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1 Introduction

Facing the novel threat of COVID-19, scientists have produced a deluge of research that medical
professionals, government officials, and policymakers have continually used to revise their response
to the pandemic. To make informed decisions, those responsible for pandemic response must know
more than the results of recent COVID-19 research; they must also know how reliable those results
are, and whether the results obtained at one location and time are likely to hold in a different
location and at a different time. One way to establish the generalizability of research findings is
by conducting independent replications of prior work. However, the need to rapidly respond to
COVID-19 runs counter to the cautious and often time-consuming re-evaluation of the emerging
body of evidence about this disease via replication. Failing to thoroughly evaluate COVID-19
research, which was produced and published on an accelerated time frame, has the potential to
both short-circuit the accumulation of scientific evidence and impair decision-making, possibly on
a global scale. Without assessing the reliability of COVID-19 research, we also risk fueling public
skepticism of this work and the policies it supports.

We begin to address this gap in the literature by replicating the work of DiMaggio et al. (1) in
Phoenix, AZ. By replicating DiMaggio et al., we establish whether the same socioeconomic factors
are associated with positive COVID-19 tests in New York as well as in Phoenix. We also assess
whether areas of elevated COVID-19 risk existed in Phoenix during the pandemic’s first wave.
More broadly, our replication allows us to check the specification of the original analyses and, by
documenting and openly sharing our approach and procedures, provide a model that others can
follow when replicating geographic analyses of COVID-19.

We selected DiMaggio et al. as the basis of our replication for three reasons. First, the study
addresses key research questions at the center of many geographic studies of COVID-19: (1) Do
areas of unusually elevated COVID-19 incidence exist? (2) Where are those areas located? and (3)
What are the ecological risk factors associated with elevated incidence of COVID-19? Second, the
analysis is conducted at the Zip Code Tabulation Area (ZCTA) level, which is a more informative
spatial scale than the county-level analyses common in the COVID-19 literature (2; 3; 4) Finally, the
authors’ finding that the presence of Black/African American residents is strongly associated with
the rate of positive COVID-19 tests in New York City addresses frequently investigated questions
about the role of race in the pandemic (5; 6; 7; 8). While multiple studies identify a statistical as-
sociation between race and COVID-19 at the neighborhood level (9; 10), further investigations into
how these associations vary from place to place, or across different racial and ethnic compositions,
remain underexplored.

We selected Phoenix, AZ as the site of our replication for three reasons. First, following the
initial COVID-19 outbreak in New York City that was modeled by DiMaggio et al. (1), the
Phoenix metropolitan area quickly became the next epicenter of the pandemic in the U.S. Given
that a central motivation of our analysis was to assess whether the original analyses of DiMaggio
et al. can be used to inform decision-making in other locations, examining the next epicenter
addresses this question while also helping to control for other factors that might change with time.
Second, unlike New York City, Phoenix is characterized by a sprawling and low-rise pattern of
urban development and a different demographic mix. Only 5 percent of Phoenix residents are
Black/African American compared with 23 percent of New York City residents. Conversely, non-
white Hispanic residents represent 31 percent of Phoenix residents, but only 12 percent of New York
City residents. Finally, Phoenix is one of the few cities in the country where COVID-19 testing
data is available for the first wave of the pandemic at the ZCTA level, which allows us to use the
same spatial scale as used by DiMaggio et al.

The remainder of this paper is organized into five sections. In the following section, we briefly
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introduce the data analyses and the key findings of DiMaggio et al. (1). In the third section, we
present our data and detail how our approach deviates from that of the original. In the fourth
section, we present our results. The fifth section presents a discussion of those results, before we
present our principal conclusions and avenues for future work in the final section.

2 Statistical Analyses and Findings of DiMaggio et al. (2020)

DiMaggio et al. (1) analyzed the association between positive COVID-19 test counts and population-
level estimates of demographic, socioeconomic, and health variables at the ZCTA level in New York
City during the first wave of the COVID-19 pandemic (April 3 to April 22, 2020). Applying a Pois-
son model estimated using a Bayesian statistical framework, the final model estimated the risk of
positive COVID-19 tests (θi) via an intercept (β0); ZCTA-level predictors for race, age, housing
density, health factors (heart disease, COPD) (βjx

T
i ), a set of spatially unstructured random effect

terms (υi), and a set of spatially structured random effect terms (ηi). An offset that measures
the total number of tests in each ZCTA was also included. The spatially structured random effect
terms were assigned via the intrinsic conditional autoregressive prior proposed by (11). The model,
as presented by the authors, is shown below. Complete model details are available in the original
paper and the code used to fit the model was made available as an electronic supplement.

