis in general, first consider a subset of the sequence space S ⊂

{0, 1}n and associated fitness landscapes, w(S) = {Ri}i∈S . Motivated by the concept

of interaction coordinates (Beerenwinkel 2007; Crona 2017), we measure genetic

interactions among the sequences in S by specifying a type of linear functional from

the space of all possible fitness landscapes to R:

Definition 1 Let a vanishing linear form on S be a linear form g =
∑

k∈S αkRk with

integer coefficients αk, which is zero for any fitness landscape w that is additive, and

satisfies
∑

k∈S αk = 0 with some αk �= 0.

Note that an equivalent definition, can be formed from the following observation

upon consideration of additive fitness (12):

g =
∑

k∈S

αkRk =
∑

k∈S

αk (R0 − c · k) = −
∑

k∈S

αkc · k = −c ·
∑

k∈S

αkk

⇒ g = 0 ∀c ∈ R
n ⇔

∑

k∈S

αkk = 0.

So a vanishing linear form on S ⊂ {0, 1}n equivalently satisfies
∑

k∈S αkk = 0 and∑
k∈S αk = 0 with not all αk = 0. The two conditions can be combined by adding

to every binary sequence in {0, 1}n a 1 at the end of the sequence. Considering each

extended binary sequence i1 = (i1 . . . in1) as a vector in R
n+1, existence of a vanishing

linear form on S ⊂ R
n+1 simply signifies S to be a linearly dependent set of vectors.

Vanishing linear forms are similar to the notion of additive dependence relations,

along with interaction coordinates and Walsh coefficients; more commonly used epis-

tasis measures, which are Fourier transforms on the group (Z2)
n measuring total
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Fig. 2 In the case n = 2 epitopes, the circuit of all binary sequences with corresponding vanishing linear

form A delineates cases (diagrams from left to right) of (i) negative epistasis (A < 0), (ii) additive (A = 0),

(iii) positive epistasis (A > 0), which determine fitness landscape shape (figure considers positive fitness

contributions due to mutations from 0 allele to 1 allele in loci, as opposed to negative fitness costs (5)

assumed in our model)

k−way epistasis for 2 ≤ k ≤ n (Weinreich et al. 2013; Crona 2017). In this work,

Definition 1 and the provided equivalences readily allow us to introduce circuits

(Beerenwinkel 2007), which give a fundamental description of epistatic interactions

in fitness landscapes and relate to bifurcations in our model.

Definition 2 A circuit C ⊂ {0, 1}n is a minimal set which has a vanishing linear form.

In other words, there exists a vanishing linear form on a circuit C and no proper subset

of C has a vanishing linear form.

Considering the extended binary sequences in R
n+1, a circuit is a minimally linearly

dependent collection of vectors, i.e. a linearly dependent collection of vectors in which

any proper subset is linearly independent (Crona 2020). Circuits allow for detection

of sign epistasis relative to a vanishing linear form. In particular, suppose C is a circuit

with vanishing linear form g =
∑

k∈C αkRk, then the circuit C has sign epistasis for

fitness landscape w if
∑

k∈C αkRk �= 0. In a strictly additive fitness landscape the

vanishing linear forms on each circuit would all be zeros, i.e. vanish. How to classify

positive epistasis (or negative) on the circuit C depends on the non-unique assignment

of signs of the coefficients for the linear form.

The simplest class of circuits measure the conditional epistasis of a pair of loci

against a fixed background of the other loci. For example, the classical example of

two loci (n = 2), has a single circuit distinguishing between positive, additive and

negative epistatic fitness landscapes, depicted in Fig. 2. Here, the vanishing linear form

A := R00 −R10 −R01 +R11 is positive for a fitness landscape whenever the pairwise

interaction between epitopes 1 and 2 are synergistic, so that the double mutant has

larger reproduction number than it would have under additivity. As noted in Crona

(2017), circuits are possibly a more fundamental epistasis measure than say interaction

coordinates. For example in the case n = 3, the “u110” interaction coordinate, u110 =

A12 + A′
12 = R000 − R100 − R010 + R110 + R001 − R101 − R011 + R111, is the

sum of circuit linear forms, A12 and A′
12, giving the conditional epistasis of the first

two loci against the third locus fixed at 0 and fixed at 1, respectively, and u110 is a

vanishing linear form, but does not form a circuit because it does not satisfy minimal

dependence property. We can identify how the “pairwise interaction fitness landscape”

(13) directly relates to these conditional epistasis circuits in any dimension n. Consider

loci 1 ≤ j < k ≤ n. A circuit measuring the conditional epistasis of j, k against any
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Fig. 3 For n = 2 epitopes, a single circuit of all viral strain binary sequences with corresponding linear

combination of reproduction numbers determines epistasis and steady state in the case of persistent immune

responses z1 and z2. a The 2-d hypercube is displayed with distinct feasible persistent virus strain sequences

depicted, where the vanishing linear form A := R00 −R10 −R01 +R11 (positive A > 0 versus negative

A < 0) decides stable nested equilibrium (Ẽ2 or Ē2 containing {00, 10} persistent strain set) versus stable

one-to-one or network with at most one mutation equilibrium (E
‡
2 , E

†
2 or Ê2 containing {10, 01} persistent

strain set). b Bifurcation at A = 0 (additive fitness landscape) presents line of equilibria connecting nested

Ẽ2 and one-to-one E
‡
2 (or at most on mutation Ê2), projected on y3, y2 (y0) axis. Here, the (colored) curves

represent solution paths of (4) with different initial conditions converging to distinct points on line of

equilibria, predicted by Proposition 2) for A = 0. c A > 0 ⇒ solutions converge to Ẽ2. d A < 0 ⇒

solutions converge to E
‡
2 (or Ê2)

background will resolve as follows; A jk := −R·0·0· +R·1·0· +R·0·1· −R·1·1· = B jk ,

where the changing alleles occur in the j, k positions.

Another class of circuits relates marginal epistases of two pairs of loci (defined by

interaction coordinates Beerenwinkel 2007). An example is the circuit which can be

given by linear form A(w) = −R000 +R001 +R110 −R111, and also can be thought

of as calculating conditional epistasis of the first 2 loci (as a block) and the third

locus. Both conditional and “marginal” epistasis classes of circuits are comprised,

against a background where a subset of loci are fixed, of two distinct pairs of (ones’)

complement sequences, defined to be sequences k̃ and k̃ where k̃ + k̃ = 1̃ for a

subset of loci J̃ ⊂ [1, n]. Note that because the sum of coefficients and weighted sum

of sequences must vanish, along with a circuit being minimal, the number of binary

sequences in a “(ones’) complement” circuit must be four. Other types of circuits

measure higher order epistasis, and will be discussed later. In general, the number of

circuits rapidly grows with n (there are 20 circuits for n = 3, 1348 circuits for n = 4

Eble et al. 2020) and can be interpreted geometrically in terms of shapes formed by

vertices of the n-cube (Beerenwinkel 2007).
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4 Main results

In this section, we present our main theorems and their ramifications. Proofs to new

results appear in the Appendix. Our major goal is to rigorously connect the concept of

circuits with bifurcations and stable equilibria in model (4). First, in order to demon-

strate a general link between circuits and the dynamical system, we establish that

persistent viral strains comprise a circuit only in a critical case. In particular, we show

that a circuit has positive components in a feasible equilibrium only when this circuit

is additive with respect to fitness landscape, in which case a degenerate infinite dimen-

sional subspace of equilibria appears. Indeed, the following proposition generalizes

a previous result in Browne and Smith (2018) on degeneracy of equilibria forming a

cycle in virus sequence hypercube.

Proposition 2 Consider the binary sequence model (4) with 2n viral strains identified

in {0, 1}n . Suppose that C ⊂ {0, 1}n is a circuit, has vanishing linear form g =∑
k∈C αkw(k) for any additive fitness landscape w, and consider the fixed fitness

landscape with image (reproduction numbers) denoted by Rk for k ∈ {0, 1}n . If∑
k∈C αkRk �= 0, then there does not exist an equilibrium E∗ = (x∗, y∗, z∗) with

y∗
k > 0 for all k ∈ C. On the other hand if

∑
k∈C αk Rk = 0 and there exists an

equilibrium with y∗
k > 0 for all k ∈ C, then there are infinitely many equilibria, ȳ, in

the positivity class of y∗, with components parametrized by yk = y∗
k + βαk for some

β ∈ R.

The proposition implies that any equilibrium with persistent strains forming a circuit

must be unstable, in particular as part of a continuum of equilibria. The dimension of

the infinite dimensional subspace of equilibria is the number of linearly independent

vanishing forms corresponding to the circuit, where the dimension can be greater than

one if the circuit contains distinct (sub-) circuits as subsets. Although unstable, the lines

of equilibria will be seen in the ensuing sections as bifurcations where certain types

of stable equilibria are invaded with strain replacement and stability being sharply

determined by signed epistasis of the corresponding circuits.

4.1 Nested network determined by epistasis

Next, we focus on (perfectly) nested equilibria, which describe sequential mutations

of epitopes in the order of the immunodominance hierarchy and persistence of all

strains along this pathway. The successive rise of more broadly resistant prey (coming

with a fitness cost) and weaker but more generalist predators, in a nested fashion,

has been proposed in bacteria-phage communities (Jover et al. 2013; Korytowski

and Smith 2015; Weitz et al. 2013), and there is some evidence that nestedness is

a feature of HIV and immune response dynamics (Kessinger et al. 2015; Liu et al.

2013; Deutekom et al. 2013). Furthermore, this specialist-generalist structure is a

well studied pattern in a variety of ecosystems, in particular nested networks are of

interest in explaining the biodiversity and structure of mutualistic (e.g. plant-pollinator)

communities (Bascompte et al. 2003).

First, we describe equilibria of model (4), where the persistent network is con-

strained to be nested, which were described in Jover et al. (2013), Korytowski and
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Smith (2015), Browne (2017). We introduce a “nested priority” indexing for the viral

strains, which allows convenient definition of threshold quantities for nested networks.

