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Denoising Generalized Expectation-Consistent
Approximation for MR Image Recovery
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Abstract—To solve inverse problems, plug-and-play (PnP)
methods replace the proximal step in a convex optimization
algorithm with a call to an application-specific denoiser, often
implemented using a deep neural network (DNN). Although such
methods yield accurate solutions, they can be improved. For
example, denoisers are usually designed/trained to remove white
Gaussian noise, but the denoiser input error in PnP algorithms is
usually far from white or Gaussian. Approximate message pass-
ing (AMP) methods provide white and Gaussian denoiser input
error, but only when the forward operator is sufficiently random.
In this work, for Fourier-based forward operators, we propose
a PnP algorithm based on generalized expectation-consistent
(GEC) approximation—a close cousin of AMP—that offers pre-
dictable error statistics at each iteration, as well as a new DNN
denoiser that leverages those statistics. We apply our approach
to magnetic resonance (MR) image recovery and demonstrate its
advantages over existing PnP and AMP methods.

Index Terms—Approximate message passing, image denoising,
magnetic resonance imaging, machine learning.

I. INTRODUCTION

WHEN solving a linear inverse problem, we aim to
recover a signal x0 ∈ C

N from measurements y ∈ C
P

of the form

y = Ax0 + w, (1)

where A is a known linear operator and w is unknown noise.
Well-known examples of linear inverse problems include
deblurring [1]; super-resolution [2], [3]; inpainting [4]; image
recovery in magnetic resonance imaging (MRI) [5]; computed
tomography [6]; holography [7]; and decoding in communi-
cations [8]. Importantly, when A is not full column rank (e.g.,
when P < N), the measurements y can be explained well by
many different hypotheses of x0. In such cases, it is essential
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to harness prior knowledge of x0 when solving the inverse
problem.

The traditional approach [9] to recovering x0 from y in (1)
is to solve an optimization problem like

x̂ = arg min
x
{g1(x)+ g2(x)}, (2)

where g1(x) promotes measurement fidelity and the regulariza-
tion g2(x) encourages consistency with the prior information
about x0. For example, if w is white Gaussian noise (WGN)
with precision (i.e., inverse variance) γw, then g1(x) = γw

2 ‖y−
Ax‖2 is an appropriate choice. Choosing a good regularizer
g2 is much more difficult. A common choice is to con-
struct g2 so that x0 is sparse in some transform domain, i.e.,
g2(x) = λ‖�x‖1 for λ > 0 and a suitable linear operator �.
A famous example of this choice is total variation regulariza-
tion [10] and in particular its anisotropic variant (e.g., [11]).
However, the intricacies of many real-world signal classes
(e.g., natural images) are not well captured by sparse models
like these. Even so, these traditional methods provide use-
ful building blocks for contemporary methods, as we describe
below. We will discuss the algorithmic aspects of solving (2)
in Section II.

More recently, there has been a focus on training deep
neural networks (DNNs) for image recovery given a suffi-
ciently large set of examples {(xi, yi)} to train those networks.
These DNN-based approaches come in many forms, including
dealiasing approaches [12], [13], which use a convolutional
DNN to recover x0 from AHy or A+y, where (·)+ denotes
the pseudo-inverse; unrolled approaches [14], [15], which
unroll the iterations of an optimization algorithm into a neural
network and then learn the network parameters that yield the
best result after a fixed number of iterations; and inverse GAN
approaches [16], [17], which first use a generative adversarial
network (GAN) formulation to train a DNN to turn random
code vectors z into realistic signal samples x, and then search
for the specific z that yields the x̂ for which ‖Âx− y‖ is min-
imal. Good overviews of these methods can be found in [18],
[19], [20]. Although the aforementioned DNN-based meth-
ods have shown promise, they require large training datasets,
which may be unavailable in some applications. Also, models
trained under particular assumptions about A and/or statistics
of w may not generalize well to test scenarios with different
A and/or w.

So-called “plug-and-play” (PnP) approaches [21] give a
middle-ground between traditional algorithmic approaches and
the DNN-based approaches discussed above. In PnP, a DNN
is first trained as a signal denoiser, and later that denoiser is
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Fig. 1. Examples of sampling masks M: (a) 2D point sampling at R = 4, (b) 2D point sampling at R = 8 with a 24×24 fully sampled central autocalibration
region, (c) 2D line sampling at R = 4 with a 24-wide fully sampled central autocalibration region, and (d) 2D line sampling at R = 8 with a 24-wide fully
sampled central autocalibration region.

used to replace the proximal step in an iterative optimization
algorithm (see Section II-B). One advantage of this approach
is that the denoiser can be trained with relatively few exam-
ples of {xi} (e.g., using only signal patches rather than the full
signal) and no examples of {yi}. Also, because the denoiser
is trained on signal examples alone, PnP methods have no
trouble generalizing to an arbitrary A and/or w at test time.
The regularization-by-denoising (RED) [22], [23] framework
yields a related class of algorithms with similar properties.
See [24] for a comprehensive overview of PnP and RED.

With a well-designed DNN denoiser, PnP and RED sig-
nificantly outperform sparsity-based approaches, as well as
end-to-end DNNs in limited-data and mismatched-A scenarios
(see, e.g., [24]). However, there is room for improvement. For
example, while the denoisers used in PnP and RED are typi-
cally trained to remove the effects of additive WGN (AWGN),
PnP and RED algorithms yield estimation errors that are not
white nor Gaussian at each iteration. As a result, AWGN-
trained denoisers will be mismatched at every iteration, thus
requiring more iterations and compromising performance at
the fixed point. Although recent work [25] has shown that
deep equilibrium methods can be used to train the denoiser
at the algorithm’s fixed point, the denoiser may still remain
mismatched for the many iterations that it takes to reach that
fixed point, and the final design will be dependent on the A
and noise statistics used during training.

These shortcomings of PnP algorithms motivate the follow-
ing two questions:

1) Is it possible to construct a PnP-style algorithm that
presents the denoiser with predictable error statistics at
every iteration?

2) Is it possible to construct a DNN denoiser that can
efficiently leverage those error statistics?

When A is a large unitarily invariant random matrix, the
answers are well-known to be “yes”: approximate mes-
sage passing (AMP) algorithms [26] yield AWGN errors at
each iteration with a known variance, which facilitates the
use of WGN-trained DNN denoisers like DnCNN [27] (see
Section II-B for more on AMP algorithms). In many inverse
problems, however, A is either non-random or drawn from a
distribution under which AMP algorithms do not behave as
intended. So, the above two questions still stand.

In this paper, we answer both of the above questions in the
affirmative for Fourier-based A. Using the framework of gener-
alized expectation-consistent (GEC) approximation [28] in the
wavelet domain [29], we propose a PnP algorithm that yields

an AWGN error in each wavelet subband, with a predictable
variance, at each iteration. We then propose a new DNN
denoiser design that can exploit knowledge of the wavelet-
domain error spectrum. For recovery of MR images from the
fastMRI [30] and Stanford 2D FSE [31] datasets, we present
experimental results that show the advantages of our proposed
approach over existing PnP and AMP-based approaches. This
paper builds on our recent conference publication [32] but adds
our new denoiser design, much more background material and
detailed explanations, and many new experimental results.

II. BACKGROUND

A. Magnetic Resonance Imaging

We now detail the version of the system model (1) that man-
ifests in C-coil MRI. There, x0 ∈ C

N is a vectorized version
of the N-pixel image that we wish to recover, y ∈ C

CM are
the so-called “k-space” measurements, and

A =
⎡

⎢

⎣

MF Diag(s1)
...

MF Diag(sC)

⎤

⎥

⎦
. (3)

In (3), F ∈ C
N×N is a unitary 2D discrete Fourier transform

(DFT), M ∈ R
M×N is a sampling mask formed from M rows

of the identity matrix I ∈ R
N×N , and sc ∈ C

N is the cth coil-
sensitivity map. In the special case of single-coil MRI, we
have C = 1 and s1 = 1, where 1 denotes the all-ones vector.
In MRI, the ratio R � N/M is known as the “acceleration rate.”
When R > 1, the matrix A can be column-rank deficient and/or
poorly conditioned even when C ≥ R, and so prior knowledge
of x0 must be exploited for accurate recovery.