Y ∼ Pois(λi = Ei · θi)
log θi = β0 + βxTi + υi + ηi + (offset)

υi ∼ N(0, τυ)

ηi ∼ N(η̄ρ, τη/ηρ).

The authors’ primary conclusions were that areas with large proportions of Black/African Amer-
ican population were at significantly higher risk for COVID-19. The authors also estimated the
degree to which residual spatial clustering of positive COVID-19 cases was explained by within- and
between-ZCTA variability and concluded that about one-third was attributed to between-ZCTA
spatial structure.

3 Data and Approach to Replication

3.1 Data

We obtained weekly data on the number of COVID-19 cases and percent of positive COVID-19 tests
for all ZCTAs located within Maricopa County, AZ (12; 13). Maricopa County includes the greater
Phoenix metropolitan area. Using this information, we estimated the total number of COVID-19
tests conducted in each ZCTA each week by dividing the number of positive tests by the percent
positivity rate. To be consistent with DiMaggio et al. (1), we restricted our analysis to the weeks
immediately preceding and following the first peak of COVID-19 cases in Phoenix and, as such,
aggregated the total number of cases and tests from May 31, 2020 to August 1, 2020 at the ZCTA
level. To limit the influence of outlying areas, we additionally restricted our study area to ZCTAs
that were (a) fully contained within Maricopa County, (b) had more than 10,000 residents and (c)
had more than 500 persons per square mile to (Supplement B.1). Our final sample included 100
ZCTAs.

Data on the sociodemographic and health composition of each ZCTA were obtained from the
2019 American Community Survey 5-Year Estimates (14) and the Centers for Disease Control and
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Prevention Places Data File (15). Consistent with DiMaggio et al., information on the percentage
of the population who were non-Hispanic Black, over the age of 65, or had chronic obstructive
pulmonary disease (COPD) were included in the analysis as was household density per square mile.
Additional characteristics, including the percent of individuals who speak a language other than
English, percent Hispanic, percent receiving public assistance, percent with heart disease, median
household income, and population density, were also considered.

3.2 Replications of DiMaggio et al. (2021)

Adopting the statistical framework used in the original analysis, we conducted two replication
analyses. First, we repeated the authors original analysis in as close a manner as possible via a direct
replication (16) in Phoenix. Two direct replication sub-analyses were considered. In both sub-
analyses, we maintained the functional form, specification, and computational implementation of
the original model. We also removed heart disease as a predictor variable due to strong collinearity
with COPD and percentage of the population age 65 or older, and opted to use the ACS 2019 5-
year estimates for our predictor variables as opposed to the 2010 Census data used by the original
authors. The two sub-analyses were differentiated by the inclusion/exclusion of the offset term for
the total number of tests. Our first direct replication included the offset as per the original model
code. The second direct replication excluded the offset.

The second replication analysis was a conceptual replication (16) of DiMaggio et al. that tested
the same fundamental hypothesis of the original study, but adopted a model specification that
considered conditions specific to Phoenix. For this replication, we added two predictors to the
model - percent Hispanic and median household income.

Following DiMaggio et al. we estimated the direct replication models within R using the INLA
package (17). We estimated our conceptual replication within R, but used the STAN package (18).
We opted to use STAN because it allowed us to clearly specify how the offset term functioned
within the model. The full details of our statistical models are available in electronic Supplements
A-B.2. The data and code to reproduce both replications are available at ¡DE-IDENTIFIED¿, as
are project-level metadata explaining our analytical process.

Together these two replications allowed us to investigate two questions: (1) Can the model
specification adopted by DiMaggio et al. be used to describe the pattern of positive COVID-19
tests in a new geographic context? and (2) Do the same factors appear to be predictors of the
number of positive tests in these two communities? To answer the second question, we calculated
the degree to which the 95% uncertainty intervals for the parameters common to DiMaggio et al.
and this study were overlapping.

