MG-GCN: A Scalable multi-GPU GCN Training Framework

Muhammed Fatih Balin*

Kaan Sancak®
balin@gatech.edu
kaan@gatech.edu

Georgia Institute of Technology
Atlanta, Georgia, USA

ABSTRACT

Full batch training of Graph Convolutional Network (GCN) mod-
els is not feasible on a single GPU for large graphs containing
tens of millions of vertices or more. Recent work has shown that,
for the graphs used in the machine learning community, commu-
nication becomes a bottleneck, and scaling is blocked outside of
the single machine regime. Thus, we propose MG-GCN, a multi-
GPU GCN training framework taking advantage of the high-speed
communication links between the GPUs present in multi-GPU sys-
tems. MG-GCN employs multiple High-Performance Computing
optimizations, including efficient re-use of memory buffers to re-
duce the memory footprint of training GNN models, as well as
communication and computation overlap. These optimizations en-
able execution on larger datasets, that generally do not fit into the
memory of a single GPU in state-of-the-art implementations. Fur-
thermore, they contribute to achieving superior speedup compared
to the state-of-the-art. For example, MG-GCN achieves super-linear
speedup with respect to DGL, on the Reddit graph on both DGX-1
(V100) and DGX-A100.

CCS CONCEPTS

» Computer systems organization — Embedded systems; Re-
dundancy; Robotics; « Networks — Network reliability.

KEYWORDS

datasets, neural networks, gaze detection, text tagging

ACM Reference Format:

Muhammed Fatih Balin, Kaan Sancak, and Umit V. Catalyiirek. 2022. MG-
GCN: A Scalable multi-GPU GCN Training Framework. In 51st International
Conference on Parallel Processing (ICPP 22), August 29-September 1, 2022,
Bordeaux, France. ACM, New York, NY, USA, 11 pages. https://doi.org/10.
1145/3545008.3545082

“Both authors contributed equally to this research.
* Also with Amazon Web Services. This publication describes work performed at the
Georgia Institute of Technology and is not associated with Amazon.

This work is licensed under a Creative Commons Attribution International
4.0 License.

ICPP °22, August 29-September 1, 2022, Bordeaux, France
© 2022 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-9733-9/22/08.
https://doi.org/10.1145/3545008.3545082

Umit V. Catalyiirek
Georgia Institute of Technology
Atlanta, Georgia, USA
umit@gatech.edu

1 INTRODUCTION

Graphs are essential data-structures that can represent a variety
of information, therefore they surface in many different contexts
and disciplines. The Graph Convolutional Network (GCN) model is
a type of Graph Neural Network (GNN) which is a very powerful
graph embedding method for semi-supervised learning to solve
graph representation learning problems [24, 33]. GNNs take advan-
tage of the connectivity information presented in the graph, thus
they provide flexibility and greater applicability compared to CNN
models where the neighborhood structure of nodes is fixed, hence
the model is more restricted. The common use cases of GNN models
include node prediction [24] which predicts the properties of certain
vertices, graph prediction [43] which predicts the properties of the
whole graph, and link prediction [42] which predicts whether there
is an edge exists between two nodes. In this work, we will focus on
node prediction, but our methods are extendable to graph and link
prediction as well.

While training GNNs, the memory requirement for large graphs
can exceed the memory capacity of a single accelerator. Mini-batch
training is a common technique to overcome this problem to reduce
the working set by creating a mini-batch of vertex samples to train
the model. Consequently, it reduces the memory requirement dur-
ing training. However, mini-batch training might lead to important
problems. First, starting from the mini-batch nodes, it is possible
to reach almost every single node in the graph in just a few hops,
also known as the neighborhood explosion phenomenon, which
increases the work performed during a single epoch exponentially.
Second, it has been shown that mini-batch training can lead to
lower accuracy compared to full-batch training [20]. In this work,
we focus on full-batch training on multi-GPU systems.

A major challenge to full-batch GCN training is its paralleliza-
tion and scalability. The challenge stems mainly from the irregular
structure of the graph which leads to load imbalance and com-
munication cost when training on multiple GPUs. GCN has many
underlying kernels, however, one of the most time-consuming part
is the Sparse Matrix-Dense Matrix Multiplications (SpMM). Alterna-
tive solutions are proposed to improve the performance of SpMM,
such as reordering and better-suited graph storage schemes and
computation kernels [21].

Most of the existing systems, such as Deep Graph Learning Li-
brary (DGL), lack the support for multi-GPU training [38]. One
needs to implement the parallelism manually while using DGL.
DistDGL is an extension of DGL that enables multi-GPU training,
however, it does not provide full-batch training, rather it uses mini-
batch training [44]. Recently, ROC [20] has been proposed and it
supports automatic multi-GPU GCN full-batch training on a single


https://doi.org/10.1145/3545008.3545082
https://doi.org/10.1145/3545008.3545082
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3545008.3545082

ICPP °22, August 29-September 1, 2022, Bordeaux, France

Layer 0 Layer L -1

Forward | e e ep Forward »——
[ ] [ ]
[ ] [ ]
[ ] [ ]

Forward e e ep | Forward »—

Shared across layers

Balin and Sancak, et al.

Layer L -1 Layer 0
Loss > Backward (e e ep  Backward
] ° °
L] [ ] [ ]
L] ° °
Loss —— Backward e e ep | Backward
BC2

Figure 1: Computation diagram of an L-layer GCN model with shared buffers across layers. BC1: broadcast buffer, BC2: broadcast
buffer for overlapping, HW: temporary result buffer between SpMM and GeMM.

machine, and scales up to multiple machines. CAGNET [35] builds
on top of ROC by providing distributed algorithms with different
communication patterns. In their work, authors investigate differ-
ent partitioning strategies to reduce the communication cost and
attempt to scale up to hundreds of GPUs. However, their results
show that none of the proposed algorithms can achieve speedup
beyond a single node (4 GPUs), primarily due to the restricted band-
width of the available interconnect between nodes in the cluster.

In this work, we provide a framework for training GCNs on mul-
tiple GPUs that takes advantage of the high-speed communication
links present in today’s multi-GPU systems [28]. We address the
load imbalance problem by using a simple random permutation
strategy and hide the communication by overlapping it with com-
putation. Moreover, we carefully examine the dependency scheme
of the buffers used during training and investigate ways to re-
duce memory requirements for GCN models to fit larger datasets
into our target machines. Our optimization techniques are gen-
eralizable and can be applied to other frameworks but for repro-
ducibility, we also open-source customizable implementation of
MG-GCN.

2 BACKGROUND

The inputs for a GCN fy (X) are the feature matrix X € R™4 and
the adjacency matrix A € R"*", when there are n input instances
and each input instance has d dimensional feature vectors. GCNs
are useful when the input instances come equipped with a rela-
tion, which is represented in matrix format as A. Typically, input
instances have features along with them that make up X. To do
learning on such a dataset, one can ignore A and fit a model that
treats each input instance independently using a multi-layer per-
ceptron. In contrast, GCNs utilize A, and instead of processing each
input instance separately, it processes an input instance together
with its k-hop neighborhood. Having access to an instance’s neigh-
borhood increases the expressiveness of the model, hence aiding
performance immensely. As an example, consider guessing which
movies an individual would like to watch. It might prove to be a
hard task if we have access to a single individual. However, if we
consider a group of individuals that are related to the person of in-
terest, then the prediction task becomes much simpler as individual
variance vanishes whereas group difference becomes more visible
when one looks at whole groups at once. This is why GCN oftens

perform much better compared to simple multi-layer perceptron
models that do not take into account the relations of instances [24].