The n + 1 binary sequences contained in nested equilibria are of the form 1k0n−k (in

power notation for the length n binary string), where 0 ≤ k ≤ n. Let yk denote the

viral strain with binary sequence 1k0n−k , 0 ≤ k ≤ n. Then, for each k ∈ [1, n], define

the following nested equilibria:

Ẽk = (̃x, ỹ, z̃), x̃ =
1

Rk

, ỹ j = s j+1 − s j for 0 ≤ j < k, ỹk = 1 −
Qk

Rk

, (14)

z̃ j =
R j−1 − R j

Rk

for 1 ≤ j < k, z̃k = 0, ỹ j = z̃ j = 0 for k < j ≤ n

Ēk = (x̄, ȳ, z̄), x̄ =
1

Qk

, ȳ j = s j+1 − s j for 0 ≤ j < k, (15)

z̄ j =
R j−1 − R j

Qk

for 1 ≤ j < k, z̄k =
Rk−1

Qk

− 1, ȳ j = z̄ j = 0 for k < j ≤ n,

where Qk = Qk−1 + (sk − sk−1)Rk−1, Q0 = 1, s0 = 0, sk = 1/Ik . (16)

Equilibrium Ẽk represents the appearance of escape mutant yk from the equilibrium Ēk

containing k viral strains y0, . . . , yk−1 and immune responses z1, . . . zk . Notice that

Qk = Qk−1 + Rk−1 y∗
k−1, and thus can be interpreted as the additional reproductive

fitness contributed by the kth nested strain scaled by its frequency at equilibrium. The

stability of these equilibria restricted within the nested network (non-nested strains

yn+1, . . . y2n−1 are set to zero) was proved to be determined by the largest k such that

Rk−1 > Qk and if equilibrium (14) is positive (if Rk > Qk) (Browne 2017), which

we will expand upon below in our main result of this section, Theorem 2.

Before we present our new result, observe that, along with the specialist to general-

ist ordering in nested equilibria, nested networks are evolutionary pathways in the full

fitness landscape hypercube. As opposed to some other feasible equilibria, such as the

one-to-one network, the persistent strains in the nested equilibria form a path from the

wild-type to the most resistant strain as single mutations accumulate in stepwise fash-

ion. In a single (quasi-)species system, the underlying viral fitness landscape, which is

generally shaped by epistatic interactions, determines evolutionary trajectories. When

another trophic level is added, as immune response (predators) here, the overall viral

fitnesses are expected to be dynamic since they depend upon the immune response

populations. However, here we show that the nested trajectory in our system is solely

dependent on the relevant epistasis in the viral fitness landscape.

In order to define the appropriate viral fitness landscape epistasis corresponding to

equilibrium stability, we introduce “invasion circuits” below.

Definition 3 For an equilibrium E∗ and missing strain yi (where y∗
i = 0, i.e.

i /∈ Λi ), let an invasion circuit be a circuit (def. 2), Ci , containing exactly the

yi binary sequence, i, and some positive E∗ component strain sequences (sub-

set Si ⊂
{
k ∈ {0, 1}n : corresponding component y∗

k > 0
}
). The vanishing linear

form, Ai , is taken as negative of the scaled relative invasion rate in (11), namely

Ai ∝ −
ẏi

yi

∣∣
E∗

, and we say Ci has positive epistasis if Ai > 0.
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The interpretation of this definition is that each of these circuits represent potential

alternate pathways, which correspond to strain invasion in the model. Thus, we say that

a certain equilibrium assemblage of strains on the hypercube of binary sequences has

positive epistasis if every invasion circuit corresponding to a missing strain has posi-

tive epistasis. Theorem 2 (below) proves that the nested network is stable and persistent

if and only if it has positive epistasis as a pathway in the viral fitness landscape. In par-

ticular, we decode the general saturated equilibria inequalities (11) conferring stability

and persistence by Theorem 1 into biological meaningful conditions on sign epistasis

of associated invasion circuits. The utility of introducing invasion circuits is two-fold.

First, because circuits measure epistasis, our ensuing equilibrium stability/persistence

results connect evolutionary genetics with ecological dynamics principles. Second,

we will see that by formulating as sign epistasis of circuits, a missing strain’s scaled

invasion rate at equilibrium with n or n + 1 persistent strains simplifies to a linear

combination of the much smaller subset of persistent strain fitnesses and invader fit-

ness which are connected through the circuit. Moreover, which equilibrium strain

can be replaced resolves further based on corresponding coefficients of the circuit

linear form. Although our model does not explicitly include mutation, the persistent

variants of stable equilibria can still represent evolutionary outcomes, as later simula-

tions show. Thus the following theorem suggests a necessary and sufficient condition

based on epistasis in the viral fitness landscape for a nested trajectory in a generalized

eco-evolutionary version of model (4).

Theorem 2 Consider the binary sequence model (4) with 2n viral strains and n immune

responses ordered by immunodominance (6). Assume that R0 > Q1 (at least one

virus strain and immune response persists). Let k be the largest integer in [1, n] such

that Rk−1 > Qk . The conclusions of Theorem 1 at nested equilibria (14) hold if

each of 2k − k − 1 invasion circuits has positive epistasis. In particular, Ek (or Ẽk

if Rk > Qk) is stable with uniformly persistent strains y0, y1, . . . , yk (and yk+1

if Rk > Qk) if each invasion circuit consisting of a non-nested strain ({yi } , i ∈

[n+1, . . . , 2n−1]) contained in the k− dimensional (sub-)hypercube (binary sequence

has ik+1 = . . . in = 0) union a subset of nested strains (Si ⊂ {y0, y1, . . . , yk}), has

positive vanishing linear form, Ai , where Ai is proportional to −
ẏi

yi |E∗
.

We provide two proofs of the above theorem, given in the appendix. First, we

prove the stability condition pattern by adopting a linear algebra approach where each

binary sequence is extended by an additional fixed bit. This leads to a solvable system

of equations for the linear forms and circuits determining nested equilibria stability.

Second, we apply a combinatorial technique to find the strains in the nested network

forming the circuit and linear form for each possible invading strain not in the nested

network. In particular, we distinguish a “non-nested sequence” i by existence of a (01)

string, and utilize an induction argument on the number of such strings. Each method

yields equivalent, yet distinct, characterizations of the critical circuits Ci and linear

forms Ai . Furthermore, when Rn > Qn , in the case of the full nested network (n + 1

strains persistent), the equilibrium Ẽn becomes unstable with the non-positivity of an

invasion circuit, yielding an “if an only if” condition for stability. These extended

results are summarized below in a corollary to Theorem 2.
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Fig. 4 Convergence to nested network assuming multiplicative viral fitness landscape. a Persistent viral

strains is reduced to nested network (in blue) as t → ∞ in Prop. 5. b Viral strain components y0(t), . . . , y2(t)

persist as system (4) converges to equilibrium Ẽ3

Corollary 1 Suppose Rn > Qn , so that, the equilibrium Ẽn is feasible. A necessary

and sufficient condition for stability of Ẽn is the positivity of 2n − n − 1 linear forms

Ai corresponding to circuits Ci , each containing a single missing strain yi , i ∈

[n +1, 2n −1], along with strains in the nested network dependent on the yi sequence

i = (i1 . . . in) in the following equivalent ways:

i Define the sequence
(
α j

)
, j = 0, 1, . . . , n, where α0 = 1 − i1, α j = i j − i j+1

for j = 2, . . . , n − 1, αn = in . Let Ji be the nonzero terms in sequence (α j ), i.e.

Ji :=
{

j ∈ [0, n] : α j �= 0
}
, where α j = ±1 for α j ∈ Ji . Then

Ci = yi ∪
{

y j

}
j∈Ji

, Ai = −Ri +
∑

j∈Ji

α jR j . (17)

ii Let 0 ≤ m1 < p1 < m2 < · · · < ps < ms+1 ≤ n denote the positions p1, . . . , ps

beginning the s (01) strings and positions m1, . . . , ms+1 of the last “1” before

and after the (01) strings. In other words, the sequence i in “power notation” is

given by

i = 1m1 0p1−m1 1m2−p1 . . . 0ps−ms 1n−ms+1 . Then

Ci = yi ∪
{

ym j
, yp j

}s

j=1
∪ yms+1 = i ∪

{
1m j 0n−m j , 1p j 0n−p j

}s

j=1
∪ 1ms+1 0n−ms+1 ,

Ai = −Ri +

s+1∑

j=1

Rm j
−

s∑

j=1

Rp j
. (18)

Thus, the n +1 strain nested network equilibrium is stable if and only if it has positive

epistasis.

In order to illustrate Theorem 2 and accompanying Corollary 1, we first discuss

the model dynamics in the case n = 2, which is depicted in Fig. 3a and was found to

have precisely 10 distinct feasible persistent variant sets (global asymptotic stability

in 8 of these regimes) in Browne and Smith (2018). In this case, there is just one

“non-nested” strain, y01, with the single mutation escaping the second (subdominant)

immune response z2. The single circuit consists of this strain together with the nested

strains, totaling the whole sequence space, i.e. C = {01, 00, 10, 11}, along with the
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corresponding linear form A = R00 − R10 − R01 + R11. Thus the sign of the single

quantity A determines the stability and persistence of the nested network. Here A > 0

implies that the persistent strains and positive components of the stable equilibria lie

within the nested network N = {00, 10, 11}. The precise persistence structure when

A > 0 depends upon which of equilibria (14) and (15) are positive. In particular,

the diversity increases stepwise from just the wild-type virus y0 to both immune

responses z1, z2 and three nested strains y0, . . . , yk based upon the largest k such that

Rk−1 > Qk and whether Rk > Qk , k = 1, 2, where z1, z2 persist when R1 > Q2. On

the other hand when A < 0 (which implies R1 > Q2 and z1, z2 persist), the nested

equilibrium is invaded by y3 (01). Yet y1 (10) always persists when any immune escape

occurs, independent of the sign of A and even when y3 would have a larger escape

rate in the single epitope case. Thus, we suggested in Browne and Smith (2018) that

immunodominance may be the most important factor in multi-epitope escape, which

was also inferred from data analysis in a previous study of HIV (Liu et al. 2013).

The feasible strain invasions obtained for n = 2 in previous work (Browne and

Smith 2018) can be seen as the simplest example of a more general pattern for bifur-

cations from nested equilibria obtained from Theorem 2 and Proposition 2. When the

(sign) epistasis in one of the circuits defining the nested pathway becomes negative,

the nested network becomes unstable and a transcritical bifurcation occurs. In par-

ticular, a missing strain invades the nested network when the corresponding circuit

goes from positive to negative epistasis. In the critical case of zero epistasis, or circuit

additivity, there is a line of equilibria, given by Proposition 2, which connects the

nested equilibrium with the invasion equilibrium. Indeed consider the nested equi-

librium Ẽn . We arrange the (persistent) nested virus components, together with the

invading strain, in the vector ṽ = (ỹ, 0)T , where the ỹ is from (14) and the last

component is the invading strain, yi , which is zero when at equilibrium Ẽn . In the

critical case, where the linear form Ai corresponding to circuit Ci is zero, there is a

line of equilibria given by v∗ = ṽ − βα where α is the (circuit) coefficients of Ai

and 0 ≤ β ≤ C with C = min {αk ỹk : αk > 0, k = 0, 1, . . . , n}. Thus, in the bifur-

cation where yi invades Ẽn , the invading strain replaces one of the nested strains in

the circuit with positive coefficient (αk > 0), in particular the above “C-minimizing”

nested strain, arg min ({αk ỹk : αk > 0, k = 0, 1, . . . , n}). By the proof of Theorem 2,

the positive coefficients correspond to a subset of nested strains given in order as:

ymi
, i = 1, . . . , s, where 0 ≤ m1 < p1 < m2 < · · · < ps < ms+1 ≤ n + 1 count the

maximal position of a 1 before each of s 01 strings (each at position p1, . . . , ps) in the

sequence of the missing strain. Which of these feasible strains are replaced depends

on the model parameters. Notice that if αk = 1 for all k such that αk > 0, then in

a feasible equilibrium after invasion by yi , the replaced strain would be the “circuit

positive coefficient” nested strain with smallest value at the nested equilibrium. Thus,

the replaced strain must have the property of being the inferior competitor in the nested

hierarchy with a positive coefficient in circuit linear form. In the following subsection,

we will see a similar principle in invasion of another equilibria structure besides the

nested structure, namely the one-to-one network.