In practical MRI, physical constraints govern the construc-
tion of the sampling mask M. For example, samples are always
collected along lines or curves in k-space. In clinical prac-
tice, it is most common to sample along lines parallel to one
dimension of k-space, as illustrated in Figs. 1(c)-(d) for 2D
sampling. We will refer to this approach as “2D line sampling.”
In this case, one dimension of k-space is fully sampled and the
other dimension is subsampled. For the subsampled dimen-
sion, it is common to sample pseudorandomly or randomly,
but with a higher density near the k-space origin, as shown
in Figs. 1(c)-(d). Also, when using ESPIRiT to estimate the
coil-sensitivity maps {sc}, one must include a fully-sampled
“autocalibration” region centered at the origin, as shown in
Figs. 1(b)-(d).
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2D line sampling, while attractive from an implementation
standpoint, poses challenges for signal reconstruction due to
high levels of coherence [33] in the resulting A matrix. This
has led some algorithm designers to consider “2D point sam-
pling” masks such as those shown in Fig. 1(a)-(b), since they
yield A with much lower coherence [34]. But such masks are
rarely encountered in practical 2D MR imaging. It is, how-
ever, possible to encounter a 2D point mask as a byproduct of
the following 3D acquisition process: i) acquire a 3D k-space
volume using 3D line sampling, ii) perform an inverse DFT
along the fully sampled dimension, and iii) slice along that
dimension to obtain a stack of 2D k-space acquisitions. The
location of each line in 3D k-space determines the location of
the respective point sample in 2D k-space, and these locations
can be freely chosen. But 3D acquisition is uncommon because
it is susceptible to motion; in 2D acquisition, the patient must
lie still for the acquisition of a single slice, whereas in 3D
acquisition the patient must lie still for the acquisition of an
entire volume. We include experiments with 2D point masks
only to compare with the VDAMP family of algorithms [35],
[36], [37], [38] discussed in the sequel, since these algorithms
are all designed around the use of 2D point masks.

Although our paper focuses on MRI, the methods we pro-
pose apply to any application where the goal is to recover a
signal from undersampled Fourier measurements.

B. Plug-and-Play Recovery

Many algorithms have been proposed to solve the
optimization problem (2) (see, e.g., [9]). The typical assump-
tions are that g1 is convex and differentiable, ∇g1 is Lipschitz
with constant L > 0, and g2 is convex but possibly not differ-
entiable, which allows sparsity-inducing regularizations like
g2(x) = λ‖�x‖1. One of the most popular approaches is
ADMM [39], summarized by the iterations

x1 ← proxγ−1g1
(x2 − u) (4a)

x2 ← proxγ−1g2
(x1 + u) (4b)

u← u+ (x1 − x2), (4c)

where γ is a tunable parameter1 that affects convergence speed
but not the fixed point, and

proxρ(r) � arg min
x

{

ρ(x)+ 1

2
‖x− r‖2

}

. (5)

For example, when g1(x) = γw
2 ‖Ax− y‖2, we get

proxγ−1g1
(r) =

(

γwAHA+ γ I
)−1(

γwAHy+ γ r
)

. (6)

Based on the prox definition in (5), ADMM step (4b) can be
interpreted as MAP estimation [40] of x0 with prior p(x0) ∝
e−g2(x0) from an observation r = x0 + e of the true signal
corrupted by γ -precision AWGN e, i.e., MAP denoising. This
observation led Venkatakrishnan et al. [21] to propose that the
prox in (4b) be replaced by a high-performance image denoiser
f 2 : RN → R

N like BM3D [41], giving rise to PnP-ADMM. It
was later proposed to use a DNN-based denoiser in PnP [42],
such as DnCNN [27]. Note that when (4b) is replaced with a

1The parameter γ arises from the augmented Lagrangian used by ADMM:
g1(x1)+ g2(x2)+ Re{uH(x1 − x2)} + γ

2 ‖x1 − x2‖2.

denoising step of the form “x2 ← f 2(x1 + u),” the parameter
γ does affect the fixed-point and thus must be tuned to obtain
the best recovery accuracy.

The PnP framework was later extended to other algorithms,
such as primal-dual splitting (PDS) in [42], [43] and proximal
gradient descent (PGD) in [42], [44]. For use in the sequel,
we write the PGD algorithm as

x1 ← x2 − μ∇g1(x2) (7a)

x2 ← proxμg2
(x1), (7b)

where μ ∈ (0, 1/L) and L is the Lipschitz constant of
∇g1. For example, when g1(x) = 1

2‖Ax − y‖2, we get
∇g1(x) = AH(Ax− y). For all of these PnP incarnations, the
prox step in the original optimization algorithm is replaced
by a high-performance denoiser f 2. As shown in the recent
overview [24], PnP methods have been shown to significantly
outperform sparsity-based approaches in MRI, as well as
end-to-end DNNs in limited-data and mismatched-A scenarios.

Although PnP algorithms work well for MRI, there is room
for improvement. For example, while image denoisers are
typically designed/trained to remove the effects of AWGN,
PnP algorithms do not provide the denoiser with an AWGN-
corrupted input at each iteration. Rather, the denoiser’s input
error has iteration-dependent statistics that are difficult to
analyze or predict.

C. Approximate Message Passing

For the model (1) with w ∼ N (0, τwI), the AMP algo-
rithm2 [26], [46] manifests as the following iteration over
t = 0, 1, 2, . . .:

vt+1 = (

y− Axt)β + vt

M
tr
{

∇f t
2

(

xt−1 + βAHvt
)}

(8a)

τ t+1 = 1

M

∥

∥

∥vt+1
∥

∥

∥

2
(8b)

xt+1 = f t+1
2

(

xt + βAHvt+1
)

(8c)

initialized as v0 = 0 = x0, where f t
2(·) is the iteration-t denois-

ing function (which may depend on τ t), tr{∇f t
2(r)} is the trace

of the Jacobian of f t
2 at r, and β = √N/‖A‖F . The last term

in (8a), known as the “Onsager correction,” is a key compo-
nent of the AMP algorithm. Without it, (8) would reduce to
the PnP version of the PGD algorithm (7) with μ = β2.

The goal of Onsager correction is to make the denoiser input
error

et+1 � xt + βAHvt+1 − x0 (9)

behave like a realization of WGN with variance τ t+1, where
τ t+1 is given in (8b). Note that if

et+1 ∼ N
(

0, τ t+1I
)

(10)

did hold, it would be straightforward to design the denoiser
f t+1

2 for MAP or MMSE optimality. For example, in (2), if we
interpret g1(x) as the log-likelihood and g2(x) as the log-prior,
then g1(x)+g2(x) becomes the log-posterior (up to a constant)
and so x̂ in (2) becomes the MAP estimate [47]. Thus, for the

2For generalized linear models, one would instead use the Generalized
AMP algorithm from [45].
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case of MAP estimation, we would use the MAP denoiser
f t

2(r) = proxτ tg2
(r), and xt would approach the MAP estimate

as t → ∞ [26]. On the other hand, for the case of MMSE
estimation, where we would like to compute the conditional
mean x̂mmse � E{x|y}, we would use the MMSE denoiser
f t

2(r) = E{x | r} for r = x0 + e with e ∼ N (0, τ tI) [46].
Importantly, when the forward operator A ∈ R

P×N is i.i.d.
sub-Gaussian, the dimensions P, N → ∞ with a fixed ratio
P/N, and f t

2 is Lipschitz, [48], [49] established that the WGN
property (10) does indeed hold. Furthermore, defining the
MSE E t � 1

N ‖xt−x0‖2, [48], [49] established that AMP obeys
the following scalar state-evolution over t = 0, 1, 2, . . . :

τ t = τw + N

P
E t (11a)

E t+1 = 1

N
E

{

∥

∥f t
2

(

x0 +N (

0, τ tI
))− x0

∥

∥

2
}

. (11b)

Remarkably, the AMP state evolution shows that, in the
large-system limit, the trajectory of the mean-squared recov-
ery error can be predicted in advance knowing only the
dimensions of i.i.d. sub-Gaussian A (not the values in A)

and the MSE behavior of the denoiser f t
2(·) when faced

with the task of removing white Gaussian noise. Moreover,
when f t

2 is the MMSE denoiser and the state-evolution has
a unique fixed point, [48], [49] established that AMP prov-
ably converges to the MMSE-optimal estimate x̂mmse. These
theoretical results were first established for separable denois-
ers f 2 in [48] and later extended to non-separable denoisers
in [49]. By “separable” we mean that f 2 takes the form f 2(x) =
[f2(x1), . . . , f2(xN)]T for some scalar denoiser f2 : R→ R.

