
MG-GCN: A Scalable multi-GPU GCN Training Framework
Muhammed Fatih Balın

∗

Kaan Sancak
∗

balin@gatech.edu

kaan@gatech.edu

Georgia Institute of Technology

Atlanta, Georgia, USA

Ümit V. Çatalyürek
†

Georgia Institute of Technology

Atlanta, Georgia, USA

umit@gatech.edu

ABSTRACT
Full batch training of Graph Convolutional Network (GCN) mod-

els is not feasible on a single GPU for large graphs containing

tens of millions of vertices or more. Recent work has shown that,

for the graphs used in the machine learning community, commu-

nication becomes a bottleneck, and scaling is blocked outside of

the single machine regime. Thus, we propose MG-GCN, a multi-

GPU GCN training framework taking advantage of the high-speed

communication links between the GPUs present in multi-GPU sys-

tems. MG-GCN employs multiple High-Performance Computing

optimizations, including efficient re-use of memory buffers to re-

duce the memory footprint of training GNN models, as well as

communication and computation overlap. These optimizations en-

able execution on larger datasets, that generally do not fit into the

memory of a single GPU in state-of-the-art implementations. Fur-

thermore, they contribute to achieving superior speedup compared

to the state-of-the-art. For example, MG-GCN achieves super-linear

speedup with respect to DGL, on the Reddit graph on both DGX-1

(V100) and DGX-A100.

CCS CONCEPTS
• Computer systems organization → Embedded systems; Re-
dundancy; Robotics; • Networks → Network reliability.

KEYWORDS
datasets, neural networks, gaze detection, text tagging

ACM Reference Format:
Muhammed Fatih Balın, Kaan Sancak, and Ümit V. Çatalyürek. 2022. MG-

GCN: A Scalable multi-GPU GCN Training Framework. In 51st International
Conference on Parallel Processing (ICPP ’22), August 29-September 1, 2022,
Bordeaux, France. ACM, New York, NY, USA, 11 pages. https://doi.org/10.

1145/3545008.3545082

∗
Both authors contributed equally to this research.

†
Also with Amazon Web Services. This publication describes work performed at the

Georgia Institute of Technology and is not associated with Amazon.

This work is licensed under a Creative Commons Attribution International

4.0 License.

ICPP ’22, August 29-September 1, 2022, Bordeaux, France
© 2022 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-9733-9/22/08.

https://doi.org/10.1145/3545008.3545082

1 INTRODUCTION
Graphs are essential data-structures that can represent a variety

of information, therefore they surface in many different contexts

and disciplines. The Graph Convolutional Network (GCN) model is

a type of Graph Neural Network (GNN) which is a very powerful

graph embedding method for semi-supervised learning to solve

graph representation learning problems [24, 33]. GNNs take advan-

tage of the connectivity information presented in the graph, thus

they provide flexibility and greater applicability compared to CNN

models where the neighborhood structure of nodes is fixed, hence

the model is more restricted. The common use cases of GNNmodels

include node prediction [24] which predicts the properties of certain

vertices, graph prediction [43] which predicts the properties of the

whole graph, and link prediction [42] which predicts whether there

is an edge exists between two nodes. In this work, we will focus on

node prediction, but our methods are extendable to graph and link

prediction as well.

While training GNNs, the memory requirement for large graphs

can exceed the memory capacity of a single accelerator. Mini-batch
training is a common technique to overcome this problem to reduce

the working set by creating a mini-batch of vertex samples to train

the model. Consequently, it reduces the memory requirement dur-

ing training. However, mini-batch training might lead to important

problems. First, starting from the mini-batch nodes, it is possible

to reach almost every single node in the graph in just a few hops,

also known as the neighborhood explosion phenomenon, which

increases the work performed during a single epoch exponentially.

Second, it has been shown that mini-batch training can lead to

lower accuracy compared to full-batch training [20]. In this work,

we focus on full-batch training on multi-GPU systems.

A major challenge to full-batch GCN training is its paralleliza-

tion and scalability. The challenge stems mainly from the irregular

structure of the graph which leads to load imbalance and com-

munication cost when training on multiple GPUs. GCN has many

underlying kernels, however, one of the most time-consuming part

is the Sparse Matrix-Dense Matrix Multiplications (SpMM). Alterna-

tive solutions are proposed to improve the performance of SpMM,

such as reordering and better-suited graph storage schemes and

computation kernels [21].

Most of the existing systems, such as Deep Graph Learning Li-

brary (DGL), lack the support for multi-GPU training [38]. One

needs to implement the parallelism manually while using DGL.

DistDGL is an extension of DGL that enables multi-GPU training,

however, it does not provide full-batch training, rather it uses mini-

batch training [44]. Recently, ROC [20] has been proposed and it

supports automatic multi-GPU GCN full-batch training on a single

https://doi.org/10.1145/3545008.3545082
https://doi.org/10.1145/3545008.3545082
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3545008.3545082

ICPP ’22, August 29-September 1, 2022, Bordeaux, France Balin and Sancak, et al.

HW
BC1
BC2Shared across layers

Forward

Forward

Forward Backward

Backward Backward

Backward

Forward

Loss

Loss

Layer 0 Layer L - 1 Layer L - 1 Layer 0

Figure 1: Computation diagram of an 𝐿-layer GCNmodel with shared buffers across layers. 𝐵𝐶1: broadcast buffer, 𝐵𝐶2: broadcast
buffer for overlapping, 𝐻𝑊 : temporary result buffer between SpMM and GeMM.

machine, and scales up to multiple machines. CAGNET [35] builds

on top of ROC by providing distributed algorithms with different

communication patterns. In their work, authors investigate differ-

ent partitioning strategies to reduce the communication cost and

attempt to scale up to hundreds of GPUs. However, their results

show that none of the proposed algorithms can achieve speedup

beyond a single node (4 GPUs), primarily due to the restricted band-

width of the available interconnect between nodes in the cluster.

In this work, we provide a framework for training GCNs on mul-

tiple GPUs that takes advantage of the high-speed communication

links present in today’s multi-GPU systems [28]. We address the

load imbalance problem by using a simple random permutation

strategy and hide the communication by overlapping it with com-

putation. Moreover, we carefully examine the dependency scheme

of the buffers used during training and investigate ways to re-

duce memory requirements for GCN models to fit larger datasets

into our target machines. Our optimization techniques are gen-

eralizable and can be applied to other frameworks but for repro-

ducibility, we also open-source customizable implementation of

MG-GCN.

2 BACKGROUND
The inputs for a GCN 𝑓𝐴 (𝑋) are the feature matrix 𝑋 ∈ R𝑛×𝑑 and

the adjacency matrix 𝐴 ∈ R𝑛×𝑛 , when there are 𝑛 input instances

and each input instance has 𝑑 dimensional feature vectors. GCNs

are useful when the input instances come equipped with a rela-

tion, which is represented in matrix format as 𝐴. Typically, input

instances have features along with them that make up 𝑋 . To do

learning on such a dataset, one can ignore 𝐴 and fit a model that

treats each input instance independently using a multi-layer per-

ceptron. In contrast, GCNs utilize𝐴, and instead of processing each

input instance separately, it processes an input instance together

with its 𝑘-hop neighborhood. Having access to an instance’s neigh-

borhood increases the expressiveness of the model, hence aiding

performance immensely. As an example, consider guessing which

movies an individual would like to watch. It might prove to be a

hard task if we have access to a single individual. However, if we

consider a group of individuals that are related to the person of in-

terest, then the prediction task becomes much simpler as individual

variance vanishes whereas group difference becomes more visible

when one looks at whole groups at once. This is why GCN oftens

perform much better compared to simple multi-layer perceptron

models that do not take into account the relations of instances [24].

The simplest variant of a GCN 𝑓𝐴 (𝐻) with a single layer can be

represented as

𝑓𝐴 (𝐻) = 𝜎 (𝐴𝑇𝐻𝑊) (1)

𝐴𝑢𝑣 =
𝐴𝑢𝑣∑

𝑤∈N𝑖 (𝑣) 𝐴𝑤𝑣
(2)

where N𝑖 (𝑣) is the set of in-edges for vertex 𝑣 and 𝜎 is an element-

wise nonlinear activation function, ReLU [31] in our case. Using 𝑓𝐴 ,

we can construct deeper GCNs as follows for any number of layers

𝐿:

𝐻 (0) = 𝑋 (3)

.

.

.

𝐻 (𝐿) = 𝑓𝐴 (𝐻 (𝐿−1)) (4)

As depicted in Figure 1, 𝐿-layer GCN model training is composed of

𝐿 forward passes followed by 𝐿 backward passes. More specifically,

given input matrix 𝐻 , the operations in the forward pass of a single

GCN layer can be broken down as follows:

𝐻𝑊 = 𝐻 ∗𝑊 (5)

𝐴𝐻𝑊 = 𝐴𝑇 ∗ 𝐻𝑊 (6)

𝐻 ′ = 𝜎 (𝐴𝐻𝑊) (7)

where ∗ denotes thematrixmultiplication operation. Similarly given

the gradient from the next layer 𝐻 ′
𝐺
, the backward layer can be

broken down as follows:

𝐴𝐻𝑊𝐺 = 𝜎′ (𝐻 ′
𝐺 , 𝐴𝐻𝑊) (8)

𝐻𝑊𝐺 = 𝐴 ∗𝐴𝐻𝑊𝐺 (9)

𝑊𝐺 = 𝐻𝑊𝑇
𝐺 ∗ 𝐻 (10)

𝐻𝐺 = 𝐻𝑊𝐺 ∗𝑊𝑇
(11)

where we use subscript𝐺 in𝑈𝐺 , to denote the derivative of𝑈 with

respect to the loss function.