The simplest variant of a GCN fy (H) with a single layer can be
represented as

fa(H) = a(ATHW) 1)
; Ay
e Taemo A ?

where Nj(v) is the set of in-edges for vertex v and o is an element-
wise nonlinear activation function, ReLU [31] in our case. Using f4,
we can construct deeper GCNs as follows for any number of layers
L:

H® = x 3)

g = fa (H(L—l)) 4

As depicted in Figure 1, L-layer GCN model training is composed of
L forward passes followed by L backward passes. More specifically,
given input matrix H, the operations in the forward pass of a single
GCN layer can be broken down as follows:

HW =H*W (5)
AHW = AT « HW (6)
H' = o(AHW) )

where * denotes the matrix multiplication operation. Similarly given
the gradient from the next layer H., the backward layer can be
broken down as follows:

AHWg = o’ (Hj,, AHW) (8)
HWg = A = AHWg (9)
W = HWL «H (10)
Hg = HWg =« WT (11)

where we use subscript G in Ug, to denote the derivative of U with
respect to the loss function.

As we will experimentally verify in Section 6.1, at the core of
these GCN computations, there are two operations that are com-
putationally the most expensive: 1) Sparse Matrix-dense Matrix
multiplications (SpMM) in AT «+ HW and A * AHW, and 2) (Gen-
eral) dense Matrix-Matrix multiplication (GeMM) operations, in



MG-GCN: A Scalable multi-GPU GCN Training Framework

HW,HWg+WT and H Wg * H. For efficient parallel and distributed
execution, one needs to pay attention to these two operations.

3 RELATED WORK

The growing size and scale of data encouraged many researchers
to develop parallel/distributed algorithms and systems for Deep
Neural Networks [2, 27]. Broadly, DNN parallelism can be gen-
eralized under 3 categories: data parallelism, model parallelism,
and pipelining. Data parallelism can be further divided into 2 cate-
gories. Mini-batch parallelism creates batches from the dataset by
using sampling methods, and then partitions the batches among
computing resources [15, 17], while Coarse- and Fine-Grained or
full-batch parallelism divides the dataset among the compute re-
sources [41, 46]. On the other hand, model parallelism divides the
model itself, and partitions the work depending on the neurons in
each layer [8, 11]. Alternatively, pipelining can be achieved in two
ways. Either overlapping the computations between consecutive
layers, or partitioning the model according to its depth and dividing
layers among processors [1, 6, 10, 32]. Also, there have been hybrid
approaches that combine multiple parallelism schemes [26].

While alternative methods exist, most of the research on GNN
parallelism is focused on data parallelism, since the models are
relatively simple compared to the traditional DNN models. Similar
to DNNs, data parallelism can be achieved in two ways. Mini-batch,
or sampling, based approaches create batches via neighborhood
sampling [5, 7]. After batches are created, they are assigned to CPUs
or GPUs. However, in the case of graphs, mini-batching might
result in neighborhood explosion in just a few hops, increasing
the work performed in an epoch exponentially. Alternatively, to
avoid the computation waste, one can apply full-batch parallelism
where the parallelism achieved by distributing the workload among
CPUs/GPUs while keeping execution order of the layers identical
to the sequential method [30, 35]. In full-batch training, the model
takes the whole graph and the corresponding features as input, and
to achieve any parallelism one has to apply ideas similar to the
model parallelism in general DNNs since the work of individual
layers has to be partitioned. In this work, we focus on this aspect
of GNN model training.

Most of the CPU-based systems are focused on mini-batching
based methods. AliGraph is a comprehensive distributed GNN train-
ing framework that provides aggregators and operators for vari-
ous GNN models [45]. AliGraph enables 4 different partitioning
algorithms: METIS, Vertex cut & Edge Cut, 2D partitioning, and
Streaming-style partitioning. However, it neither provides many
details on the subject nor includes any scaling experiments. Dist-
DGL [44] is a framework based on DGL that uses METIS partition-
ing [22]. It keeps vertex and edge features in a distributed key-value
store, which can be queried during the training. DistDGL shows
scaling results on the largest available benchmark datasets. How-
ever, none of these frameworks provides support for training on the
full-graph. DistGNN [30] is a scalable distributed training frame-
work for large-scale GNNs that is an extension of DGL. Unlike other
frameworks, DistGNN trains the models on the full graph. It uses
a vertex-cut partitioning called Libra [40], and shows substantial
scaling on the largest available benchmark datasets. However, as we

ICPP °22, August 29-September 1, 2022, Bordeaux, France

will show in the later sections, by applying extensive memory opti-
mizations, we are able to fit some of the largest datasets using only
1 to 8 GPUs, while achieving 12.5x faster runtimes than DistGNN’s
best performance which is achieved with up to 128 sockets.

There has been various frameworks and algorithms proposed
for training GNNs on GPUs. Deep Graph Library (DGL) [38] is a
well-known library for implementing general GNN models. DGL
provides the API for sparse matrix operations and sampling func-
tions to implement various GNN models efficiently. Moreover, it
can use Tensorflow [1], PyTorch [32] or MXNet [6] as backends
for wide adoption. GNNAdvisor is a runtime system to accelerate
GNN workloads in GPU systems, however it works on single GPU
platforms and multi-GPU is left as future work [39]. NeuGraph [29]
is a single node multi-GPU mini-batch GNN training framework.
NeuGraph introduces a programming model for GNN computations
that is similar to vertex-centric programming model [16]. ROC [20]
is a distributed multi-GPU GNN training framework utilizing graph
partitioning via an online regression model and it proposes mem-
ory management optimizations for transfers of data between the
CPU and GPU. ROC shows scalability on some of the available
benchmark datasets such as Reddit and Amazon, and also it can
do full-batch training of more complex models and achieve higher
accuracy compared to sampling approaches. However, we are not
able to compare with ROC, since the available code do not work as
expected. CAGNET [35], inspired by the SUMMA algorithm [36],
implements 1D, 1.5D, 2D, and 3D partitioning strategies for full-
batch training to reduce the communication cost. Additionally, the
authors provide a complexity analysis for each strategy. However,
CAGNET fails to scale beyond a single node (4 GPUs) in terms
of runtime performance due to the available bandwidth and the
intra/inter-communication topologies. Moreover, CAGNET does
not have an effort to reuse memory buffers, and it relies on PyTorch
and PyTorch Geometric libraries [12]. DGCL is a distributed graph
communication library for training GNNs on multiple GPUs [3]. P3
is another framework for distributed GNN training on multi-GPU
systems that uses hash partitioning to distribute the graph and
the features independently, it also takes advantage of intra-layer
parallelism in the first layer and data parallelism in the following
layers to pipeline compute and communication [14].

As we will show in the later sections, by adapting extensive
memory optimizations, we can fit much larger graphs into our
target machines.