For practical image recovery problems, [50] proposed to
approximate the MMSE denoiser by a high-performance
image denoiser like BM3D or a DNN, and called it
“denoising-AMP” (D-AMP). Since these image denoisers are
non-separable and high-dimensional, the trace-Jacobian term
in (8a) (known as the “divergence”) is difficult to compute,
and so D-AMP uses the Monte-Carlo approximation [51]

tr
{∇f t

2(r)
} ≈ δ−1qH[

f t
2(r+ δq)− f t

2(r)
]

, (12)

where q is a fixed realization of N (0, I) and δ is a small
positive number. D-AMP performs very well with large i.i.d.
sub-Gaussian A, but can diverge with non-random A, such as
those encountered in MRI (recall (3)).

D. Expectation-Consistent Approximation and VAMP

Expectation-consistent (EC) approximation [52] is an infer-
ence framework with close connections to both PnP-ADMM
and AMP. In EC, one is assumed to have access to the
prior density px(x) on x0 and the likelihood function �(x; y),
and the goal is to approximate the mean of the posterior
px|y(x|y), i.e., the MMSE estimate x̂mmse = E{x|y}. Although
Bayes rule says that px|y(x|y) = Z−1(y)px(x)�(x; y) for
Z(y) �

∫

px(x)�(x; y) dx, this integral is usually too difficult
to compute in the high-dimensional case. But note that we can
write

px|y(x|y)
= arg min

q
D

(

q(x)
∥

∥px|y(x|y)
)

(13)

= arg min
q

D
(

q(x)
∥

∥�(x; y))+ D
(

q(x)
∥

∥px(x)
)+ H(q(x))

= arg min
q1,q2,q3

JGibbs(q1, q2, q3) such that q1 = q2 = q3, (14)

where the minimizations are conducted over sets of prob-
ability densities, D(q1‖px) �

∫

q1(x) log q1(x)
px(x)

dx is the

Kullback-Liebler (KL) divergence from px to q1, H(q3) �
− ∫

q3(x) log q3(x) dx is the differential entropy of q3, and

JGibbs(q1, q2, q3)

� D
(

q1(x)
∥

∥�(x; y))+ D
(

q2(x)
∥

∥px(x)
)+ H(q3(x)) (15)

where JGibbs(q, q, q) is known as the Gibbs free energy of q.
So, if (14) could be solved, it would give a way to compute
the posterior that avoids computing Z(y). However, (14) is
generally too difficult to solve, and so it was proposed in [52]
to relax the equality constraints in (14) to moment-matching
constraints, i.e.,

arg min
q1,q2,q3

JGibbs(q1, q2, q3) such that

{

E{x|q1} = E{x|q2} = E{x|q3}
tr(Cov{x|q1}) = tr(Cov{x|q2}) = tr(Cov{x|q3}), (16)

where E{x|qi} and Cov{x|qi} denote the mean and covariance
of x under x ∼ qi for i = 1, 2, 3, respectively. The authors
of [52] then showed that the optimization problem (16) is
solved by the densities

q1(x; r1, γ1) ∝ �(x; y)N (x; r1, I/γ1) (17)

q2(x; r2, γ2) ∝ px(x)N (r2; x, I/γ2) (18)

q3(x; x̂, η) = N (x; x̂, I/η) (19)

for the values of (r1, γ1, r2, γ2, x̂, η) that lead to the satisfac-
tion of the constraints in (16). The resulting x̂ approximates
the MMSE estimate x̂mmse and η−1 approximates the resulting
MMSE 1

N tr(Cov{x|y}).
Although there is generally no closed-form expression for

the moment-matching values of (r1, γ1, r2, γ2, x̂, η), one can
iteratively solve for them using the EC algorithm shown in
Algorithm 1 (a form of expectation propagation (EP) [53])
using the estimation functions

f 1(r1; γ1) = E{x|q1} =
∫

x q1(x; r1; γ1) dx (20)

f 2(r2; γ2) = E{x|q2} =
∫

x q2(x; r2; γ2) dx. (21)

It is straightforward to show (see, e.g., [28]) that, at a fixed
point of Algorithm 1, one obtains x̂1 = x̂2 = x̂ and η1 = η2 =
η = γ1 + γ2.

For WGN-corrupted linear measurements y as in (1), the
likelihood becomes �(x; y) = N (y;Ax, I/γw) and so f 1 in (20)
manifests as

f 1(r1; γ1) =
(

γwAHA+ γ1I
)−1(

γwAHy+ γ1r1

)

. (22)

This f 1 can be interpreted as the MMSE estimator of x0
from the measurements y = Ax0 + N (0, I/γw) under the
pseudo-prior x0 ∼ N (r1, I/γ1). Meanwhile f 2 in (21) can
be interpreted as the MMSE estimator of x0 from the pseudo-
measurements r2 = x0 + N (0, I/γ2) under the prior x0 ∼
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Algorithm 1 EC / VAMP
Require: f1(·; ·) and f2(·; ·).
1: Select initial r1 ∈ R

N , γ1 > 0
2: repeat
3: // Measurement fidelity
4: x̂1 ← f1(r1; γ1)

5: η1 ← γ1N/ tr(∇f1(r1; γ1))

6: γ2 ← η1 − γ1
7: r2 ← (η1x̂1 − γ1r1)/γ2
8: // Denoising
9: x̂2 ← f2(r2; γ2)

10: η2 ← γ2N/ tr(∇f2(r2; γ2))

11: γ1 ← η2 − γ2
12: r1 ← (η2x̂2 − γ2r2)/γ1
13: until Terminated
14: return x̂2

px(x). In other words, f 2 can be interpreted as the MMSE
denoiser of r2. This pseudo-measurement model is exactly the
same one that arises in AMP (recall (10)).

For generic A, there are no guarantees on the quality of the
EC estimate x̂ or even the convergence of Algorithm 1. But
when A is a right orthogonally invariant (ROI) random matrix,
EC has a rigorous high-dimensional analysis. ROI matrices can
be understood as those with singular value decompositions of
the form USVT, for orthogonal U, diagonal S, and random V
uniformly distributed over the set of orthogonal matrices; the
ROI class includes the i.i.d. Gaussian class but is more general.
In particular, [54], [55] showed that, for asymptotically large
ROI matrices A, EC’s denoiser input error e2 = r2− x0 obeys

e2 ∼ N (0, I/γ2) (23)

at every iteration, similar to AMP (recall (10)). Likewise,
macroscopic statistical quantities like MSE E = 1

N ‖̂x − x0‖2
obey a scalar state evolution. Importantly, these results hold
not only for the MMSE denoising functions f 2 specified by
EC, but also for general Lipschitz f 2 [55], [56]. Due to the
tight connections with AMP, the EC algorithm with gen-
eral Lipschitz f 2 was referred to as Vector AMP (VAMP) in
[55], [56]. A similar rigorous analysis of EC with asymptoti-
cally large, right unitarily invariant (RUI) matrices A was given
in [57]. For those matrices, the SVD of A takes the form USVH

with random V uniformly distributed over the set of unitary
matrices.

Given that the EC/VAMP algorithm can be used with esti-
mation functions other than the MMSE choices in (20)-(21),
one might wonder whether it can be applied to solve
optimization problems of the form (2), i.e., MAP estima-
tion. This was answered affirmatively in [28]. In particular,
it suffices to choose

f 1(r1, γ1) = prox
γ−1

1 g1
(r1) (24)

f 2(r2, γ2) = prox
γ−1

2 g2
(r2). (25)

Furthermore, the resulting EC/VAMP algorithm can be recog-
nized as a form of ADMM. If we fix the values of γ1 and
γ2 over the iterations (which forces η1 = η2 = γ1 + γ2) and
define u1 � γ1(̂x2− r1) and u2 � γ2(r2− x̂1), we can rewrite
EC/VAMP from Algorithm 1 as the recursion

x̂1 ← prox
γ−1

1 g1
(̂x2 − u1/γ1) (26a)

u2 ← u1 + γ1(̂x1 − x̂2) (26b)

x̂2 ← prox
γ−1

2 g2
(̂x1 + u2/γ2) (26c)

u1 ← u2 + γ2(̂x1 − x̂2) (26d)

which is a generalization of ADMM in (4) to two dual updates
and two penalty parameters. If we additionally constrain γ1 =
γ2 � γ then (26) reduces to

x̂1 ← proxγ−1g1
(̂x2 − u) (27a)

u← u+ (̂x1 − x̂2) (27b)

x̂2 ← proxγ−1g2
(̂x1 + u) (27c)

u← u+ (̂x1 − x̂2), (27d)

which is known as the Peaceman-Rachford or symmetric
variant of ADMM, and which is said to converge faster
than standard ADMM [58], [59]. The important point is that
EC/VAMP can be understood as a generalization of ADMM
that i) uses two penalty parameters and ii) adapts those penalty
parameters with the iterations.