A major advantage of investigating the critical case of virus strain yi invading a

known equilibria structure (here the nested network) is that new equilibria can be

obtained by application of Proposition 2, the circuit coefficients, and known equi-

123



    9 Page 18 of 42 C. J. Browne, F. Yahia

libria values. The line of equilibria (virus and immune components denoted by y

and z) remain positive in some neighborhood around the bifurcation parameter set

where the circuit linear form, Ai , is zero. Indeed, the values of z remain constant

throughout the line of equilibria for Ai = 0, so the positive components in the

boundary nested equilibrium carry over to the boundary equilibrium of the new

invasion equilibrium. For the simple case of n = 2 described above, the loss of

stability of Ẽ2 when A = 0 results in strain y3 (01) replacing either y0 (00) if

ỹ0 < ỹ2, or y2 (11) if ỹ0 > ỹ2 (displayed in Fig. 3b). By (14), the strain which is

replaced depends upon the sign of s1 − 1 + Q2

R2
. In the case of n = 3, there are

23 − 3 − 1 = 4 circuits corresponding to a non-nested invading strain. Explicitly the

circuits, characterized by the corresponding linear form (with the non-nested strain

term appearing first), are as follows: (i) A4 = −R010 + R000 − R100 + R110, (ii)

A5 = −R001 + R000 − R110 + R111, (iii) A6 = −R101 + R100 − R110 + R111,

(iv) A7 = −R011 + R000 − R100 + R111. Thus, Theorem 2 implies the nested

equilibrium is stable if and only if all of the quantities (i)-(iv) are positive. Further-

more, in each case that a single inequality fails, the following bifurcation occurs

where the missing strain replaces a nested strain y j where j is determined by

(i) arg min j=0,2(ỹ j ), (i i) arg min j=0,3(ỹ j ), (i i i) arg min j=1,3(ỹ j ), (iv) arg min j=0,3

(ỹ j ), where ỹ j are defined in terms of viral and immune response fitness quantities in

(14). For example, if a bifurcation from nested equilibrium Ẽ3 occurs through inequal-

ity (iii) switching sign, then y6 (101) replaces either y1 or y3, depending on whether

ỹ1 < ỹ3, i.e. s1 < 1− Q3

R3
. In the case this inequality holds and y1 is replaced, the new

stable equilibrium will consist of persistent strain (sequence) set {101, 000, 110, 111}.

For n = 4, there are 11 circuits determining stability of nested network, 10 of which

consist of 4 strains (ones’ complement circuits) and one that has 6 strains in the cir-

cuit, A0101 := −R0101 + R0000 − R1000 + R1100 − R1110 + R1111. Thus in the case

of invasion of the nested equilibrium Ẽ4 by strain 0101, there are 3 possible strain

replacements and (in terms of integer indexing) arg min j=0,2,4(ỹ j ) determines which

nested strain is replaced.

We can expand upon our observation of the importance of immunodominance

in determining viral evolution. We notice that in any of the invasion scenarios, a

viral strain containing minimal sequential mutations to the most immunodominant

responses will remain in the equilibrium, no matter the fitness costs. For n = 2, we

had observed that y1 (strain 10) always persists. For n = 3, the only invasion scenario

where y1 does not persist can be the case of 101 invasion with invasion equilibrium

consisting of strain sequences {000, 110, 101, 111}. For the nested equilibrium with

n+1 strains, Ẽn , replacement of the immunodominant resistant strain y1 only can occur

with invasion by a non-nested strain with resistance at the first epitope (sequence of

form 10 . . . with at least two “1” alleles), so that all strains will have at least 2 mutations.

4.2 One-to-one network determined by epistasis

Now we turn to another possible persistent equilibrium assemblage of virus and

immune response variants; the one-to-one (or strain-specific) network. Consider the

viral strains that have gained resistance to n or n − 1 immune response, forming a
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subsystem of (4) with the m = n + 1 strains containing more than n − 1 mutations

(n − 1 ones in binary sequence). For convenience, we index the strains according

to the position of the susceptible epitope (zero in binary sequence), so that in more

general Eq. (1), yi , i = 1, . . . , n + 1 has epitope set Λi = {i} or Λn+1 = ∅ and A

is a n + 1 × n matrix comprised of the diagonal matrix diag (a1, . . . , an) and a row

of zeros. This subsystem of a “one-to-one” interaction network, where each immune

response population attacks a unique specific viral strain, has been considered in

Wolkowicz (1989), Korytowski and Smith (2015), Bobko and Zubelli (2015). Stabil-

ity and persistence results, analogous to Browne (2017) for the nested subsystem, were

proved in Wolkowicz (1989) for the one-to-one network (strains yi , i = 1, . . . , n +1,

without hypercube) under the assumption of strictly decreasing strain reproduction

numbers. Although relaxing their assumption of decreasing reproduction numbers

allows for multiple saturated degenerate equilibria (with “persistent strains” as sub-

sets of [1, n + 1]) in the n + 1 strain one-to-one network, we previously proved in

Browne and Smith (2018) that the fitness assumptions (5) of our 2n strain model (4)

permit one of two feasible “one-to-one network” equilibria to be saturated (or stable)

in the larger hypercube. Indeed, define the following equilibria with persistent strains

y1, . . . , yn (E
†
n ), and with persistent strains y1, . . . , yn+1 (E

‡
n+1), where:

x‡ =
1

Rn+1
, y

‡
i = si , z

‡
i =

Ri

Rn+1
− 1, i = 1, . . . , n, y

‡
n+1 = 1 −

Pn

Rn+1
,

x† =
1

Pn

, y
†
i = si , z

†
i =

Ri

Pn

− 1, i = 1, . . . , n, with Pn = 1 +

n∑

k=1

skRk , sk = 1/Ik .

(19)

Expanding upon our prior results, we prove the stability of the one-to-one network is

determined by 2n − n − 1 circuits corresponding to potential invading strains.

Theorem 3 Consider system (4) on the full network with n epitopes (m = 2n virus

strains) and fitness costs (5). Suppose the viral strains, yi i = 0, . . . , 2n − 1, are

ordered so that Λ j = { j} for j = 1, . . . , n and Λn+1 = ∅ (where Λ j denotes strain j

epitope set (2)). If E
†
n or E

‡
n+1 with corresponding positive epistasis invasion circuits,

Ai > 0, then E
†
n (if Rn+1 ≤ Pn) or E

‡
n+1 (if Rn+1 > Pn) is stable with persistent

strains y1, . . . , yn (yn+1 also if Rn+1 > Pn). The vanishing linear forms Ai and

invasion circuits Ci corresponding to missing strains yi , i = 0, n + 2, . . . 2n − 1, are

characterized below:

Ci = yi ∪
{

y j

}
i j =0

, Ai = −Ri − (|Λi | − 1)Rn+1 +
∑

j∈Λi

R j ( j ∈ [1, n]).

(20)

Furthermore, these are the only scenarios of stable “one-to-one network” equilibria

and the above positive epistasis of n+1 strain positive equilibrium, E
‡
n+1, is a necessary

and sufficient condition for its stability.
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Note the proof of this theorem is in Appendix, and here we make a few remarks

to interpret the result. First, observe that the reproduction number Ri of a potential

invading strain yi , depends on its epitope set Λi . Because each mutation comes with

a fitness cost (5), Ri roughly correlates with number of susceptible (non-mutated)

epitopes, |Λi |, and thus both negative terms and the positive summation in (20) increase

with |Λi |. Therefore, there is no general rule for determining the sign of invading

strain circuits corresponding to the one-to-one network, each depending on the relevant

combinations of fitness costs, i.e. epistasis. We can discuss possible strain replacements

for invasion of E
‡
n+1 as before. In this case, we find that the replaced strain is ymin( j∈Λi ),

i.e. the strain susceptible to strongest immune response among the susceptible epitopes

of strain i, since this strain has lowest value in equilibrium corresponding to positive

coefficient in circuit. Compared to the n + 1 strain nested network (Ẽn), the “invasion

circuit” and strain replacement of the n+1 strain one-to-one network (E
‡
n+1) is simpler

to determine. Note that invasion of the n strain E
†
n can result in addition of the new

strain rather than replacement, and the critical case does not correspond to a line of

equilibria as with the n + 1 strain equilibria. As an example of the invasion circuits

(20), consider the case n = 3, where the missing strains with a single (0 → 1)

mutation have vanishing linear forms: A100 = −R100 −R111 +R101 +R110, A010 =

−R010−R111+R011+R110, A001 = −R001−R111+R011+R101. Each corresponds

to an embedded 2-cube measuring marginal epistasis with their single 1-allele fixed.

Note that A100 = −A6, where A6 also is the circuit corresponding to invasion of

nested equilibrium by (101). Now consider potential invasion by the wild-type strain

(000) given by A000 = −R000 − 2R111 + R011 + R101 + R110, which biologically

tells us how the three (0 → 1) two-mutation sequences combine with respect to fitness

in comparison to the three-mutation combination (111). Of note, the sign of this circuit

does not have a two-locus interpretation, making them truly of higher-order (Gould

et al. 2018).

4.3 Other equilibrium network structures and open questions

The full utility of the circuit analysis comes with bifurcations of equilibria with n + 1

strains, as our above examples illustrate, because the critical state corresponds to

persistent strains forming a circuit in Proposition 2. How far can we go with this

analysis? Can we generalize to all equilibrium structures? Observe from the proofs of

Theorem 2 and Theorem 3 that the two equilibrium networks considered, nested and

one-to-one, with n + 1 strains (Ẽn and E
‡
n+1) form a basis of R

n+1 when the strains

are considered as binary sequences with a one addended at the the end of sequences,

and moreover every binary sequence has integer coordinates with respect to this basis.