As we will experimentally verify in Section 6.1, at the core of

these GCN computations, there are two operations that are com-

putationally the most expensive: 1) Sparse Matrix-dense Matrix

multiplications (SpMM) in 𝐴𝑇 ∗ 𝐻𝑊 and 𝐴 ∗𝐴𝐻𝑊𝐺 , and 2) (Gen-

eral) dense Matrix-Matrix multiplication (GeMM) operations, in

MG-GCN: A Scalable multi-GPU GCN Training Framework ICPP ’22, August 29-September 1, 2022, Bordeaux, France

𝐻𝑊 ,𝐻𝑊𝐺 ∗𝑊𝑇
and𝐻𝑊𝑇

𝐺
∗𝐻 . For efficient parallel and distributed

execution, one needs to pay attention to these two operations.

3 RELATEDWORK
The growing size and scale of data encouraged many researchers

to develop parallel/distributed algorithms and systems for Deep

Neural Networks [2, 27]. Broadly, DNN parallelism can be gen-

eralized under 3 categories: data parallelism, model parallelism,

and pipelining. Data parallelism can be further divided into 2 cate-

gories. Mini-batch parallelism creates batches from the dataset by

using sampling methods, and then partitions the batches among

computing resources [15, 17], while Coarse- and Fine-Grained or

full-batch parallelism divides the dataset among the compute re-

sources [41, 46]. On the other hand, model parallelism divides the

model itself, and partitions the work depending on the neurons in

each layer [8, 11]. Alternatively, pipelining can be achieved in two

ways. Either overlapping the computations between consecutive

layers, or partitioning the model according to its depth and dividing

layers among processors [1, 6, 10, 32]. Also, there have been hybrid

approaches that combine multiple parallelism schemes [26].

While alternative methods exist, most of the research on GNN

parallelism is focused on data parallelism, since the models are

relatively simple compared to the traditional DNN models. Similar

to DNNs, data parallelism can be achieved in two ways. Mini-batch,

or sampling, based approaches create batches via neighborhood

sampling [5, 7]. After batches are created, they are assigned to CPUs

or GPUs. However, in the case of graphs, mini-batching might

result in neighborhood explosion in just a few hops, increasing

the work performed in an epoch exponentially. Alternatively, to

avoid the computation waste, one can apply full-batch parallelism

where the parallelism achieved by distributing the workload among

CPUs/GPUs while keeping execution order of the layers identical

to the sequential method [30, 35]. In full-batch training, the model

takes the whole graph and the corresponding features as input, and

to achieve any parallelism one has to apply ideas similar to the

model parallelism in general DNNs since the work of individual

layers has to be partitioned. In this work, we focus on this aspect

of GNN model training.

Most of the CPU-based systems are focused on mini-batching

based methods. AliGraph is a comprehensive distributed GNN train-

ing framework that provides aggregators and operators for vari-

ous GNN models [45]. AliGraph enables 4 different partitioning

algorithms: METIS, Vertex cut & Edge Cut, 2D partitioning, and

Streaming-style partitioning. However, it neither provides many

details on the subject nor includes any scaling experiments. Dist-

DGL [44] is a framework based on DGL that uses METIS partition-

ing [22]. It keeps vertex and edge features in a distributed key-value

store, which can be queried during the training. DistDGL shows

scaling results on the largest available benchmark datasets. How-

ever, none of these frameworks provides support for training on the

full-graph. DistGNN [30] is a scalable distributed training frame-

work for large-scale GNNs that is an extension of DGL. Unlike other

frameworks, DistGNN trains the models on the full graph. It uses

a vertex-cut partitioning called Libra [40], and shows substantial

scaling on the largest available benchmark datasets. However, as we

will show in the later sections, by applying extensive memory opti-

mizations, we are able to fit some of the largest datasets using only

1 to 8 GPUs, while achieving 12.5x faster runtimes than DistGNN’s

best performance which is achieved with up to 128 sockets.

There has been various frameworks and algorithms proposed

for training GNNs on GPUs. Deep Graph Library (DGL) [38] is a

well-known library for implementing general GNN models. DGL

provides the API for sparse matrix operations and sampling func-

tions to implement various GNN models efficiently. Moreover, it

can use Tensorflow [1], PyTorch [32] or MXNet [6] as backends

for wide adoption. GNNAdvisor is a runtime system to accelerate

GNN workloads in GPU systems, however it works on single GPU

platforms and multi-GPU is left as future work [39]. NeuGraph [29]

is a single node multi-GPU mini-batch GNN training framework.

NeuGraph introduces a programming model for GNN computations

that is similar to vertex-centric programming model [16]. ROC [20]

is a distributed multi-GPU GNN training framework utilizing graph

partitioning via an online regression model and it proposes mem-

ory management optimizations for transfers of data between the

CPU and GPU. ROC shows scalability on some of the available

benchmark datasets such as Reddit and Amazon, and also it can

do full-batch training of more complex models and achieve higher

accuracy compared to sampling approaches. However, we are not

able to compare with ROC, since the available code do not work as

expected. CAGNET [35], inspired by the SUMMA algorithm [36],

implements 1D, 1.5D, 2D, and 3D partitioning strategies for full-

batch training to reduce the communication cost. Additionally, the

authors provide a complexity analysis for each strategy. However,

CAGNET fails to scale beyond a single node (4 GPUs) in terms

of runtime performance due to the available bandwidth and the

intra/inter-communication topologies. Moreover, CAGNET does

not have an effort to reuse memory buffers, and it relies on PyTorch

and PyTorch Geometric libraries [12]. DGCL is a distributed graph

communication library for training GNNs on multiple GPUs [3]. 𝑃3

is another framework for distributed GNN training on multi-GPU

systems that uses hash partitioning to distribute the graph and

the features independently, it also takes advantage of intra-layer

parallelism in the first layer and data parallelism in the following

layers to pipeline compute and communication [14].

As we will show in the later sections, by adapting extensive

memory optimizations, we can fit much larger graphs into our

target machines.

4 MG-GCN
Looking at a single layer of a GCN model particularly, we can

express it via the following:

𝐻 (𝑙+1) = 𝑓𝐴 (𝐻 (𝑙)) = 𝜎 (𝐴𝑇𝐻 (𝑙)𝑊 (𝑙)) (12)

where matrices 𝐴, 𝐻 , and𝑊 are defined in Section 2. That is, one

layer of GCN consists of two main operations. For the forward

propagation, first, we need to perform a Generalized Matrix Matrix

Multiplication (GeMM) between the dense matrices H and W, then

we need to perform a Sparse Matrix-Dense Matrix Multiplication

(SpMM) between the transpose sparse matrix A, and the resulting

matrix of GeMM. Later the result of SpMM is fed into a nonlinear

activation function. In the backward pass, the same operations are

performed with the non-transposed normalized adjacency matrix

ICPP ’22, August 29-September 1, 2022, Bordeaux, France Balin and Sancak, et al.

𝐴. In the rest of this section, we will focus on the forward pass and

we refer to 𝐴𝑇 simply as 𝐴.

In addition to our analytical analysis, we have experimentally

identified the most computationally expensive kernels in GCN com-

putation. As we will demonstrate in Section 6.1, we have profiled

our single GPU GCN training with nvprof to analyze the runtime of

our kernels and pinpoint the bottleneck kernels. We have observed

that up to 94% of the runtime was spent during the execution of

the forward and backward SpMM kernels. Therefore, we have first

focused on efficient parallelization of SpMM kernel on multi-GPU

setting. Moving into multi-GPU from a single GPU, one needs to

find ways to distribute the data into multiple GPUs, and adapt

algorithms to perform parallel SpMM.

4.1 Partitioning
Given a matrix A, we can define the 2D tiling (partitioning) of the

matrix using two partition vectors 𝑝 and 𝑞, such that 𝑝 represents

the partition vector of the first dimension, and 𝑞 represents the

partition vector of the second dimension. A partition vector 𝑝 with

𝑃 parts is defined as:

𝑝 ∈ N𝑃+1, 0 = 𝑝 (0) ≤ · · · ≤ 𝑝 (𝑖) ≤ · · · ≤ 𝑝 (𝑃) = 𝑛 (13)

Then, let us define 𝐴𝑖 𝑗
as the (𝑖, 𝑗)-th tile of the matrix.

