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We introduce a method for associating a chain complex to a module over a combinatorial category such
that if the complex is exact then the module has a rational Hilbert series. We prove homology-vanishing
theorems for these complexes for several combinatorial categories including the category of finite sets and
injections, the opposite of the category of finite sets and surjections, and the category of finite-dimensional
vector spaces over a finite field and injections.

Our main applications are to modules over the opposite of the category of finite sets and surjections,
known as FSop modules. We obtain many constraints on the sequence of symmetric group representations
underlying a finitely generated FSop module. In particular, we describe its character in terms of functions
that we call character exponentials. Our results have new consequences for the character of the homology
of the moduli space of stable marked curves, and for the equivariant Kazhdan–Lusztig polynomial of the
braid matroid.
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1. Introduction

Prompted by the work of Snowden [2013] and Church, Ellenberg, and Farb [2015], there have been many
recent applications of the representation theory of categories to sequences of group representations arising
in topology, algebra, and combinatorics.

Let (Vn)n2N be a sequence of representations of groups Gn over a field k. In these applications, (Vn)n2N

can be lifted to a representation of a category C whose objects (or isomorphism classes) are indexed by
natural numbers such that the automorphism group of the n-th object of C is Gn . A C representation,
or C module, is a functor C!Mod k. One attempts to use the representation theory of C to show that the
whole sequence of representations is determined by a finite amount of data, and to discover universal
patterns which the sequence must satisfy. Often, these patterns are expressed in terms of generating
functions.

One coarse invariant of a sequence of representations is its sequence of dimensions: (dim Vn)n2N. The
data can be recorded as a generating function, the Hilbert series of (Vn)n2N,

hV (t) :=

X

n

(dimk Vn)tn
2 Z[[t]].

Often, theorems from the representation theory of C imply that hV (t) is rational with denominator of a
specific form. We list three important instances.

• Let FI be the category of finite sets and injections. If V is a finitely generated FI module then hV (t)
is a rational function with denominator (1� t)d for some d 2 N.

Equivalently, the sequence (dim Vn)n2N eventually agrees with a polynomial in n. This was proved
in characteristic 0 in [Church et al. 2015; Sam and Snowden 2016] and for all fields by Church,
Ellenberg, Farb, and Nagpal [2014].

• Let FSop be the opposite of the category of finite sets and surjections. If V is a finitely generated
FSop module, then hV (t) is a rational function with denominator a power of

Qd�1
j=0(1� j t) for

some d 2 N. This was proved by Sam and Snowden [2017].

• Let VIq be the category of finite-dimensional vector spaces over Fq and linear injections between
them. If V is a finitely generated VIq module and char k 6= char Fq , then hV (t) is rational with
denominator

Qd�1
j=0(1� q j t) for some d 2 N.

Equivalently, (dim Vn)n2N eventually agrees with a polynomial in qn , This was proved by Nagpal
[2019].

In this paper we categorify these three results, in a uniform way.
Let C = FI , FSop, or VIq , and let wd(t) = (1� t)d ,

Qd�1
j=0(1� j t), or

Qd�1
j=0(1� q j t), respectively.

Let V be a C module. Using methods from poset topology, we construct a chain complex of C modules
Kd(V ) for each d 2 N such that exactness of Kd(V ) categorifies the equation wd(t)hV (t) = p(t) for p a
polynomial. In each case, we prove a theorem showing if V is finitely generated, either Kd or a power
of Kd applied to V is exact (modulo torsion).
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In particular, our categorification explains why the denominators (1 � t)d ,
Qd�1

j=0(1 � j t), andQd�1
j=0(1� q j t) appear. They are the Whitney polynomials of the poset of subsets of a d-element set, of

set partitions of a d-element set, and of subspaces of a d-dimensional vector space, respectively (see
Definition 2.6).

1A. FSop modules. Our main applications are in the case where C is the opposite of the category of
finite sets and surjections, FSop.

In practice, FSop modules have been used to study sequences of symmetric group representations
(Vn)n2N such that dim(Vn) grows at an exponential rate — too quickly for representation stability in
the sense of Church and Farb [2013] to hold. Proudfoot and Young [2017] used FSop to study the
Kazhdan–Lusztig polynomial of the braid matroid, by constructing an action of FSop on the intersection
homology of the reciprocal plane of the braid arrangement. In [Tosteson 2021], we showed that the
homology of the moduli space of stable curves is a finitely generated FSop module. In forthcoming work,
we extend this result to the Kontsevich space of stable maps. Proudfoot and Ramos [2021] constructed
finitely generated FSop modules in the cohomology of the resonance arrangement.

In other directions, FSop was used by Sam and Snowden [2017] to prove the Lannes–Schwartz
Artinian conjecture: for a finite ring R any finitely generated VI R module (Definition 3.10) restricts to a
finitely generated FSop module. The category of FSop modules is the category of right modules over
the commutative operad, and thus is closely tied to homology theories for commutative algebras, and
FSop may be used to compute the homology groups of pointed mapping spaces [Pirashvili 2000]. In
forthcoming work with Sam and Snowden, we relate FSop modules to representations of the Witt Lie
algebra and the monoid of endomorphisms of An .

Despite these applications, the representation theory of FSop is not well understood. For finitely
generated FI modules and VIq modules in nondescribing characteristic, Nagpal [2015; 2019] has proved
structure theorems, known as shift theorems, which we use to establish our results. But FSop modules
do not satisfy a shift theorem, and are qualitatively different: the category of finitely generated FSop

modules has infinite Krull–Gabriel dimension, as opposed to dimension 1. Little has been known about
the sequence of symmetric group representations underlying a finitely generated FSop module.

1B. Categorification for FSop modules. For an FSop module M , the complex Kd(M) we construct
takes the form

6d M 6d�1 M�(
d
2) · · · 61 M�(d�1)!.

Here 6n M denotes the FSop module x 7! Mxt[n], where [n] := {1, . . . , n} is the distinguished finite set
with n elements. In general, the degree i term of Kd(M) is 6d�i M�s(d,d�i), where s(d, d � i) is the
unsigned Stirling number of the first kind: by definition, (�1)i s(d, d � i) is the coefficient of t i in the
product

Qd�1
j=0(1� j t). We may extend the definition of Kd to chain complexes of FSop modules, by

applying Kd degreewise and forming the total complex.
To state our categorification for FSop modules, we recall the following definition.
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Definition 1.1. For d 2 N, we say that M is finitely generated in degree  d if Mx is a finitely generated
k module for all x 2 FSop with |x |  d, and for any y 2 FSop, My is spanned by elements of the
form M f (v), where v 2 Mx , f : y ⇣ x and |x | d.

Theorem 1.2. Let M be an FSop module over a field which is a subquotient of an FSop module that is
finitely generated in degree  d. Then there exists s 2N such that for all r � s and all (`t) 2Nr satisfying
`t � d for all t and `r � d + 1, the complex

K`1 �K`2 � · · · �K`r (M)

is exact.

In particular, there exists an s � 1 such that K�s�1
d (Kd+1(M)) is exact. This categorifies the theorem of

Sam and Snowden that hM(t) is rational with denominator a power of Wd+1(t) :=
Qd

j=0(1� j t), by cate-
gorifying the equation Wd(t)s�1Wd+1(t)hM(t)= p(t) for p a polynomial. We prove Theorem 1.2 by using
Sam–Snowden Gröbner theory to reduce it to a combinatorial statement about regular languages associated
to M . The value of s is related to the minimal number of states in the DFAs accepting these languages.

We list two cases in which Theorem 1.2 applies.

Example 1.3. For i, g 2 N, the sequence of Sn representations n 7! Hi (Mg,n, Q), where Mg,n is the
moduli space of marked stable curves, can be extended to an FSop module. In [Tosteson 2021], we
showed that this FSop module is a subquotient of one that is finitely generated in degree less than or equal
to 8g2i2 + 29g2i + 16gi2 + 21g2 + 10gi .

Example 1.4. The i-th coefficient of the equivariant Kazhdan–Lusztig polynomial of the n-th braid
arrangement is the character of an Sn representation. For fixed i , Proudfoot and Young [2017] extended
this sequence of Sn representations to an FSop module and proved it is a subquotient of one that is finitely
generated in degree  2i .

1C. Characters of FSop modules. For each n, d 2 N the group Sd ⇥ Sn acts on Kd(M)n . The action
of Sd is closely related to its action on the Whitney homology of the partition lattice. Via this action,
Theorem 1.2 decategorifies to a system of differential equations for the Frobenius character of M . By
solving these equations, we obtain new results about the character of a finitely generated FSop module.
To state them, we take k = Q.