4 MG-GCN

Looking at a single layer of a GCN model particularly, we can
express it via the following:

H = £, (HD) = g(ATHO WD) (12)

where matrices A, H, and W are defined in Section 2. That is, one
layer of GCN consists of two main operations. For the forward
propagation, first, we need to perform a Generalized Matrix Matrix
Multiplication (GeMM) between the dense matrices H and W, then
we need to perform a Sparse Matrix-Dense Matrix Multiplication
(SpMM) between the transpose sparse matrix A, and the resulting
matrix of GeMM. Later the result of SpMM is fed into a nonlinear
activation function. In the backward pass, the same operations are
performed with the non-transposed normalized adjacency matrix



ICPP °22, August 29-September 1, 2022, Bordeaux, France

A. In the rest of this section, we will focus on the forward pass and
we refer to AT simply as A.

In addition to our analytical analysis, we have experimentally
identified the most computationally expensive kernels in GCN com-
putation. As we will demonstrate in Section 6.1, we have profiled
our single GPU GCN training with nvprof to analyze the runtime of
our kernels and pinpoint the bottleneck kernels. We have observed
that up to 94% of the runtime was spent during the execution of
the forward and backward SpMM kernels. Therefore, we have first
focused on efficient parallelization of SpMM kernel on multi-GPU
setting. Moving into multi-GPU from a single GPU, one needs to
find ways to distribute the data into multiple GPUs, and adapt
algorithms to perform parallel SpMM.

4.1 Partitioning

Given a matrix A, we can define the 2D tiling (partitioning) of the
matrix using two partition vectors p and g, such that p represents
the partition vector of the first dimension, and g represents the
partition vector of the second dimension. A partition vector p with
P parts is defined as:

pGNP+1,0=p(0)§~--Sp(i)§---sp(P)=n (13)
Then, let us define AY as the (i, j)-th tile of the matrix.

p(i) Su<p(i+1),q(j) <o<q(j+1) (14)
Aij(u,v) =A(u+p(i),o+q(j)),uveN (15)

One way to partition A, H and W is to apply symmetric parti-
tioning, so that p = g, to the sparse matrix A, and then assign the
tiles of A to GPUs using 1D or 2D distribution. Let’s start with 1D
column distribution where j-th tile column of A, Al s assigned
to j-th GPU. Moreover, we will partition dense matrix H, using
1D partitioning by rows, with the same partition vector p, and as-
sign H' to i-th GPU. Likewise, the resulting dense matrix will be
conformally partitioned by its rows. After partitioning, SpMM can
be performed in multiple stages. In each stage, one set of rows of
the result matrix can be filled, thus taking the algorithm P steps
to perform, where P is the number of GPUs. Each GPU performs
an SpMM with its local portions in the sparse and dense matrices.
That is, at stage i, AU will be multiplied by HI by j-th GPU, then
partial results will be reduced at GPU i.

Cl=" Alix
7

The only communication needed for this operation is the reduction
at the end. In this scheme, W is replicated across GPUs and is
reduced at the end of every epoch of training. The reduction of
W however is much faster than the communication done for the
feature matrix H because of their size difference O(d?) vs O(nd).

Alternatively, one can do 1D row distribution and assign i-th tile
row of A, AY to i-th GPU, see Figure 2. Then, at stage i, i-th GPU
broadcasts H', then AY will be multiplied by H/ on j-th GPU. The
only communication needed for this operation is the broadcast at
the beginning, see Figure 3.

Ccl=C'+AYH
Both of the above approaches partition H by its rows, so one
might consider how it would work if H was partitioned by its

Balin and Sancak, et al.

A HW AHW
ROR1R2R3

Figure 2: Partitioning of the sparse and dense matrices used
in SpMM. Colors represent stages, rows represent GPUs.

A HW  AHW A HW  AHW

o) w
S )

— —

X2 - X2 -
o o
Yy D
7 o
-~ —~

(a) Example 1st stage (b) Example 2nd stage
Figure 3: Example two stages of SpMM

columns, into 1 X P tiles. For this case, let us use a partition vector
p with P parts and a partition vector g with only a single part to
partition A. Then, we can assign A to i-th GPU, HY to Jj-th GPU.
Likewise, this operation can be performed in multiple stages. At
stage i, i-th GPU broadcasts A'l, then A*! will be multiplied by
HY at j-th GPU. The results are kept at the j-th GPU. The only
communication needed for this operation is the broadcast of the
sparse matrix at the beginning.

Cii = Ailgli

However, for this particular partitioning strategy, there is more
communication involved during the GeMM kernel. In particular
since H is 1D column-partitioned, C ij x wik requires a reduction
over j. This means not only A is communicated, but also the dense
matrix C is communicated which makes this solution undesirable.
Compared to the first solution, solution 2 provides better load bal-
ance regardless of the matrix ordering, since each GPU is using the
same set of rows broadcasted at each stage, the sparsity pattern of
the sparse matrix will be identical across the GPUs. Nevertheless,
since communication is the main bottleneck, we decide to use the
broadcast variant of solution 1, as in Figure 2. Note that in our
system only the model weights are replicated, any other data such
as the adjacency matrix A, and the input & intermediate feature
matrices H are fully partitioned.

We don’t discuss more complicated partitioning strategies such
as 1.5D, 2D or 3D as we will explain the reasoning in Section 5.1. Fur-
thermore, note that the GeMM computations on the row-partitioned
feature matrices do not require any synchronization as each GPU
can compute H'W in (5) independently. The element-wise activa-
tion function is also fully independent, each GPU computes it for
their portions. More detailed discussion on different partitioning
strategies can be found in [4].

4.2 Memory Optimizations

To reduce memory requirements, we reuse memory buffers in the
forward and backward passes, as much as possible.

In the forward and backward computations in egs. (5) to (7), we
will have a temporary result buffer called HWg and a result buffer



MG-GCN: A Scalable multi-GPU GCN Training Framework

called AHWp with the following mapping:

HW — HWp (16)
AHW — AHWj 17)
H — AHWjp (18)
And in the backward computations in egs. (8) to (11):
AHWg — AHWj (19)
HWg — HWg (20)
Hg —» AHWg (21)

Figure 4a shows the mappings of the buffers for the forward com-
putation and Figure 4b for the backward propagation.

Shared across layers Forward

lCalcs
enten }? | ol

(a) Forward Layer.

Private to layer

[SE— |
PRES—

Shared across layers Backward Private to layer

_Ese=m

e

(b) Backward Layer.
Figure 4: Forward and backward layers. Buffers colors indi-
cate whether they layer is shared or private. BC1, BC2, and
HW are explained in Figure 1. AHW: Buffer for the result.

Notice that, each layer only requires a single buffer to store their
output. They also use a temporary buffer that is shared across layers.
Hence, each layer only increases the memory used by a single buffer,
compared to 4x or 6x in other deep learning frameworks such as
DGL and CAGNET that allocate buffers for the output of SpMM,
GeMM and the activation functions. Considering the backward pass
adds up to 6 buffers per layer in total, as shown in Figure 1. For
L-layer GCN, the total number of buffers is L + 3, whose sizes on
average are n X d.

4.3 Overlapping Computation and
Communication

Each round of our multi-round SpMM is composed of a broadcast
of a tile of H and an SpMM computation with a tile of A with the
received tile of H. Notice that, there is an opportunity to overlap
communication and computation in such a multi-round scheme.
After the broadcast of the first tile of H, we overlap communication
of the next (remaining) tile(s) of H with the Sp)MM computations.
In order to do that, we need an extra communication buffer for
the next H tile. Since each GPU keeps its own H tile, and receives
the H! in the i-th round, each GPU needs one more extra buffer
for the broadcast primitive. In total, overlapping communication

ICPP °22, August 29-September 1, 2022, Bordeaux, France

and computation would require two additional buffers. In order to
fully utilize communication computation overlap, we use two GPU
streams: one for communication (stream 1) and one computation
(stream 0). We launch all communication and computation kernels
asynchronously on those two streams and wait for i-th broadcast
to finish on stream 1 before we start on i-th SpMM computation
on stream 0 and the i + 1-th broadcast waits for the i — 1-th SpMM
to finish not to overwrite its input when it is ongoing.