𝑝 (𝑖) ≤ 𝑢 < 𝑝 (𝑖 + 1), 𝑞(𝑗) ≤ 𝑣 < 𝑞(𝑗 + 1) (14)

𝐴𝑖 𝑗 (𝑢, 𝑣) = 𝐴(𝑢 + 𝑝 (𝑖), 𝑣 + 𝑞(𝑗)), 𝑢, 𝑣 ∈ N (15)

One way to partition 𝐴, 𝐻 and𝑊 is to apply symmetric parti-

tioning, so that 𝑝 = 𝑞, to the sparse matrix 𝐴, and then assign the

tiles of 𝐴 to GPUs using 1D or 2D distribution. Let’s start with 1D

column distribution where 𝑗-th tile column of 𝐴, 𝐴𝑖 𝑗
, is assigned

to 𝑗-th GPU. Moreover, we will partition dense matrix 𝐻 , using

1D partitioning by rows, with the same partition vector 𝑝 , and as-

sign 𝐻 𝑖
to 𝑖-th GPU. Likewise, the resulting dense matrix will be

conformally partitioned by its rows. After partitioning, SpMM can

be performed in multiple stages. In each stage, one set of rows of

the result matrix can be filled, thus taking the algorithm 𝑃 steps

to perform, where 𝑃 is the number of GPUs. Each GPU performs

an SpMM with its local portions in the sparse and dense matrices.

That is, at stage 𝑖 , 𝐴𝑖 𝑗
will be multiplied by 𝐻 𝑗

by 𝑗-th GPU, then

partial results will be reduced at GPU 𝑖 .

𝐶𝑖 =
∑︁
𝑗

𝐴𝑖 𝑗𝑋 𝑗

The only communication needed for this operation is the reduction

at the end. In this scheme, 𝑊 is replicated across GPUs and is

reduced at the end of every epoch of training. The reduction of

𝑊 however is much faster than the communication done for the

feature matrix 𝐻 because of their size difference O(𝑑2) vs O(𝑛𝑑).
Alternatively, one can do 1D row distribution and assign 𝑖-th tile

row of 𝐴, 𝐴𝑖 𝑗
, to 𝑖-th GPU, see Figure 2. Then, at stage 𝑖 , 𝑖-th GPU

broadcasts 𝐻 𝑖
, then 𝐴𝑖 𝑗

will be multiplied by 𝐻 𝑗
on 𝑗-th GPU. The

only communication needed for this operation is the broadcast at

the beginning, see Figure 3.

𝐶𝑖 = 𝐶𝑖 +𝐴𝑖 𝑗𝐻 𝑗

Both of the above approaches partition 𝐻 by its rows, so one

might consider how it would work if 𝐻 was partitioned by its

R 0 R 1 R 2 R 3

x =

A AHWHW

Figure 2: Partitioning of the sparse and dense matrices used
in SpMM. Colors represent stages, rows represent GPUs.

A HW AHW

x =

Broadcast
(a) Example 1st stage

A HW AHW

x =

Broadcast

A AHW

x =

Broadcast

(b) Example 2nd stage
Figure 3: Example two stages of SpMM

columns, into 1 × 𝑃 tiles. For this case, let us use a partition vector

𝑝 with 𝑃 parts and a partition vector 𝑞 with only a single part to

partition 𝐴. Then, we can assign 𝐴𝑖1
to 𝑖-th GPU, 𝐻1𝑗

to 𝑗-th GPU.

Likewise, this operation can be performed in multiple stages. At

stage 𝑖 , 𝑖-th GPU broadcasts 𝐴𝑖1
, then 𝐴𝑖1

will be multiplied by

𝐻1𝑗
at 𝑗-th GPU. The results are kept at the 𝑗-th GPU. The only

communication needed for this operation is the broadcast of the

sparse matrix at the beginning.

𝐶𝑖 𝑗 = 𝐴𝑖1𝐻1𝑗

However, for this particular partitioning strategy, there is more

communication involved during the GeMM kernel. In particular

since 𝐻 is 1D column-partitioned, 𝐶𝑖 𝑗 ×𝑊 𝑗𝑘
requires a reduction

over 𝑗 . This means not only 𝐴 is communicated, but also the dense

matrix 𝐶 is communicated which makes this solution undesirable.

Compared to the first solution, solution 2 provides better load bal-

ance regardless of the matrix ordering, since each GPU is using the

same set of rows broadcasted at each stage, the sparsity pattern of

the sparse matrix will be identical across the GPUs. Nevertheless,

since communication is the main bottleneck, we decide to use the

broadcast variant of solution 1, as in Figure 2. Note that in our

system only the model weights are replicated, any other data such

as the adjacency matrix 𝐴, and the input & intermediate feature

matrices 𝐻 are fully partitioned.

We don’t discuss more complicated partitioning strategies such

as 1.5D, 2D or 3D as wewill explain the reasoning in Section 5.1. Fur-

thermore, note that the GeMM computations on the row-partitioned

feature matrices do not require any synchronization as each GPU

can compute 𝐻 𝑖𝑊 in (5) independently. The element-wise activa-

tion function is also fully independent, each GPU computes it for

their portions. More detailed discussion on different partitioning

strategies can be found in [4].

4.2 Memory Optimizations
To reduce memory requirements, we reuse memory buffers in the

forward and backward passes, as much as possible.

In the forward and backward computations in eqs. (5) to (7), we

will have a temporary result buffer called 𝐻𝑊𝐵 and a result buffer

MG-GCN: A Scalable multi-GPU GCN Training Framework ICPP ’22, August 29-September 1, 2022, Bordeaux, France

called 𝐴𝐻𝑊𝐵 with the following mapping:

𝐻𝑊 → 𝐻𝑊𝐵 (16)

𝐴𝐻𝑊 → 𝐴𝐻𝑊𝐵 (17)

𝐻 ′ → 𝐴𝐻𝑊𝐵 (18)

And in the backward computations in eqs. (8) to (11):

𝐴𝐻𝑊𝐺 → 𝐴𝐻𝑊𝐵 (19)

𝐻𝑊𝐺 → 𝐻𝑊𝐵 (20)

𝐻𝐺 → 𝐴𝐻𝑊𝐵 (21)

Figure 4a shows the mappings of the buffers for the forward com-

putation and Figure 4b for the backward propagation.

X GeMM SpMM

AHW

ReLU

HW BC1 BC2

ForwardShared across layers Private to layer

(a) Forward Layer.
Shared across layers Private to layer

AHW

G ReLU SpMM GeMM

BC1 BC2 HW

Backward

(b) Backward Layer.
Figure 4: Forward and backward layers. Buffers colors indi-
cate whether they layer is shared or private. 𝐵𝐶1, 𝐵𝐶2, and
𝐻𝑊 are explained in Figure 1. 𝐴𝐻𝑊 : Buffer for the result.

Notice that, each layer only requires a single buffer to store their
output. They also use a temporary buffer that is shared across layers.

Hence, each layer only increases the memory used by a single buffer,

compared to 4x or 6x in other deep learning frameworks such as

DGL and CAGNET that allocate buffers for the output of SpMM,

GeMM and the activation functions. Considering the backward pass

adds up to 6 buffers per layer in total, as shown in Figure 1. For

𝐿-layer GCN, the total number of buffers is 𝐿 + 3, whose sizes on

average are 𝑛 × 𝑑 .

4.3 Overlapping Computation and
Communication

Each round of our multi-round SpMM is composed of a broadcast

of a tile of 𝐻 and an SpMM computation with a tile of 𝐴 with the

received tile of 𝐻 . Notice that, there is an opportunity to overlap

communication and computation in such a multi-round scheme.

After the broadcast of the first tile of 𝐻 , we overlap communication

of the next (remaining) tile(s) of 𝐻 with the SpMM computations.

In order to do that, we need an extra communication buffer for

the next 𝐻 tile. Since each GPU keeps its own 𝐻 tile, and receives

the 𝐻 𝑖
in the 𝑖-th round, each GPU needs one more extra buffer

for the broadcast primitive. In total, overlapping communication

and computation would require two additional buffers. In order to

fully utilize communication computation overlap, we use two GPU

streams: one for communication (stream 1) and one computation

(stream 0). We launch all communication and computation kernels

asynchronously on those two streams and wait for 𝑖-th broadcast

to finish on stream 1 before we start on 𝑖-th SpMM computation

on stream 0 and the 𝑖 + 1-th broadcast waits for the 𝑖 − 1-th SpMM

to finish not to overwrite its input when it is ongoing.

4.4 Order of Computation and Saving one
SpMM

For computing 𝐴𝐻𝑊 , we change the order of SpMM and GeMM

operations depending on the feature dimension of the current layer

𝑑 (𝑙) and the next layer 𝑑 (𝑙+1) as allowed by associativity. If 𝑑 (𝑙) <
𝑑 (𝑙+1) , then doing SpMM, otherwise running GeMM is faster.

If the gradients all the way back to the input features are not

required, then it is possible to skip the SpMM in the first layer

during the backward pass. The reason is that SpMM scales each

feature dimension independently so it is possible to replace it with

a diagonal feature scaling matrix in the first layer’s backward pass.

In our case, each node takes the average of their neighbors, thus

the identity matrix is the scaling matrix, making it a no-operation.

Thus we avoid the SpMM of the first layer in the backward pass.