Associated to every FSop module M is its character
F

n Sn ! Q, given by � 2 Sn 7! Tr(�, M[n]).
Our first result describes the character of an FSop module in terms of character polynomials and new
functions that we call character exponentials.

Definition 1.5. Let d 2 N, d � 1. Then Xd :
F

n Sn!Q is the class function

Xd(� ) := #{d-cycles of � }.

A character polynomial is any class function that is a polynomial in the functions {Xd}d2N.
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Definition 1.6. Let A = 1a12a2 . . . be an integer partition. We define the character exponential of A to
be class function

AX
:=

Y

n�1

✓X

d |n

dad

◆Xn

,

where the sum is over all natural numbers d � 1 which divide n. The product is well defined because
any � 2 Sm has finitely many cycles, so AX(� ) is a natural number.

In this definition, it is important that 00 = 1 and 0n = 0 for all n > 0. We give examples to clarify:

Example 1.7. If ai = 0 for i > 1, then AX = (a1)
P

n�1 Xn .

Example 1.8. If a1 = 0 and ai = 0 for i > 2, then

AX(� ) =

⇢
(2a2)

P
n�1 X2n(� ) if all cycles of � have even length,
0 otherwise.

In fact, to state our results we need a more general function, which is similar to (but not equal to) a
product of a character polynomial and a character exponential.

Definition 1.9. Let A = 1a12a2 . . . and ⌫ = 1m12m2 . . . be integer partitions. We define
✓

X

⌫

◆
AX�⌫

:=

Y

n�1

✓
Xn

mn

◆✓X

d |n

dad

◆Xn�mn

,

where
�

Xi
mi

�
(� ) =

�
Xi (� )

mi

�
. We define the rank of ⌫ to be rank(⌫) :=

P
i�1 mi , so that

�
X
⌫

�
is a character

polynomial of degree rank(⌫).

The function
�

X
⌫

�
AX�⌫ specializes to the character polynomial

�
X
⌫

�
when A = 1 and to the character

exponential AX when ⌫ = 0.

Example 1.10. If ai = 0 for all i and ⌫ = 1m12m2 . . . , then
✓

X

⌫

◆
AX�⌫(� ) =

⇢
1 if � is in the conjugacy class corresponding to ⌫,
0 otherwise.

Let d, s 2 N. We say that an FSop module has class (d, s) if it satisfies the hypothesis and the
conclusion of Theorem 1.2 for d and s. Then our first result on characters is:

Theorem 1.11. Let M be an FSop module of class (d, s). The character function of Mn takes the form
X

⌫,A partitions

c(⌫, A)

✓
X

⌫

◆
AX�⌫,

where c(⌫, A) 2Q and c(⌫, A) = 0 if |A| > d; or rank(⌫)� s; or |A| = d and rank(⌫) > 1.

In the case s = 1 this sum is finite and Theorem 1.11 sharp, in the sense that the characters of
degree d projective FSop modules span the space of character functions. We emphasize that the sum
in Theorem 1.11 is not finite when s > 1. So by itself Theorem 1.11 does not reduce the computation
of the character of M to a finite problem. However if we restrict the character of M to elements in Sn



2438 Philip Tosteson

whose cycles all have length  C (which corresponds to setting Xi = 0 for i > C), then there are only
finitely many terms in the sum. In this case Theorem 1.11 can be rephrased as a rationality theorem for a
multivariate generating function (left to the reader). When C = 1, we precisely recover the rationality
theorem of Sam and Snowden.

Example 1.12. Let M be an FSop module of class (2, 2). Theorem 1.11 states that the character of M
takes the form

c1 2
P

i�1 Xi + c2 �even 2
P

i�1 X2i + c3 +

X

n�1

bn Xn +

X

n�0

fn �n-cycle,

where c1, c2, bn, fn 2Q. Here �even(� ) (resp. �n-cycle(� )) is 1 if all of the cycles of � have even length
(resp. if � is an n-cycle) and zero otherwise.

There are further constraints on FSop modules of class (d, s): if M is a subquotient of an FSop module
generated in degree d we show the character of M is uniquely determined by its restriction to elements
of Sn whose cycles have length  d . Using this, we can prove the following.

Theorem 1.13. Let 3̂ be the completed ring of symmetric functions. There is a finite-dimensional
subspace Ud,s ✓ 3̂ such that if M is an FSop module of class (d, s), then its Frobenius character ch(M)

is an element of Ud,s . The dimension of Ud,s is p(d) +
�d+s�1

s�1

�Pd�1
i=0 p(i), where p(i) is the number of

integer partitions of i .

This reduces the computation of the character of an FSop module of class (d, s) to a finite problem.
We describe (refined versions of) the space Ud,s in more detail in Sections 10 and 11. In particular, we
construct bases for Ud,s . We also show that if F is a (restricted) class function, defined on elements of Sn

whose cycles have length  d , which takes the form of Theorem 1.11, then there is a unique lift of F to a
(full) class function taking the same form. This lift corresponds to an element of Ud,s , and we describe
how to compute it.

Using these methods, we can refine Example 1.12.

Example 1.14. Let M be an FSop module of class (2, 2). Then its character takes the form

c1 2
P

i�1 Xi + c2 2
P

i�1 X2i �even + c3 + c4 X1 + c5
X

n�2

n Xn +

2X

n=0

fn �n�cycle, (1.15)

where cn, fn 2Q. This behavior is representative: in general the coefficients c(⌫, A) of Theorem 1.11 are
governed by recurrence relations. There are class (2, 2) FSop modules whose characters span the space
of characters of the form (1.15) with c5 = 0. We do not know an example of a class (2, 2) FSop module
with c5 6= 0, but heuristic comparisons with FId modules suggest that they may exist.

Our final result on FSop module characters is an analog of multiplicity stability for FI modules.

Definition 1.16. For � an integer partition �1 � �2 � · · · and n � �1, we let (n, �) be the integer partition
n� �1� �2� · · · . We write |�| =

P
i �i . Given an S|�| representation V over a field of characteristic zero,

we write mult�(V ) to denote the multiplicity of the irreducible representation corresponding to � in V .
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Theorem 1.17. Let � be an integer partition. Let M be a finitely generated FSop module over a field of
characteristic zero. Then the generating function

X

n�|�|

mult(n,�)(M|�|+n)tn+|�|

is rational. If M is of class (d, s), then the roots of the denominator are roots of unity of order  d and
mult(n,�)(M|�|+n) is eventually a quasipolynomial of degree  ds.

Whereas for FI modules the multiplicities in Theorem 1.17 are eventually constant, for FSop modules
they are eventually quasipolynomials.

1D. Construction of chain complexes. Let (C,�) be a small monoidal category. Let d 2 C be an object,
and C/d be the overcategory. To construct functors Mod C ! Ch(Mod C) from C modules to chain
complexes of C modules, we proceed in the following simple way. First we restrict along� : C⇥C/d! C
to obtain a functor Mod C ! Mod(C ⇥ C/d). Then we apply a functor F : Mod(C/d)! Ch(Mod k)

in the second factor to obtain Mod(C ⇥ C/d)! Ch(Mod C). The functors we use are the composite,
(id⇥ F) �Res� : Mod C! Ch(Mod C).

Of course, there are many possible choices for F : up to quasi-isomorphism they are parametrized by
chain complexes of (C/d)op modules. When C/d is equivalent to a poset P there is a particularly natural
choice: a bar construction BP : Mod P!Mod k, which we recall in Section 2. When P satisfies a Cohen–
Macaulay property, the functor BP can be replaced by a smaller functor KP , which is quasi-isomorphic
to BP . Corresponding to these two constructions, there are functors Kd , Bd : Mod C! Ch(Mod C). The
conditions for Bd and Kd to exist are satisfied for any object d 2 C when C is one of the categories
FI , FSop, VI L , or VIC L . Here L is a field and VI L (resp. VIC L ) denotes the category of finite-
dimensional vector spaces over L and with injections (resp. injections together with a splitting; see
[Putman and Sam 2017]).

When C is an EI category, there is a natural notion of C module homology, which in the case of FI
modules reduces to FI module homology [Church and Ellenberg 2017]. The complexes we use admit a
more general definition in terms of C module homology, which we discuss in Section 4, although we do
not use it elsewhere in the paper.

One feature of our arguments is that, for the most part, we do not deal with the complexes Kd or Bd

directly. Instead, we work with poset representations before applying the functors Kd or Bd , and use a
couple of general facts to prove exactness. So although, when it exists, the complex Kd is more elegant
than Bd , for the first half of the paper the two are interchangeable. The applications to FSop modules in
the second part use Kd and the homology of the partition lattice.