Inspired by D-AMP [50], a “Denoising VAMP” (D-
VAMP) was proposed in [60], which used VAMP with
high-performance image denoisers and the Monte-Carlo
approximation (12). Although D-VAMP was shown to work
well with large ROI A, it can diverge with non-random A, such
as those encountered in MRI. Some intuition behind the failure
of VAMP with non-ROI A will be given in Section III-A

E. AMP/VAMP for MRI

The versions of A that manifest in linear inverse prob-
lems often do not have sufficient randomness for the AMP
and EC/VAMP algorithms to work as intended. If used with-
out modification, AMP and EC/VAMP algorithms may simply
diverge. This is definitely the case for MRI, where A is the
Fourier-based matrix shown in (3). Consequently, modified
AMP and VAMP algorithms have been proposed specifically
for MRI image recovery.

For example, [61] proposed to use D-AMP (8) with β �√
N/‖A‖F , which helps to slow down the algorithm and help

it converge, but at the cost of degrading its fixed points,
as we show in Section IV-E. The authors of [62] instead
used damping to help D-VAMP converge without disturb-
ing its fixed points. In conjunction with a novel initialization
based on Peaceman-Rachford ADMM, the latter scheme was
competitive with PnP-ADMM for single-coil MRI.

For the special case of 2D point-sampled MRI, the prin-
ciple of density compensation [63] has also been exploited
for the design of AMP-based algorithms. For applications
where k-space is non-uniformly sampled, density compensa-
tion applies a gain to each k-space sample that is proportional
to the inverse sampling density at that sample, changing y to
Gy in (1) with diagonal gain matrix G. When A uses a 2D
point mask, the error in the density-compensated linear esti-
mate x̂ = AHGy behaves much more like white Gaussian noise
than does the error in the standard linear estimate x̂ = AHy
(see, e.g., [64]). After observing the error to behave even more
like white noise within wavelet subbands, Millard et al. [35]
proposed a VAMP modification that employs density com-
pensation in the linear stage and wavelet thresholding in
the denoising stage. The resulting “Variable-Density AMP”
(VDAMP) algorithm was empirically observed to successfully
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Fig. 2. Approximate block-diagonality of 2D Fourier-wavelet matrices. Using abs(·) to denote the entry-wise magnitude operation, (a) shows abs(F�T)

with rows sorted according to distance from the k-space origin, columns sorted according to wavelet subbands, and subband boundaries denoted by red lines.
Meanwhile, (b) shows the matrix product abs(F�T)T abs(F�T) and (c) shows abs(G)T abs(G) for the multi-coil Fourier-wavelet matrix G defined in (30).
The approximate block-diagonality of (b) and (c) suggests that the columns of the 2D Fourier-wavelet matrices are well decoupled in the single- and multi-coil
cases.

track the error variance in each subband over the algorithm
iterations. The authors then extended their work from single- to
multicoil MRI in [37], calling their approach Parallel VDAMP
(P-VDAMP).

To improve on VDAMP, Metzler and Wetzstein [36]
proposed a PnP extension of the algorithm, where the wavelet-
thresholding denoiser was replaced by a novel DNN that
accepts a vector of subband error variances at each iteration.
The resulting Denoising VDAMP (D-VDAMP) showed a
significant boost in recovery accuracy over VDAMP for single-
coil 2D point-sampled MRI [36]. Although D-VDAMP works
relatively well, it requires early stopping for good performance
(as we demonstrate in Section IV-E), which suggests that
D-VDAMP has suboptimal fixed points and hence can be
improved. Most recently, a “Denoising P-VDAMP” (DP-
VDAMP) was proposed [38], [65] that replaces the wavelet
thresholding step in P-VDAMP with a DNN denoiser. A
major shortcoming of VDAMP, P-VDAMP, D-VDAMP, and
DP-VDAMP is that they are designed around the use of 2D
point sampling masks, which are impractical and uncommon
in clinical MRI. These shortcomings motivate our proposed
approach, which is described in the next section.

III. PROPOSED APPROACH

We now propose a new approach to MRI recovery that, like
the VDAMP-based algorithms [35], [36], [37], [38], formu-
lates signal recovery in the wavelet domain, but, unlike the
VDAMP-based algorithms, does not use density compensa-
tion and does not require the use of 2D point masks. Our
approach is based on a PnP version of the generalized EC
algorithm, which is described in Section III-A, in conjunction
with a DNN denoiser that can handle parameterized colored
noise, which is described in Section III-B.

A. Wavelet-Domain Denoising GEC Algorithm

To motivate wavelet-domain signal recovery, we first present
an intuitive explanation of the problems faced by EC/VAMP
with non-ROI A. To start, one can show (see Appendix A)
that EC/VAMP’s denoiser input error e2 � r2 − x0 can be
written as

e2 = VDVHe1 + u, (28)

where V is the right singular vector matrix of A, the matrix
D is diagonal with tr(D) = 0, e1 � r1 − x0 is the error
on the input to f 1, and u is a linear transformation of the

measurement noise vector w from (1). When A is ROI or
RUI, V is drawn uniformly from the group of orthogonal
or unitary matrices, respectively. Appendix B shows for the
orthogonal case that, if V and e1 are treated as indepen-
dent up to the fourth moment and w and e1 are uncorrelated,
then, conditioned on e1, both VDVHe1 and e2 are asymptoti-
cally white and zero-mean Gaussian. Importantly, this behavior
occurs despite the tendency for e1 to be highly structured and
non-Gaussian.

When A is not a high-dimensional ROI or RUI matrix, how-
ever, there is no guarantee that VDVHe1 will asymptotically be
white and zero-mean Gaussian. For example, when A = MF
as in single-coil MRI and x0 is a natural image, this desired
property does not manifest because the x0 (and thus e1) has a
high concentration of energy at low frequencies and VH = F
focuses that error into a few dimensions of D.

We now explain why using an AMP/EC algorithm to recover
the wavelet coefficients c0 � �x0, rather than the image pixels
x0, offers a path to circumvent these issues. For an orthogonal
discrete wavelet transform (DWT) �, we have x0 = �Tc0 and
so (1) implies the measurement model

y = Bc0 + w with B � A�T. (29)

In the case where A is a subsampled version of the Fourier
matrix F, the matrix B is a subsampled Fourier-wavelet matrix
F�T. The Fourier-wavelet matrix is known to be approx-
imately block diagonal after appropriate row-sorting [66],
where the blocks correspond to the wavelet subbands. This
means that B in (29) primarily mixes the wavelet coefficients
c0 within subbands rather than across subbands. Consequently,
if that mixing has a sufficiently randomizing effect on each
subband of e1, then—with an appropriate EC-style algorithm
design—the subband error vectors e2 can be kept approx-
imately i.i.d. Gaussian across the iterations, although with
a possibly different variance in each subband. In Fig. 2(a),
we plot abs(F�T) for the 2D case with the rows sorted
according to the distance of their corresponding k-space sam-
ple to the origin. Although this row-sorting does not yield
an approximately block-diagonal matrix, it should be clear
from the discussion above that row-sorting is unimportant;
it only matters that the columns of B for each given sub-
band have a sufficiently randomizing effect on that subband
and are approximately decoupled from the columns of other
subbands. To illustrate the degree of column-decoupling in
F�T, we plot abs(F�T)T abs(F�T) in Fig. 2(b). We plot
this particular quantity because, if F�T = JD where J is a
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Algorithm 2 Generalized EC (GEC)
Require: f1(·; ·), f2(·; ·), and gdiag(·).
1: Select initial r1, γ 1
2: repeat
3: // Measurement fidelity
4: x̂1 ← f1(r1, γ 1)

5: η1 ← Diag(gdiag(∇f1(r1, γ 1)))−1γ 1
6: γ 2 ← η1 − γ 1
7: r2 ← Diag(γ 2)−1(Diag(η1 )̂x1 − Diag(γ 1)r1)

8: // Denoising
9: x̂2 ← f2(r2, γ 2)

10: η2 ← Diag(gdiag(∇f2(r2, γ 2)))−1γ 2
11: γ 1 ← η2 − γ 2
12: r1 ← Diag(γ 1)−1(Diag(η2 )̂x2 − Diag(γ 2)r2)

13: until Terminated
14: return x̂2

permutation matrix and D is a perfectly block-diagonal matrix,
then abs(F�T)T abs(F�T) will be perfectly block-diagonal for
any J, i.e., for any row-sorting. The fact that Fig. 2(b) looks
approximately block-diagonal suggests that the column-blocks
of F�T are significantly decoupled.