5 DESIGN DECISIONS
5.1 Choice of the Partitioning Strategy
The communication topology of the system directly affects the

observed bandwidth of different communication patterns. This is

clearly not an issue for systems like DGX-A100 where 8 GPU of

the system are connected shared NVlink switch with 12 links, and

could achieve full communication bandwidth between any pair of

GPUs. Whereas, in DGX-1 there are only 6 links, and connections

between GPUs are asymmetric. Such asymmetry will make some

theoretically optimum algorithms perform poorly on that system

since the underlying communication assumptions are not valid

there. For example, the 1.5D algorithm presented in [35] halves the

theoretical communication volume, by using more memory with

replication factor 𝑐 = 2. If we group the GPUs into two groups as

per the replication factor, each group has 4 links available. Then the

broadcast can be faster by a factor of
6

4×2 in the 1.5D case. However,

the last reduction among the two groups has access to only 2 links.

Then, if we sum up the time required for communication for the

1.5D case, which necessitates two rounds of broadcast followed by

a concurrent reduction (see [35] for the details of the algorithm)

we get: 2
𝑛𝑑
4×4𝑙 +

𝑛𝑑
4×2𝑙 =

𝑛𝑑
4𝑙
, where 𝑙 is the single NVlink bandwidth.

In comparison, the 1D algorithm only takes 8
𝑛𝑑
8×6𝑙 =

𝑛𝑑
6𝑙

time. On

the other hand, in DGX-A100 all broadcasts and reductions can

utilize all of the 12 links. Hence, summing up time required for the

1.5D algorithm, we get: 2
𝑛𝑑

4×12𝑙 +
𝑛𝑑

4×12𝑙 = 𝑛𝑑
16𝑙

. In comparison, the

1D algorithm takes 8
𝑛𝑑

8×12𝑙 =
𝑛𝑑
12𝑙

time.

According to the above analysis, the 1.5D algorithm is slower

on DGX-1 by a factor of
2

3
but it is faster on DGX A100 by

4

3
, but

also requires twice as much memory. Since GNN training is usually

bound by the GPU memory, we only implement the 1D version.

ICPP ’22, August 29-September 1, 2022, Bordeaux, France Balin and Sancak, et al.

5.2 Permutation
In order to balance the number of nonzeros in each part 𝐴𝑖 𝑗

in the

uniformly partitioned sparse matrices, we randomly permute their

vertices. This has a significant effect on load balance compared

to using the original orderings of the sparse matrices which can

have highly imbalanced parts. Later in Section 6.2, we show how

this permutation improves the execution time with better load

balancing, especially with a larger number of GPUs.

6 EXPERIMENTAL EVALUATION
Hardware and Software:We perform our experiments on two ma-

chines: NVIDIA DGX-1, also referred to as DGX-V100, and NVIDIA

DGX-A100. DGX-V100 has 8Nvidia V100 GPUs, each equipped with

32GB memory with a 900 GB/s memory bandwidth. Each V100 has

6 NVLink connections, each consisting of 2 sub-links that send data

in one direction, and has a 25GB/s bandwidth. That is, each link is

capable of 50GB/s bidirectional bandwidth, and theoretically, the

aggregate system bandwidth is 300 GB/s. The DGX-1 is equipped

with a dual 20-core Intel Xeon E5-2698 CPU with 512 GB RAM.

NVIDIA DGX-A100 has 8 NVIDIA A100 GPUs, each equipped with

80GB memory with a 2 TB/s memory bandwidth. Each A100 has 12

NVLink connections, thus twice as much the bandwidth of V100.

Unlike the V100, each A100 is connected to an NWSwitch, enabling

a full peer-to-peer bidirectional bandwidth of 600 GB/s between

any two GPUs. DGX-A100 is equipped with a dual 64-core AMD

Rome 7742 CPU with 2 TB RAM. Both machines run Ubuntu 20.04.

We implemented MG-GCN using C++ standard 20 and compiled

it with GCC 9.3.0 and CUDA 11.4. We used CUDA’s cuSPARSE

for SpMM calls with the Compressed Sparse Row format for the

sparse matrices, and cuBLAS for GeMM with the Row Major for-

mat for the dense matrices. PIGO [13] is used for IO purposes. We

use DGL 0.7.1 which is currently the latest available version [38].

We follow the instructions for compiling CAGNET [35] on its

repository. For MG-GCN, we use NCCL (Nvidia Collective Com-

munication Library) 2.11.4 and for CAGNET, we use NCCL 2.4.8

for compatibility reasons. The code for MG-GCN is available at

https://github.com/GT-TDAlab/MG-GCN. We verified the correct-

ness of our implementation by comparing the train accuracy curve

with DGL’s.

Datasets: We use two types of datasets in our experiment. The first

category is GNN Benchmark datasets which are popular datasets

used in GNN research, see Table 1. The Reddit dataset is a graph

from Reddit posts that are posted in September, 2014 [18]. The node

labels represent the communities (subreddits). Products (OGBN-

Products) is a graph from Amazon co-purchase network. Nodes

represents the products, and link represent products that are bought

together. Proteins (OGBN-Proteins) is a biological network graph

dataset where nodes represent proteins and edges represent associ-

ations between proteins. Arxiv (OGBN-Arxiv) and Cora are citation

networks where each node represents a paper and directed edges

represent citation direction [19, 34].

We also used synthetic datasets generated with BTER [25] to

evaluate the scalability of our method under varying density. BTER

requires a degree distribution and clustering coefficient by degree

as input and generates synthetic graphs matching those proper-

ties. We first profile the degree distribution of the Arxiv dataset,

Table 1: Benchmark Datasets. 𝑛: #vertices, 𝑚: #edges, 𝑑 (0) :
#features, 𝑑 (𝐿) : #classes, 𝑘: average degree.

Dataset 𝑛 𝑚 𝑑 (0) 𝑑 (𝐿) 𝑘

Cora 3.3K 9.2K 3.7K 6 3

Arxiv 169K 1.16M 128 40 7

Papers 111M 1.61B 128 172 15

Products 2.5M 126M 104 47 52

Proteins 8.74M 1.3B 128 256 150

Reddit 233K 115M 602 41 492

then by increasing the average degree and fixing the number of

vertices, we generate 8 synthetic datasets. We name these datasets

as 1𝑥, . . . , 128𝑥 . As the name suggests, the number represents the

scaling factor of the number of edges from the original graph. We

generate the features and assign class labels randomly. Each syn-

thetic dataset has a feature vector of size 512, and there are 40

classes. Since the graphs generated by BTER are not deterministic,

we generate 10 of each scale and take the median while reporting

the results.

Model:While we are able to train more complex models, to make

fair comparisons, we use 4 different GCN models. First, to compare

with CAGNET and DGL, we use a model with 2 layers, and the

hidden layer consists of 512 neurons. Our limitation comes from the

fact that the available code for CAGNET does not have the option

to change the number of layers. Second, to compare with DistGNN

on Reddit, we use a model with 2 layers and a hidden layer consists

16 neurons. To compare with DistGNN on Products, Protein and

Papers, we use a model with 3 layers and hidden layers consisting

of 256 neurons. Finally, we use a 4th model with 3 layer, each

consisting of 208 neurons to run MG-GCN on Papers DGX-A100,

since 208 is the largest hidden layer size that can fit into DGX-A100.

We have implemented and used the Adam optimizer [23] and the

softmax cross-entropy loss [9] in all of our experiments.

The model we used in the comparison against DistGNN on Red-

dit, was able to achieve a test accuracy of %95.95 in the transductive

setting after 466 epochs with eight V100s in only 1 minute, 20

seconds of which is spent on preprocessing, which matches the

accuracy the DGL baseline code gets using the same model config-

uration.

6.1 Runtime Breakdown of GCN Computation
We analyze the breakdown of the execution time of GCN computa-

tion to find the computational bottlenecks during training. Figure 5

presents the runtime breakdown of the first GCN model described

in Section 6. The activation layer refers to the computation in eq. (7),

Adam refers to the update of the model parameters𝑊 by the Adam

optimizer and the loss layer refers to the computations related to

the softmax cross-entropy loss. As it is evident from the figure,

for sufficiently large datasets, i.e., Proteins, Products, and Reddit,

the main bottleneck is SpMM kernel which takes 60%-94% of the

runtime, and the second bottleneck is GeMM kernel 5%-20% of the

runtime. On the other hand, for small datasets the main bottleneck

becomes GeMM. Therefore, we stress the importance of paralleliz-

ing SpMM and GeMM kernels to achieve scalability during any

GCN training and focus our attention on parallelizing these kernels.

https://github.com/GT-TDAlab/MG-GCN

MG-GCN: A Scalable multi-GPU GCN Training Framework ICPP ’22, August 29-September 1, 2022, Bordeaux, France

0

10

20

30

40

50

60

70

80

90

100

P
e
rc

e
n

ta
g

e
 o

f
T

im
e
 (

%
)

Cora Arxiv Products Proteins Reddit

1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8

Activation Adam GeMM Loss-Layer SpMM

Operation

#GPUs

O
ut

of
M
em

or
y

O
ut

of
M
em

or
y

Figure 5: Runtime decomposition of operations involved in
forward and backward pass.

6.2 Impact of Permutation
Figure 6 presents the breakdown of execution of SpMM to communi-

cation and computation times for each stage for the Product dataset

using original and permuted ordering. On the top part of the figure,

there is a significant computational imbalance that hampers the

efficient parallel execution. To remedy the load imbalance problem

we randomly permute the adjacency matrix before the computation.