This directly leads to the “invasion circuits”, and this is generalized to any assemblage

of n + 1 strain sequences in the following proposition (proof in Appendix):

Proposition 3 Suppose S ⊂ {0, 1}n is the set of binary sequences of an equilibrium,

E∗, with n + 1 strains (|Λy | = n + 1). Assume that S × {1} is a basis of R
n+1 and

any addended binary sequence i1 ∈ {0, 1}n ×{1} has integer coordinates with respect

to this basis. Then for all i ∈ {0, 1}n \S, C = {i} ∪ S forms a circuit with vanishing

123



Virus-immune dynamics... Page 21 of 42     9 

linear form is Ai = −Ri −
∑

k∈S αkRk, where (αk)k∈S are coordinates of i with

respect to S × {1}. Furthermore, for any missing strain, yi , i /∈ Λy , the invasion rate

is given by
ẏi

γi yi
= −x∗Ai, and thus the stability of E∗ is determined by the sign of Ai.

Now consider the scenario that strain k ∈ S is replaced by i, then the new equilib-

rium sequences S ′ = {i} ∪ S\ {k} forms a basis of R
n+1 since any proper subset of a

circuit is linearly independent. Thus the strain replacement with invader i will result

in this new equilibrium structure S ′ also forming a circuit if any sequence has integer

coordinates with respect to S ′ × {1}. In this fashion, we might observe a sequence of

strain invasions determined by circuits. Notice that strain invasions of the two n + 1

strain equilibria structures explored here, nested and one-to-one networks, would result

in a strain replacement whose new equilibrium has stability determined by linear form

on circuit. Indeed, because the coordinate of any potential invader i was shown to be

+1 corresponding to the strain it can replace, it is not hard to show that the new basis

will also yield integer coordinates for any other sequence. Once we move past this

initial invasion though, it would not be clear if the circuit stability pattern continues

though.

Another consideration is whether a strain can be added to an n strain equilibrium

(where n is number of persistent immune responses) in order to have a positive n + 1

strain equilibrium which satisfies Proposition 3, i.e. forms a set S corresponding to

a basis with integer coordinates in the extended n + 1 dimensional binary sequence

space. In our examples, we add the completely resistant strain (with sequence 1) to

the n strain nested or one-to-one networks (with n persistent immune responses) to

get an n + 1 strain equilibrium satisfying the hypotheses of Proposition 3. In general,

this might not always be the case. First, we recall that determining the feasibility of

a n + 1 strain positive equilibrium is dependent on calculation of C =
(

A′
R

′
)T

by

Proposition 1, with A′ as the virus-immune interaction network of the n + 1 strains

where the rows of A′ correspond to the complements (1−i) of the viral sequences in S.

If there is a feasible n strain equilibrium with network A and reproduction numbers R,

then the complete resistance strain 1 can be added if R1 > 1 + æA−1R. However, the

calculation for adding other strain sequences is more complicated, thus the problem

of both determining feasibility and whether an equilibrium satisfies Proposition 3 may

be difficult.

As an example, consider another possible equilibrium type, the n strain 1-mutation

network: S1 =
{

y1
i | i = 1, . . . , n

}
in which y1

i has only escaped zi so that its binary

sequence is i1 = (δ�i )
n
�=1 where δ�i is Kronecker delta function. If we add yw (0) to S1,

then circuits determine stability, however adding 1 does not yield circuits determining

stability (in particular stability condition for invasion by 0) is not a circuit. Indeed, we

can derive some conditions for positivity of an equilibrium consisting of viral strains

S̃1 = {0}∪S1 (see Appendix 1). Consider the case n = 3, where the circuit for invasion

of S̃1 by strain i = 1 can be calculated according to coordinate basis description in

extended sequence space:
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⎛
⎜⎜⎝

1

1

1

1

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

1 0 0 0

0 1 0 0

0 0 1 0

1 1 1 1

⎞
⎟⎟⎠α ⇒ A = −Ri −

∑

k∈S

αkRk = −R111 − 2R000 + R100 + R010 + R001

Similar, to the example circuit given in the one-to-one network, this measures

higher-order epistasis, in particular whether the one-mutation associations predict

the three-mutation combination. Here, the strain replacement would be 111 replac-

ing 001 because this sequence would have the smallest equilibrium value of positive

coefficient strains in S̃1. It can be shown the other invasion circuits correspond to

conditional epistasis (embedded 2-cubes), where the single non-mutated epitope of

the invader remains fixed. Indeed, using the coordinate basis method above, we have

the following proposition for invasion of the “≤ 1 mutation” network:

Proposition 4 Consider the network with at most one mutation, S̃1, consisting of wild-

type and 1-mutation viral strains y0, y1, . . . , yn where the sequence of y j is j =(
δ� j

)n

�=1
for j = 1, . . . , n. Suppose that there is a positive equilibrium, Ên , with S̃1

as persistent viral strain set Ωy . Ên is stable if and only if Ai > 0, where i = n +

1, . . . 2n − 1, and linear forms Ai correspond to invasion circuits Ci , as characterized

below:

Ci = yi ∪ y0 ∪
{

y j

}
i j =1

, Ai = −Ri − (n − |Λi | − 1) R0 +
∑

j /∈Λi

R j ( j ∈ [1, n]).

(21)

Observe that for the case of n = 3, we have now highlighted all the circuits determin-

ing stability of three equilibria structures: the nested, one-to-one, and one-mutation

network. While there are 4 corresponding linear forms for each network dictating

invasion by each missing strain, together this results in 10 distinct circuits since

C = {000, 100, 110, 010} and C = {100, 110, 111, 101} are invasion circuits that the

nested network shares with the one-mutation and one-to-one network, respectively.

There are 20 total circuits for n = 3 (Beerenwinkel 2007), and we leave it to future work

as to whether the any of the other 10 circuits correspond to stability of feasible “transi-

tional equilibria” between the highlighted networks. However, the immunodominance

hierarchy will impose an effective fitness ordering on the virus genotypes so that for

example the “reverse nested” network {000, 001, 011, 111} would never be feasible.

Therefore, some circuits should not correspond to any meaningful bifurcation under

the assumptions of our model.

4.4 Special cases of fitness landscapes

While fitness landscapes on the n-dimensional hypercube generally yield a multitude

of circuits determining bifurcations and stability of equilibria, there are some sim-

ple landscapes that can be analyzed. First, consider the pairwise interaction case as

described by Eq. (13), where Ri = R0 − c · i +
∑n

j=1 i j

∑
k> j ik B jk for a (strictly)

upper triangular matrix B. If the matrix B is positive, then the fitness of any sequence
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with at least 2 mutations will always be larger than the additive case, whereas if B

is negative, the resulting fitness from a pair of mutations is less than expected under

additivity. Thus, in the former case of B positive, synergistic interactions should favor

double mutants, while in the latter antagonistic interactions might discourage consec-

utive mutations. The exact translation of these informal notions to expected results in

our model with sign-definite pairwise interactions is not obvious due to there being a

dynamic overall fitness landscape when taking into account immune response (preda-

tor) populations and other variables/parameters which might influence the viral escape

pathway. Nevertheless, we prove here that the nested network is generally stable when

pairwise loci interaction matrix B is positive, whereas a non-nested network, such as

one-to-one or “at most one mutation” network, is stable when B is negative.

Theorem 4 Consider binary sequence model (4) having pairwise interaction fitness

landscape (13) with upper triangular matrix B that is sign-definite. Assume that R0 >

Q1 (so that at least one virus strain and immune response persists). If B jk > 0 for

all k > j , then the nested network is stable with uniformly persistent strains (as in

Theorem 2). On the other hand, if B jk < 0 for all k > j , then one-to-one network

(or network with at most one mutation) is stable against invasion and persistent if

components of associated equilibrium are positive.

Another basic example of a fitness landscape is multiplicative, where each mutation

at a fixed locus reduces the reproduction number of a strain by a fraction regardless

of the of sequence background at other loci. Thus the loci act independently, but not

additively. This multiplicative fitness landscape has been assumed in several studies of

HIV-immune evolution at multiple epitopes, e.g. Althaus and Boer (2008), Deutekom

et al. (2013). We prove the following proposition, generalizing a theorem in Browne

and Smith (2018) showing multiplicative equal fitness costs evolve a nested network.

Theorem 5 Assume that fitness costs of mutating locus j come with a multiplicative

reproductive loss f j , i.e. Ri = R0

∏
i j =1

f j where 0 < f j < 1, j = 1, . . . , n. Then the

nested network is stable and persistent.

5 Simulations of and predictions for virus-immune evolution

In this section, we conduct simulations of model (4), along with a hybrid stochas-

tic/deterministic version, in order to illustrate our results. The model was coded in

MATLAB, where the built-in ODE solver ODE45 was utilized for simulations. For

the deterministic model, we find numerical solutions to (4) under the multiplicative

viral fitness landscape for n = 3 epitopes, initiating the simulation with positive con-

centrations of all virus and immune variants, yi , i = 0, . . . , 7 and z j , j = 1, 2, 3,

where we adopt the nested priority indexing from Sect. 4.1. The immunodominance

hierarchy utilized in the simulation is I1 = 6, I1 = 5.7, I1 = 5.4. We assume

each epitope mutation imparts equal independent multiplicative fitness costs, i.e. if

(i1 . . . in) represents the epitope sequence of strain i and Ri = R0(1 − κ)i1+···+in

where R0 = 11.8 and κ = 0.1 is fitness cost in our simulation. The scaling factors
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for viral and immune variant growth rates in (4) are set to: γi = 3.5, i = 0, . . . , 3

and γi = 18.5, i = 4, . . . , 7. The corresponding calculations lead to positive epistasis

in the invasion circuits of the nested equilibrium Ẽ3 (Theorem 2 and Proposition 5)

and, as shown in prior work (Browne and Smith 2018), result in a sequential nested

immune escape trajectory (Fig. 4).

Do the predicted patterns from our theoretical results on differential equation sys-

tem (4) hold when random mutation is included (as in HIV infection)? To answer this

question, we conduct numerical simulations of a stochastic extension of the model

using parameters representative of HIV. However, since this is a preliminary simula-

tion effort, we choose a rather large viral wild-type (basic) reproduction number R0

and low death rate of immune response to better mimic virus-immune evolution for the

stochastic model, as in Rife Magalis et al. (2021). Similar to the methods in Deutekom

et al. (2013), we simulate mutations of the n loci by drawing from a binomial distribu-

tion in a hybrid ODE-stochastic algorithm. With a mutation rate of ε = 1.67 × 10−3

per site per day, we compute the number of mutations during replication as follows. We

update mutations at fixed time steps, taken as Δt = 1 day, where we approximate the

daily number of cells that become de novo infected per viral variant as Mi = βi XYi

cells. To improve computation speed, we assume that only one of the n loci mutates

per replication, i.e. the small probability of simultaneous mutations are neglected.

Then for each viral variant i = 1, . . . , m and locus � = 1, . . . , n, the number of

mutations is given by Bin(Mi , ε). The viral populations are updated accordingly, and

the ODE solver is run for Δt time units and then the process repeats. In the following

simulations, we assume that initially there is just the wild-type virus, y0(0) > 0, all

other strains are absent yi (0) = 0, i = 1, . . . , 2n − 1, and each immune response

is present, z j (0) > 0, j = 1, . . . , n. Thus the extended model allows for random

mutation and deterministic selection evolving from initial infection by the founder

(wild-type) strain.