The discussion in the previous paragraph pertains to single-
coil MRI. In the multi-coil case, the matrix A takes the form
in (3) and so B from (29) manifests as

B =
⎡

⎢

⎣

M
. . .

M

⎤

⎥

⎦G with G �

⎡

⎢

⎣

F Diag(s1)�
T

...

F Diag(sC)�T

⎤

⎥

⎦. (30)

We would like that the multi-coil Fourier-wavelet matrix G has
a sufficiently randomizing effect on each given subband in c0
and that the columns corresponding to that subband are decou-
pled from the columns of other subbands. To investigate the
decoupling behavior of G, we plot abs(G)T abs(G) in Fig. 2(c)
for the case of C = 8 ESPIRiT-estimated coils and notice
that, similar to the single-coil quantity abs(F�T)T abs(F�T)

in Fig. 2(b), the multi-coil quantity abs(G)T abs(G) looks
approximately block-diagonal.

The first AMP-based method that exploited the aforemen-
tioned Fourier-wavelet properties was the VAMPire algorithm
from [67], where a normalization of the subband energies in
c0 was used to equalize the subband error variances in e2, with
the goal of tracking a single variance across the iterations (thus
facilitating the use of D-VAMP). In other words, (29) was writ-
ten as y = Bc0+w with B = B Diag(g) and c0 = Diag(g)−1c0,
for g such that diag(Cov(c0)) ≈ 1. But, because the variances
of the subbands in e2 do change with the iterations, the scheme
in [67] was far from optimal.

In this work, we propose an EC-based PnP method that
recovers the wavelet coefficients c0 and tracks the variances
of both e1 and e2 in each wavelet subband. Our approach lever-
ages the Generalized EC (GEC) framework from [28], which
is summarized in Algorithm 2 and (31). GEC is a generaliza-
tion of EC from Algorithm 1 that averages the diagonal of the
Jacobian ∇f i separately over L coefficient subsets using the
gdiag : RN×N → R

N operator:

gdiag(Q) �
[

d11T
N1

, . . . , dL1T
NL

]T
(31a)

d� = tr
{

Q��

}

N�

. (31b)

Algorithm 3 Denoising GEC Operating in the Wavelet
Domain
Require: f1(·, ·), f2(·, ·), gdiag(·), and �.
1: Select initial r1, γ 1
2: repeat
3: // Measurement fidelity
4: ĉ1 ← f1(r1, γ 1)

5: η1 ← Diag(gdiag(∇f1(r1, γ 1)))−1γ 1
6: γ 2 ← η1 − γ 1
7: r2 ← Diag(γ 2)−1(Diag(η1 )̂c1 − Diag(γ 1)r1)

8: // Denoising
9: ĉ2 ← �f2(�Tr2, γ 2)

10: η2 ← Diag(gdiag(∇f2(r2, γ 2)))−1γ 2
11: γ 1 ← η2 − γ 2
12: r1 ← Diag(γ 1)−1(Diag(η2 )̂c2 − Diag(γ 2)r2)

13: until Terminated
14: return x̂2 = �T̂c2

In (31), N� denotes the size of the �th subset and Q�� ∈ R
N�×N�

denotes the �th diagonal subblock of the matrix input Q. When
GEC is used to solve a convex optimization problem of the
form (2), the functions f i take the form

f i(r, γ ) = gproxgi,γ
(r) (32a)

gproxρ,γ (r) � arg min
x

{

ρ(x)+ 1

2
‖x− r‖2γ

}

, (32b)

where ‖q‖γ �
√

qH Diag(γ )q. When L = 1, GEC reduces to
EC/VAMP. In that case, γ = γ 1 and gproxρ,γ = proxγ−1ρ .

Our proposed wavelet-domain Denoising GEC (D-GEC)
approach is outlined in Algorithm 3. For the gdiag operator,
we use (31) with the diagonalization subsets defined by the
L = 3D + 1 subbands of a depth-D dyadic 2D orthogonal
DWT. Also, when computing gdiag(∇f 1) and gdiag(∇f 2) in
lines 5 and 10, we approximate the tr{Q��} terms in (31b)
using the Monte Carlo approach [51]

tr
{

Q��

} ≈ δ−1
� qH

�

[

f i

(

r+ δ�q�, γ
)− f i(r, γ )

]

, (33)

where we use i.i.d. unit-variance Gaussian coefficients for the
�th coefficient subset in q� and set all other coefficients in
q� to zero. As a result of the chosen diagonalization, the γ i
vectors (for i = 1, 2) are structured as

γ i =
[

γi,11T
N1

, . . . , γi,L1T
NL

]T
, (34)

and the ηi vectors have a similar structure. In (33) we
used δ� = min{√1/γ�, ‖r�‖1/N�} where r� denotes the �th
coefficient subset of r.

For the wavelet-measurement model (29) with WGN w, (32)
implies that the f 1 estimation function in line 4 of Algorithm 3
manifests as

f 1
(

r1, γ 1
)

=
(

γwBHB+ Diag
(

γ 1
)

)−1(

γwBHy+ Diag
(

γ 1
)

r1

)

. (35)

When numerically solving (35), we exploit the fact that
B is a fast operator by using the conjugate gradient (CG)
method [68].

For f 2 in line 9 of Algorithm 3, we use a pixel-domain
DNN denoiser. As shown in line 9, we convert from the
wavelet domain to the pixel domain and back when calling this
denoiser. Note that the denoiser f 2 is provided with the vector
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γ 2 of subband error precisions. The design of this denoiser will
be discussed in Section III-B. The experiments in Section IV-B
suggest that the denoiser input error e2 = r2− c0 does indeed
obey

e2 ∼ N
(

0, Diag
(

γ 2
)−1

)

(36)

for the γ 2 vector computed in line 6 of Algorithm 3, similar
to other AMP, VAMP, EC, and GEC algorithms. Further work
is needed to understand if this behavior can be predicted by a
rigorous analysis. The error model (36) facilitates a principled
way to train the DNN denoiser, as we discuss in the next
section.

We now discuss the initialization of D-GEC. For (36) to
hold at all iterations, we need that the initial γ 1 contains the
precisions (i.e., inverse variances) of the subbands of the initial
e1 = r1 − c0. But initializing γ 1 is complicated by the fact
that c0 is unknown. In response, we suggest initializing γ 1 at
an average value such as

γ̂ 1 = Diag
(

gdiag
(

E

{

(r1 − c0)(r1 − c0)
H
}))−1

1, (37)

where the expectation is approximated using a sample average
over a training set (e.g., the dataset used to train the denoiser).
But this approach could fail if the precision of the initial error
falls far from γ̂ 1, which can happen if r1 is strongly dependent
on y. Thus, we propose to initialize r1 = BHy + n, where
n is Gaussian and white in each subband. The per-subband
variance of n should be large enough to dominate the behavior
of e1, which makes the subband precisions easy to predict, but
not so large that the algorithm is initialized at a terribly bad
state. For the experiments in Section IV-B, we set the per-
subband variance of n at 10 times the per-subband variance
of BHy − c0, and observed that (36) held at all iterations.
Although a careful choice of initialization is important for (36)
to hold at all iterations, we find that the initialization has little
effect on the fixed points of D-GEC. So, for the experiments
in Sections IV-C, IV-D, and IV-E, we set n = 0 to improve the
accuracy of the initial r1 and thus speed D-GEC convergence.