1E. Relation to other work. Beyond the theorem of Sam and Snowden on the rationality of Hilbert
series, we are only aware of two previously known statements about the characters of finitely generated
FSop modules. They are both elementary: they follow from decomposition of the free FSop module
generated in degree d into irreducibles. The first states that if M is a subquotient of an FSop module
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generated in degree d , then the irreducible representations appearing in its decomposition have at most d
rows. The second is that the multiplicity of (n, �) in Mn+|�| is bounded above by a polynomial.

There is a long history of using poset topology for what we now call categorification, going at least
back to Rota [1964]. Our only novelty is in the specific application of these methods. The complexes
associated to poset representations that we use were first introduced by Baclawski [1976; 1980], in terms
of the cohomology of constructible sheaves on the Alexandroff space of the poset. Baclawski also gave
explicit Bar constructions, and the smaller complex KP in the case of Cohen–Macaulay posets. They
may also be thought of as computing derived functors for the tensor product with a representation of the
opposite poset, as discussed in Section 4. To minimize technical overhead, we use explicit complexes.

In the case C = FI the complex Kd(M) is simply the complex obtained by iterating the functor

M 7! cone(M!6M)

d times. This construction and its categorification of rationality is well known. The complex Kd(M)

appears implicitly in many of arguments about the structure theory of FI modules, which proceed
inductively using M , 6M , and the cokernel of M!6M .

The way we construct chain complexes is, heuristically, adjoint to the central stability complexes which
appear in the representation stability literature, introduced in [Putman and Sam 2017] and axiomatized
in [Patzt 2020]. Whereas central stability complexes are constructed by induction along the monoidal
functor ��� : C⇥ C! C, ours are constructed via restriction. We do not know of a direct relationship
between these two types of complexes, although there is one with FI module homology [Church and
Ellenberg 2017; Putman 2015] (which goes under the name central stability homology in Putman’s
original paper on central stability).

Sam and Snowden [2018, §5] prove that the Hilbert series of a finitely generated FIr module (see
[Sam and Snowden 2017, §7.1] for the definition) is a sum of functions of the form

�X
⌫

�
AX�⌫ for A = 1d

and d  r . They also prove a statement that categorifies the rationality of Hilbert series of finitely
generated FIr modules. Our categorifications are in the same spirit as those of Sam and Snowden,
but their complexes do not fit into our framework. Given a finitely generated FIr module M , the
complex Sam and Snowden use to categorify the rationality of hM(t) depends on the choice of subspaces
of k�r specifically adapted to M . In contrast, the complexes we use depend on a discrete set of choices.
By generalizing our definitions slightly, it is possible to obtain the complexes of Sam and Snowden
corresponding to the subspaces of k�r that are linearizations of subsets s ✓ [r ].

The Gröbner theory developed by Sam and Snowden [2017] is the source of many results about Hilbert
series of representations of combinatorial categories. Our proof of Theorem 1.2 relies heavily on their
ideas: we reduce to the case of monomial OSop modules, and eventually to proving a combinatorial
statement about poset ideals associated to certain ordered DFAs (concepts they introduced). Sam and
Snowden [2017, §11.2] ask whether it is possible to prove rationality results for enhanced Hilbert series
for the combinatorial categories they consider. We view our results as an affirmative answer in the case
of FSop modules, and the framework of this paper as a new strategy for approaching other cases.
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1F. Guide to the paper. For a reader who would like to extract detailed results about the characters
of FSop modules as quickly as possible, we suggest the following. Read Definitions 9.1, 9.7, and 9.9 for
the symmetric functions yn , the type of an FSop module, and the space VA,r ✓ 3̂. Then read Definitions
10.1 and 10.2 for the rank of an FSop module and the space Fk ✓ 3̂. Then read Section 11, referring
back as necessary. Our conventions for symmetric functions are in Section 8A, and we explain how to
translate from symmetric functions to character functions in Section 9C.

In Section 2, following Baclawski [1980] we discuss how to construct chain complexes associated to
representations of a poset. In Section 3 we apply the constructions of Section 2 to build chain complexes
associated to modules over combinatorial categories. Then we prove a general result, Theorem 3.18,
which gives a condition for our complexes to be exact when applied to projective modules. Combining
Theorem 3.18 with the work of Nagpal, we obtain our categorifications for VIq and FI modules. In
Section 4 we discuss a general definition of chain complexes in the setting of small monoidal EI categories.

The next few sections of the paper are devoted to proving Theorem 1.2. In Section 5, we prove a
proposition that we will use to reduce to the case of monomial OSop modules. The heart of the proof
is in Section 6, which shows that the poset homology of certain ideals associated to ordered regular
languages vanishes. In Section 7 we introduce OSop and prove Theorem 1.2, using Sam–Snowden
Gröbner theory and Section 5 to reduce to the combinatorial result of Section 6.

The second half of the paper is about the characters of FSop modules. In Section 8 we compute the
Frobenius character of the complex Kd(M) in terms of ch(M) and certain differential operators. Using
this computation, Theorem 1.2 translates into a system of differential equations for ch(M). In Section 9
we solve these differential equations, introduce the notion of the type of an FSop module, and prove
Theorem 1.11. In Section 10, we study the intersection between the solution space of Section 9 and the
space spanned by characters of Sn representations whose Young diagrams have  k rows, and prove
Theorem 1.13. In Section 11 we summarize the results of previous sections, and use generating function
methods to compute a basis of Ud,s and prove Theorem 1.17.

1G. Conventions and notation.

Categories. Given a category C and an object c 2 C, we write C/c for the overcategory of C . This is the
category whose objects are morphisms f : d! c and whose morphisms are morphisms g : d! d 0 such
that f 0 � g = f . For c, d 2 C we write C(c, d) for the set of morphisms from c to d .

We write Mod C = Mod kC to denote the category of functors from C to k modules and Ch(Mod C) for
chain complexes of C modules. We refer to elements of Mod C as C representations or C modules. For any
functor M : C!Mod k we write Mc for the value of M at c 2 C and M f : Mc! Md for any f 2 C(c, d).
If M is a C module and d 2 C, we write M |C/d for the functor C/d!Mod k defined by f : c! d 7! Mc.

When a group G acts (strictly) on the category C, a G-equivariant C representation is a representation M
of C together with morphisms Mc!Mg(c) for all g2G which are compatible with the maps M f : Mc!Md

for f 2C(c, d), and which satisfy the identity and associativity conditions. Concisely, M is a representation
of the Grothendieck construction G n C.
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On size issues: as usually defined FSop, VIq and FI are essentially small, but not small. However,
we may replace these categories by equivalent small full subcategories containing all of the objects that
we consider. We do this implicitly, and treat these categories as small categories.

If C and D are categories and F is a functor F : Mod C! Ch(ModD), there is a canonical extension
of F to a functor Ch(Mod C)!Ch(ModD) given by applying F levelwise and forming the total complex
of the resulting bicomplex (using sums). We will also denote this functor by F . We do not specify our
sign conventions for the total complex, since our results are independent of this choice.

Posets. For p, q elements of a poset P , we write p � q if p < q and there does not exist r 2 P such
that p < r < q. If P has a top (resp. bottom) element, we denote it by 1̂ (resp. 0̂). An upward ideal or
simply ideal of a poset P is a subset S ✓ P which is upward closed: if s 2 S and p � s then s 2 S. The
ideal S may be empty. All of the poset ideals appearing in this paper are upward closed: we do not use
downward closed ideals. We write P�x for the ideal {p | p � x}.

To any poset we may associate a category. The objects of the category are the elements of the poset,
and there is a unique morphism p! q if p  q , and no morphisms otherwise. We treat the poset and its
associated category interchangeably and use the same symbol to denote both of them.

Integer partitions. An integer partition � is a descending sequence of nonnegative numbers �1 � �2 �

· · ·��r . We may also specify � by its vector of multiplicities in N�1: we write �= 1m12m2 . . . , where mi

is the number of times i appears in the sequence �1 � · · · . We say that � is a partition of n and write
�` n or |�| = n when n =

P
i�1 �i�1 =

P
i imi . We will also refer to the Young diagram associated to �;

see [Stanley 1999, §7.2].

Miscellaneous.

• For an abelian category A, we write Ch(A) (resp. Ch�(A)) for the category of chain complexes in A
(resp. nonnegatively graded complexes).

• If X is a set and k is a ring, we write k X for the free k module with basis X . Given a functor
F :C!Set, we say that the linearization of F is the functor k F :C!Mod k given by (k F)c :=k(Fc).