On the bottom part of the figure, permuted ordering achieves better

computation load balance and reduces the execution time from

50ms to 38ms. Figure 7 shows normalized runtime improvement

of permuted ordering w.r.t. original ordering for each dataset for

varying number of GPUs. As seen in the figure, permutation yields

slightly slower execution time on a small number of GPUs for some

datasets; however, as the number of GPUs increases, the runtime

improves significantly with the load balance achieved by permu-

tation. For example, we observed 1.5× runtime improvement on

Products and Reddit datasets with 8 GPUs.

MG-GCN: A Scalable multi-GPU GCN Training Framework ICPP ’22, August 29-September 1, 2022, Bordeaux, France

0

10

20

30

40

50

60

70

80

90

100

P
e
rc

e
n

ta
g

e
 o

f
T

im
e
 (

%
)

Cora Arxiv Products Proteins Reddit

1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8

Activation Adam GeMM Loss-Layer SpMM

Operation

#GPUs

O
ut

of
M
em

or
y

O
ut

of
M
em

or
y

Figure 5: Runtime decomposition of operations involved in
forward and backward pass.

6.2 Impact of Permutation
Figure 6 presents the breakdown of execution of SpMM to communi-

cation and computation times for each stage for the Product dataset

using original and permuted ordering. On the top part of the figure,

there is a significant computational imbalance that hampers the

efficient parallel execution. To remedy the load imbalance problem

we randomly permute the adjacency matrix before the computation.

On the bottom part of the figure, permuted ordering achieves better

computation load balance and reduces the execution time from

50ms to 38ms. Figure 7 shows normalized runtime improvement

of permuted ordering w.r.t. original ordering for each dataset for

varying number of GPUs. As seen in the figure, permutation yields

slightly slower execution time on a small number of GPUs for some

datasets; however, as the number of GPUs increases, the runtime

improves significantly with the load balance achieved by permu-

tation. For example, we observed 1.5× runtime improvement on

Products and Reddit datasets with 8 GPUs.

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48

Original Ordering

GPU 1 0 0 1 1 2 2 3 3

GPU 2 0 0 1 1 2 2 3 3

GPU 3 0 0 1 1 2 2 3 3

GPU 4 0 0 1 1 2 2 3 3

Permuted Ordering

GPU 1 0 0 1 1 2 2 3 3

GPU 2 0 0 1 1 2 2 3 3

GPU 3 0 0 1 1 2 2 3 3

GPU 4 0 0 1 1 2 2 3 3

Figure 6: Timeline of the SpMM on the Products dataset us-
ing its original and permuted ordering. The numbers on the
bars represent stages. For each GPU, computation (blue) and
communication (yellow) phases are separately plotted.

6.3 Overlapping Computation and
Communication

Figure 8 shows the effect of the communication-computation over-

lap on Products datasets using 4 GPUs. Notice that overlapping

these two operations makes both the computation and the commu-

nication slower. This is because of the use of shared resources, in

particular the memory bandwidth. Since SpMM is a mostly memory

bandwidth-bound operation, it becomes slower when overlapped

with the communication kernel that takes up some of the global

memory bandwidth. The global memory bandwidth of a V100 GPU

is 900 GB/s and the communication bandwidth is 150 GB/s. Assum-

ing the communication happens at full bandwidth, this results in a

reduction of the global memory bandwidth for the SpMM operation

by a factor of
1

6
. Nevertheless, communication-computation overlap

still improves the performance. As seen in the figure, for Products,

SpMM time can be reduced to 30ms from 38ms with overlapping

communication and computation.

Figure 7 shows normalized runtime improvement of overlap-

ping w.r.t. nonoverlapping for each dataset for varying numbers of

GPUs. As seen in the figure, enabling overlapping yields slightly

less improvement in runtime on a small number of GPUs for some

datasets; however, as the number of GPUs increases, the runtime

improves significantly with time saved by hiding communication.

For example, we observed an additional 1.15× runtime improve-

ment on Products and Reddit datasets with 8 GPUs via enablement

of overlapping. One should also note that the size of the hidden

dimension doesn’t have an effect on our ability to overlap communi-

cation and computation as both of their runtimes scale linearly with

the size of the hidden dimension if it is above a certain threshold.

6.4 Impact of Average Degree
The runtime of SpMM can be mainly divided into two parts: compu-

tation time and communication time. Since we mostly overlap the

two, the runtime can be at best the maximum of those two. Com-

munication time only depends on the dimensions of the matrix,

whereas the computation time also depends on the density and spar-

sity structure of the matrix. Furthermore, computation time starts

to dominate the execution time as the average degree increases.

To illustrate the effect of this on speedup, we used the synthetic

datasets generated by scaling the Arxiv dataset as explained in

Section 6. Figure 9 displays the speedups obtained by 2 to 8 GPUs,

while we increase the average degree. As seen in the figure, our

code starts to achieve super-linear speedup with 2 and 4 GPUs,

after 32×, and with 8 GPUs, after 64× scaling. We attribute these

super-linear speedup numbers for very dense adjacency matrices

because of the blocking effect of partitioning and potentially better

use of the cache.

6.5 Comparison on Single Node Systems
Comparison on DGX-V100: In Figures 10 and 11, we compare MG-

GCN with DGL and CAGNET using the 2 layer model mentioned

in Section 6 on DGX-V100. Note that, CAGNET has different par-

titioning strategies namely, 1D, 1.5D, 2D, and 3D. We present the

best results for CAGNET which are produced by 1D partitioning. In

all datasets, we outperform DGL with a single GPU and CAGNET

with multiple GPUs. Our single GPU performances are, 2.72× faster

on Reddit, 1.42× faster on Products, 1.76× faster on Arxiv and

3.1x faster on Cora than DGL. Our 8 GPU performances are 2.66x

faster on Reddit, 8.6× faster on Products, 2.35× faster on Arxiv

than CAGNET. Notice that, neither MG-GCN nor CAGNET can

Figure 6: Timeline of the SpMMon the Products dataset using
its original and permuted ordering. The numbers on the
bars represent stages. For each GPU, computation (blue) and
communication (yellow) phases are separately plotted.

6.3 Overlapping Computation and
Communication

Figure 8 shows the effect of the communication-computation over-

lap on Products datasets using 4 GPUs. Notice that overlapping

these two operations makes both the computation and the commu-

nication slower. This is because of the use of shared resources, in

particular the memory bandwidth. Since SpMM is a mostly memory

bandwidth-bound operation, it becomes slower when overlapped

with the communication kernel that takes up some of the global

memory bandwidth. The global memory bandwidth of a V100 GPU

is 900 GB/s and the communication bandwidth is 150 GB/s. Assum-

ing the communication happens at full bandwidth, this results in a

reduction of the global memory bandwidth for the SpMM operation

by a factor of
1

6
. Nevertheless, communication-computation overlap

still improves the performance. As seen in the figure, for Products,

SpMM time can be reduced to 30ms from 38ms with overlapping

communication and computation.

Figure 7 shows normalized runtime improvement of overlap-

ping w.r.t. nonoverlapping for each dataset for varying numbers of

GPUs. As seen in the figure, enabling overlapping yields slightly

less improvement in runtime on a small number of GPUs for some

datasets; however, as the number of GPUs increases, the runtime

improves significantly with time saved by hiding communication.

For example, we observed an additional 1.15× runtime improve-

ment on Products and Reddit datasets with 8 GPUs via enablement

of overlapping. One should also note that the size of the hidden

dimension doesn’t have an effect on our ability to overlap communi-

cation and computation as both of their runtimes scale linearly with

the size of the hidden dimension if it is above a certain threshold.

6.4 Impact of Average Degree
The runtime of SpMM can be mainly divided into two parts: compu-

tation time and communication time. Since we mostly overlap the

two, the runtime can be at best the maximum of those two. Com-

munication time only depends on the dimensions of the matrix,

whereas the computation time also depends on the density and spar-

sity structure of the matrix. Furthermore, computation time starts

to dominate the execution time as the average degree increases.

To illustrate the effect of this on speedup, we used the synthetic

datasets generated by scaling the Arxiv dataset as explained in

Section 6. Figure 9 displays the speedups obtained by 2 to 8 GPUs,

while we increase the average degree. As seen in the figure, our

code starts to achieve super-linear speedup with 2 and 4 GPUs,

after 32×, and with 8 GPUs, after 64× scaling. We attribute these

super-linear speedup numbers for very dense adjacency matrices

because of the blocking effect of partitioning and potentially better

use of the cache.

6.5 Comparison on Single Node Systems
Comparison on DGX-V100: In Figures 10 and 11, we compare MG-

GCN with DGL and CAGNET using the 2 layer model mentioned

in Section 6 on DGX-V100. Note that, CAGNET has different par-

titioning strategies namely, 1D, 1.5D, 2D, and 3D. We present the

best results for CAGNET which are produced by 1D partitioning. In

all datasets, we outperform DGL with a single GPU and CAGNET

with multiple GPUs. Our single GPU performances are, 2.72× faster

on Reddit, 1.42× faster on Products, 1.76× faster on Arxiv and

3.1x faster on Cora than DGL. Our 8 GPU performances are 2.66x

faster on Reddit, 8.6× faster on Products, 2.35× faster on Arxiv

than CAGNET. Notice that, neither MG-GCN nor CAGNET can

ICPP ’22, August 29-September 1, 2022, Bordeaux, France Balin and Sancak, et al.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

S
p

e
e
d

u
p

 w
.r

.t
.