4.4 Order of Computation and Saving one
SpMM

For computing AHW, we change the order of SpMM and GeMM

operations depending on the feature dimension of the current layer

dD and the next layer d (1+1) a5 allowed by associativity. If d 0 <

d (l“), then doing SpMM, otherwise running GeMM is faster.

If the gradients all the way back to the input features are not
required, then it is possible to skip the SpMM in the first layer
during the backward pass. The reason is that SpMM scales each
feature dimension independently so it is possible to replace it with
a diagonal feature scaling matrix in the first layer’s backward pass.
In our case, each node takes the average of their neighbors, thus
the identity matrix is the scaling matrix, making it a no-operation.
Thus we avoid the SpMM of the first layer in the backward pass.

5 DESIGN DECISIONS
5.1 Choice of the Partitioning Strategy

The communication topology of the system directly affects the
observed bandwidth of different communication patterns. This is
clearly not an issue for systems like DGX-A100 where 8 GPU of
the system are connected shared NVlink switch with 12 links, and
could achieve full communication bandwidth between any pair of
GPUs. Whereas, in DGX-1 there are only 6 links, and connections
between GPUs are asymmetric. Such asymmetry will make some
theoretically optimum algorithms perform poorly on that system
since the underlying communication assumptions are not valid
there. For example, the 1.5D algorithm presented in [35] halves the
theoretical communication volume, by using more memory with
replication factor ¢ = 2. If we group the GPUs into two groups as
per the replication factor, each group has 4 links available. Then the
broadcast can be faster by a factor of 4—>6<2 in the 1.5D case. However,
the last reduction among the two groups has access to only 2 links.
Then, if we sum up the time required for communication for the
1.5D case, which necessitates two rounds of broadcast followed by
a concurrent reduction (see [35] for the details of the algorithm)

we get: 224 i 4l 4’:(‘;1 = 4l , where [ is the single Nthk ;tl)andw1dth.
—n
8>< 6l %7 time. On

the other hand, in DGX-A100 all broadcasts and reductions can
utilize all of the 12 links. Hence, summing up time required for the

1.5D algorithm, we get: 24><121 + 42‘112[ 161 In comparison, the

1D algorithm takes 8 8:(1?2 7= {del time.

According to the above analysis, the 1.5D algorithm is slower
on DGX-1 by a factor of % but it is faster on DGX A100 by %, but
also requires twice as much memory. Since GNN training is usually

bound by the GPU memory, we only implement the 1D version.



ICPP °22, August 29-September 1, 2022, Bordeaux, France

5.2 Permutation

In order to balance the number of nonzeros in each part A/ in the
uniformly partitioned sparse matrices, we randomly permute their
vertices. This has a significant effect on load balance compared
to using the original orderings of the sparse matrices which can
have highly imbalanced parts. Later in Section 6.2, we show how
this permutation improves the execution time with better load
balancing, especially with a larger number of GPUs.

6 EXPERIMENTAL EVALUATION

Hardware and Software: We perform our experiments on two ma-
chines: NVIDIA DGX-1, also referred to as DGX-V100, and NVIDIA
DGX-A100. DGX-V100 has 8 Nvidia V100 GPUs, each equipped with
32GB memory with a 900 GB/s memory bandwidth. Each V100 has
6 NVLink connections, each consisting of 2 sub-links that send data
in one direction, and has a 25GB/s bandwidth. That is, each link is
capable of 50GB/s bidirectional bandwidth, and theoretically, the
aggregate system bandwidth is 300 GB/s. The DGX-1 is equipped
with a dual 20-core Intel Xeon E5-2698 CPU with 512 GB RAM.
NVIDIA DGX-A100 has 8 NVIDIA A100 GPUs, each equipped with
80GB memory with a 2 TB/s memory bandwidth. Each A100 has 12
NVLink connections, thus twice as much the bandwidth of V100.
Unlike the V100, each A100 is connected to an NWSwitch, enabling
a full peer-to-peer bidirectional bandwidth of 600 GB/s between
any two GPUs. DGX-A100 is equipped with a dual 64-core AMD
Rome 7742 CPU with 2 TB RAM. Both machines run Ubuntu 20.04.

We implemented MG-GCN using C++ standard 20 and compiled

it with GCC 9.3.0 and CUDA 11.4. We used CUDA’s cuSPARSE
for SpMM calls with the Compressed Sparse Row format for the
sparse matrices, and cuBLAS for GeMM with the Row Major for-
mat for the dense matrices. PIGO [13] is used for IO purposes. We
use DGL 0.7.1 which is currently the latest available version [38].
We follow the instructions for compiling CAGNET [35] on its
repository. For MG-GCN, we use NCCL (Nvidia Collective Com-
munication Library) 2.11.4 and for CAGNET, we use NCCL 2.4.8
for compatibility reasons. The code for MG-GCN is available at
https://github.com/GT-TDAlab/MG-GCN. We verified the correct-
ness of our implementation by comparing the train accuracy curve
with DGL’s.
Datasets: We use two types of datasets in our experiment. The first
category is GNN Benchmark datasets which are popular datasets
used in GNN research, see Table 1. The Reddit dataset is a graph
from Reddit posts that are posted in September, 2014 [18]. The node
labels represent the communities (subreddits). Products (OGBN-
Products) is a graph from Amazon co-purchase network. Nodes
represents the products, and link represent products that are bought
together. Proteins (OGBN-Proteins) is a biological network graph
dataset where nodes represent proteins and edges represent associ-
ations between proteins. Arxiv (OGBN-Arxiv) and Cora are citation
networks where each node represents a paper and directed edges
represent citation direction [19, 34].

We also used synthetic datasets generated with BTER [25] to
evaluate the scalability of our method under varying density. BTER
requires a degree distribution and clustering coefficient by degree
as input and generates synthetic graphs matching those proper-
ties. We first profile the degree distribution of the Arxiv dataset,

Balin and Sancak, et al.

Table 1: Benchmark Datasets. n: #vertices, m: #edges, d©;
#features, dL): #classes, k: average degree.

DATASET n m d© 4o k
Cora 3.3K 9.2K 3.7K 6 3
ARXIV 169K 1.16M 128 40 7

PAPERS 111IM  1.61B 128 172 15
ProbucCTs 2.5M 126M 104 47 52
PrROTEINS  8.74M 1.3B 128 256 150

REDDIT 233K 115M 602 41 492

then by increasing the average degree and fixing the number of
vertices, we generate 8 synthetic datasets. We name these datasets
as 1x, ..., 128x. As the name suggests, the number represents the
scaling factor of the number of edges from the original graph. We
generate the features and assign class labels randomly. Each syn-
thetic dataset has a feature vector of size 512, and there are 40
classes. Since the graphs generated by BTER are not deterministic,
we generate 10 of each scale and take the median while reporting
the results.