• We write N for the set of nonnegative natural numbers, and N�1 for the set of eventually zero
sequences of natural numbers.

Part I. Chain complexes categorifying rationality

2. Poset homology

In this section, following Baclawski [1980], we associate chain complexes to poset representations. Then
we discuss several examples, and recall elementary properties of these complexes. Throughout, we let k
be a commutative ring.
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Definition 2.1. For any poset Q, we write NQ for the order complex of Q, the simplicial complex whose r
simplices are the set of chains

q0 < q1 < · · · < qr 2 Q.

Equivalently NQ is the geometric realization of the simplicial set [r ] 7! {q0  · · · qr 2 Q}.

Definition 2.2. When Q has top and bottom elements 1̂ and 0̂, we define Z Q ✓NQ to be the subcomplex
N(Q�0̂)[N(Q�1̂). In other words, Z Q is the union of all simplices corresponding to chains q0 < · · ·<qr

where either q0 6= 0̂ or q1 6= 1̂. When 0̂ = 1̂, Z Q = ?.

Definition 2.3. We say that a poset P is graded if for any p  q 2 P all maximal chains p = p0 � p1 �

· · · � p` = q have the same length. When P is graded, we define r(p, q) to be `. When P has a top
element, we put r(p) := r(p, 1̂).

Definition 2.4. Let P be a finite poset, with top element 1̂. For p 2 P we define the Möbius number
of p, denoted by µ(p), to be the Euler characteristic of the pair (N[p, 1̂], Z

[p,1̂]
). When P is graded, we

define the unsigned Möbius number to be eµ(p) = (�1)r(p)µ(p).

Remark 2.5. Our definition of µ(p) agrees with µ(p, 1̂) as usually defined (as for example in [Wachs
2007, §1.2]). Instead of using the pair (N[p, 1̂], Z

[p,1̂]
), it is more common to interpret the Möbius

function topologically in terms of the reduced homology of N(p, 1̂). Whenever p 6= 1̂, the homology
groups of these complexes are related by

eHs�2(N(p, 1̂)) = Hs(N[p, 1̂], Z
[p,1̂]

) for all s � 0,

as can be seen by writing the simplicial chains for both. In this paper, we prefer the latter homology
groups because they lead to cleaner formulas and behave more simply for products of posets.

Definition 2.6. Let P be a finite graded poset with top element 1̂. The Whitney Polynomial of P is

WP(t) :=

X

p2P

µ(p)t r(p).

Now we define the Bar complex associated to a P representation.

Definition 2.7. A representation of P is a functor P!Mod k. For a representation M , we write Mp for
the value of M at p, and if p  q 2 P we write Mpq for the associated morphism Mp! Mq .

Definition 2.8. Let P be a poset with top element 1̂, and let M be a P representation. We define BP(M)

be the following chain complex. In degree s 2 N,

BP(M)s :=

M

1̂>p1>p2>···>ps

Mps .



2444 Philip Tosteson

The differential of BP(M) is given by an alternating sum ds =
Ps

i=0(�1)i@i , where if we represent an
element of BP(M)s as a tuple (1̂ > · · · > ps, m) for m 2 Mps , the boundary @i is defined by

@i (1̂ > · · · > ps, m) =

8
<

:

0 if i = 0,

(1̂ > · · · > pi�1 > pi+1 > · · · > ps, m) if s > i > 0,

(1̂ > · · · > ps�1, Mps ps�1(m)) if i = s.

Definition 2.9. Let P be a poset, and G a group acting on P . We say that M is a G-equivariant P
representation if M is a P representation and there are morphisms g : Mp ! Mg(p) for every g 2 G
which are compatible with the maps Mpq : Mp! Mq for p  q 2 P and satisfy the obvious associativity
and identity properties.

When P is a poset with a top element and M is a G-equivariant P representation for some G-action
on P , the chain complex BP(M) is a naturally a complex of G representations. The element g 2 G acts
by taking (p0 < · · · < pr , m) to (g(p0) < · · · < g(pr ), g(m)).

2A. Koszul complexes. Following Baclawski [1980], when the poset P satisfies a connectivity condition
it is possible to replace BP(M) by a smaller complex KP(M), which we define in this subsection.

Definition 2.10. We say that a poset P is upper CM over k if it is graded, has a top element 1̂, and
satisfies the following conditions for every p 2 P:

Hj (N[p, 1̂], Z
[p,1̂]

; k) = 0 for all 0 j < r(p),

and Hr(p)(N[p, 1̂], Z
[p,1̂]

; k) is a free k module.

Example 2.11. If P is Cohen–Macaulay over k then by definition eHs�2(N(x, y)) = 0 for s < rank(x, y)

[Björner et al. 1982, Definition 3.1]. Therefore, P is upper CM over k. Examples include arbitrary
geometric lattices [Folkman 1966].

Since N[p, 1̂] is r(p)-dimensional, when P is upper CM the unsigned Möbius number computes the
rank of the top nonvanishing homology group of (N[p, 1̂], Z[p,1]). In other words we have

Hr(p)(N[p, 1̂], Z
[p,1̂]

; k)⇠= k�eµ(p).

Definition 2.12. When P is upper CM over k, there is a functor from P representations to chain complexes
of k modules, KP , defined as follows.

Let M be a P representation. We filter BP(M) by defining

Fi (BP(M)s) :=

M

{1̂>···>ps | r(ps)i}

Mps .

The complex KP(M) is defined to be the E1 page of the spectral sequence associated to this filtration.

Let us describe KP(M) more concretely, by computing the E1 page. The associated graded complex of
the filtration Fi has the same chain groups as BP(M) but @s acts by zero: in other words the differential
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of the E0 page is ds
0 =

Ps�1
i=0(�1)i@i . Since ds

0 preserves the grading by p 2 P , the E0 page splits as a
direct sum of complexes

L
p C(p)⌦Mp for p 2 P , where

C(p)s :=

M

1̂>p1>···>ps�1>p

k.

By definition, we see C(p) is the chain complex computing the simplicial homology of (N[p, 1̂], Z
[p,1̂]

).
Because P is upper CM, the homology of C(p) is concentrated in degree r(p), and it has rank eµ(p). So
the spectral sequence associated to the filtration degenerates after the E1 page, and on the E1 page it
takes the form

M1̂ 
M

p2P
r(p,1̂)=1

Mp · · · 

M

p2P
r(p,1̂)=s

Hs(N[p, 1̂], Z
[p,1̂]

; k)⌦Mp · · · .

This is the complex KP(M). Noncanonically it takes the form

M1̂ 
M

p2P
r(p)=1

Mp 
M

p2P
r(p)=2

M�eµ(p)
p  · · · .

The differential is induced by the action of (�1)s@s .
Both KP(M) and BP(M) compute the same homology groups, but KP(M) depends more closely on

the combinatorics of P and is much smaller than BP(M).

Proposition 2.13. There is an edge map KP(M) ,! BP(M) which induces a canonical isomorphism
H•(KP(M))⇠= H•(BP(M)).

Proof. The complex KP(M) can be identified with the subcomplex of BP(M) which in degree s is

ker
✓ s�1X

i=0

(�1)i@i

◆
✓

M

1̂�p1�···�ps

Mps .

Since the spectral sequence degenerates, this inclusion is a quasi-isomorphism. ⇤
When P is an upper CM poset, G is a group acting on P , and M is a G-equivariant P representation,

the G action on BP(M) induces one on KP(M). The degree s term,
M

p2P
r(p,1̂)=s

Hs(N[p, 1̂], Z
[p,1̂]

; k)⌦Mp,

is a G representation in the obvious way: g 2G acts by tensoring and summing the maps g : Mp!Mg(p)

and g : Hs(N[p, 1̂], Z
[p,1̂]

; k)! Hs(N[g(p), 1̂], Z
[g(p),1̂]

; k) induced by the functoriality of homology.

Remark 2.14. From an abstract perspective both BP(M) and KP(M) compute the derived functors of
tensoring with a Pop representation S(1̂) (see Definition 4.6). The complex BP(M) arises from the Bar
resolution of S(1̂), and the complex KP(M) arises from a minimal resolution (assuming that k is a field).
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Essentially, the complex KP(M) is a Koszul complex: there is a generalization of the theory of Koszul
duality from graded algebras to graded linear categories such that the category k P is Koszul if P is
Cohen–Macaulay [Woodcock 1998; Li 2014]. In this case, KP(M) is a Koszul complex.

2B. Examples. We discuss the posets that arise in the main examples of this paper.