4 Results

4.1 Descriptive statistics

Over the time frame described in Section 3.1, the mean number of COVID-19 tests per ZCTA In
Phoenix was 5841.40 (95% CI 5383.40, 6299.40) and the mean number of positive COVID-19 tests
per ZCTA was 998.96 (95% CI 871.75, 1126.17). The positive test data are skewed in the opposite
direction of DiMaggio et al. (1), indicating that most ZCTAs had low numbers of positive tests
while a few ZCTAs had high numbers of positive tests (Fig. 1).
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Figure 1: Rate of positive COVID-19 tests per 10,000 tests. Phoenix, AZ; May 31, 2020 to August
1, 2020.

4.2 Replication models

Before attempting either of our replications, we first constructed an aspatial regression model
(Supplement B.2) to confirm the need for a spatial model in Phoenix. An analysis of the aspa-
tial model residuals indicated the presence of spatial autocorrelation in the dataset (Moran′sI =
0.354, pseudo-p = 5.81−9) and the need for a spatial model.

Our first direct replication (Fig. 2, red), which included COPD, the proportion of Black/African
American residents, housing density, age greater than 65 produced extremely large credible inter-
vals. This model replicated the code of DiMaggio et al., where the offset term was specified as part
of the BYM prior, rather than in the conventional offset argument (as per the INLA model). In the
second direct replication (Fig. 2, green), we removed the offset term from the model. This reduced
the size of the credible intervals to an interpretable range. The difference in the credible intervals
produced by these two specifications likely indicates some problem with the handling of the offset
term. Our exploration of this issue is presented in the discussion. For the second replication, we
observed directional effects consistent with DiMaggio et al. except in the case of the proportion
of residents over 65. Our estimates for the proportion of Black/African American, COPD, and
housing density all fell within the 95% credible intervals of the original authors.

In the conceptual replication (Table 1), we expanded the predictor set to include the proportion
of Hispanic residents and the median income of each ZCTA. We also log-transformed the total
number of tests (model offset) and included it in the conventional location. This model identified
the proportion of Hispanic residents as the only positive predictor of COVID-19 cases at the 95%
credible thresholds. Median income and the proportion of residents older than 65 were the only
other predictors associated with COVID-19 cases with a probability greater than chance. Both
variables were negative predictors of COVID-19 cases.

We use the mean coefficient estimates and the percent overlap between the 95% credible intervals
of our conceptual replication and DiMaggio et al. to assess the similarity in predictor associations
with the number of positive COVID-19 tests in Phoenix and New York City (Table 2). The direction
of the median estimates were consistent for the proportion of Black/African American residents
and housing density, but were inconsistent for COPD and the proportion of residents over the
age of 65. Only the proportion Black/African American residents and age greater than 65 were
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Figure 2: Posterior means (points) and 95% uncertainty intervals (horizional lines) of the coefficients
from DiMaggio et al. (blue), the direct replication (red), and the direct replication excluding the
offset term (green). The replications are based on data for Phoenix, AZ Zip Code Tabulation
Areas, May 31, 2020 to August 1, 2020. The hashed vertical line indicates a relative risk of 1. The
uncertainty intervals for the direct replication with the offset are noted.

Table 1: Results of the conceptual replication of DiMaggio et al. in Phoenix, AZ, May 31, 2020 to
August 1, 2020.

Parameter Median 2.5% 97.5%

Intercept 0.15 0.15 0.16
COPD 0.98 0.89 1.08
Proportion Black 1.02 0.93 1.11
Older than 65 0.95 0.85 1.05
Housing Density 1.01 0.95 1.08
Proportion Hispanic 1.24 1.09 1.40
Median Income 0.93 0.83 1.04
υi 0.09 0.05 0.13
ηi 0.06 0.04 0.08

unambiguous predictors of positive COVID-19 test counts in the original analysis of DiMaggio et
al. In our conceptual replication, age greater than 65 was associated with negative test counts, with
an estimated median association outside the credible interval of the original authors. In Phoenix,
the proportion of Black/African American residents, which was the strongest positive predictor in
New York City, shares the direction of the median estimate of association, but shares less than 1%
of its credible interval with the original study.