Model: While we are able to train more complex models, to make
fair comparisons, we use 4 different GCN models. First, to compare
with CAGNET and DGL, we use a model with 2 layers, and the
hidden layer consists of 512 neurons. Our limitation comes from the
fact that the available code for CAGNET does not have the option
to change the number of layers. Second, to compare with DistGNN
on Reddit, we use a model with 2 layers and a hidden layer consists
16 neurons. To compare with DistGNN on Products, Protein and
Papers, we use a model with 3 layers and hidden layers consisting
of 256 neurons. Finally, we use a 4th model with 3 layer, each
consisting of 208 neurons to run MG-GCN on Papers DGX-A100,
since 208 is the largest hidden layer size that can fit into DGX-A100.
We have implemented and used the Adam optimizer [23] and the
softmax cross-entropy loss [9] in all of our experiments.

The model we used in the comparison against DistGNN on Red-
dit, was able to achieve a test accuracy of %95.95 in the transductive
setting after 466 epochs with eight V100s in only 1 minute, 20
seconds of which is spent on preprocessing, which matches the
accuracy the DGL baseline code gets using the same model config-
uration.

6.1 Runtime Breakdown of GCN Computation

We analyze the breakdown of the execution time of GCN computa-
tion to find the computational bottlenecks during training. Figure 5
presents the runtime breakdown of the first GCN model described
in Section 6. The activation layer refers to the computation in eq. (7),
Adam refers to the update of the model parameters W by the Adam
optimizer and the loss layer refers to the computations related to
the softmax cross-entropy loss. As it is evident from the figure,
for sufficiently large datasets, i.e., Proteins, Products, and Reddit,
the main bottleneck is SpMM kernel which takes 60%-94% of the
runtime, and the second bottleneck is GeMM kernel 5%-20% of the
runtime. On the other hand, for small datasets the main bottleneck
becomes GeMM. Therefore, we stress the importance of paralleliz-
ing SpMM and GeMM kernels to achieve scalability during any
GCN training and focus our attention on parallelizing these kernels.


https://github.com/GT-TDAlab/MG-GCN

MG-GCN: A Scalable multi-GPU GCN Training Framework

Operation

W Activation [l Adam [ GeMM Loss-Layer SpMM

Cora Arxiv Products Proteins Reddit

60 - I | I

Percentage of Time (%)
g
Out of Memory
Out of Memory

°
|
|

- N ¥ ©

2
4
8

- N s o -

#GPUs

Figure 5: Runtime decomposition of operations involved in
forward and backward pass.

6.2 Impact of Permutation

Figure 6 presents the breakdown of execution of SpMM to communi-
cation and computation times for each stage for the Product dataset
using original and permuted ordering. On the top part of the figure,
there is a significant computational imbalance that hampers the
efficient parallel execution. To remedy the load imbalance problem
we randomly permute the adjacency matrix before the computation.
On the bottom part of the figure, permuted ordering achieves better
computation load balance and reduces the execution time from
50ms to 38ms. Figure 7 shows normalized runtime improvement
of permuted ordering w.r.t. original ordering for each dataset for
varying number of GPUs. As seen in the figure, permutation yields
slightly slower execution time on a small number of GPUs for some
datasets; however, as the number of GPUs increases, the runtime
improves significantly with the load balance achieved by permu-
tation. For example, we observed 1.5X runtime improvement on
Products and Reddit datasets with 8 GPUs.

o [ 2 [ 4 [ 6 [ s [0 [ 121 [ 16 [ s [2 [ 2 [ |2 |2 |30 52 [34[3 [ [0 ]a]a]s

Original Ordering

; s —— —

. . — = T—— .

Grus| o 0 1 1 2 Iz 3 3

Gru4| o 0 1 1 2 [ 3 &

Permuted Ordering

et o |

: : 2l |
——p——
Figure 6: Timeline of the SpMM on the Products dataset using
its original and permuted ordering. The numbers on the
bars represent stages. For each GPU, computation (blue) and
communication (yellow) phases are separately plotted.

6.3 Overlapping Computation and
Communication

Figure 8 shows the effect of the communication-computation over-
lap on Products datasets using 4 GPUs. Notice that overlapping

ICPP °22, August 29-September 1, 2022, Bordeaux, France

these two operations makes both the computation and the commu-
nication slower. This is because of the use of shared resources, in
particular the memory bandwidth. Since SpMM is a mostly memory
bandwidth-bound operation, it becomes slower when overlapped
with the communication kernel that takes up some of the global
memory bandwidth. The global memory bandwidth of a V100 GPU
is 900 GB/s and the communication bandwidth is 150 GB/s. Assum-
ing the communication happens at full bandwidth, this results in a
reduction of the global memory bandwidth for the SpMM operation
by a factor of %. Nevertheless, communication-computation overlap
still improves the performance. As seen in the figure, for Products,
SpMM time can be reduced to 30ms from 38ms with overlapping
communication and computation.

Figure 7 shows normalized runtime improvement of overlap-
ping w.r.t. nonoverlapping for each dataset for varying numbers of
GPUs. As seen in the figure, enabling overlapping yields slightly
less improvement in runtime on a small number of GPUs for some
datasets; however, as the number of GPUs increases, the runtime
improves significantly with time saved by hiding communication.
For example, we observed an additional 1.15X runtime improve-
ment on Products and Reddit datasets with 8 GPUs via enablement
of overlapping. One should also note that the size of the hidden
dimension doesn’t have an effect on our ability to overlap communi-
cation and computation as both of their runtimes scale linearly with
the size of the hidden dimension if it is above a certain threshold.

6.4 Impact of Average Degree

The runtime of SpMM can be mainly divided into two parts: compu-
tation time and communication time. Since we mostly overlap the
two, the runtime can be at best the maximum of those two. Com-
munication time only depends on the dimensions of the matrix,
whereas the computation time also depends on the density and spar-
sity structure of the matrix. Furthermore, computation time starts
to dominate the execution time as the average degree increases.
To illustrate the effect of this on speedup, we used the synthetic
datasets generated by scaling the Arxiv dataset as explained in
Section 6. Figure 9 displays the speedups obtained by 2 to 8 GPUs,
while we increase the average degree. As seen in the figure, our
code starts to achieve super-linear speedup with 2 and 4 GPUs,
after 32%, and with 8 GPUs, after 64X scaling. We attribute these
super-linear speedup numbers for very dense adjacency matrices
because of the blocking effect of partitioning and potentially better
use of the cache.

6.5 Comparison on Single Node Systems

Comparison on DGX-V100: In Figures 10 and 11, we compare MG-
GCN with DGL and CAGNET using the 2 layer model mentioned
in Section 6 on DGX-V100. Note that, CAGNET has different par-
titioning strategies namely, 1D, 1.5D, 2D, and 3D. We present the
best results for CAGNET which are produced by 1D partitioning. In
all datasets, we outperform DGL with a single GPU and CAGNET
with multiple GPUs. Our single GPU performances are, 2.72X faster
on Reddit, 1.42x faster on Products, 1.76x faster on Arxiv and
3.1x faster on Cora than DGL. Our 8 GPU performances are 2.66x
faster on Reddit, 8.6x faster on Products, 2.35% faster on Arxiv
than CAGNET. Notice that, neither MG-GCN nor CAGNET can



ICPP °22, August 29-September 1, 2022, Bordeaux, France

Arxiv

Cora

1.84

Speedup w.r.t. Original Ordering
o o o [y = = g
B o © o N B o
1 1 1 1 h 1 1

o
N
1

o
o
L

1-Perm -
2-Perm -
1-Perm -
2-Perm -
1-Perm -
2-Perm -

2-Perm+Ovlp -
4-Perm+Ovlp -
2-Perm+Ovlip -
8-Perm+Ovip |

8-Perm+Ovlip -
4-Perm+Ovlp -

Products

2-Perm+Ovlip -

4-Perm -

Balin and Sancak, et al.