Computationally, the cost of D-GEC is driven by lines 4-5
and 9-10 of Algorithm 3, which call f 1 and f 2, respectively,
L + 1 times when implementing (33). The L + 1 calls to f 1
can be performed in parallel (e.g., in a single minibatch on a
GPU), as can the calls to f 2. As described above, each call
to f 1 involves running several iterations of CG. For accurate
D-GEC fixed points, we find that 10 CG iterations suffice,
and we use this setting in Sections IV-C, IV-D, and IV-E. For
D-GEC error to match the state-evolution predictions at all
iterations, we find that 150 CG iterations suffice, and we use
this value in Section IV-B. Each call to f 2 involves calling the
DNN denoiser that is described in the next subsection.

B. DNN Denoiser for Correlated Noise

As suggested by (36), the denoiser f 2 in Algorithm 3 faces
the task of denoising the pixel-domain signal �Tr2, where
r2 = c0+n for n ∼ N (0, Diag(γ 2)

−1) and c0 are the wavelet
coefficients of the true image x0. The denoiser input can thus

be modeled as

�Tr2 = x0 + n for n ∼ N
(

0,�T Diag
(

γ 2
)−1

�
)

, (38)

i.e., the true image corrupted by colored Gaussian noise with
(known) covariance matrix �T Diag(γ 2)

−1�. Here, the γ 2
vector takes the form shown in (34).

Although several DNNs have been proposed to tackle
denoising with correlated noise (e.g., [69], [70], [71]), to our
knowledge, the only one compatible with our denoising task
is the DNN proposed by Metzler and Wetzstein in [36]. There,
they built on the DnCNN network by providing every layer
with L additional channels, where the �th channel contains the
standard deviation (SD) of the noise in the �th wavelet subband
(i.e.,

√

1/γ2,�). Their approach can be interpreted as an exten-
sion of FFDNet [72], which provides one additional channel
containing the SD of the assumed white corrupting noise, to
multiple additional channels containing subband SDs. In our
numerical experiments in Section IV, we find that Metzler’s
denoising approach works well in some cases but poorly in
others. We believe that the observed poor performance may
be the result of the fact that their DNN operates in the pixel
domain, while their SD side information is given in the wavelet
domain and the network is given no information about the
wavelet transform �.

We now propose a novel approach to DNN denoising that
can handle colored Gaussian noise with an arbitrary known
covariance matrix. Our approach starts with an arbitrary DNN
denoiser (e.g., DnCNN [27], UNet [73], RNN [74], etc.) that
normally accepts C input channels (e.g., 3 channels for color-
image denoising or 2 channels for complex-image denoising).
It then adds K ≥ 1 sets of C additional channels, where each
set is fed an independently generated realization of noise with
the same statistics as that corrupting the signal to be denoised.
In other words, if u ∈ R

CN denotes the (vectorized) noisy input
signal, which obeys (recall (38))

u = x0 + n for n ∼ N (0,�) (39)

with arbitrary known �, then the (vectorized) input to the kth
additional channel-set would be

nk ∼ N (0,�) ∀k = 1, . . . , K, (40)

where {nk}Kk=1 are mutually independent and independent of
u. The hope is that, during training, the denoiser learns how
to i) extract the relevant statistics from {nk}Kk=1 and ii) use
them productively for the denoising of u. Here, K is a design
parameter; for our D-GEC application we find that K = 1
suffices. Because the denoiser accepts a signal corrupted by
correlated noise plus additional realizations of correlated noise,
we call our approach “corr+corr.”

To train our corr+corr denoiser, we use the following
approach. Suppose that we have access to a training set of
clean signals {xi}, and that we would like to train the denoiser
to handle γ 2 vectors from some distribution p
 . During train-
ing, we draw many γ 2 ∼ p
 and, for each realization of γ 2,
we draw independent realizations of v and {nk}Nk=1 from the
distribution N (0,�T Diag(γ 2)

−1�). The v vector is then used
to form the noisy signal ui = xi + v and the denoiser is given
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TABLE I
PERFORMANCE COMPARISON OF FOUR DIFFERENT DNCNN DENOISERS FOR VARIOUS CASES OF COLORED NOISE

access to N � [n1, . . . , nK] when denoising ui. Concretely,
if we denote the corr+corr denoiser as f 2(ui, N; θ), where θ

contains the trainable denoiser parameters, then we train those
parameters using

̂θ = arg min
θ

∑

i

E
{L(

xi, f 2(xi + v, N; θ)
)}

, (41)

where L(·, ·) is a loss function that quantifies the error between
its two vector-valued arguments. Popular losses include [75]
�2, �1, SSIM [76], or combinations thereof, and in our exper-
iments we used �2 loss. The expectation in (41) is taken over
both v and N, which implicitly involves p
 .

In inference mode, we are given a noisy u and a single
precision vector γ 2. From the latter, we generate a single
independent realization of N ∼ N (0,�T Diag(γ 2)

−1�) and
then compute the denoised pixel-domain image estimate via
x̂2 = f 2(u, N;̂θ).

In Section IV-A we show that our corr+corr denoiser per-
forms better than Metzler’s DnCNN and nearly as well as a
genie-aided denoiser that knows the distribution of the test
noise v ∼ �T Diag(γ 2)

−1�, with fixed γ 2, at training time.

IV. NUMERICAL EXPERIMENTS

In this section, we present numerical experiments demon-
strating the performance of the proposed corr+corr denoiser
as well as the proposed D-GEC method applied to both
single-coil and multicoil MRI recovery.

A. Denoising Experiments

In this subsection, we compare the corr+corr denoiser
proposed in Section III-B to several existing denoisers. We
test all denoisers on the 10 MRI images from the Stanford
2D FSE dataset [31] shown in Fig. 3, which ranged in size
from 320×320 to 416×416. Noisy images were obtained by
corrupting those test images by additive zero-mean Gaussian
noise of covariance

� = �T Diag(γ )−1�, (42)

with � a 2D Haar wavelet transform of depth D = 1. This
wavelet transform has L = 4 subbands, and so the precision
vector γ in (42) is structured as γ = [γ11T

N/4, . . . , γ41T
N/4]T

and thus parameterized by the four precisions [γ1, γ2, γ3, γ4],
or equivalently the four SDs [ 1√

γ1
, 1√

γ2
, 1√

γ3
, 1√

γ4
]. We test

the denoisers under different assumptions on these SDs, as
indicated by the rows in Table I. For some tests, we use a fixed
SD vector, while for other tests we average over a distribution
of SD vectors.

Fig. 3. Test images from the Stanford 2D FSE MRI dataset.

When training the denoisers, we used the 70 training MRI
images from the Stanford 2D FSE dataset. We trained to min-
imize �2 loss on a total of 44 000 patches of size 40×40 taken
with stride 10×10. All denoisers used the bias-free version of
DnCNN from [77], with the exception of Metzler’s DnCNN
from [36], which used the publicly available code provided by
the author. For both corr+corr and Metzler’s DnCNN, when
training, we used random subband SDs {1/

√
γ�}4�=1 drawn

independently from a uniform distribution over the interval
[0, 50/255]. When interpreting the value “50/255,” note that
the image pixel values were in [0, 1] for this dataset. As a
baseline method, we trained bias-free DnCNN using white
noise with a standard deviation distributed uniformly over the
interval [0, 50/255]. We expect this “white DnCNN” to per-
form poorly with colored testing noise. As an upper bound
on performance, we trained bias-free DnCNN using the same
fixed value of the SD vector [ 1√

γ1
, 1√

γ2
, 1√

γ3
, 1√

γ4
] that is used

when testing. The resulting “genie DnCNN” is specialized to
that particular SD vector, and thus not useful in practical sit-
uations where the test SD is unknown during training (e.g., in
D-GEC).