Definition 2.15. Let x be a finite set. A (set) partition p of x is a set of nonempty subsets of x such that
each i 2 x is contained in exactly one element of p. We call the elements of p the blocks of p. Let P(x)

be the set of all partitions of x . Given p, q 2 P(x), we define p  q if every block of q is contained
in a block of p. Under this relation, P(x) is a finite lattice, called the partition lattice of x . The top
element is the discrete partition and the bottom element is the indiscrete partition. When n 2N, we define
P(n) := P([n]).

Example 2.16. The partition lattice P(n) is Cohen–Macaulay over any ring, and for p 2 P(n),

eµ(p) =

Y

b block of p

(|b|� 1)!,

and its Whitney polynomial is

WP(n)(t) =

n�1Y

j=1

(1� j t);

see [Stanley 1982, §7].

Definition 2.17. For a finite set x the Boolean lattice B(x) is the poset of subsets of x . We write
B(n) := B([n])

Example 2.18. The Boolean lattice B(n) is Cohen–Macaulay and eµ(s) = 1 for every s 2 B(n). Its
Whitney polynomial is WB(n)(t) = (1� t)n . See [Stanley 1982, §4].

Definition 2.19. Let V be finite-dimensional vector space over the finite field Fq . We write Bq(V ) for
the poset of subspaces of V and Bq(n) := Bq(F�n

q ).

Example 2.20. The poset Bq(n) is Cohen–Macaulay and eµ(w)= q(c
2), where c = r(w) is the codimension

of w ✓ Fn
q . It follows from the q-binomial theorem that its Whitney polynomial is

WBq (n)(t) =

n�1Y

i=0

(1� qi t).

See [Stanley 1982, §5]. It is natural to think of B(n) as a specialization of Bq(n) to q = 1.

In fact, if V is a finitely generated module over L , where L is a field or a finite ring, then the poset of
submodules of V is Cohen–Macaulay by the Solomon–Tits theorem and the Cohen–Macaulayness of
supersolvable lattices, respectively. There is another example, related to the category VIC L .

Example 2.21. Let L be a field, and V be a vector space over L . There is a poset whose elements are
pairs of subspaces (W, W 0) satisfying V = W �W 0, with relation defined by (W1, W 02)  (W2, W 02) if
W1 ✓W2 and W 01 ◆W 02. Lehrer and Rylands [1993] proved that this poset is Cohen–Macaulay.
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2C. Complexes associated to product posets. Let P ⇥ Q be a product of two posets with top elements
1̂P and 1̂Q . Suppose we are given a P⇥Q module M . We may consider M as a functor P!Mod Q, and
postcomposing with BQ we obtain a chain complex of P modules, p 7! BQ(M(p,�)). We may apply BP

to this complex, as described in Section 1G, to obtain a chain complex of k modules.

Definition 2.22. We define B(P,Q)(M) to be the chain complex BP(p 7! BQ(M(p,�))) and B(Q,P)(M)

to be the chain complex BQ(q 7! BP(M(�,q))).

There is an isomorphism of complexes B(P,Q)(M) ⇠= B(Q,P)(M). More concretely, their degree n
term is M

i+ j=n

M

pi <···<1̂P

M

q j <···<1̂Q

M(pi ,q j ),

and their differentials agree up to a sign introduced by the definition of the total complex.

Proposition 2.23. Let P and Q be finite posets with top elements. Let M and N be P and Q representa-
tions, respectively. Let M ⇥ N be the P ⇥ Q representation (p, q) 7! Mp⌦ Nq. Then B(P,Q)(M ⇥ N )⇠=

BP(M)⌦BQ(N ). In particular, if BQ(N ) is exact, then B(P,Q)(M ⇥ N ) is exact.

Proof. This is true by the definition of the tensor product of chain complexes. ⇤
We may extend the definition of B(P,Q) to a finite product of posets with top elements P1⇥P2⇥· · ·⇥Pr

in the obvious way to obtain a functor B(P1,...,Pr ). Proposition 2.23 carries over to this setting, and we
also have the following.

Proposition 2.24. Let P1, . . . , Pr be finite posets with top elements and let L be a P1⇥ · · ·⇥ Pr repre-
sentation. We put Q := P2⇥ · · ·⇥ Pr and for p 2 P1 write L|p⇥Q for the Q representation q 7! L(p,q).
Suppose that for every p 2 P1 we have that B(P2,...,Pr )(L|p⇥Q) is exact. Then B(P1,...,Pr )(L) is exact.

Proof. Applying B(P2,...,Pr ) to L , by hypothesis we obtain an exact complex of P1 representations
p 7! B(P2,...,Pr )(L|p⇥Q). Denote this complex by C . Since BP1 is exact, BP1(C) ⇠= B(P1,...,Pr )(L) is
exact. ⇤
Remark 2.25. If the definition of B(P,Q) seems ad hoc, we remark that for any P⇥Q representation L there
is a canonical quasi-isomorphism EZ : B(P,Q)(L) ⇠�! BP⇥Q(L). To construct it, note that B(P,Q)(L) is
the totalization of a normalized bicomplex of a bisimplicial abelian group, and BP⇥Q(L) is the normalized
chain complex of that bisimplicial group’s diagonal. Then apply the Eilenberg–Zilber theorem stated
in [Weibel 1994, §8.5]. In fact, if P and Q are upper CM, then so is P⇥Q and EZ induces an isomorphism
between the subcomplexes K(P,Q)(L) and KP⇥Q(L). We use B(P,Q) rather than BP⇥Q , because all the
properties we need are immediate for it. ⇤

2D. Poset homology of ideals.

Definition 2.26. Associated to any upward ideal I in a poset P , there is a functor SI : P! Set given by

p 7!
⇢
⇤ if p 2 I ,
? otherwise,
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where ⇤ denotes the terminal set {{?}}. (The action of SI on morphisms is uniquely determined by its value
on objects.) Postcomposing with the free functor from sets to k modules we obtain a P representation,
denoted by k I , such that k Ip = k if p 2 I and k Ip = 0 otherwise.

The order complex N(I � 1̂) is a subcomplex of N(I ), and by definition B(k I ) is the chain complex
computing the relative simplicial homology (NI, N(I � 1̂)) with coefficients in k. We need to know that
the homology of the bar complex applied to a principal ideal is zero.

Proposition 2.27. Let P be a finite poset with top element 1̂. Let x 2 P such that x 6= 1̂, and let
P�x = {p 2 P | p � x} be the principal ideal generated by x. Then the homology of B(k P�x) vanishes.

Proof. Since both I and I � 1̂ contain x as their smallest element, NI and N(I � 1̂) are both contractible,
and so the relative homology vanishes. ⇤

We will also need a simple fact about P-sets.

Proposition 2.28. Let P be a poset with top element 1̂. Let F : P! Set be a functor such that Fpq is an
injection for all p q 2 P. Given x 2 F1̂, let Fhxip := {y 2 Fp | Fp1̂(y) = x}. Then Fhxi is a subfunctor,
and there are isomorphisms

F
x2F1̂

Fhxi ⇠= F and Fhxi ⇠= SI hxi, where I hxi is the ideal

I hxi := {p 2 P | there exists y 2 Fp such that Fp1̂(y) = x}.

Proof. This is straightforward. The map
F

x2F1̂
Fhxi ! F is induced by the inclusions Fhxi ✓ F , and it

is an injection because if x and y are distinct elements of F1̂ the fact that the transition maps are inclusions
implies that Fhxi \ Fhyi = ?. The isomorphism SI hxi ! Fhxi is given by defining the image of ⇤
in Fhxip to be the unique element y such that Fp1̂(y) = x , if it exists. ⇤

3. Chain complexes associated to categories

In this section, we apply the definitions of BP and KP to construct chain complexes associated to modules
over combinatorial categories.

3A. Poset versus posetal. In our main examples, FI , VIq , and FSop, the overcategories of objects are
equivalent to posets, but not isomorphic to posets. Although this may seem to be a fussy distinction,
we want our complexes to be canonical, so that they carry group actions. Accordingly, we recall the
following notion.

Definition 3.1. A small category J is posetal if there is at most one morphism between any two objects
of J .

When J is posetal, its set of isomorphism classes |J | forms a poset, by defining [ j] [ j 0] if there is a
morphism j! j 0. There is a canonical functor

J ! (|J |,), j 7! [ j],
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which is an equivalence of categories. Inducing and restricting along this functor, we obtain an equivalence
of categories between Mod J and Mod |J |. Given a J module M , the associated |J | module takes an
equivalence class x 2 |J | to

|M |x :=

F
{ j2J :[ j]=x}

M j

( j, m)⇠ ( j 0, m0) if M f (m) = m0 for the unique map f : j! j 0
.