Proteins Reddit

> > >

F T R T

[<IN-N-]

v Vv

===

Y G G

© oo

et

=5 33

[eNe]o)
2 £ 2 £ E S g 2 e 2 E E 2 g 22
3 8 3 3 83 063 0 3 G 63 063 8 3
+ % F T Y F Y F S Of S F S F S Ox
5} 5} 5} 5} @ 5} @ 5}
o a o a a a a [-%
< ) & < @ & < ®

Figure 7: Effect of overlapping of communication with computation and permuting the graph to epoch runtime on DGX-V100.
Blue bars show the effect of permutation over original ordering, green bars enable communication-computation overlap in

addition to permutation.

o[ 2] a6 8o 1214 1618202 [2]2 [28]30]32]3]3]38

GPU 1 (no over)| 0 0 1 1 2 2 ‘ 3 \ 3 }

comm 1

comp 1 0

GPU2(moover)| 0 0 ‘

comm 2 0 1 ‘

comp 2 0 1 2 l 3 ‘

GPU 3 (no over) 0 0

comm 3 0 1

comp3 0

GPU 4 (noover)| 0 0 ‘

comm 4 0 1 ‘

comp 4 0

Figure 8: Timeline of the SpMM on the Products dataset us-
ing permuted ordering. The numbers on the bars represent
stages. Each GPU is represented by 3 lines. First line rep-
resents computation without overlapping communication.
Next two lines represent computation with overlapping com-
munication. Blue line: computation time. Yellow line: com-
munication time.

get a speedup on Cora dataset, since the graph is very small, and
a certain amount of work is expected to achieve any speedup. We
are not able to run CAGNET with Proteins dataset using 8 GPUs
because of CAGNET’s memory requirement; however, MG-GCN
is able to fit Proteins dataset into 4 only GPUs. Even though, both
CAGNET and MG-GCN use the 1D partitioning strategy, we can
fit much larger graphs into our target machines due to extensive
memory optimization described in Section 4.2. Also, by overlap-
ping computation and communication, we can achieve substantial
speedup compared to CAGNET. Note that, the achieved speedups
correlate with the average degree of the graph, as mentioned in
Sec. 6.4.

129 #GPUs

10

[ ]|
© SN

IS
1

Scaled Average Degree over Arxiv

Figure 9: Speedup w.r.t. MG-GCN 1 GPU Runtime

Speedup w.r.t. 1 GPU Runtime

N
1

Ovvv

X x x
<

16x -
32x
64x -

T
x
@©

128x -

In Figure 12, we compare the memory footprint of MG-GCN
with DGL and CAGNET in the single and multi-GPU settings. As
seen in the figure, given a GPU memory constraint of 30 GiB, one
can fit 20 vs 50 layers using DGL vs MG-GCN in the single GPU
setting. In the multi-GPU setting, one can again fit 150 vs 450 layers
using CAGNET vs MG-GCN in the 8 GPU setting. One can also
observe that the dependency of memory consumption on numbers
of layers is linear as expected.

Comparison on DGX-A100: In Figures 13 and 14, we compare MG-
GCN with DGL using the 2 layer GCN model mentioned in Section 6
on DGX-A100. We are not able to include CAGNET in this compar-
ison since it is not compatible with CUDA 11. In all the datasets,
we outperform DGL with a single GPU. Our single GPU results are
2.2x faster on Cora, 1.8X faster on Arxiv, 1.5X faster on Products
and 1.5x faster on Reddit datasets than DGL. On the multi-GPU
setting, we achieve 8.5X speedup on Products dataset, and 8.3x
speed-up on Reddit dataset using 8 GPUs. MG-GCN can fit Papers
dataset, which is the largest available benchmark dataset for GNN



MG-GCN: A Scalable multi-GPU GCN Training Framework

Cora Arxiv Products Proteins Reddit
18- #GPUs

Epoch Runtime (s)
1N o o g = L [y
B o o0 o N B o
1 1 1 I h 1 1
| | |
00 AN

o
N
1

Out of Memory
Out of Memory

0.0 = —- i _| I—-

CAGNET -
DGL

= =
Figure 10: Baseline epoch runtime (seconds) comparison on

DGX-V100. On Proteins dataset CAGNET and DGL run out of
memory, MG-GCN runs out of memory with 1 and 2 GPUs.

Cora Arxiv Products  Reddit
169 #GPUs
1
14- 2
W4
s
12+
-
I
a 10
i
g
s
Q
3
3
o 6
Q
"
4
2 |
JAl =l m %
53 53 3 L3
5% 8% &8¢ §¢
< O < O < O < O
= 0= o= 0=
Figure 11: Speedup w.r.t. DGL on DGX-V100.

training, into 8 GPUs with MG-GCN, and achieve 2.89 seconds
epoch runtime using the 4th GCN model mentioned in Section 6.

6.6 Single Node vs Distributed Systems

We compare MG-GCN with DistGNN using 2 different GCN models
mentioned in section 6. Note that, this is not an exact comparison
for two main reasons: First, we are not able to reproduce the results
because the source code of DistGNN is not available, so we base our
comparison on the numbers reported in the original work. Second,
DistGNN is a CPU-based framework, while MG-GCN is designed for
GPUs. We believe that comparing the two frameworks will provide
important insights on the resource requirements and performance
one can get. For the experiments, DistGNN uses a cluster with 64
Intel Xeon 9242 CPU @2.30 GHz with 48 cores per socket in a dual-
socket system. The compute nodes consist of 384 GB memory and
are connected through Mellanox HDR interconnect with DragonFly

ICPP °22, August 29-September 1, 2022, Bordeaux, France

509 P © Framework
N O DGL

40-| o O MG-GCN
4 iy
o O
>
5 30| 0
-
° o
=
8 20
£
s
z

10| o

04
2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
GiB per GPU
(a) 1 GPU
O Framework
400-| O CAGNET

() MG-GCN

w

=3

=3
I

Number of Layers
S
8
I

100

0 5 10 15 20 25 30 35
GiB per GPU

(b) 8 GPUs

Figure 12: Per GPU memory consumption on the Reddit
dataset with hidden layer size 512 varying number of layers.

Cora Arxiv Products Proteins  Reddit
089 #GPUs
1
0.7 .i
| K]
0.6
0
© 0.5
E
B
504—
£ z
g_o.a— =]
w £
[
0.2+ s
5
0.1
-
=
o, = — M O -
. T T I I I I I I
O oz gz Oz o oz 4z
0 O 0 O 0 O 0 O 0 O
a o0 a8 o a o a 0 a 0
V) V) Y} Y} V)
= = = = =

Figure 13: Epoch runtime (s) comparison on DGX-A100.

topology. In addition, to run Papers on a single socket, they use a
single-socket machine with 1.5TB memory.