The results of our denoiser comparison are presented in
Table I using the metrics of PSNR and SSIM [76] along with
the respective standard errors (SE). In the first four rows of the
table, performance is evaluated for a fixed value of the SD vec-
tor [ 1√

γ1
, 1√

γ2
, 1√

γ3
, 1√

γ4
], while in the last row the results are

averaged over subband SDs {1/
√

γ�}4�=1 drawn independently
from a uniform distribution over the interval [0, 50/255]. The
fourth row corresponds to white Gaussian noise with a fixed
standard deviation of 10, while all other rows correspond to
colored noise. The fifth row corresponds to noise that is non-
Gaussian in general, but Gaussian when conditioned on γ .
All results in the table represent the average over 500 differ-
ent noise realizations. The results in Table I are summarized
as follows.
• As expected, white DnCNN performs relatively poorly

for all test cases except that in the fourth row, where
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the testing noise was white, and that in the third row,
where the testing noise was lightly colored. In the
fourth row, white DnCNN performs slightly worse than
genie DnCNN, which is expected because white DnCNN
was trained using white noise with SDs in the range
[0, 50/255], while genie DnCNN was trained using a
white noise with a fixed SD that exactly matches the test
noise.

• As expected, genie DnCNN is the best method in the
first four rows. In all of those cases, genie DnCNN is
specialized to handle exactly the noise distribution used
for the test, and thus is impractical. By definition, genie
DnCNN is not applicable to the fifth row.

• Metzler’s DnCNN performs relatively well in the first two
rows, but relatively poorly in the second two rows. We
believe that the inconsistency is the result of the fact that
the DNN operates in the pixel domain, while the SD side
information is given in the wavelet domain and the DNN
is given no information about the wavelet transform itself.

• The proposed corr+corr outperforms Metzler’s DnCNN
in all cases and is only 0.3 to 0.5 dB away from the genie
DnCNN. This is notable because genie DnCNN gives an
(impractical) upper bound on the performance achievable
with the chosen architecture and training method.

Code for our corr+corr experiments can be found at
https://github.com/Saurav-K-Shastri/corr-plus-corr.

B. Example D-GEC Behavior in Multicoil MRI With a 2D
Line Mask

In this section, we demonstrate the typical behavior of
D-GEC when applied to multicoil MRI image recovery with
a 2D line mask; experiments with a 2D point mask will be
presented in Section IV-C. The full details of our multicoil
experimental setup are given in Appendix C-A. One of our
main goals is to demonstrate that D-GEC’s denoiser input error
behaves as in (36), i.e., that the error in each wavelet band is
white and Gaussian with a predictable variance. For the experi-
ments in this section, we used the corr+corr denoiser proposed
in Section III-B, a signal-to-noise ratio (SNR) of 40 dB, and
an acceleration of R = 4. Code for our D-GEC experiments
can be found at https://github.com/Saurav-K-Shastri/D-GEC.

Before discussing our results, there is one peculiarity to
multicoil MRI that should be explained. In practice, both the
coil-sensitivity maps {sc}Cc=1 in A from (3) and the image x0
in (1) are unknown. The standard recovery approach is to
first use an algorithm like ESPIRiT [78] to estimate the coil
maps {sc}Cc=1, then plug the estimated maps into the A matrix,
and finally solve the inverse problem with the estimated A to
recover x0. One complication with ESPIRiT is that, in pixel
regions where the true image x0 is zero or nearly zero (e.g., the
outer regions of many MRI images), the ESPIRiT-estimated
coil maps can be uniformly zero-valued, depending on how
ESPIRiT is configured. In other words, there may exist pixels n
such that [sc]n = 0 ∀c = 1 . . . C, which causes the correspond-
ing columns of A to be zero. In our experiments, we use the
default ESPIRiT parameters from the SigPy implementation3

3https://sigpy.readthedocs.io/en/latest/generated/sigpy.mri.app.EspiritCalib.
html.

Fig. 4. Example multicoil knee image recovery: True image magnitude
|x0|, D-GEC’s recovered image magnitude |̂x| at iteration 20, and the error
magnitude |x0 − x̂|, for R = 4 and measurement SNR = 40 dB.

Fig. 5. Example multicoil knee image recovery: True wavelet coefficient
magnitude |c0|, D-GEC’s denoiser-input magnitude |r2| at iteration 10, and
the error magnitude |c0 − r2|, for R = 4 and measurement SNR = 40 dB.

and find such zero-valued regions do occur. Although the pres-
ence of zero-valued columns in A might appear to make the
inverse problem (1) more difficult, the (known) coil-map esti-
mates can be exploited as side-information to tell the algorithm
which pixels in x0 are nearly zero-valued. Consequently, in our
multicoil experiments, for all algorithms, we set those pixels of
the recovered image x̂ to zero wherever the estimated coil maps
are uniformly zero. In the sequel, we will refer to the pixel
region with zero-valued coil map estimates as the “zero-coil
region.”

For a typical MRI knee image, Fig. 4 shows the mag-
nitude |x0| of the true image, D-GEC’s recovery |̂x| after
20 iterations, and the error magnitude |̂x − x0|. The error
is exactly zero in the previously defined zero-coil region
because both x0 and x̂ are zero-valued there. The PSNR
� 10 log10 [(N maxn |[x0]n|2)/‖̂x − x0‖2] and SSIM [76] val-
ues for this example reconstruction were 36.87 dB and 0.9397,
respectively.

Fig. 5 shows the magnitude |c0| of the corresponding true
wavelet coefficients, the magnitude |r2| of the noisy signal
entering the D-GEC denoiser at iteration 10, and the error
magnitude |r2 − c0|. The wavelet subbands are visible as the
image tiles in these plots. Here again, we see zero-valued error
in the zero-coil region. As anticipated from (36), the error
maps look like white noise outside the zero-coil region of
each wavelet subband, with an error variance that varies across
subbands.

To verify the Gaussianity of the wavelet subband errors,
Fig. 6 shows quantile-quantile (QQ) plots of the real and imag-
inary parts of the error c0 − r2 outside the zero-coil region of
several wavelet subbands at iteration 1, and Fig. 7 shows the
same at iteration 10. These QQ-plots suggest that the subband
errors are indeed Gaussian at all iterations.

To show that the subband precisions γ 2 predicted by D-GEC
match the empirical subband precisions in the error vector
e2, Fig. 8 plots the �th subband SD 1/

√
γ� versus iteration,
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Fig. 6. QQ-plots of the real and imaginary parts of D-GEC’s subband errors
c0 − r2 at iteration 1.

Fig. 7. QQ-plots of the real and imaginary parts of D-GEC’s subband errors
c0 − r2 at iteration 10.

along with the SDs empirically estimated from c0 − r2, for
several subbands � and a typical run of the algorithm. It can
be seen that the predicted SDs are in close agreement with the
empirically estimated SDs.

Finally, to verify that the errors c0−r2 are zero-mean in each
subband of each validation image, we performed a t-test [79]
using a significance level of α = 0.05 (i.e., if the errors were
truly zero mean then the test would fail with probability α).
At the first iteration, we ran a total of 208 tests (one for each
of the 13 subbands in each of the 16 knee validation images
at R = 4 and SNR = 40 dB) and found that 11 tests rejected
the zero-mean hypothesis, which is consistent with α = 0.05
since 11/208 = 0.0529 ≈ 0.05. At the 10th iteration, 12 tests
rejected the zero-mean hypothesis, which is again consistent
with α = 0.05.

C. Multicoil MRI Algorithm Comparison With a 2D Point
Mask

In this section, we compare the performance of D-GEC to
two state-of-the-art algorithms for multicoil MRI image recov-
ery: P-VDAMP [37] and PnP-PDS [43]. We use 2D point
masks in this section out of fairness to P-VDAMP, which was
designed around 2D point masks. Multicoil experiments with
2D line masks are presented in Section IV-D, and single-coil
experiments are presented in Section IV-E. We examine two
acceleration rates, R = 4 and R = 8, and several measurement

SNRs between 20 and 45 dB. As before, we quantify recov-
ery performance using PSNR and SSIM. For this section, we
used both knee and brain fastMRI data. The details of the
experimental setup are given in Appendix C-A.

For P-VDAMP, we ran the authors’ code from [37]
under its default settings. For PnP-PDS, we used a bias-
free DnCNN [77] denoiser trained to minimize �2 loss when
removing WGN with an SD uniformly distributed in the
interval [0, 55/255]. This bias-free network is known to per-
form very well over a wide SD range, and so there is no
advantage in training multiple denoisers over different SNR
ranges [77]. Because PnP-PDS performance strongly depends
on the chosen penalty parameter and number of PDS iterations,
we separately tuned these parameters for every combination of
measurement SNR and acceleration rate to maximize PSNR
on the training set. For D-GEC, we used a Haar wavelet trans-
form of depth D = 4, which yields L = 13 subbands, and a
corr+corr bias-free DnCNN denoiser; see Appendix C-A for
additional details. For all algorithms, we set the image estimate
to zero in the zero-coil region.