For any j 2 J such that [ j] = x there is a canonical isomorphism M j ! |M |x . And if x  y 2 |J | there
is a unique |M |x! |M |y such for any j, k 2 J with [ j] = x and [k] = y, the obvious diagram commutes.

Definition 3.2. Let J be a posetal category. For any functor F|J | : Mod |J |! D, we define FJ to be
the functor FJ (M) := F|J |(|M |).

Thus, when J is posetal and has a terminal object (equivalently |J | has a top element), we have a
definition of BJ (M). And when |J | is upper CM we have a definition of KJ (M). Similarly, given a
product of posetal categories with terminal objects J1⇥ · · ·⇥Jr , we may define B(J1,...,Jr ).

Finally, suppose that G is a group which acts on J by isomorphisms. Then G acts on |J |, and if M is a
G-equivariant J representation, |M | is a G-equivariant |J | representation. If x 2 |J |, j 2 J and [ j] = x ,
then for all g 2 G we have g(x) = g([ j]) and g : Mx ! Mg(x) is the unique morphism compatible with
g : M j ! Mg( j).

3B. Construction of complexes. Let (C,�) be a monoidal category and d 2 C. Restricting along the
functor � : C⇥ C/d! C given by (c, c0 ! d) 7! c� c0, we obtain a functor

Mod C! (Mod C/d)C,

taking a C module M to the functor c 7! (Mc��)|C/d . Note that id : d! d is always a terminal object
of C/d , so if C/d is posetal, it contains a top element.

Definition 3.3. If C/d is posetal, we define Bd : Mod C! Ch(Mod C) to be the composite

Mod C! (Mod C/d)C
BC/d
��! Ch(Mod k)C = Ch(Mod C).

Thus for every c 2 C, the complex Bd(M)c 2 Ch(Mod k) is BC/d(Mc��|C/d).

We define the complex Kd similarly.

Definition 3.4. If C/d is equivalent to an upper CM poset, then we define Kd : Mod C!Mod C to be
the composite functor Mod C! (Mod C/d)C

KC/d
��! Ch(Mod C).

The following elementary proposition shows that Bd is always defined for categories in which all
morphisms are monomorphisms.

Proposition 3.5. Let C be a category. Then C/d is posetal for all d 2 C if and only if every morphism of C
is a monomorphism.
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For d 2 C, the group Aut(d) acts on the category C/d by postcomposition. For N a C module, the C/d
module N |C/d is Aut(d) equivariant: an element g 2 Aut(d) acts by ( f, n) 7! (g � f, n) for f : c! d
and n 2 N f . Therefore, when C/d is posetal (resp. C/d is equivalent to an upper C M poset) the group
Aut(d) acts on Bd(M) (resp. Kd(M)) for all C modules M .

Assume that C/d is posetal. Instead of passing through |C/d|, we may obtain a complex that is
isomorphic to Bd(M) by restricting (Mc��)|C/d to a skeleton S ✓ C/d, and applying BS (since S is
necessarily a poset). Recall that a full subcategory S is a skeleton of C/d if any two isomorphic objects
of S are equal, and every object of C/d is isomorphic to one in S.

3C. Examples. Now we discuss the complexes arising in our main three examples.

Definition 3.6. When (C,�) is a monoidal category, for any c 2 C we define 6c M to be the C module
(6c M)c0 := Mc�c0 .

Example 3.7. Let d 2 FSop. Then |FSop/d| is P(d), the lattice of set partitions of d. A surjection
f : d ⇣ y corresponds to the following partition of d: i, j 2 d are in the same block of p if f (i) = f ( j).
Two surjections are isomorphic if and only if their associated partitions agree.

Let M be an FSop module. Then Kd(M) takes the form

6[d]M 
M

p2P(d)
r(p)=1

6 p M · · · 

M

p2P(d)
r(p)=s

6 p M ⌦ Hs(N[p, 1̂], Z
[p,1̂]

) · · · .

(Recall that for us the partition p equals its set of blocks.) The first differential is given by summing the
maps induced by the surjection d ⇣ p for each partition p.

Definition 3.8. Let FI be the category of finite sets and injections.

Example 3.9. Let d 2 FI . Then |FI/d| is the poset of subsets of d, and for an FI module M , the
complex Kd(M) takes the form

6d M 
M

i2d

6d�i M
M

{i, j}✓d

 6d�{i, j}M · · · M,

where, up to signs, the differentials are induced by the inclusions of subsets. Notice that the action by Sd

is nontrivial: for instance, Sd acts on the highest term of the complex by the idM ⌦ sgn.

Definition 3.10. Let R be a ring. Then VI R is the category of R modules that are isomorphic to R�n for
some n 2 N, and injections between them. Let q be a prime power. We define VIq := VI R .

Example 3.11. For w 2 VIq the poset |VIq/w| is the poset of subspaces of w. Then Kw(M) takes the
form

6w M · · · M ⌦Stein(w),

where Stein(w) is the Steinberg representation of GL(w). The degree s term is
M

v✓w
codim(v)=s

6v M ⌦Stein(w/v).



Categorifications of rational Hilbert series and characters of FSFSFSop
modules 2451

More generally, the complex Kd is defined for any object d 2VI L where L is a field or a finite ring, since,
as discussed in Section 2B, the poset of submodules of a finitely generated module is Cohen–Macaulay.

Example 3.12. Let L be a field and VIC L be the category of vector spaces and complemented injections
of [Putman and Sam 2017]. For any V 2 VIC L , the overcategory VIC L/V is equivalent to the poset
defined in Example 2.21. Therefore, the complex KV is defined.

3D. Rational Hilbert series. We discuss how exactness of the complex Bd(M) categorifies rationality, in
an axiomatic setting. (In our three examples, it is easy to see the categorification directly using Kd(M).)
The key is the following general identity.

Proposition 3.13. Let C be a small monoidal category, and let d 2 C be an object with C/d equivalent to a
finite poset. Let M be a C module over a commutative Noetherian ring k such that Mc is finitely generated
for all c 2 C. Then for every c 2 C we have

[Bd(M)c] =

X

[ f :c0!d]2|C/d|

µ([ f ])[Mc�c0]

in the Grothendieck group of finitely generated k modules.

Proof. We may neglect the differentials of Bd(M). Then, as in Section 2A, the complex Bd(M) splits
as a sum of C([ f ])⌦Mc�c0 over [ f : c0 ! d] 2 |C/d|. By the definition of µ as an Euler characteristic,
[C([ f ])] = µ([ f ])[k], so the result follows. ⇤

We specialize to the following situation, which holds in our main examples.
Let k be a field, and let C be a monoidal category all of whose morphisms are monomorphisms. Its set

of isomorphism classes |C| is a monoid. Suppose that we have an isomorphism s : (|C|,�)! (N, +),
which we use to identify isomorphism classes of objects with natural numbers. Suppose that if there
is a morphism from the n-th object to the m-th one, then n  m. For any f : c ! d 2 C/d define
r( f ) = s(d)� s(c).

Definition 3.14. The Hilbert series of a pointwise finite-dimensional C module (relative to s) is

HM(t) :=

X

n2N

(dim Mn)tn
2 Z[[t]].

Definition 3.15. We define the Whitney polynomial of C/d to be

WC/d(t) :=

X

p2|C/d|

µ(p)tr(p)
2 Z[t].

In the cases C = FI , VIq , and FSop, this definition of the Whitney polynomial agrees with the previous
one. The following statement shows that when Bd(M) is exact the Hilbert series of M is rational.

Proposition 3.16. Let M be a C module, and suppose that Bd1 � · · · � Bdr (M)c is exact for all c 2 C
with s(c)� 0. Then HM(t) is rational, with denominator

Qr
i=1 WC/di (t).
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Proof. We consider the special case r = 1, and put d := d1. We write h1(t) ⇡ h2(t) 2 Z[[t]] if their
difference is a polynomial. Then, by hypothesis,

0⇡
X

n�0

�(Bd(M)n)tn+s(d)
=

X

n�0

X

[ f :c!d]2|C/d|

µ( f )�(Mn+s(c))tn+s(d)

=

X

[ f :c!d]2|C/d|

X

m�s(c)

�(Mm)µ( f )tm+r( f )
⇡ HM(t)WC/d(t),

where the first equality follows from Proposition 3.13. (Here �(Bd(M)n) denotes �(Bd(M)c) for
some c 2 C with s(c) = n.) Therefore, HM(t)WC/d(t) is a polynomial, and so HM(t) is rational with
denominator WC/d(t). The general case is similar, iterating applications of Proposition 3.13. ⇤

3E. Composites and products. Suppose that C is a small monoidal category and every morphism is a
monomorphism. Given d1, . . . , dr 2 C we may iterate Bdi to obtain a complex

Bd1 �Bd2 � · · · �Bdr (M)

for every M 2Mod C. When the overcategories of C are equivalent to upper CM posets, we may do the
same with Kdi . Alternately, we may construct this complex in one step, by using the functor

� : C⇥ C/d1⇥ · · ·⇥ C/dr ! C

to restrict a C module to an object of Mod(C/d1⇥· · ·⇥C/dr )
C and applying the construction B(C/d1,...,C/dr ).