Table 2 shows the results from DistGNN, while Table 3 shows
the performance of MG-GCN on DGX-A100. In Table 2, we only
take the single socket and the best socket performances for each
dataset from the original work [30]. Also, note that we compare
against their baseline version since other variants are not exact
computations but approximations. For detailed results, we refer
interested readers to [30]. Even though, the authors observe signif-
icant speedups in their experiments, MG-GCN outperforms their
best performance with a single GPU on all datasets except Proteins.
Our 8 GPU performances are 40X faster on Reddit, 12.6x faster
on Papers, 12.4X faster on Products, and 1.77X faster on Protein
datasets than DistGNN'’s best performances. Note that, for Reddit



ICPP °22, August 29-September 1, 2022, Bordeaux, France

9 #GPUs

8
7
: I -

- N < © - N < © - N < ©
Arxiv Cora Products Reddit

Figure 14: Speedup w.r.t. DGL on DGX-A100.

L 1]
BN

o

e

Speedup w.r.t. DGL
-

w

-

- N % ©

dataset, since the GCN model is very small, 2 layers with 16 neurons,
MG-GCN cannot achieve speedup after 4 GPUs.

Given a single Intel Xeon 9242 CPU has a Thermal Design Power
(TDP) of 350W, whereas a single Tesla A100 has 400W. Given that
energy consumption is computed by TDP X #of Devices X Time.
If we exclude power consumption of the network and the rest of
the system’s power consumption, a back-of-the-envelope analysis
shows that on the Papers dataset, the power consumption ratio
equals W% % = 143.46. We scale the energy consump-
tion by % due to the differences of the hidden layer dimensions.
We see that using GPUs over CPUs is 2 orders of magnitude more
energy-efficient in this case. Note that, we use the exact same GCN
models for every comparison except the last comparison on Papers
dataset where we reduce the hidden dimension to 208 due to mem-
ory constraints. However, MG-GCN’s runtime is scaled accordingly
in the power efficiency comparison to keep things fair.

Table 2: DistGNN Results: The numbers in the cells are epoch
times in second. For each dataset, we take results for 1 Socket
and the number of sockets that performs the best from [44].
DS: Dataset, #S: Number of Sockets.

DS
4 RepDIT PAPERS PrODUCTS PROTEIN
1 0.60 1000 11 100
16 0.61 - - -
64 - - 1.74 2.63
128 - 36.45 - -

7 CONCLUSION

In this paper, we present MG-GCN, a single node multi-GPU GCN
training framework that enables efficient distributed training of
GCNs over the full graph. MG-GCN adapts a 1D row partition-
ing strategy. It also adapts extensive memory optimizations by re-

using/sharing the allocated buffers across layers and forward/backward

phases and enables overlapping communication and computation.
We have demonstrated that MG-GCN can achieve significant run-
time improvements over the available state-of-the-art frameworks

Balin and Sancak, et al.

Table 3: MG-GCN Results on DGX-A100: The values in the
cells are epoch times in seconds. Dashed line represents con-
figurations that run out of memory. DS: Dataset, #G: Number
of GPUs.

DS
4G ReppiT  PAPERs PropucTs PROTEIN
1 0.033 - 0.355 4.221
2 0.017 - 0.202 2.272
4 0.012 - 0.110 1.191
8 0.012 2.89 0.067 0.641

on single GPU systems. Moreover, going into the multi-GPU set-
ting, we can fit much larger graphs into the memory of our target
machines. In our single GPU experiments, we achieve up to 2.72x
speedup compared to DGL on the Reddit dataset, and on multi-GPU
experiments, we achieve up to 8.6x speedup on the Products dataset
compared to CAGNET on DGX-V100.

In future work, we are aiming to extend our framework to multi-
GPU clusters. By doing so, we aim to train larger datasets and enable
distributed training of even larger scale GNNs. Another future direc-
tion is to accelerate the Sampled Dense Dense Matrix Multiplication
(SDDMM) kernel to enable parallel training of several other models
such as Graph Attention Networks [37].

ACKNOWLEDGMENTS

We thank Prof. Polo Chau for providing us access to their DGX-
A100 for our experiments. This work was partially supported by
the NSF grant CCF-1919021.

REFERENCES

[1] Martin Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, et al.
2015. TensorFlow, Large-scale machine learning on heterogeneous systems.

[2] Tal Ben-Nun and Torsten Hoefler. 2019. Demystifying parallel and distributed
deep learning: An in-depth concurrency analysis. ACM Computing Surveys
(CSUR) 52, 4 (2019), 1-43.

[3] Zhenkun Cai, Xiao Yan, Yidi Wu, Kaihao Ma, James Cheng, and Fan Yu. 2021.
DGCL: An Efficient Communication Library for Distributed GNN Training. In
Proceedings of the Sixteenth European Conference on Computer Systems (EuroSys
°21). Association for Computing Machinery, 130-144.

[4] Umit V. Catalyiirek, Cevdet Aykanat, and Bora Ugar. 2010. On Two-Dimensional
Sparse Matrix Partitioning: Models, Methods, and a Recipe. SIAM Journal on
Scientific Computing (SISC) 32, 2 (2010), 656—683.

[5] Jie Chen, Tengfei Ma, and Cao Xiao. 2018. FastGCN: Fast Learning with Graph
Convolutional Networks via Importance Sampling. In International Conference
on Learning Representations.

[6] Tiangi Chen, Mu Li, Yutian Li, Min Lin, Naiyan Wang, et al. 2015. MXNet: A

Flexible and Efficient Machine Learning Library for Heterogeneous Distributed

Systems. arXiv:1512.01274 [cs.DC]

Wei-Lin Chiang, Xuanqing Liu, Si Si, Yang Li, Samy Bengio, and Cho-Jui Hsieh.

2019. Cluster-gen: An efficient algorithm for training deep and large graph

convolutional networks. In International Conference on Knowledge Discovery &

Data Mining. 257-266.

[8] Adam Coates, Brody Huval, Tao Wang, David Wu, Bryan Catanzaro, and Ng
Andrew. 2013. Deep learning with COTS HPC systems. In International conference
on machine learning. PMLR, 1337-1345.

[9] David R. Cox. 1958. The Regression Analysis of Binary Sequences. Journal of the
Royal Statistical Society. Series B (Methodological) 20, 2 (1958), 215-242.

[10] Li Deng, Dong Yu, and John Platt. 2012. Scalable stacking and learning for

building deep architectures. In 2012 IEEE International Conference on Acoustics,

Speech and Signal Processing (ICASSP). 2133-2136.

Ludvig Ericson and Rendani Mbuvha. 2017. On the performance of network

parallel training in artificial neural networks. arXiv (2017).

Matthias Fey and Jan Eric Lenssen. 2019. Fast Graph Representation Learning

with PyTorch Geometric. In ICLR Workshop.

[13] Kasimir Gabert and Umit V. Catalyiirek. 2021. PIGO: A Parallel Graph In-

put/Output Library. In IEEE IPDP Workshops. 276-279.

—_
)

[11

[12


https://arxiv.org/abs/1512.01274

MG-GCN: A Scalable multi-GPU GCN Training Framework

[14

[15]

[16]

[17

(18]

[19

[20]

[21

[22]

[23

[24]

[25

[26]

[27]

[28]

[29

Swapnil Gandhi and Anand P. Iyer. 2021. P3: Distributed Deep Graph Learning
at Scale. In 15th USENIX Symposium on Operating Systems Design and Implemen-
tation (OSDI 21). USENIX Association, 551-568.

Boris Ginsburg, Igor Gitman, and Yang You. 2018. Large Batch Training of
Convolutional Networks with Layer-wise Adaptive Rate Scaling.