First for the stochastic extension of (4), consider n = 3 epitopes, which for sim-

plicity is much less than an actual HIV genome and taken to be a representative

cluster or sample of loci. We utilize variables and parameters from the unscaled ver-

sion of (4), system (1) in Browne and Smith (2018) X = b
c

x, Yi = b
δ

yi , Z j =
ρ j

I j
z j , ρ j =

μ j

bq j
, σ j =

μ j

c
in order to represent concentrations (ml−1) of target

cells, virus and immune response, along with immune decay and scaling factor. Let

b = 5×103 (ml ·d)−1, c = 0.01 d−1, δ = 0.5 d−1, μ j = 0.01 d−1, q j = 1.5. For the

immunodominance hierarchy, we assume that I j , j = 1, . . . , n are ordered uniform

random variables in the range [3.75, 7.875]. First, assume that the viral fitnesses are

calculated as Ri =
[∑

i j =1(1 − κ j ) +
∑

i j =1,ik=1 B jk

]
R0, where additive fitness

costs κ were uniformly distributed in the range [0, 0.5]. and pairwise interaction B jk

is uniformly distributed (random positive epistasis) in the range [0, 1].. Then, all pair-

wise interactions, B jk , are positive, along with the invasion circuits which we index

i = 1, . . . , 4 in ascending order with respect to the invading binary sequence con-

version to decimal representation. The system is expected to converge to the nested

network by Proposition 4, with asymptotic stability of equilibrium Ẽ3, persistence of

nested strains y0, . . . , y3 and extinction of remaining viral strains y4, . . . , y7 subject

to small perturbations caused by random mutations, as displayed in Fig. 5a. Next, we
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Fig. 5 Simulations of extended model with stochastic mutation and pairwise epistatic interactions illustrate

eco-evolutionary dynamics. a Trajectories of virus strains in the case of n = 3 epitopes with uniformly

distributed viral and fitness quantities, and (random) positive pairwise interactions, B jk , which implies

positive epistasis with respect to “nested circuits” and convergence to nested steady state containing

{000, 100, 110, 111}. b Increasing viral strain y6 (101) reproduction number (R6) changes the sign of

its invasion circuit so that epistasis is no longer positive, resulting in it replacing y3 (111) and non-nested

persistent strains. c Assuming negative pairwise interactions also leads to non-nested convergence, here

to network with at most one mutation containing {000, 100, 010, 001}. Note that (110) strain persists at

low levels due to invasion circuit being close to zero, along with random mutation. Gaussian distributed

pairwise interactions (B jk random sign) result in convergence to nested network in d because positive B jk

randomly drawn

increase the reproduction number of y6 (101), so that the corresponding invasion cir-

cuit linear form A3 switches from positive to negative. From our feasible bifurcations

based on the circuit coefficients, we predict that (101) can replace (100) or (111).

Observe in Fig. 5b, that equilibrium Ẽ3 is altered by (101) invading (111), although

the mutations allow to (010) to be only at slightly lower levels than (100) in the new

strain hierarchy.

When epistatic interactions become negative by subtracting the pairwise matrix

terms, B jk , from additive fitnesses, we project a non-nested pattern according to

Proposition 4. Indeed, in Fig. 5c, simulations converge to the network with at most one

mutation, and hence the antagonism of negative interactions between epitopes thwarts

the escape of virus at multiple epitopes. Finally, we consider Gaussian distributed pair-

wise interactions, where B jk are random normal variables with mean zero (random

signs) and variance of 0.1 affecting magnitude of epistasis. Observe that the system

may (Fig. 5d) or may not converge (Fig. 6a) to the nested network depending on the

sign of the invasion circuits determining the overall epistasis encoded in the nested

pathway. Furthermore, in the latter case, simulations converge to an equilibrium struc-

ture that is not “close” to being nested, one-to-one, or “at most one mutation” network,
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Fig. 6 Simulations of model with stochastic mutation consistent with analysis of viral fitness epistasis in

deterministic system. Generally, Gaussian distributed pairwise interactions can result in trajectories con-

verging to steady states other than nested, one-to-one or “at most one mutation”, as illustrated in simulations

(a), and in (b,c,d), with n = 3 and n = 5 epitopes, respectively. Observe that the dynamics in original

(deterministic) ODE solution displayed in (b) are consistent with stochastic mutation simulations (g,h),

except for low level persistence of two strains with small negative invasion rates

indicating the presence of additional stable equilibrium structures and corresponding

circuits not analyzed in this study for the n = 3 epitope setting. We also consider

n = 5 under epitopes with the same fitness landscape structure, although a variance of

0.05 in the normally distributed pairwise epistasis is set to counteract accumulated fit-

ness cost from strains with more mutated epitopes. Simulations displayed for this case

show that numerical solutions of the (deterministic) model (4) (Fig. 6b are consistent

with the stochastic extension (Fig. 6c and d), supporting our argument that theoreti-

cal results in the differential equations carry over to the eco-evolutionary dynamics

with random mutation. Here, the fitness costs and non-positive epistasis circuits (with

respect to nested network) prevent the dominance of strains with several mutations,

and lead to the extinction of the weakest immune response z5, along with persistence

of only 4 strains, despite the 5 epitopes.

In Fig. 7, we simulate eco-evolutionary dynamics again for 5 epitopes under

Gaussian distributed pairwise interactions, where B jk are zero-mean normal random

variables with variance of 0.05, and all other parameter assumptions remaining the

same. The balance between immune response pressure selecting for resistance and

the fitness costs occurring with each epitope mutation results in the virus mutant

strains evolving to escape some immune responses, but the ancestral strains, includ-

ing wild-type y0 can still persist (Fig. 7a). In addition, “backward” mutations allow

mutated epitopes to revert back to wild-type (0) in a large proportion of viral popu-

lation (Fig. 7b), even after invasion by mutant allele (1), as the sign of the invading

circuit linear form and rise of more immune response populations (Fig. 7c) deter-
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Fig. 7 Fixation of resistant alleles and nestedness increases when incorporating compensatory mutations.

a,b and c Simulations of model (4) with random viral mutations for n = 5 epitopes under Gaussian

distributed pairwise epitope interaction fitness cost landscape show that a viral strains yi (t), (b) allele

frequency at each epitope and (c) immune responses z j (t) converge to steady state with large prevalence

of wild-type (0) allele in viral population at each epitope. d,e and f Adding complementary loci for each

epitope to model which can compensate for 95% of fitness cost of resistance mutations. The compensatory

mutations drive d viral strains yi (t) to rapidly converge to “nearly nested” structure as e sequential epitope

and corresponding compensatory mutations sequentially become ascendant in population, and f immune

responses z j (t) are escaped in order of immunodominance hierarchy

mine strain additions or replacements which result in the persistent strain structure

of the equilibrium. In HIV infection, resistance mutations often to become more

dominant in viral population with several escapes persisting in the population with-

out reversion because of compensatory mutations in linked loci which allow the

virus to regain most of the fitness cost associated with an epitope mutation (Althaus

and Boer 2008). We simulate compensatory mutations by adding a complemen-

tary loci for each epitope j = 1, . . . , 5, which is either neutral (0), not impacting

fitness or if mutated (1) can result in the virus restoring 95% of its original fit-

ness value if the strain has mutated epitope j from wild-type (0) to resistant (1).

Indeed, consider loci 5 + j , j = 1, . . . , 5, and viral sequence i
′ with i5+ j = 0

which has undergone mutation and fitness cost in epitope j from neighboring strain
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Fig. 8 Simulating pulse immunotherapies in two-epitope model shows priming subdominant response z2

is more effective than therapy with dominant response z1. Viral strain yi (t) and healthy cell x(t) (a), along

with immune response z j (t) (b), trajectories in model (4) under no treatment initially, then periodic z1

immune infusions, followed by treatment interruption, and finally periodic z2 immune infusions. Even

though subdominant resistant strain y3 (01) has higher reproduction number, the z2 therapy restores larger

healthy cell count as system birfurcates from nested (strains {00, 10}) to “at most one mutation” (strains

{00, 10, 01}) persistent network

i (i j = 0 → i
′
j = 1 ⇒ Ri > Ri

′ ). Then assuming all other epitopes remain fixed,

we suppose the strain i
′′ gaining compensatory mutation has the following update

in fitness: i
′
5+ j = 0 → i

′′
5+ j = 1 ⇒ Ri

′′ = Ri
′ + .95

(
1 −

R
i ′

Ri

)
. In contrast to

the case of reproduction numbers solely dependent on epitope sequence, the addition

of these complementary loci allows for sequential epitope escapes with concurrent

compensatory mutations dominating the viral population (Fig. 7d,e) and suppressing

the immune response (Fig. 7f).

Finally, we numerically illustrate implications of our results for designing potential

immunotherapy strategies against an immune escaping virus such as HIV. We consider

the deterministic ODE (4) with n = 2 epitopes (diagram shown in Fig. 3a), and add

periodic infusions of the immune response populations, z1(t) and z2(t). In particular,

we incorporate periodic infusion times, tk = t ( j)+ kτ , k = 1, . . . , N , of the immune

population z j by applying an impulsive increase of D units to the model, i.e. Dirac

delta distributions (Dδ(t − tk)) are added to the ż j component in (4), and numerically

solve in the cases of no treatment and distinct immunotherapies (see Fig. 8). The viral

fitness parameters utilized are R0 = 15, R1 = 8, R2 = 3, R3 = 11.5, I1 = 10, and

I2 = 2.5 so that without therapy the system converges to nested equilibrium Ē2 with

y0, y1, z1, z2 persisting. Upon convergence to this rest point after perturbing the wild-

type (immune-free) virus equilibrium Ẽ0 by introducing mutant strains and immune

responses, at t (1) = 500 days we begin to pulse the dominant immune response z1

by adding D = 1 units of cells every T = 10 days (Fig. 8a and b). The persistent

variants remain in the same nested structure and the system settles into a periodically

forced solution with an increase in the “z1-resistant” viral strain (y1 or 10) prevalence,

decrease in y0, and modest 12.4% jump in healthy cell count. After removing the

z1-therapy and solutions returning to original state Ẽ0, at t (2) = 1400 days we test

the periodic z2-therapy with the same impulse magnitude of D = 1 and frequency

T = 10 days. Contrary to the first therapy, the periodic infusion of z2 immune cells

causes a bifurcation from the nested to the “at most one mutation” network with
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addition of the subdominant z2-resistant strain y3 (01) into the viral quasi-species.

Furthermore, both z1 and z2 populations are enhanced and the healthy cells increase by

around 67%. In each case, the stability condition given by inequality (11) is altered, so

that even though the viral fitnesses Ri are constant, the pulsed z j levels can be thought

to induce effective reproduction numbers which may change the sign of epistasis in

the circuits (17) (or (18)) corresponding to the nested equilibria. Here, the strategy

of priming the subdominant response z2 tilts this effective fitness landscape toward

negative epistasis, convergence to “at most one mutation” network, and, although

invasion by the higher mutant fitness strain y3 occurs, an improved outcome for host

is obtained.