The complex we obtain is isomorphic to Bd1 � · · · �Bdr (M).
Similarly, we note the following elementary proposition.

Proposition 3.17. Suppose that (C,�) is a symmetric monoidal small category, and every morphism
is a monomorphism. Then there are natural isomorphisms Bd(6c M)⇠=6cBd(M) and Bd1 �Bd2(M)⇠=

Bd2 �Bd1(M) for every c, d, d1, d2 2 C.

3F. Categorifications for FI and VI q. Let k be a commutative ring. Let C be a category such that
every morphism is a monomorphism, and every endomorphism is an isomorphism. Because every
endomorphism is an isomorphism, the isomorphism classes of C inherit a natural partial order defined
by [c] [d] if there is a map from c to d . We write P(c) for the projective C module d 7! kC(c, d). Then
we have the following general result.

Theorem 3.18. Let c 2 C. Suppose that Res� P(c) splits as a sum of C ⇥ C modules of the form
P(c1)⌦k P(c2), where ci 2 C and [ci ] [c]. Then Bd(P(c)) is exact for all d 2 C such that [d] > [c].

Proof. Fix c0 2 C. To show that Bd(P(c))c0 is exact, we consider the representation C/d!Mod k,

(b! d) 7! P(c)c0�b,

from which Bd(P(c))c0 is constructed by applying BC/d . By our hypothesis, this representation splits as a
sum of representations of the form (P(c1)c0)⌦k P(c2)|C/d for some choice of ci 2 C with [ci ] [c] < [d].
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Since (P(c1)c0) is a free k module and BC/d(�) preserves sums and tensor products with k modules, it
suffices to show that the homology of BC/d(P(c2)|C/d) vanishes for all c2 2 C with [c2] < [d]. Further,
note that

P(c2)|C/d =

M

f :c2!d

k(C/d)( f,�).

Under the equivalence between C/d modules and |C/d| modules, k(C/d)( f,�) corresponds to the |C/d|

module associated to the principal ideal {x 2 |C/d| : x � [ f ]}. Since [c2]< [d], f is never an isomorphism,
and so [ f ] < 1̂|C/d|. So, by Proposition 2.27, it follows that BC/d(kC/d( f,�)) is exact. Thus Bd(P(c)) is
exact. ⇤

Theorem 3.18 is formal, and can be extended to a general setting where we no longer assume every
morphism of C is a monomorphism, as discussed in Section 4. Using it, we may prove our categorification
theorems for FI and VIq modules.

Theorem 3.19. Let k be a commutative noetherian ring and let q be a prime power that is invertible in k.
Let M be a finitely generated VIq module over k. Then there exists D � 0 and n � 0 such for all d � D
and W 2 VIq with dim W � n the homology of

(KFd
q
(M))W

vanishes.

Proof. By Proposition 2.13, we may prove the statement for BFd
q
(M). Since the direct sum functor is

symmetric monoidal, by Proposition 3.17 we have that BFd
q
(6V M)⇠=6V BFd

q
(M). Therefore, to prove the

statement for M , it suffices to prove that BFd
q
(6V M) is exact for dim V � 0 and d � 0. Theorem 1.2 of

Nagpal [2019] states that if q is invertible in k there is V 2 VIq such that 6V M admits a finite filtration
whose associated graded modules are induced. The spectral sequence for this filtration reduces us to
the case where M is an induced module. Recall that M is induced if there is a sequence of GLn(Fq)

representations, (Wn)n2N with Wn = 0 for n� 0, such that

M ⇠=
M

n2N

Wn ⌦GLn(Fq ) P(Fn
q).

We have that
BFd

q
(M)⇠=

M

n

Wn ⌦GLn(Fq ) BFd
q
(P(Fn

q)).

For every V 2 VIq the k[GLn(Fq)] module P(Fn
q)V is flat, because GLn(Fq) acts freely on the set of

linear injections VI(Fn
q , V ). Thus BFd

q
(P(Fn

q)) is a complex of flat GLn(Fq) modules, and so it suffices
to prove that the homology of BFd

q
(P(Fn

q)) vanishes for d > n.
To complete the proof, we verify the hypothesis of Theorem 3.18 for (VIq ,�). Indeed we have that

for U, V1, V2 2 VIq ,

VIq(U, V1� V2) =

G

A1,A2✓U
A1\A2=0

VIq(U/A1, V1)⇥ VIq(U/A2, V2).
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Thus
Res�(P(U ))⇠=

M

A1,A2✓U
A1\A2=0

P(U/A1)⌦ P(U/A2),

and U/Ai U in the order on the set of objects of VIq . ⇤
The analog for FI modules has an identical proof, using the identity

FI(x, a t b) =

G

x=rts

FI(r, a)⇥ FI(s, b)

to apply Theorem 3.18 and Nagpal’s shift theorem for FI modules [2015, Theorem A].

Theorem 3.20. Let k be a commutative noetherian ring. Let M be a finitely generated FI module over K .
Then there exist D� 0 and n� 0 such that for every d � D the complex (K[d](M))x is exact for all x 2 FI
of size � n.

Remark 3.21. Theorem 3.19 is a categorification of the result, due to Nagpal, that if M is a finitely gener-
ated VIq module in nondescribing characteristic then hM(t) is rational with denominator

Qd�1
i=0 (1� qdt)

for some d > 0. However, when k has the same characteristic as Fq , this is false. For instance, consider
the case k = Fq . Then if M is the VIq module defined by the identity functor V 7! V , we have

hM(t) =

X

i

i t i
=

t
(1� t)2 .

Therefore, Theorem 3.19 cannot extend to representations of VIq in equal characteristic. However, in
analogy with Theorem 1.2, we make the following conjecture.

Conjecture 3.22. Let k be an arbitrary field. Let M be a VIq module which is a subquotient of a module
generated in degree d. Then there exists an r 2 N such that the homology of (KFd+1

q
)�r (M) vanishes in

sufficiently large degrees.

4. Extension to EI categories

In this section, we explain how the complexes Bd can be interpreted using C module homology. This
allows us to define the complexes Bd more generally when C is a monoidal EI category. The material in
this section is not used elsewhere in the paper, and it is also more technical. We include it since it may be
of interest to some readers, but others may prefer to skip it.

4A. Homology of EI categories. First we recall the definition of the homology of EI categories, parallel-
ing the discussion for FI module homology in [Church and Ellenberg 2017, §5].

Definition 4.1. An EI category is a category in which every endomorphism is an isomorphism. If D is an
EI category, then the set of isomorphism classes of D carries a natural partial order: define [d1] [d2] if
there is a morphism d1! d2 in D.

For the remainder of this section, D denotes a small EI category.
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Definition 4.2. Let M : D!Mod k be a D module. Define

HD
0 (M)d :=

Md

{M f (m) | [c] < [d], m 2 Mc}
.

The left derived functors of HD
0 (�)d are denoted by HD

i (�)d and called the D module homology in
degree d.

The functor HD
0 (�)d is naturally isomorphic to S(d)⌦D� for the following Dop module.

Definition 4.3. Let d 2 D. We let S(d) : Dop!Mod k be the Dop representation

c 7!
kD(c, d)

k{ f | f : c! d, [d] < [c]}
.

Concretely, it takes c to kD(c, d) if c is isomorphic to d , and zero otherwise.

For any category C, using HD
0 (�)d : ModD!Mod k we may construct a functor id⇥ HD

0 (�)d :

Mod(C⇥D) = Mod(D)C!HD
0 (�) (Mod k)C = Mod C.

The following proposition interprets Bd in terms of D module homology.

Proposition 4.4. Let D be a monoidal EI category, and d 2 D. If D/d is equivalent to a poset, then
M 7! Bd(M) is a model for the derived functor

�
L(id⇥ HD

0 (�)d)
�
�Res� : D�(ModD)! D�(ModD).