O
ri

g
in

a
l

O
rd

e
ri

n
g

Cora Arxiv Products Proteins Reddit

1
-P
e
rm

2
-P
e
rm

2
-P
e
rm

+
O
v
lp

4
-P
e
rm

4
-P
e
rm

+
O
v
lp

8
-P
e
rm

8
-P
e
rm

+
O
v
lp

1
-P
e
rm

2
-P
e
rm

2
-P
e
rm

+
O
v
lp

4
-P
e
rm

4
-P
e
rm

+
O
v
lp

8
-P
e
rm

8
-P
e
rm

+
O
v
lp

1
-P
e
rm

2
-P
e
rm

2
-P
e
rm

+
O
v
lp

4
-P
e
rm

4
-P
e
rm

+
O
v
lp

8
-P
e
rm

8
-P
e
rm

+
O
v
lp

1
-P
e
rm

2
-P
e
rm

2
-P
e
rm

+
O
v
lp

4
-P
e
rm

4
-P
e
rm

+
O
v
lp

8
-P
e
rm

8
-P
e
rm

+
O
v
lp

1
-P
e
rm

2
-P
e
rm

2
-P
e
rm

+
O
v
lp

4
-P
e
rm

4
-P
e
rm

+
O
v
lp

8
-P
e
rm

8
-P
e
rm

+
O
v
lp

O
ut

of
M
em

or
y

O
ut

of
M
em

or
y

O
ut

of
M
em

or
y

Figure 7: Effect of overlapping of communication with computation and permuting the graph to epoch runtime on DGX-V100.
Blue bars show the effect of permutation over original ordering, green bars enable communication-computation overlap in
addition to permutation.

ICPP ’22, August 29-September 1, 2022, Bordeaux, France Balin and Sancak, et al.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

S
p

e
e
d

u
p

 w
.r

.t
.

O
ri

g
in

a
l

O
rd

e
ri

n
g

Cora Arxiv Products Proteins Reddit

1
-P
e
rm

2
-P
e
rm

2
-P
e
rm

+
O
v
lp

4
-P
e
rm

4
-P
e
rm

+
O
v
lp

8
-P
e
rm

8
-P
e
rm

+
O
v
lp

1
-P
e
rm

2
-P
e
rm

2
-P
e
rm

+
O
v
lp

4
-P
e
rm

4
-P
e
rm

+
O
v
lp

8
-P
e
rm

8
-P
e
rm

+
O
v
lp

1
-P
e
rm

2
-P
e
rm

2
-P
e
rm

+
O
v
lp

4
-P
e
rm

4
-P
e
rm

+
O
v
lp

8
-P
e
rm

8
-P
e
rm

+
O
v
lp

1
-P
e
rm

2
-P
e
rm

2
-P
e
rm

+
O
v
lp

4
-P
e
rm

4
-P
e
rm

+
O
v
lp

8
-P
e
rm

8
-P
e
rm

+
O
v
lp

1
-P
e
rm

2
-P
e
rm

2
-P
e
rm

+
O
v
lp

4
-P
e
rm

4
-P
e
rm

+
O
v
lp

8
-P
e
rm

8
-P
e
rm

+
O
v
lp

O
ut

of
M
em

or
y

O
ut

of
M
em

or
y

O
ut

of
M
em

or
y

Figure 7: Effect of overlapping of communication with computation and permuting the graph to epoch runtime on DGX-V100.
Blue bars show the effect of permutation over original ordering, green bars enable communication-computation overlap in
addition to permutation.

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38

GPU 1 (no over) 0 0 1 1 2 2 3 3

comm 1 0 1 2 3

comp 1 0 1 2 3

GPU 2 (no over) 0 0 1 1 2 2 3 3

comm 2 0 1 2 3

comp 2 0 1 2 3

GPU 3 (no over) 0 0 1 1 2 2 3 3

comm 3 0 1 2 3

comp 3 0 1 2 3

GPU 4 (no over) 0 0 1 1 2 2 3 3

comm 4 0 1 2 3

comp 4 0 1 2 3

Figure 8: Timeline of the SpMM on the Products dataset
using permuted ordering. The numbers on the bars repre-
sent stages. Each GPU is represented by 3 lines. First line
represents computation without overlapping communica-
tion. Next two lines represent computation with overlap-
ping communication. Blue line: computation time. Yellow
line: communication time.

get a speedup on Cora dataset, since the graph is very small, and

a certain amount of work is expected to achieve any speedup. We

are not able to run CAGNET with Proteins dataset using 8 GPUs

because of CAGNET’s memory requirement; however, MG-GCN

is able to fit Proteins dataset into 4 only GPUs. Even though, both

CAGNET and MG-GCN use the 1D partitioning strategy, we can

fit much larger graphs into our target machines due to extensive

memory optimization described in Section 4.2. Also, by overlap-

ping computation and communication, we can achieve substantial

speedup compared to CAGNET. Note that, the achieved speedups

1
x

2
x

4
x

8
x

1
6
x

3
2
x

6
4
x

1
2
8
x

0

2

4

6

8

10

12

S
p

e
e
d

u
p

 w
.r

.t
.

1
 G

P
U

 R
u

n
ti

m
e

1
2
4
8

#GPUs

Scaled Average Degree over Arxiv

Figure 9: Speedup w.r.t. MG-GCN 1 GPU Runtime

correlate with the average degree of the graph, as mentioned in

Sec. 6.4.

In Figure 12, we compare the memory footprint of MG-GCN

with DGL and CAGNET in the single and multi-GPU settings. As

seen in the figure, given a GPU memory constraint of 30 GiB, one

can fit 20 vs 50 layers using DGL vs MG-GCN in the single GPU

setting. In the multi-GPU setting, one can again fit 150 vs 450 layers

using CAGNET vs MG-GCN in the 8 GPU setting. One can also

observe that the dependency of memory consumption on numbers

of layers is linear as expected.

Comparison on DGX-A100: In Figures 13 and 14, we compare MG-

GCNwith DGL using the 2 layer GCNmodel mentioned in Section 6

on DGX-A100. We are not able to include CAGNET in this compar-

ison since it is not compatible with CUDA 11. In all the datasets,

we outperform DGL with a single GPU. Our single GPU results are

2.2× faster on Cora, 1.8× faster on Arxiv, 1.5× faster on Products

and 1.5× faster on Reddit datasets than DGL. On the multi-GPU

setting, we achieve 8.5× speedup on Products dataset, and 8.3×

Figure 8: Timeline of the SpMM on the Products dataset us-
ing permuted ordering. The numbers on the bars represent
stages. Each GPU is represented by 3 lines. First line rep-
resents computation without overlapping communication.
Next two lines represent computation with overlapping com-
munication. Blue line: computation time. Yellow line: com-
munication time.
get a speedup on Cora dataset, since the graph is very small, and

a certain amount of work is expected to achieve any speedup. We

are not able to run CAGNET with Proteins dataset using 8 GPUs

because of CAGNET’s memory requirement; however, MG-GCN

is able to fit Proteins dataset into 4 only GPUs. Even though, both

CAGNET and MG-GCN use the 1D partitioning strategy, we can

fit much larger graphs into our target machines due to extensive

memory optimization described in Section 4.2. Also, by overlap-

ping computation and communication, we can achieve substantial

speedup compared to CAGNET. Note that, the achieved speedups

correlate with the average degree of the graph, as mentioned in

Sec. 6.4.

1
x

2
x

4
x

8
x

1
6
x

3
2
x

6
4
x

1
2
8
x

0

2

4

6

8

10

12

S
p

e
e
d

u
p

 w
.r

.t
.

1
 G

P
U

 R
u

n
ti

m
e

1
2
4
8

#GPUs

Scaled Average Degree over Arxiv

Figure 9: Speedup w.r.t. MG-GCN 1 GPU Runtime

In Figure 12, we compare the memory footprint of MG-GCN

with DGL and CAGNET in the single and multi-GPU settings. As

seen in the figure, given a GPU memory constraint of 30 GiB, one

can fit 20 vs 50 layers using DGL vs MG-GCN in the single GPU

setting. In the multi-GPU setting, one can again fit 150 vs 450 layers

using CAGNET vs MG-GCN in the 8 GPU setting. One can also

observe that the dependency of memory consumption on numbers

of layers is linear as expected.

Comparison on DGX-A100: In Figures 13 and 14, we compare MG-

GCNwith DGL using the 2 layer GCNmodel mentioned in Section 6

on DGX-A100. We are not able to include CAGNET in this compar-

ison since it is not compatible with CUDA 11. In all the datasets,

we outperform DGL with a single GPU. Our single GPU results are

2.2× faster on Cora, 1.8× faster on Arxiv, 1.5× faster on Products

and 1.5× faster on Reddit datasets than DGL. On the multi-GPU

setting, we achieve 8.5× speedup on Products dataset, and 8.3×
speed-up on Reddit dataset using 8 GPUs. MG-GCN can fit Papers

dataset, which is the largest available benchmark dataset for GNN

MG-GCN: A Scalable multi-GPU GCN Training Framework ICPP ’22, August 29-September 1, 2022, Bordeaux, France

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

E
p

o
c
h

 R
u

n
ti

m
e
 (

s
)

Cora Arxiv Products Proteins Reddit
C
A
G
N
E
T

D
G
L

M
G
-G
C
N

C
A
G
N
E
T

D
G
L

M
G
-G
C
N

C
A
G
N
E
T

D
G
L

M
G
-G
C
N

C
A
G
N
E
T

D
G
L

M
G
-G
C
N

C
A
G
N
E
T

D
G
L

M
G
-G
C
N

1
2
4
8

#GPUs

O
ut

of
M
em

or
y

O
ut

of
M
em

or
y

Figure 10: Baseline epoch runtime (seconds) comparison on
DGX-V100. On Proteins dataset CAGNET and DGL run out of
memory, MG-GCN runs out of memory with 1 and 2 GPUs.