In the conceptual replication, the residual risk, after controlling for the predictors in the model,
was primarily explained by between-ZCTA spatial structure - VPC = 0.59. Following DiMaggio et
al., we calculated and mapped (Fig. 3) the spatial risk estimate for each ZCTA as the sum of the
unstructured and spatially structured variance components of our conceptual replication. ZCTAs
with the highest residual risk were concentrated in the center of our study region, in communities
near Glendale and Sun City West. In contrast, ZCTAs in outer-ring suburbs, such as Fountain
Hills and Chandler, exhibited the lowest levels of residual risk.
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Table 2: Comparison of the median parameter estimates of the conceptual replication with the
estimates and credible intervals of DiMaggio et al.

Parameter
Medians Share Median Located in Proportion Within

Direction Original Interval Original Interval

COPD No Inside 89.81%
Proportion Black Yes Outside 0.83%
Older than 65 No Outside 0.00%
Housing density Yes Inside 100.00%

Figure 3: Quintile map of (a) COVID-19 risk due to the predictor variables and (b) Residual risk
(sum of unstructured and spatially structured random effect terms) for the conceptual replication
of DiMaggio et al. in Phoenix, AZ; May 31, 2020 to August 1, 2020.

5 Discussion

This work adds to our knowledge of COVID-19 in two ways. First, our replications demonstrate that
some associations between neighborhood-level predictors and COVID-19 positive test counts do not
remain constant across locations, indicating these relationships are likely sensitive to geographic
context. Our findings suggest that racial associations with COVID-19 cases may be among those
sensitive to context. County-, neighborhood-, and individual-level analyses have all demonstrated
associations between the percentage of residents from different minority groups and confirmed
COVID-19 cases and deaths. However, the majority of those studies do not consider if and how
these results may be sensitive to the study context. Our conceptual replication of DiMaggio et al.
allows us to make such comparisons within a consistent statistical framework.

We find that the proportion of Black/African American residents in a ZCTA in Phoenix was
not a positive predictor of COVID-19 cases as it was in New York City. Instead, the strongest
predictor of positive COVID-19 tests in Phoenix was the proportion of Hispanic residents in a ZCTA.
Collectively, these estimates suggest that the proportion of non-white residents in a neighborhood
is likely an important predictor of positive COVID-19 test counts, however the specific racial and
ethnic groups that face greater risk likely depends on context. This finding reinforces the idea
that it may not be minority status alone that associates these groups with COVID risk, but rather
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the systemic disadvantages closely linked with minority status and specific regional histories of
inequality.

The observed difference in racial parameter estimates also sheds light on a speculation by
DiMaggio et al. that disparities in COVID-19 case counts may be affected by the size of the racial
population and how well established those communities are in a city. Black/African Americans rep-
resent a far smaller percentage of the Phoenix population than Hispanic residents. Being dispersed
across Phoenix, the experiences of Hispanic residents have a greater opportunity to be captured by
the Phoenix model, and to influence locations through the effect of the model’s spatial prior. In-
versely, we suspect that the lack of association between the proportion of Black/African American
residents and COVID-19 cases in Phoenix may be the product of the relatively small number of
Black residents in Phoenix and their spatial concentration in a small number of densely populated
areas.

Second, our replications allowed us to gain greater insight into the modeling process used by
DiMaggio et al. and to examine conceptual and methodological questions that other researchers will
likely encounter should they attempt similar replications. Our direct replications of DiMaggio et al.
revealed questions about how the authors handled the model offset in their original analysis. We
discovered that the authors used the total number of tests as the offset rather than log transformed
and included the offset terms as an argument that specifies the BYM prior distribution. When
we replicated this model code in Phoenix, our model produced extremely large credible intervals
which likely indicate a problem in the code; one that may only become evident when comparing
the results of the same model fit to different data and using different software packages.

Our work also highlights the importance of carefully considering the spatial structure of the
location being studied and how that structure is reflected in the data analysis. New York City’s
pattern of dense urban development generally creates ZCTA with consistent size, density, and
number of neighbors whereas Phoenix has a sprawled urban development pattern that leads to
variation in ZCTA size, density, and number of adjacent ZCTAs. This variation is important when
modeling COVID-19 case counts using the Bayesian framework employed in this study because
it can influence both coefficient an error estimates. We attempted to control for these effects by
focusing our analysis on the core of the Phoenix metropolitan statistical area. Even so, the majority
of the residual variance of our conceptual replication was explained by spatial structure. This result
is likely the product of the true influence of the spatial structure of Phoenix and the strength of the
BYM prior relative to the sample size. Future replications should similarly consider to what extent
their estimates may be influenced by spatial structure before making comparisons across regions.