6 Discussion

In this paper, we rigorously connect population dynamics thresholds with concepts

from evolutionary genetics, which allows us to characterize distinct regimes of multi-

strain persistence, stability, and resistance pathways in a virus-immune ecosystem in a

biologically meaningful manner. The complexity of the viral (binary sequence) genetic

structure, along with dynamic virus fitness landscape and immune response popula-

tions, lead to a multitude of equilibria and general stability conditions which challenge

interpretation, classification or simplification in terms of fundamental parameters such

as reproduction number. By finding equivalent sharp thresholds based on an appro-

priate definition of epistasis in the fitness landscape governing persistent equilibrium

network structures, we are able to gain insight on eco-evolutionary dynamics. In par-

ticular, the prediction of the virus escape pathway against immune attack on multiple

epitopes is determined by epistasis in the “invasion circuits” controlling the bifurca-

tions in our dynamical system.

Our theoretical results lend support to circuits, the minimal additive combinations

of binary sequences (Beerenwinkel 2007), as the fundamental measure of epistasis

in a fitness landscape. Other ways to quantify epistasis may be simpler or offer other

advantages, but circuits underly fitness landscape shape, and here we show that they

also dictate prey-predator dynamics on top of building the phenotypic/genetic structure

of the prey (virus) population. This connection between population dynamics and

genetics naturally comes from applying linear algebra to formulate the invasion rates of

missing virus strains at an equilibrium as minimal combinations of virus reproduction

numbers. Moreover, the invasion circuit and corresponding linear form encode the

resident strains which can be replaced by a mutant strain, and together with their

equilibrium strain densities, determine the bifurcations resulting in new feasible steady

states.

The persistent network structures of virus and immune response populations ana-

lyzed in this work represent distinct patterns formed by the forces of viral resistance

and fitness costs, and immunodominance. The nested network equilibria admits a

diverse ecosystem with generalist to specialist ordering in prey-predator interactions,

as opposed to the modularity of the one-to-one (strain-specific) and “at most one

mutation” network. In terms of viral escape from the immune response, the nested

pathway offers the most efficient evolution as mutant strains sequentially gain resis-
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tance to immune populations strongest to weakest. That the special case of positive

(or synergistic) pairwise interactions between epitopes presents a nested trajectory

(Proposition 4) highlights how convergence to this network coincides with the classi-

cal definition of positive epistasis favoring double mutants. While this proposition may

be expected, both the dominant epitope escape being favored even when exacting a

larger fitness cost than other epitopes and the viral (prey) fitness epistasis determining

fate of the virus-immune (prey-predator) ecosystem, are less intuitive features of the

result, along with our more general Theorem 2 on nested network equilibrium stabil-

ity. In contrast, the one-to-one and “at most one mutation” network are instances of

resulting dynamics for negative (antagonistic) pairwise interactions, and particularly

the “at most one mutation” structure is ideal from the host perspective of containing

multi-epitope resistance.

Numerical solution of the ordinary differential Eq. (4), along with an extended

version that includes randomly drawn mutations, demonstrate how eco-evolutionary

trajectories are determined by epistasis in the viral fitness landscape, as predicted by

our analytical results. Indeed efficient viral escape in a nested fashion occurs when

our necessary and sufficient conditions regarding positive epistasis are satisfied, and

becomes more complex as negative epistatic interactions allow different combinations

of resistance mutations to persist in the virus population. Under random epistatic

pairwise interactions, any number of equilibria structures can be realized which may

hinder multi-epitope resistance, but compensatory mutations may allow for sequential

viral escape of immune responses, as shown in Fig. 7. Furthermore, our model and

results may inform upon immunotherapy for HIV. In most clinical trials of therapeutic

vaccines, potentially favorable T cell responses were of limited success due to viral

escape from epitopes used in vaccine (Pantaleo and Lévy 2013), but one possible

strategy is to immunize with a set of the most conserved (associated with high fitness

cost of resistance), subdominant epitopes (McMichael 2006; Ahmed et al. 2019).

Thus, it may be desirable to guide the virus-immune trajectory toward a non-nested

network structure by priming subdominant immune responses. Here, we illustrate that

this strategy can work even when resistance to subdominant response comes with less

fitness cost, as a bifurcation is induced to a state with viral mutant competition and

optimal healthy cells compared to an immunotherapy with the dominant response (see

Fig. 8).

Future work can build upon our results in several directions. While the dynamics

for n = 2 epitopes is resolved for model (4), the case n ≥ 3 has not been completely

classified, and our work shows that feasible stable equilibria may be discovered through

analysis of relevant circuits, although even n = 3 is challenging due to large number of

strain combinations. One way to explore how a particular ecosystem structure evolves

is to follow the convergence of stepwise mutations and selection from wild-type strain

in the hybrid stochastic/deterministic approach of polymorphic evolution sequences

(Champagnat and Méléard 2011). However, simulations conducted (not shown here)

revealed that the attracting (saturated) equilibrium was not obtained by a sequence

of viral strain and immune response invasions starting from initial infection by the 0

strain, thus multi-loci mutations and invasions are necessary, perhaps in the spirit of

the “adaptive walks” jumping between equilibria of Lotka-Volterra systems developed

in Kraut and Bovier (2019). This approach of obtaining Lotka-Volterra dynamics from

123



Virus-immune dynamics... Page 31 of 42     9 

limits of stochastic models relies on strong conditions guaranteeing global stability for

the ODE, and so it is an open problem for our system. Finally, by incorporating data

on the vial fitness landscape at multiple epitopes in the face of epistatic interactions

and concurrent immune response attack, model parameterization with calculation of

“invasion circuits” may verify theoretical results, predict eco-evolutionary trajectory,

and inform upon potential immunotherapies.
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Appendix

Proofs of Theorems

Proof of Proposition 2 Let C ⊂ {0, 1}n be a circuit and suppose by way of contradic-

tion that E∗ = (x∗, y∗, z∗) is an equilibrium of (4) with y∗
k > 0 for corresponding

sequences k ∈ C. Adding up the relative growth rates of these nonzero components at

equilibrium in differential Eq. (4), we find the following:

0 =
∑

k∈C

αk
ẏk

γk y∗
k

= x∗
∑

k∈C

αkRk −
∑

k∈C

αk −
∑

k∈C

αk

n∑

j=1

(1 − k j )z
∗
j

= x∗
∑

k∈C

αkRk −
∑

k∈C

αk −
∑

k∈C

αk (1 − k) · z∗

= x∗
∑

k∈C

αkRk −
(
1 + 1 · z∗

)∑

k∈C

αk +

(∑

k∈C

akk

)
· z∗

= x∗
∑

k∈C

αkRk,

because
∑

k∈C αkk = 0 and
∑

k∈C αk = 0 for a circuit. This contradicts assumption∑
k∈C αkRk �= 0 and thus proves the first statement. The next statement follows from

Proposition 1 upon assuming
∑

k∈C αk Rk = 0. Indeed, uniqueness of equilibrium in

a certain positivity class is equivalent to Ker(A′)T ∩ R
′⊥ = {0}, which is equivalent

to the condition that the augmented matrix C =
(

A′
R

′
)T

has trivial kernel (Browne

and Smith 2018). Here A′ is the m′ × n′ interaction matrix consisting of the m′ strains
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comprising the circuit and n′ (positive component) immune responses. Consider the

vector α consisting of the circuit weights. Then from the previous points, we find that

Cα = 0. Thus, there cannot be a unique equilibrium with y∗
k > 0 for all k ∈ C. If such

an equilibrium exists, then the virus component vector denoted by ȳ which satisfies

ȳ − y∗ ∈ Ker(A′)T ∩ R
′⊥, also satisfies equilibrium equations, and thus there are

infinitely many equilibria with component ȳ = y∗ + βα for β ∈ R. ��

Proof I of Theorem 2 In order to prove the theorem, we show that the general satu-

rated equilibria inequalities (11) reduce to vanishing linear forms of invasion circuits

(Definition 3) when evaluated at the nested network equilibria (14). Then we will

apply Theorem 1 to show stability of nested equilibrium and uniform persistence of

associated positive component strains.

Let R0 > Q0 := 1 and k be the largest integer in [1, n] such that Rk−1 > Qk .

First, we look at the case k = n and Rn > Qn when Ẽn is non-negative equilibrium

with positive components at the n + 1 nested strains y0, y1, . . . , yn . Consider a given

missing viral strain yi (i ∈ [n + 1, 2n − 1]) with sequence i. We define a linear form,

Ai , based on it’s invasion rate as follows:

ẏi

γi yi

= −
Ai

Rn

, where − Ai := Ri − Rn −

n∑

j=1

(1 − i j )
(
R j−1 − R j

)
. (22)

The telescoping sum above is determined by the following sequence:
(
α j

)
, j =

0, 1, . . . , n, where α0 = 1 − i1, α j = i j − i j+1 for j = 2, . . . , n − 1, αn = in . In this

way, −Ai := Ri −
∑n

j=0 α jR j . In order to prove that this is a vanishing linear form of

a circuit, we show that it is the linear form of a minimally linearly dependent collection

of extended binary sequences. Denote the binary sequences of nested network as

k0, . . . , kn corresponding to ordered strains y0, . . . , yn . Let N ⊂ {0, 1}n+1 denote

the subset of nested extended binary sequences, where î = i1 ∈ {0, 1}n+1 \N and

k̂ = k1 ∈ N represent binary sequences extended by digit 1. Notice that N forms a

basis of R
n+1 (since the n + 1 × n + 1 matrix (kn, kn−1, . . . , k0) has a triangular row

reduced eschelon form with values ±1 on diagonal). Thus for î ∈ {0, 1}n+1 \N , there

is a unique set of coefficients α j , j = 0, 1, 2, . . . , n, yielding î as a linear combination

of the nested network vectors:

î = α0k̂0 + α1k̂1 + · · · + αn k̂n .

The above linear system resolves as follows:

α1 + α2 + · · · + αn = i1

α2 + α3 + · · · + αn = i2

...

αk + αk+1 + · · · + αn = ik

...
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αn = in

α0 + α1 + · · · + αn = 1

which leads us to the set of coefficients αk where k = 0, 1, . . . , n defined by the

following:

α0 = 1 − i1

αk = ik − ik+1 for k = 1, . . . , n − 1

αn = in

Therefore the set î ∪
{

k̂
}

k̂∈N
is linearly dependent. Let αi be the nonzero terms in

sequence (α j ), i.e. Θi :=
{

j ∈ [0, n] : α j �= 0
}
, where α j = ±1 for α j ∈ Θi . Since

(α j ) is unique linear combination with respect to basis N , the set î∪
{

k̂
}

k̂∈Θi

is a min-

imal linearly dependent set. Thus we obtain the following circuit and corresponding

vanishing linear form:

Ci = yi ∪
{

y j

}
j∈Θi

, Ai = −Ri −
∑

j∈Θi

α jR j .