0

2

4

6

8

10

12

14

16

S
p

e
e
d

u
p

 w
.r

.t
.

D
G

L

Cora Arxiv Products Reddit

C
A
G
N
E
T

M
G
-G
C
N

C
A
G
N
E
T

M
G
-G
C
N

C
A
G
N
E
T

M
G
-G
C
N

C
A
G
N
E
T

M
G
-G
C
N

1
2
4
8

#GPUs

Figure 11: Speedup w.r.t. DGL on DGX-V100.

training, into 8 GPUs with MG-GCN, and achieve 2.89 seconds

epoch runtime using the 4th GCN model mentioned in Section 6.

6.6 Single Node vs Distributed Systems
We compare MG-GCN with DistGNN using 2 different GCNmodels

mentioned in section 6. Note that, this is not an exact comparison

for two main reasons: First, we are not able to reproduce the results

because the source code of DistGNN is not available, so we base our

comparison on the numbers reported in the original work. Second,

DistGNN is a CPU-based framework, whileMG-GCN is designed for

GPUs. We believe that comparing the two frameworks will provide

important insights on the resource requirements and performance

one can get. For the experiments, DistGNN uses a cluster with 64

Intel Xeon 9242 CPU @2.30 GHz with 48 cores per socket in a dual-

socket system. The compute nodes consist of 384 GB memory and

are connected through Mellanox HDR interconnect with DragonFly

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

GiB per GPU

0

10

20

30

40

50

N
u

m
b

e
r

o
f

L
a
y
e
rs

DGL

MG-GCN

Framework

(a) 1 GPU

0 5 10 15 20 25 30 35

GiB per GPU

0

100

200

300

400

N
u

m
b

e
r

o
f

L
a
y
e
rs

CAGNET

MG-GCN

Framework

(b) 8 GPUs
Figure 12: Per GPU memory consumption on the Reddit
dataset with hidden layer size 512 varying number of layers.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

E
p

o
c
h

 R
u

n
ti

m
e
 (

s
)

Cora Arxiv Products Proteins Reddit

D
G
L

M
G
-G
C
N

D
G
L

M
G
-G
C
N

D
G
L

M
G
-G
C
N

D
G
L

M
G
-G
C
N

D
G
L

M
G
-G
C
N

1
2
4
8

#GPUs

O
ut

of
M
em

or
y

Figure 13: Epoch runtime (s) comparison on DGX-A100.

topology. In addition, to run Papers on a single socket, they use a

single-socket machine with 1.5TB memory.

Table 2 shows the results from DistGNN, while Table 3 shows

the performance of MG-GCN on DGX-A100. In Table 2, we only

take the single socket and the best socket performances for each

dataset from the original work [30]. Also, note that we compare

against their baseline version since other variants are not exact

computations but approximations. For detailed results, we refer

interested readers to [30]. Even though, the authors observe signif-

icant speedups in their experiments, MG-GCN outperforms their

best performance with a single GPU on all datasets except Proteins.

Our 8 GPU performances are 40× faster on Reddit, 12.6× faster

on Papers, 12.4× faster on Products, and 1.77× faster on Protein

datasets than DistGNN’s best performances. Note that, for Reddit

ICPP ’22, August 29-September 1, 2022, Bordeaux, France Balin and Sancak, et al.

0

1

2

3

4

5

6

7

8

9

S
p

e
e
d

u
p

 w
.r

.t
.

D
G

L

1 2 4 8

Arxiv

1 2 4 8

Cora

1 2 4 8

Products

1 2 4 8

Reddit

1
2
4
8

#GPUs

Figure 14: Speedup w.r.t. DGL on DGX-A100.

dataset, since the GCNmodel is very small, 2 layers with 16 neurons,

MG-GCN cannot achieve speedup after 4 GPUs.

Given a single Intel Xeon 9242 CPU has a Thermal Design Power

(TDP) of 350W, whereas a single Tesla A100 has 400W. Given that

energy consumption is computed by TDP × #of Devices × Time.

If we exclude power consumption of the network and the rest of

the system’s power consumption, a back-of-the-envelope analysis

shows that on the Papers dataset, the power consumption ratio

equals
350𝑊 ×128×36.45𝑠
400𝑊 ×8×2.89𝑠

208

256
= 143.46. We scale the energy consump-

tion by
208

256
due to the differences of the hidden layer dimensions.

We see that using GPUs over CPUs is 2 orders of magnitude more

energy-efficient in this case. Note that, we use the exact same GCN

models for every comparison except the last comparison on Papers

dataset where we reduce the hidden dimension to 208 due to mem-

ory constraints. However, MG-GCN’s runtime is scaled accordingly

in the power efficiency comparison to keep things fair.

Table 2: DistGNN Results: The numbers in the cells are epoch
times in second. For each dataset, we take results for 1 Socket
and the number of sockets that performs the best from [44].
DS: Dataset, #S: Number of Sockets.

#S

DS

Reddit Papers Products Protein

1 0.60 1000 11 100

16 0.61 - - -

64 - - 1.74 2.63

128 - 36.45 - -

7 CONCLUSION
In this paper, we present MG-GCN, a single node multi-GPU GCN

training framework that enables efficient distributed training of

GCNs over the full graph. MG-GCN adapts a 1D row partition-

ing strategy. It also adapts extensive memory optimizations by re-

using/sharing the allocated buffers across layers and forward/backward

phases and enables overlapping communication and computation.

We have demonstrated that MG-GCN can achieve significant run-

time improvements over the available state-of-the-art frameworks

Table 3: MG-GCN Results on DGX-A100: The values in the
cells are epoch times in seconds. Dashed line represents con-
figurations that run out of memory. DS: Dataset, #G: Number
of GPUs.

#G

DS

Reddit Papers Products Protein

1 0.033 - 0.355 4.221

2 0.017 - 0.202 2.272

4 0.012 - 0.110 1.191

8 0.012 2.89 0.067 0.641

on single GPU systems. Moreover, going into the multi-GPU set-

ting, we can fit much larger graphs into the memory of our target

machines. In our single GPU experiments, we achieve up to 2.72×
speedup compared to DGL on the Reddit dataset, and on multi-GPU

experiments, we achieve up to 8.6× speedup on the Products dataset

compared to CAGNET on DGX-V100.

In future work, we are aiming to extend our framework to multi-

GPU clusters. By doing so, we aim to train larger datasets and enable

distributed training of even larger scale GNNs. Another future direc-

tion is to accelerate the Sampled Dense Dense Matrix Multiplication

(SDDMM) kernel to enable parallel training of several other models

such as Graph Attention Networks [37].

ACKNOWLEDGMENTS
We thank Prof. Polo Chau for providing us access to their DGX-

A100 for our experiments. This work was partially supported by

the NSF grant CCF-1919021.

REFERENCES
[1] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, et al.

2015. TensorFlow, Large-scale machine learning on heterogeneous systems.
[2] Tal Ben-Nun and Torsten Hoefler. 2019. Demystifying parallel and distributed

deep learning: An in-depth concurrency analysis. ACM Computing Surveys
(CSUR) 52, 4 (2019), 1–43.

[3] Zhenkun Cai, Xiao Yan, Yidi Wu, Kaihao Ma, James Cheng, and Fan Yu. 2021.

DGCL: An Efficient Communication Library for Distributed GNN Training. In

Proceedings of the Sixteenth European Conference on Computer Systems (EuroSys
’21). Association for Computing Machinery, 130–144.

[4] Ümit V. Çatalyürek, Cevdet Aykanat, and Bora Uçar. 2010. On Two-Dimensional

Sparse Matrix Partitioning: Models, Methods, and a Recipe. SIAM Journal on
Scientific Computing (SISC) 32, 2 (2010), 656–683.

[5] Jie Chen, Tengfei Ma, and Cao Xiao. 2018. FastGCN: Fast Learning with Graph

Convolutional Networks via Importance Sampling. In International Conference
on Learning Representations.

[6] Tianqi Chen, Mu Li, Yutian Li, Min Lin, Naiyan Wang, et al. 2015. MXNet: A

Flexible and Efficient Machine Learning Library for Heterogeneous Distributed

Systems. arXiv:1512.01274 [cs.DC]

[7] Wei-Lin Chiang, Xuanqing Liu, Si Si, Yang Li, Samy Bengio, and Cho-Jui Hsieh.

2019. Cluster-gcn: An efficient algorithm for training deep and large graph

convolutional networks. In International Conference on Knowledge Discovery &
Data Mining. 257–266.