While our findings are suggestive, like DiMaggio et al. they provide a fractured view of the
disease processes at work in a community. Our analyses are subject to the uncertainties in our data
and model building process. First, our models likely have a degree of measurement error associated
with our limited and varying capacity to gather information about COVID-19 prevalence early in
the pandemic. The capacity to test for and identify positive COVID-19 cases was limited during the
pandemic, particularly during the first wave, and our testing capacity was also regionally varied.
Even within cities, the centralization of testing likely created accessibility issues that may have lead
to non-random testing across population groups. These concerns may be somewhat lessened for
Phoenix, as the first wave modelled here occurred after earlier waves in coastal cities, which gave
the city time to set-up testing facilities. Second, like other ecological analyses of COVID-19, our
models may not capture changes in residence that occurred during regional crests in the pandemic.
Our analyses rely on recent ACS estimates, but these data may not capture portions of the Phoenix
population that were particularly dynamic during the time period studied. Specifically, Phoenix is
a destination for a large retired population that regularly exits the city at the time of our analysis.
These caveats should be considered alongside the other temporary migrations out of many cities
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during the pandemic.

6 Conclusion and Future Work

In this paper, we demonstrate that the neighborhood-level predictors of positive COVID-19 test
counts in New York City modelled by DiMaggio et al. during the first wave of the pandemic
remained associated with positive test counts in Phoenix, AZ. Our analyses failed to replicate the
primary association observed by DiMaggio et al., that neighborhoods with higher proportions
of Black/African American residents were at a non-random elevated risk for COVID-19 when
accounting for other predictors. Instead, we find that, in Phoenix, AZ it is neighborhoods with
higher proportions of Hispanic residents that are at elevated risk. This finding is important because
it suggests race and the size of a region’s racial minority group may be a proxy for the disadvantages
these groups face, which may be the true driver of elevated risk of COVID-19. Our analyses also
demonstrate that the modeling framework adopted by DiMaggio et al. can be transferred across
locations, but needs some modification to local contexts. Replicating the original analyses also
allowed us to identify specification decisions that need careful consideration when interpreting or
expanding upon the original results.

We see three avenues to directly extend this work. First, our Phoenix model estimates resid-
ual spatial risk for each ZCTA and the associations between the predictor variables and positive
COVID-19 testing under the constraints imposed by our model specification. That specification
was developed based on a review of the existing COVID-19 literature and an examination of how
local public officials responded to the pandemic during the study period. As our understanding of
SARS-CoV-2 and its variants evolves, it will be appropriate to revisit and adjust this model. While
we believe the strength of the relationships observed during the first wave of the pandemic make
the model robust to specification changes that would extend from changes in the model, we also
believe that the model should be adjusted for cross-sectional studies of future waves or longitudinal
analyses of the entire pandemic.

Second, our model of Phoenix could be further refined to explore temporal and spatial-temporal
variation in COVID cases. Phoenix has experienced three distinct waves of COVID-19 infection
during the pandemic as of December 2021. In this paper, we establish a positive association between
the proportion of Hispanic residents in a ZCTA and COVID-19 case rate. However, we have not
explored whether this association, or others, change over time, space, or space-time. National scale
tracking of racial case rates (19) suggests that different ethnic groups have experienced peaks in
cases at different points in the pandemic. Exploring whether these shifts exist in Phoenix and what
their spatial patterns are could provide lessons on how to plan for the future SARS-CoV-2 variants.

Third, our model could be placed in a hierarchical framework that extends across multiple
cities. This approach would extend the single replication logic used here to many locations and
provide more complete evidence for the consistency of COVID-19 predictors both within- and
between-urban areas. Such a model could include urban hotspots of COVID-19 and be used to
estimate local (city-specific) and global (common to multiple cities) relationships between race and
COVID-19 incidence across space and time. Such an analysis would also serve as a counterpoint
and corrective to early national scale ecological analyses of associations between COVID-19 cases
and socio-demographics conducted at the county scale that failed to account for the reality that
COVID cases are often concentrated in specific urban neighborhoods. Many of those studies may
have erroneous conclusions because they fail to account for population density and build their
spatial relationship structures at a scale that is not directly relevant to disease transmission. One
restriction on such an analysis remains the availability of COVID-19 case data at fine geographic
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scales (e.g., finer than counties).
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