Joseph E Gonzalez, Yucheng Low, Haijie Gu, Danny Bickson, and Carlos Guestrin.
2012. PowerGraph: Distributed Graph-Parallel Computation on Natural Graphs.
In OSDI'12. 17-30.

Priya Goyal, Piotr Dollar, Ross Girshick, Pieter Noordhuis, Lukasz Wesolowski,
et al. 2017. Accurate, large minibatch sgd: Training imagenet in 1 hour. arXiv
(2017).

William L. Hamilton, Rex Ying, and Jure Leskovec. 2018. Inductive Representation
Learning on Large Graphs. arXiv:1706.02216 [cs.SI]

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, et al.
2021. Open Graph Benchmark: Datasets for Machine Learning on Graphs.
arXiv:2005.00687 [cs.LG]

Zhihao Jia, Sina Lin, Mingyu Gao, Matei Zaharia, and Alex Aiken. 2020. Improving
the accuracy, scalability, and performance of graph neural networks with roc.
Proceedings of Machine Learning and Systems (MLSys) (2020), 187-198.

Peng Jiang, Changwan Hong, and Gagan Agrawal. 2020. A Novel Data Trans-
formation and Execution Strategy for Accelerating Sparse Matrix Multiplication
on GPUs. In Proceedings of the 25th ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming. Association for Computing Machinery,
376-388.

George Karypis and Vipin Kumar. 1998. A fast and high quality multilevel scheme
for partitioning irregular graphs. SIAM Journal on Scientific Computing 20 (1998),
359-392.

Diederik P. Kingma and Jimmy Ba. 2017. Adam: A Method for Stochastic Opti-
mization. arXiv:1412.6980 [cs.LG]

Thomas N. Kipf and Max Welling. 2017. Semi-Supervised Classification with
Graph Convolutional Networks. In 5th International Conference on Learning
Representations. OpenReview.net.

Tamara G. Kolda, Ali Pinar, Todd Plantenga, and C. Seshadhri. 2014. A Scalable
Generative Graph Model with Community Structure. SIAM Journal on Scientific
Computing 36, 5 (Jan 2014), C424-C452.

Alex Krizhevsky. 2014. One weird trick for parallelizing convolutional neural
networks. arXiv (2014).

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. 1998. Gradient-
based learning applied to document recognition. Proc. IEEE 86, 11 (1998), 2278~
2324.

Ang Li, Shuaiwen L. Song, Jieyang Chen, Jiajia Li, Xu Liu, et al. 2020. Evaluating
Modern GPU Interconnect: PCle, NVLink, NV-SLI, NVSwitch and GPUDirect.
IEEE Transactions on Parallel and Distributed Systems 31, 1 (2020), 94-110.
Lingxiao Ma, Zhi Yang, Youshan Miao, Jilong Xue, Ming Wu, et al. 2019. Neu-
Graph: Parallel Deep Neural Network Computation on Large Graphs. In 2019
USENIX Annual Technical Conference (USENIX ATC 19). USENIX Association,
443-458.

ICPP °22, August 29-September 1, 2022, Bordeaux, France

[30] Vasimuddin Md, Sanchit Misra, Guixiang Ma, Ramanarayan Mohanty, Evangelos

Georganas, et al. 2021. DistGNN: Scalable Distributed Training for Large-Scale
Graph Neural Networks. arXiv (2021).

Vinod Nair and Geoffrey E. Hinton. 2010. Rectified Linear Units Improve Re-
stricted Boltzmann Machines. In International Conference on International Con-
ference on Machine Learning. 807-814.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, et al.
2019. PyTorch: An Imperative Style, High-Performance Deep Learning Library.
In NeurIPS. 8024-8035.

Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele
Monfardini. 2009. The Graph Neural Network Model. IEEE Transactions on Neural
Networks 20, 1 (2009), 61-80.

Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and
Tina Eliassi-Rad. 2008. Collective Classification in Network Data. Al Magazine
29, 3 (2008), 93-106.

Alok Tripathy, Katherine Yelick, and Aydmn Bulug. 2020. Reducing Communi-
cation in Graph Neural Network Training. In Proceedings of the International
Conference for High Performance Computing, Networking, Storage and Analysis.
Article 70, 17 pages.

Robert A. van de Geijn and Jerrell Watts. 1997. SUMMA: scalable universal matrix
multiplication algorithm. Concurr. Pract. Exp. 9 (1997), 255-274.

Petar Velickovié¢, Guillem Cucurull, Arantxa Casanova, Adriana Romero,
Pietro Lio, and Yoshua Bengio. 2018. Graph Attention Networks.
arXiv:1710.10903 [stat.ML]

Minjie Wang, Da Zheng, Zihao Ye, Quan Gan, Mufei Li, et al. 2019. Deep Graph Li-
brary: A Graph-Centric, Highly-Performant Package for Graph Neural Networks.
arXiv (2019).

Yuke Wang, Boyuan Feng, Gushu Li, Shuangchen Li, Lei Deng, et al. 2021. GN-
NAdvisor: An Adaptive and Efficient Runtime System for GNN Acceleration on
GPUs. In 15th USENIX Symposium on Operating Systems Design and Implementa-

tion (OSDI 21). USENIX Association, 515-531.
Cong Xie, Ling Yan, Wu-Jun Li, and Zhihua Zhang. 2014. Distributed Power-law

Graph Computing: Theoretical and Empirical Analysis. In Advances in Neural
Information Processing Systems, Vol. 27. Curran Associates, Inc.

Kunlei Zhang and Xue-Wen Chen. 2014. Large-Scale Deep Belief Nets With
MapReduce. IEEE Access 2 (2014), 395-403.

Muhan Zhang and Yixin Chen. 2018. Link prediction based on graph neural
networks. NIPS 31 (2018), 5165-5175.

Muhan Zhang, Zhicheng Cui, Marion Neumann, and Yixin Chen. 2018. An end-
to-end deep learning architecture for graph classification. In Thirty-Second AAAI
Conference on Artificial Intelligence.

Da Zheng, Chao Ma, Minjie Wang, Jinjing Zhou, Qidong Su, et al. 2020. Distdgl:
distributed graph neural network training for billion-scale graphs. In IEEE/ACM
Workshop on Irregular Applications: Architectures and Algorithms (IA3). 36-44.
Rong Zhu, Kun Zhao, Hongxia Yang, Wei Lin, Chang Zhou, et al. 2019. AliGraph:
A Comprehensive Graph Neural Network Platform. Proc. VLDB Endow. 12, 12
(Aug. 2019), 2094-2105.

Martin Zinkevich, Markus Weimer, Alexander J Smola, and Lihong Li. 2010.
Parallelized stochastic gradient descent.. In NIPS, Vol. 4.


https://arxiv.org/abs/1706.02216
https://arxiv.org/abs/2005.00687
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1710.10903

	Abstract
	1 Introduction
	2 Background
	3 Related Work
	4 MG-GCN
	4.1 Partitioning
	4.2 Memory Optimizations
	4.3 Overlapping Computation and Communication
	4.4 Order of Computation and Saving one SpMM

	5 Design Decisions
	5.1 Choice of the Partitioning Strategy
	5.2 Permutation

	6 Experimental Evaluation
	6.1 Runtime Breakdown of GCN Computation
	6.2 Impact of Permutation
	6.3 Overlapping Computation and Communication
	6.4 Impact of Average Degree
	6.5 Comparison on Single Node Systems
	6.6 Single Node vs Distributed Systems

	7 Conclusion
	Acknowledgments
	References