Furthermore, if Ai > 0, then
ẏi

γi yi
< 0 for i ∈ [n + 1, 2n − 1]. For this case k =

n, the nested equilibrium (14) include all immune response z1, . . . , zn as positive

components. If Rn > Qn , then all missing species of non-negative equilibrium, Ẽn

are the yi with index i ∈ [n + 1, 2n − 1]. Thus, inequalities (11) hold strictly and the

conclusions of Theorem 1 follow, in particular, Ẽn is stable, y0, . . . , yn are uniformly

persistent, and missing strains yi , i ∈ [n +1, 2n −1], go extinct. Notice in this case of

Rn > Qn , that Ẽn becomes unstable if any of the invasion circuits’ linear forms become

non-positive. In particular, if Ai ≤ 0, then
ẏi

γi yi
≥ 0, yielding the necessary condition

of stability of Ẽn based on sign of Ai which is stated in Corollary 1. Furthermore, by

Proposition 2, in the critical case of Ai = 0, there exists a continuum of equilibria

with positive components including the circuit elements consisting of invading strain,

yi and subset of nested strains Si , Ci = {yi }∪Si , which connects to nested equilibrium

Ẽn .

Next, consider the case k = n but Rn ≤ Qn , then we consider non-negative

equilibrium En . Notice that

ẏi

γi yi

= −
1

Qn

⎡
⎣Ri − Qn −

n−1∑

j=1

(1 − i j )
(
R j−1 − R j

)
− (1 − in) (Rn−1 − Qn)

⎤
⎦

= −
1

Qn

⎡
⎣Ri − Rn−1 −

n−1∑

j=1

(1 − i j )
(
R j−1 − R j

)
+ in (Rn−1 − Qn)

⎤
⎦

123



    9 Page 34 of 42 C. J. Browne, F. Yahia

≤ −
1

Qn

⎡
⎣Ri − Rn−1 −

n−1∑

j=1

(1 − i j )
(
R j−1 − R j

)
+ in (Rn−1 − Rn)

⎤
⎦

= −
Ai

Qn

,

where Ai is the same vanishing linear form (22) with corresponding circuit Ci as prior

case. Therefore, if Ai > 0 (invasion circuit has positive epistasis), then
ẏi

γi yi
≤ − Ai

Qn
<

0. The only other missing species additional to yi , i ∈ [n+1, 2n−1], is yn . It is not hard

to see that
ẏn

γn yn
= Rn−Qn

Qn
≤ 0. Thus, all saturated inequalities (11) are satisfied strictly

(except when Rn = Qn), and stability of En (and other conclusions) from Theorem 1

follow. In the case Rn = Qn , arguments from Browne (2017) give same result. Finally,

suppose k < n, so there are k positive component immune responses, z1, . . . , zk , in

feasible nested equilibrium Ẽk or Ēk . Consider the missing strains yi , i ∈ [n+1, 2n−1],

which are non-nested strains. Let yi be contained on the k dimensional hypercube. It

necessarily has binary sequence where ik+1 = · · · = in = 0. Observe from above that

the invasion circuit involving yi will contain nested strains on the k dimensional (sub-

)hypercube; y0, . . . , yk . It follows that if Ai > 0,
ẏi

γi yi
≤ −Ai

Ck
< 0, where Ck = Rk

when Rk > Qk and Ck = Qk Rk ≤ Qk . For a strain yi not on k dimensional

hypercube, then we can find another strain y� with same sequence in first k bits, and

less mutations overall, so that R� > Rk . Then it is not hard to see that

ẏi

γi yi

= Ri x∗ − 1 −

k∑

j=1

z∗
k < R j x∗ − 1 −

k∑

j=1

z∗
k =

ẏi

γi yi

≤ 0.

Arguments from Browne (2017) show that
s j ż j

σ j z j |E∗
< 0 for j > k. Applying Theorem

1 gives the desired result. ��

Proof II of Theorem 2 We prove the case where Rn > Qn , so that Ẽn is feasible equi-

librium and, by same arguments in Proof I above, the other cases follow. Consider a

given missing viral strain yi (i ∈ [n +1, 2n −1]) with sequence i. Define the following

linear form based on it’s invasion rate:

ẏi

γi yi

= −
Ai

Rn

, where − Ai := Ri + Rn +

n∑

j=1

(1 − i j )
(
R j−1 − R j

)
,

and Cn = Rn when Rn > Qn and Cn = Qn Rn ≤ Qn . We claim that Ai = 0 in

additive case, and furthermore Ai �= 0 if any (non-zero) viral fitness is removed from

Ai in the resulting sum. In other words we claim that Ai defines a circuit C containing

strain i and other strains on nested network. To test additivity, it suffices to consider

the linear form on the binary sequences:

− fi := i − 1n −

n∑

j=1

(1 − i j )

(
1 j−10n− j+1 − 1 j 0n− j

)
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Since i is not in nested network (i ∈ [n+1, 2n−1]), there exists p ∈ [1, n−1] such that

i p = 0, i p+1 = 1. In other words, there exists a 01 string in the binary sequence i. We

prove that Ai defines a circuit by induction on the number of 01 strings, s. First suppose

that s = 1. Let 0 ≤ m1 < p be maximal such that i p = 1 and p + 1 ≤ m2 ≤ n be

maximal such that im2 = 0. With these conditions, i = 1m1 0p−m1 1m2−p0n−m2 . Then

− fi := i − 1n −

n∑

j=1

(1 − i j )

(
1 j−10n− j+1 − 1 j 0n− j

)

= i − 1n −
(
1m1 0n−m1 − 1p0n−p

)
−
(
1m2 0n−m2 − 1n

)

⇒ fi = i − 1m1 0n−m1 + 1p0n−p − 1m2 0n−m2

= 0p1m−p−10n−m2 − 0p1m−p−10n−m2

= 0. (23)

Furthermore fi = i − 1m1 0n−m1 + 1p0n−p − 1m2 0n−m2 contains the viral sequences

corresponding the non-zero fitness quantities in Ai . Thus Ai defines a circuit since

the minimal circuit size is 4. Now for the induction step, consider s > 1. Assume that

A� defines a circuit for any sequence ‘ with s − 1 or less (01) strings, and suppose the

sequence i has s (01) strings. Let p1 < p2 < · · · < ps be locations of the 01 strings

(with i p j
= 0, i p j +1 = 1). Let 0 ≤ m1 < p1 be maximal such that im1 = 1 and

p1 + 1 ≤ m2 ≤ p2 be maximal such that im2 = 1. So i = 1m1 0p1−m1 1m2−p1 i p2 . . . in .

Then

fi := i − 1n −
(
1m1 0n−m1 − 1p1 0n−p1

)
−

n∑

j=p1+2

(1 − i j )

(
1 j−10n− j+1 − 1 j 0n− j

)

= 1m1−10p2−m1 i p2 . . . in − 1n −

n∑

j=p1+2

(1 − i j )

(
1 j−10n− j+1 − 1 j 0n− j

)

= ĩ − 1n −

n∑

j=1

(1 − ĩ j )

(
1 j−10n− j+1 − 1 j 0n− j

)

= f
ĩ
, (24)

where ĩ = 1m1 0p2−m1 1i p2+2 . . . in has s−1 (01) strings. Thus by induction hypothesis,

we obtain fi = f
ĩ
= 0. Let Ci denote the collection of viral sequences corresponding

the non-zero fitness quantities in Ai . Notice that it is not hard to ascertain from the

above calculations that

Ci = i ∪
{
1m j 0n−m j , 1p j 0n−p j

}s

j=1
∪ 1ms+1 0n−ms+1 ,

Ai = Ri −

s+1∑

j=1

Rm j
+

s∑

j=1

Rp j
, (0 ≤ m1 < p1 < m2 <. . .< ps < ms+1 ≤ n + 1).
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Consider an arbitrary proper subset B of Ci . First, we claim that there can not be

a circuit consisting solely of sequences in the nested network. Suppose by way of

contradiction that there exists a linear form with g :=
∑n+1

j=1 b j j = 0. Let k =

max
{
1 ≤ j ≤ n + 1|b j �= 0

}
. Then for the kth digit in the binary sequence of gN , we

find (g)k �= 0. So there are no vanishing linear forms on the nested network. Thus it

suffices to consider the case where i ∈ B. Motivated from calculations above, define

ĩ = i +
∑

Ci \B

(
−1m j 0n−m j + 1p j 0n−p j

)
,

where ĩ is not in nested network since B �= ∅. Furthermore because Ci\B �= ∅, we

obtain that ĩ has less than s (01) strings. By induction hypothesis, A
ĩ

defines a circuit

C
ĩ

for the sequence ĩ, where C
ĩ

=
{

ĩ
}

∪ B\ {i}. Denote the vanishing linear form as

f
ĩ
=
∑

�∈C
ĩ
a�‘. Now for arbitrary coefficients b j ,

∑

j∈B

b j j = bi i +
∑

B\{i}

b j j

= bi

⎛
⎝ĩ −

∑

Ci \B

(
−1m j 0n−m j + 1p j 0n−p j

)
⎞
⎠+

∑

B\{i}

b j j

=
∑

B\{i}

(b j − bi a j )j − bi

∑

j∈C
ĩ

a j j,

The above sum consists solely of sequences in the nested network and thus there are

no vanishing linear forms. This implies that the above sum is zero only if bi = 0,

which further leads to conclusion that b j = 0 for j ∈ B\ {i}. Thus the proper subset

B can not be a circuit for any linear form. ��

Proof of Theorem 3 By Proposition 6 in Browne and Smith (2018), equivalent condi-

tions for stability of (i) E
†
n or (ii) E

‡
n+1 are the following:

i. Rn+1 ≤ Pn and (|Λi | − 1) Pn + Ri ≤
∑

j∈Λi

R j ∀i ∈ [n + 2, 2n], in which case

Ωy = Ωz = [1, n].

ii. Rn+1 > Pn and (|Λi | − 1) Rn+1 + Ri ≤
∑

j∈Λi

R j ∀i ∈ [n + 2, 2n], in which

case Ωy = [1, n + 1] and Ωz = [1, n].