For each acceleration rate R and SNR under test, we ran
all three algorithms on all images in the brain and knee test-
ing sets. We then computed the average PSNR and SSIM
values across those images and summarized the results in
Fig. 9, using error bars to show plus/minus one standard error.
The figure shows that D-GEC significantly outperformed the
other algorithms in all metrics at all combinations of R and
measurement SNR.

Figure 10 shows image recoveries and error images for a
typical fastMRI brain image at acceleration R = 4 and mea-
surement SNR = 35 dB. In this case, D-GEC outperformed the
P-VDAMP and PnP-PDS algorithms in PSNR by 2.6 and 0.76
dB, respectively. Furthermore, D-GEC’s error image looks the
least structured. Looking at the details of the zoomed plots,
we see that D-GEC is able to reconstruct certain fine details
better than its competitors.

Figure 11 shows PSNR versus iteration for the three algo-
rithms at R = 4 and SNR = 20 dB. The PSNR values shown
are the average over all 16 test images from the brain MRI
dataset. The plot shows P-VDAMP, D-GEC, and PnP-PDS
taking about 7, 8, and 25 iterations to converge, respectively.
If we measure the number of iterations taken to reach 35 dB
SNR, then D-GEC, PnP-PDS, and P-VDAMP take about 3, 5,
and 7 iterations, respectively.

D. Multicoil MRI Algorithm Comparison With a 2D Line
Mask

In this section, we compare the performance of D-GEC to
that of P-VDAMP [37] and PnP-PDS [43] when using a 2D
line mask. We examine acceleration rates R = 4 and R =
8, and a measurement SNR of 40 dB, on the fastMRI brain
and knee datasets. With the exception of the sampling mask,
the experimental setup was identical to that in Section IV-C.
Although [37] states that P-VDAMP is not intended to be used
for “purely 2D acquisitions” like that associated with a 2D line
mask, we show P-VDAMP performance for completeness. To
run P-VDAMP, we gave it a 2D sampling density that was
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Fig. 8. Evolution of D-GEC’s predicted subband SDs (1/
√

γ�) and empirically estimated subband SDs (from c0 − r2) for several subbands � over 20
iterations.

TABLE II
MULTICOIL 2D LINE-MASK RESULTS AT SNR = 40 DB AVERAGED OVER ALL TEST IMAGES

Fig. 9. Average PSNR and SSIM versus measurement SNR for P-VDAMP,
PnP-PDS, and D-GEC.

uniform along the fully sampled dimension and proportional
to the 1D sampling density along the subsampled dimension
(recall Figs. 1(c)-(d)).

Table II shows PSNR and SSIM averaged over the test
images with the corresponding standard errors. There it can
be seen that D-GEC significantly outperformed the other tech-
niques on both datasets at both acceleration rates. For example,
D-GEC outperformed its closest competitor, PnP-PDS, by 2.54
and 1.32 dB at R = 4 and R = 8, respectively, on the knee
data.

E. Single-Coil MRI Algorithm Comparison With a 2D Point
Mask

In this section we compare the performance of D-GEC to
several other recently proposed algorithms for single-coil MRI
recovery using a 2D point mask. We examine two acceleration
rates, R = 4 and R = 8, and a measurement SNR of 45 dB.
For this section, we used the Stanford 2D FSE dataset [31]
with the test images in Fig. 3. The details of the experimental
setup are reported in Appendix C-B.

We compared our proposed D-GEC algorithm to D-AMP-
MRI [61], VDAMP [35], D-VDAMP [36], and PnP-PDS [43].
We used a 2D point mask out of fairness to VDAMP and

TABLE III
SINGLE-COIL IMAGE RECOVERY RESULTS AVERAGED

OVER THE TEN TEST IMAGES

D-VDAMP, which were designed around 2D point masks. For
VDAMP and D-VDAMP, we ran the authors’ implementations
at their default settings. For D-AMP-MRI and PnP-PDS, we
used a bias-free DnCNN [77] denoiser trained to minimize the
�2 loss when removing WGN with SDs uniformly distributed
in the interval [0, 55/255]. This bias-free network is known
to perform very well over a wide SD range, and so there is
no advantage in training multiple denoisers over different SNR
ranges [77]. We ran the D-AMP-MRI and PnP-PDS algorithms
for 50 and 300 iterations, respectively. Because the PnP fixed-
points strongly depend on the chosen penalty parameter, we
carefully tuned the PnP-PDS parameter at each acceleration
rate R to maximize PSNR on the validation set. For D-GEC,
we used a Haar wavelet transform of depth D = 4, which
yields L = 13 subbands, and a corr+corr bias-free DnCNN
denoiser; see Appendix C-B for additional details.

Table III shows PSNR and SSIM averaged over the 10 test
images with the corresponding standard errors. There it can
be seen that D-GEC significantly outperformed the other tech-
niques at both tested acceleration rates. For example, D-GEC
outperformed its closest competitor, PnP-PDS, by 1.81 and
0.87 dB at R = 4 and R = 8, respectively.

Figure 12 shows PSNR versus iteration for several algo-
rithms at R = 4 and SNR = 45 dB. The PSNR value
shown is the average over all 10 test images in Fig. 3.
Two versions of D-VDAMP are shown in Fig. 12: the stan-
dard version from [36], which includes early stopping, and
a modified version without early stopping. The importance
of early stopping is clear from the figure. The figure also
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Fig. 10. Example multicoil MRI brain recoveries and error images at R = 4 and SNR = 35 dB. The number printed on each recovered image shows its
PSNR. The bottom row is a zoomed in version of the green square in the top row. This figure is best viewed in electronic form.

Fig. 11. PSNR versus iterations for multicoil brain MRI recovery at R = 4
and SNR = 20 dB. PSNR was averaged over the 16 test images.

Fig. 12. PSNR versus iterations for single-coil MRI recovery at R = 4 and
SNR = 45 dB. PSNR was averaged over the 10 test images in Fig. 3.

shows that, for this single-coil dataset, D-GEC took more
iterations to converge than the other algorithms but yielded a
larger value of PSNR at convergence. In the multicoil case in
Fig. 11, D-GEC took an order-of-magnitude fewer iterations to
converge.

Figure 13 shows image recoveries for a typical Stanford 2D
FSE MRI image at R = 4 and measurement SNR = 45 dB.
For this experiment, D-GEC significantly outperformed the
competing algorithms in PSNR, and its error image looks the
least structured. Also, the zoomed subplots show that D-GEC
recovered fine details in the true image that are missed by its
competitors.

V. CONCLUSION

PnP algorithms require relatively few training images and
are insensitive to deviations in the forward model A and mea-
surement noise statistics between training and test. However,
PnP can be improved, because the denoisers typically used for
PnP are trained to remove white Gaussian noise, whereas the
denoiser input errors encountered in PnP are typically non-
white and non-Gaussian. In this paper, we proposed a new
PnP algorithm, called Denoising Generalized Expectation-
Consistent (D-GEC) approximation, to address this shortcom-
ing for Fourier-structured A and Gaussian measurement noise.
In particular, D-GEC is designed to make the denoiser input
error white and Gaussian within each wavelet subband with a
predictable variance. We then proposed a new DNN denoiser
that is capable of exploiting the knowledge of those subband
error variances. Our “corr+corr” denoiser takes in a signal cor-
rupted by correlated Gaussian noise, as well as independent
realization(s) of the same correlated noise. It then learns how
to extract the statistics of the provided noise and then use them
productively for denoising the signal. Numerical experiments
with single- and multicoil MRI image recovery demonstrate
that D-GEC does indeed provide the denoiser with subband
errors that are white and Gaussian with a predictable variance.
Furthermore, the experiments demonstrate improved recovery
accuracy relative to existing state-of-the-art PnP methods for
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Fig. 13. Example single-coil MRI image recoveries and error images at R = 4 and SNR = 45 dB. The number printed on each recovered image shows its
PSNR. The bottom row is a zoomed in version of the green square in the top row. This figure is best viewed in electronic form.

MRI, especially with practical 2D line sampling masks. More
work is needed to understand the theoretical properties of the
proposed D-GEC and corr+corr denoisers.
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