[8] Adam Coates, Brody Huval, Tao Wang, David Wu, Bryan Catanzaro, and Ng

Andrew. 2013. Deep learning with COTS HPC systems. In International conference
on machine learning. PMLR, 1337–1345.

[9] David R. Cox. 1958. The Regression Analysis of Binary Sequences. Journal of the
Royal Statistical Society. Series B (Methodological) 20, 2 (1958), 215–242.

[10] Li Deng, Dong Yu, and John Platt. 2012. Scalable stacking and learning for

building deep architectures. In 2012 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP). 2133–2136.

[11] Ludvig Ericson and Rendani Mbuvha. 2017. On the performance of network

parallel training in artificial neural networks. arXiv (2017).

[12] Matthias Fey and Jan Eric Lenssen. 2019. Fast Graph Representation Learning

with PyTorch Geometric. In ICLR Workshop.
[13] Kasimir Gabert and Ümit V. Çatalyürek. 2021. PIGO: A Parallel Graph In-

put/Output Library. In IEEE IPDP Workshops. 276–279.

https://arxiv.org/abs/1512.01274

MG-GCN: A Scalable multi-GPU GCN Training Framework ICPP ’22, August 29-September 1, 2022, Bordeaux, France

[14] Swapnil Gandhi and Anand P. Iyer. 2021. P3: Distributed Deep Graph Learning

at Scale. In 15th USENIX Symposium on Operating Systems Design and Implemen-
tation (OSDI 21). USENIX Association, 551–568.

[15] Boris Ginsburg, Igor Gitman, and Yang You. 2018. Large Batch Training of

Convolutional Networks with Layer-wise Adaptive Rate Scaling.

[16] Joseph E Gonzalez, Yucheng Low, Haijie Gu, Danny Bickson, and Carlos Guestrin.

2012. PowerGraph: Distributed Graph-Parallel Computation on Natural Graphs.

In OSDI’12. 17–30.
[17] Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noordhuis, Lukasz Wesolowski,

et al. 2017. Accurate, large minibatch sgd: Training imagenet in 1 hour. arXiv
(2017).

[18] William L. Hamilton, Rex Ying, and Jure Leskovec. 2018. Inductive Representation

Learning on Large Graphs. arXiv:1706.02216 [cs.SI]

[19] Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, et al.

2021. Open Graph Benchmark: Datasets for Machine Learning on Graphs.

arXiv:2005.00687 [cs.LG]

[20] Zhihao Jia, Sina Lin, MingyuGao,Matei Zaharia, and Alex Aiken. 2020. Improving

the accuracy, scalability, and performance of graph neural networks with roc.

Proceedings of Machine Learning and Systems (MLSys) (2020), 187–198.
[21] Peng Jiang, Changwan Hong, and Gagan Agrawal. 2020. A Novel Data Trans-

formation and Execution Strategy for Accelerating Sparse Matrix Multiplication

on GPUs. In Proceedings of the 25th ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming. Association for Computing Machinery,

376–388.

[22] George Karypis and Vipin Kumar. 1998. A fast and high quality multilevel scheme

for partitioning irregular graphs. SIAM Journal on Scientific Computing 20 (1998),

359–392.

[23] Diederik P. Kingma and Jimmy Ba. 2017. Adam: A Method for Stochastic Opti-

mization. arXiv:1412.6980 [cs.LG]

[24] Thomas N. Kipf and Max Welling. 2017. Semi-Supervised Classification with

Graph Convolutional Networks. In 5th International Conference on Learning
Representations. OpenReview.net.

[25] Tamara G. Kolda, Ali Pinar, Todd Plantenga, and C. Seshadhri. 2014. A Scalable

Generative Graph Model with Community Structure. SIAM Journal on Scientific
Computing 36, 5 (Jan 2014), C424–C452.

[26] Alex Krizhevsky. 2014. One weird trick for parallelizing convolutional neural

networks. arXiv (2014).

[27] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. 1998. Gradient-

based learning applied to document recognition. Proc. IEEE 86, 11 (1998), 2278–

2324.

[28] Ang Li, Shuaiwen L. Song, Jieyang Chen, Jiajia Li, Xu Liu, et al. 2020. Evaluating

Modern GPU Interconnect: PCIe, NVLink, NV-SLI, NVSwitch and GPUDirect.

IEEE Transactions on Parallel and Distributed Systems 31, 1 (2020), 94–110.
[29] Lingxiao Ma, Zhi Yang, Youshan Miao, Jilong Xue, Ming Wu, et al. 2019. Neu-

Graph: Parallel Deep Neural Network Computation on Large Graphs. In 2019
USENIX Annual Technical Conference (USENIX ATC 19). USENIX Association,

443–458.

[30] Vasimuddin Md, Sanchit Misra, Guixiang Ma, Ramanarayan Mohanty, Evangelos

Georganas, et al. 2021. DistGNN: Scalable Distributed Training for Large-Scale

Graph Neural Networks. arXiv (2021).

[31] Vinod Nair and Geoffrey E. Hinton. 2010. Rectified Linear Units Improve Re-

stricted Boltzmann Machines. In International Conference on International Con-
ference on Machine Learning. 807–814.

[32] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, et al.

2019. PyTorch: An Imperative Style, High-Performance Deep Learning Library.

In NeurIPS. 8024–8035.
[33] Franco Scarselli, MarcoGori, AhChung Tsoi, MarkusHagenbuchner, andGabriele

Monfardini. 2009. The Graph Neural Network Model. IEEE Transactions on Neural
Networks 20, 1 (2009), 61–80.

[34] Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and

Tina Eliassi-Rad. 2008. Collective Classification in Network Data. AI Magazine
29, 3 (2008), 93–106.

[35] Alok Tripathy, Katherine Yelick, and Aydın Buluç. 2020. Reducing Communi-

cation in Graph Neural Network Training. In Proceedings of the International
Conference for High Performance Computing, Networking, Storage and Analysis.
Article 70, 17 pages.

[36] Robert A. van de Geijn and Jerrell Watts. 1997. SUMMA: scalable universal matrix

multiplication algorithm. Concurr. Pract. Exp. 9 (1997), 255–274.
[37] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero,

Pietro Liò, and Yoshua Bengio. 2018. Graph Attention Networks.

arXiv:1710.10903 [stat.ML]

[38] Minjie Wang, Da Zheng, Zihao Ye, Quan Gan, Mufei Li, et al. 2019. Deep Graph Li-

brary: A Graph-Centric, Highly-Performant Package for Graph Neural Networks.

arXiv (2019).

[39] Yuke Wang, Boyuan Feng, Gushu Li, Shuangchen Li, Lei Deng, et al. 2021. GN-

NAdvisor: An Adaptive and Efficient Runtime System for GNN Acceleration on

GPUs. In 15th USENIX Symposium on Operating Systems Design and Implementa-
tion (OSDI 21). USENIX Association, 515–531.

[40] Cong Xie, Ling Yan, Wu-Jun Li, and Zhihua Zhang. 2014. Distributed Power-law

Graph Computing: Theoretical and Empirical Analysis. In Advances in Neural
Information Processing Systems, Vol. 27. Curran Associates, Inc.

[41] Kunlei Zhang and Xue-Wen Chen. 2014. Large-Scale Deep Belief Nets With

MapReduce. IEEE Access 2 (2014), 395–403.
[42] Muhan Zhang and Yixin Chen. 2018. Link prediction based on graph neural

networks. NIPS 31 (2018), 5165–5175.
[43] Muhan Zhang, Zhicheng Cui, Marion Neumann, and Yixin Chen. 2018. An end-

to-end deep learning architecture for graph classification. In Thirty-Second AAAI
Conference on Artificial Intelligence.

[44] Da Zheng, Chao Ma, Minjie Wang, Jinjing Zhou, Qidong Su, et al. 2020. Distdgl:

distributed graph neural network training for billion-scale graphs. In IEEE/ACM
Workshop on Irregular Applications: Architectures and Algorithms (IA3). 36–44.

[45] Rong Zhu, Kun Zhao, Hongxia Yang, Wei Lin, Chang Zhou, et al. 2019. AliGraph:

A Comprehensive Graph Neural Network Platform. Proc. VLDB Endow. 12, 12
(Aug. 2019), 2094–2105.

[46] Martin Zinkevich, Markus Weimer, Alexander J Smola, and Lihong Li. 2010.

Parallelized stochastic gradient descent.. In NIPS, Vol. 4.

https://arxiv.org/abs/1706.02216
https://arxiv.org/abs/2005.00687
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1710.10903

	Abstract
	1 Introduction
	2 Background
	3 Related Work
	4 MG-GCN
	4.1 Partitioning
	4.2 Memory Optimizations
	4.3 Overlapping Computation and Communication
	4.4 Order of Computation and Saving one SpMM

	5 Design Decisions
	5.1 Choice of the Partitioning Strategy
	5.2 Permutation

	6 Experimental Evaluation
	6.1 Runtime Breakdown of GCN Computation
	6.2 Impact of Permutation
	6.3 Overlapping Computation and Communication
	6.4 Impact of Average Degree
	6.5 Comparison on Single Node Systems
	6.6 Single Node vs Distributed Systems

	7 Conclusion
	Acknowledgments
	References