Furthermore, (i) and (ii) are the only possible stable equilibria E∗ with a strain-specific

subgraph, i.e. Ωy ⊆ [1, n+1], and strains y1, . . . , yn (yn+1 also for (ii)) are uniformly

persistent. We remark that these prior results follow from Theorem 1. Now to prove

Theorem 3, we will show that positive epistasis of corresponding invasion circuits are

sufficient (also necessary in case (ii)) for inequalities in (i) and (ii) to hold. Fix an

invading strain yi , i ∈ [n + 2, 2n], with binary sequence. First, note that a sufficient

condition for inequalities in cases (i) and (ii) to be satisfied is Ai

Kn
≥ 0 where Ai =

−Ri −(|Λi | − 1) Rn+1 +
∑

j∈Λi
R j , and Kn = Pn if Rn+1 ≤ Pn and Kn = Rn+1 if
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Rn+1 > Pn . In particular, inequality in case (ii) is equivalent to Ai

Kn
≥ 0. To show that

Ci = yi ∪
{

y j

}
j∈Λi

is a circuit with linear form Ai , we proceed with a similar approach

to our first proof of Theorem 2. Denote the binary sequences of one-to-one network as

k1, . . . , kn+1 corresponding to ordered strains y1, . . . , yn+1. Let S ⊂ {0, 1}n+1 denote

the subset of strain-specific extended binary sequences, where î = i1 ∈ {0, 1}n+1 \S

and k̂ j = k j 1 ∈ S represent binary sequences extended by digit 1. Notice that S

forms a basis of R
n+1. Indeed, it is not hard to show the row reduced echelon form of

n + 1 × n + 1 matrix is triangular. Thus for î ∈ {0, 1}n+1 \N , there is a unique set of

coefficients α j , j = 1, 2, . . . , n + 1, yielding î as a linear combination of the nested

network vectors:

î = α1k̂1 + · · · + αn+1k̂n+1.

The above linear system resolves as follows:

α2 + · · · + αn+1 = i1

...
∑

j �=k

α j = ik

...

α1 + · · · + αn+1 = 1

which leads us to the set of coefficients αk where k = 1, . . . , n + 1 defined by the

following:

αk = 1 − ik for k = 1, . . . , n

αn+1 = 1 − (n −

n∑

k=1

ik) = − (|Λi | − 1)

Thus, with analogous argument as before, we obtain the indicated circuit Ci and cor-

responding linear form Ai . ��

Proof of Proposition 3 Let i ∈ {0, 1}n\S with integer coordinates (αk)k∈S with respect

to S × {1} as a basis of R
n+1 and addended binary sequence i1 ∈ {0, 1}n × {1}.

Clearly C × {1} = S × {1} ∪ {i1} is a linearly dependent set R
n+1 with linear form

on fitnesses given by Ai = −Ri −
∑

k∈S αkRk. Furthermore any proper subset is

linearly independent since S × {1} is a basis of R
n+1. Thus C is a circuit with linear

form Ai. By proof of Prop 2,

ẏi

γi yi

=
ẏi

γi yi

+

n+1∑

�=1

α�

ẏ�

γ�y�
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=
∑

k∈C

αk
ẏk

γk yk

= x∗
∑

k∈C

αkRk

= x∗

[
Ri +

n+1∑

�=1

α�R�

]

= −x∗Ai.

Thus, by Theorem 1, the stability of E∗ is determined by the sign of Ai. ��

Proof of Proposition 4 We apply Proposition 3. Consider the network with at most one

mutation, S̃1, consisting of wild-type and 1-mutation viral strains y0, y1, . . . , yn where

the sequence of y j is j =
(
δ� j

)n

�=1
for j = 1, . . . , n. First, notice that binary sequences

of y0, y1, . . . , yn form basis of R
n+1. For missing strain, yi , i = n + 1, . . . 2n − 1, i ∈

{0, 1}n \S̃1, the coordinates of addended binary sequence i1 with respect to this basis

can be seen to be α j = i j , j = 1, . . . , n, α0 = 1 −
∑n

j=1 i j . Thus, by Proposition

3,
ẏi

γi yi
= −x∗Ai, where Ai = −Ri −

∑
j = 1ni jR j −

(
1 −

∑n
j=1 i j

)
R0 =

−Ri − (n − |Λi | − 1) R0 +
∑

j /∈Λi
R j . ��

Proof of Theorem 4 First assume that pairwise interaction matrix B is positive and

consider the stability of the nested equilibrium, Ẽn (or En), as characterized by circuits

in Corollary 1 (ii). We proceed by induction on the number of (01) strings denoted by

s for the invading strain. Suppose s = 1 and the invading strain is written as in prior

proof as i = 1m1 0p−m1 1m2−p0n−m2 and the collection of strains in the circuit is given

by Ci = i ∪
{
1m1 0n−m1 , 1p1 0n−p1

}
∪ 1m2 0n−m2 . Then since the additive elements

will sum to zero in the linear form Ai , the only remain terms come from pairwise

interactions in B and can be calculated as:

−Ai =

m1∑

j=1

m1∑

k> j

B jk +

m1∑

j=1

m2∑

k=p1+1

B jk +

m2∑

j=p1+1

m2∑

k> j

B jk

−

m1∑

j=1

m1∑

k> j

B jk +

p1∑

j=1

p1∑

k> j

B jk −

m2∑

j=1

m2∑

k> j

B jk

=

p1∑

j=1

p1∑

k> j

B jk −

m1∑

j=1

p1∑

k> j

B jk −

p1∑

j=m1+1

m2∑

k> j

B jk

= −

p1∑

j=m1+1

m2∑

k=p1+1

B jk < 0

Now for the induction step, suppose that i has s (01) strings. It is not hard to see that

Ai = A
ĩ
, for invading strain ĩ, where ĩ = 1m1 0p2−m1 1i p2+2 . . . in has s − 1 (01)

strings. Thus by induction hypothesis −Ai < 0, or Ai > 0 giving positive epistasis

and stability of nested network.

123



Virus-immune dynamics... Page 39 of 42     9 

Next suppose that matrix B is negative and consider the stability of E
†
n and E

‡
n+1

consisting of strains y1, . . . , yn, yn+1 with binary sequences k1, . . . , kn+1, where

Λ j = { j} for j = 1, . . . , n and Λn+1 = ∅. We inspect the invasion circuit of a

strain with sequence i outside the one-to-one network. Let s be the number of 1s in

sequence i, located at loci �1, . . . , �s , where 0 ≤ s ≤ n − 2. Again the additive terms

in Ai are zero and thus we have:

Ai = −Ri − (|Λi | − 1) Rn+1 +
∑

j∈Λi

R j

= −

s∑

j=1

∑

k>� j

B� j k − (n − 1 − s)

n∑

j=1

∑

k> j

B jk + (n − s)

n∑

j=1

∑

k> j

B jk

−

n∑

m=1

[∑

k>m

Bmk +

m−1∑

k=1

Bkm

]
+

s∑

j=1

⎡
⎣∑

k>� j

B� j k +

� j −1∑

k=1

Bk� j

⎤
⎦

= −

n∑

j=1

j−1∑

k=1

Bk j +

s∑

j=1

� j −1∑

k=1

Bk� j

> 0 since B < 0, s ≤ n − 2.

Finally, for the network with at most one mutation, only the invading strain i will have

≥ 2 mutations, so

Ai = −Ri − (n − |Λi | − 1) R0 +
∑

j /∈Λi

R j

= −

n∑

j=1

∑

k> j

B jk > 0 since B < 0.

��

Proof of Theorem 5 Let 0 < f j < 1, j = 1, . . . , n represent the multiplicative fitness

costs for each epitope. Similar to proof of Proposition 4, we use stability formulation

by circuits in Corollary 1 (ii) and prove by induction on the number of (01) strings

denoted by s for the invading strain. Suppose s = 1 and the invading strain is written

as in prior proof as i = 1m1 0p−m1 1m2−p0n−m2 and the collection of strains in the

circuit is given by Ci = i ∪
{
1m1 0n−m1 , 1p1 0n−p1

}
∪ 1m2 0n−m2 . Then the linear form

Ai can be calculated as:

−Ai = R0

(
f1 · · · fm1 f p1+1 · · · fm2 − f1 · · · fm1 + f1 · · · f p1 − f1 · · · fm2

)

= R0 f1 · · · fm1(1 − f p1+1 · · · fm2)( fm1+1 · · · f p1 − 1)

< 0
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Now for the induction step, suppose that i has s (01) strings. It is not hard to see that

Ai = A
ĩ
, for invading strain ĩ, where ĩ = 1m1 0p2−m1 1i p2+2 . . . in has s − 1 (01)

strings. Thus by induction hypothesis −Ai < 0, proving nested network is stable. ��

The“at most onemutation” network equilibria

Consider the network with at most one mutation, S̃1, consisting of wild-type and 1-

mutation viral strains y0, y1, . . . , yn where the sequence of y j is j =
(
δ� j

)n

�=1
for

j = 1, . . . , n. First it is simpler to look at the n strain equilibrium E1∗ containing

positive components for y∗
1 , . . . , y∗

n , where y∗
0 = 0, i.e. leaving out the wild-type

strain. By Proposition 1 and (10), such a positive equilibrium E1∗ = (x∗, y1∗, z∗) of

system (4) satisfies

x∗ =
1∑n

j=1 R j − (n − 1)R0

, Ay1∗ = s, Az∗ = R
1x∗ − 1, where A = 1 (1)T − In,

A−1 =
1

n − 1
1 (1)T − In, y1 = (y1, y2, . . . , yn)T , R

1 = (R1,R2, . . . ,Rn)T

with In is the n × n identity matrix. Here we find that:

y∗
i =

1

n − 1

⎛
⎝−(n − 2)si +

∑

j �=i

s j

⎞
⎠ , x∗ =

n − 1

n − 1 +
∑

i Ri si

, z∗
i =

1

n − 1
(Ri x∗ − 1)

With the immunodominance hierarchy si ≤ si+1, then y∗
i > 0 if s1 >

∑
i>1(sn − si )

and z∗
i > 0 if Ri

(
n − 1 −

∑
i si

)
> n − 1. If these conditions are satisfied, then the

equilibrium E1∗ is saturated in the subsystem restricted to S1. In Browne and Smith

(2018) we showed that in the larger network of viral strains, the equilibrium E1∗ is

always unstable in the case with equal reproduction numbers R1 = R2 = · · · = Rn .

Now consider invasion by the wild strain y0, which can result in an n + 1 strain

equilibrium Ẽ1∗ consisting of the viral strain network S̃1. By Proposition 1, the positive

components x∗, ỹ1∗, z∗ of Ẽ1∗ satisfies:

x∗ = 1 T C−1
(n+1)

, here C =

(
A R

1 T R0

)
,

⇒ x∗ =
1∑n

j=1 R j − (n − 1)R0

,

ỹ1∗ =
(
s T 1

x∗ − 1
)

C−1

Az∗ = Rx∗ − 1,

n∑

i=1

z∗
i = R0x∗ − 1.

The above equations are difficult to analyze in general, but when x∗ > 0, ỹ1∗ >

0, z∗ > 0, the n + 1 strain “at most one mutation” equilibrium will be positive. Fur-
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thermore, if the linear forms of invasion circuits (21) are positive, then by Proposition

4, Ẽ1∗ will be stable.
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