Concretely, if CD
d (�) is a functorial complex computing D module homology in degree d , coming from a

projective Dop resolution of S(d), then there is a quasi-isomorphism

(id⇥CD
d (�)) �Res�(M)' Bd(M)

for any D module M.

Remark 4.5. We must derive the product functor id⇥HD
0 (�)d in the statement of Proposition 4.4 instead

of using the functor
id⇥LHD

0 (�)d : D(ModD)D! D(Mod(k))D,

because for ordinary (unenhanced) derived categories there is no equivalence D(ModD)' D(Mod(k))D.
However, if N is a D ⇥D module such that the D module N(c,�) is LHD

0 (�)d acyclic for all c 2 D,
then N is L(id⇥HD

0 (�)d) acyclic. So we may compute L(id⇥HD
0 (�)d) exactly how we would compute

id⇥LHD
0 (�)d .

We also note that from a more sophisticated point of view, Proposition 4.4 follows immediately by
interpreting D module homology as the homology of

cone((L j! j⇤M)d ! Md),

where j : D<d ! D is the inclusion of the subcategory spanned by objects < d, and j⇤ and j! are the
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restriction and left Kan extension functors. Then (L j! j⇤M)d can be computed as a homotopy colimit
over D<d/d , which is modeled by a bar construction. ⇤

Before proving Proposition 4.4 we introduce some definitions.

4B. General bar complexes. Let J be a small category containing a terminal object and such that there
are no morphisms in J from a terminal object to a nonterminal object.

Definition 4.6. Define S(1̂J ) to be the J op module given by

S(1̂)x =

⇢
k if x is terminal,
0 otherwise,

where for f 2 J , S(1̂) f is idk if f is a morphism between two terminal objects, and the 0 map otherwise.

Write Ob(J ) for the subcategory of J consisting of the set of objects of J and identity maps. Note
Ob(J ) = Ob(J op). Via the adjunction

(Mod k)Ob(J )
Free
���!
 ���

Res
(Mod k)J

op
,

we may resolve S(1̂J ) using the associated monad ?= Free �Res as in [Weibel 1994, §8.6]. We obtain
a simplicial abelian J op module F whose r simplices are

x 2 J op
7! k{x! xr ! xr�1! · · ·!

f1 x0 | x0 is terminal}.

Let eF be the normalized chain complex associated to F . Then eF! S(1̂) is a projective resolution, and so
the derived functor of S(1̂J )⌦J � is modeled by eF ⌦J �. For any J module M , we have that eF ⌦D M
is a chain complex, which in degree r is

(eF ⌦D M)r =

M

{xr! fr xr�1!···!x0 | x0 terminal, fi 6=idxi }

Mxr .

Definition 4.7. BarJ (M) := (eF ⌦D M).

It is clear that when J is a poset with top element 1̂, we have BarJ (M) ⇠= BJ (M). As a warning,
note that if there is an equivalence of categories f : J 0 ⇠�! J , we do not have BarJ (M)⇠= BarJ 0( f ⇤M).
However, because there is an isomorphism of (J 0)op modules f ⇤S(1̂J )⇠= S(1̂J 0), both complexes compute
the same derived functor, and thus there is a quasi-isomorphism

BarJ (M)' BarJ 0( f ⇤M).

Definition 4.8. Using BarJ we may extend our construction of chain complexes to any small monoidal
category C satisfying the retraction–isomorphism property

( • ) if c 2 C and c! f c0 !g c is a retraction (i.e., g � f = id), then f is an isomorphism,

by defining
Bard(N ) := (id⇥BarC/d(�)) �Res�(N )
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for any C module N . Indeed, the overcategory C/c always contains idc : c! c as a terminal object,
and the condition ( • ) corresponds to the statement that any morphism from idc to c0 !g c in C/c is an
isomorphism.

When the overcategories of C are posetal, the discussion above implies that there is a quasi-isomorphism
of complexes of C modules Bard(N )' Bd(N ) for every d 2 C.

4C. Proof of Proposition 4.4. With the general definitions of Bar complexes in hand, we may prove
Proposition 4.4. In fact, we may weaken our assumption that the overcategories of D are posets, to the
assumption that D satisfies property ( • ).

Proof of Proposition 4.4. Let F : Ch�(Mod(D ⇥ D)) ! Ch�(ModD) be an exact sum-preserving
functor from bounded below chain complexes D ⇥ D modules to bounded below chain complexes
of D modules. To show that F models L(id ⇥ HD

0 (�)d) it suffices to prove that there is a natural
isomorphism H0(F(N ))⇠= id⇥ HD

0 (�)d for all D⇥D modules N , and that for every c1, c2 2D we have
that Hi (F

�
k(D(c1,�)⇥D(c2,�))

�
= 0 for i > 0. This follows from the fact that, by the Yoneda lemma,

{k(D(c1,�)⇥D(c2,�))}c1,c22D form a collection of projective generators of Mod(D⇥D).
The equivalence between the abstract statement of the proposition and the concrete one follows from

the fact that if P• ! S(d) is a projective resolution of S(d) and we define C(�) := P• ⌦D �, then
F := id⇥C(�) : Mod(D⇥D)!Mod(D) satisfies the above criteria.

Let r :D/d!D be the functor that forgets the morphism to d . For any D module M there is a natural
isomorphism

S(1̂)⌦D/d r⇤M ⇠=
Md

{Mg(m) | g : c! d, m 2 Mc, g not an isomorphism}

⇠= HD
0 (M)d .

Further we have that
r⇤(kD(c,�)) =

M

f :c!d

k(D/d)( f,�).

Because BarD/d(�) models S(1̂)⌦L
D � and k(D/d)( f,�) is a projective D/d module by Yoneda, it

follows that Hi (BarD/d(r⇤(kD(c,�)) = 0 for all i > 0. Therefore, id⇥BarD/d(�) satisfies the criteria to
model L(id⇥ HD

0 (�)d). When D/d is equivalent to a poset Q, the quasi-isomorphism between BarD/d

and BQ finishes the proof of the proposition. ⇤
Remark 4.9. Using the material in this section, we may extend the definition of the complexes Bd(�) to
an arbitrary small monoidal EI category D, by taking Proposition 4.4 as a definition. It is natural to ask:
which results from Section 3 continue to hold in this level of generality?

The answer is that Theorem 3.18 holds for formal reasons. However, at this level of generality, exactness
of complexes does not imply rationality of Hilbert series. Of course, exactness always encodes some
relation between the virtual Aut(c) representations [Mc]. But this relation only implies a relation between
the dimensions dim Mc if for every d 2 D the overcategory D/d is directed: every endomorphism of an
object in D/d is the identity. (Directedness of D/d is equivalent to Aut(c) acting freely on D(c, d) for all c.)
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In fact, all of Sections 2 and 3 generalizes easily if we replace “posetal” by “directed” and “poset” by
“skeletal directed category”. We chose not to work at that level of generality because posets are more
familiar, and all of the examples we consider have posetal overcategories. ⇤

5. Gröbner theory

In this section, we use the Sam–Snowden Gröbner theory of categories to give a criterion for chain
complexes such as Kd(M) and Bd(M) to be exact. For background, see [Sam and Snowden 2017, §4].

Let (C,t) be a small monoidal category. In this paper, we will only consider the case C = OSop (see
Definition 7.1), but in the interest of future applications work in a more general setting. Fix d 2 C, and let
S(d) : C! Set be the functor c 7! C(d, c). We assume that C(d, c) is finite.

Definition 5.1. An ordering on S(d) consists of a total ordering  on the set of functions C(d, c) for
every in c such that postcomposition is strictly order-preserving: if f1 < f2 then g � f1 < g � f2 for
all g 2 C(c, c0).

We assume there is an ordering on S(d), and let P(d) := k S(d). For any c 2 C, the k module P(d)c is
freely spanned by monomials e f for f 2 C(d, c).

Definition 5.2. The initial term of an element
P

f � f e f 2 P(d)c is � f0e f0 , where f0 2 P(d)c is the
largest element such that � f0 6= 0.

Definition 5.3. Let J ✓ P(d) be a C submodule. Let init(J )c ✓ P(d)c be the subspace {init( j) | j 2 Jc}.
By [Sam and Snowden 2017, Theorem 4.2.1], c 7! init(J )c is a monomial submodule of P(d). This
means that init(J )c is spanned by the elements e f 2 P(d)c that it contains. We say that init(J ) is the
monomial ideal associated to J .

Let c and x be objects of C. Let Q be a subcategory of C/c, and let B be an exact functor from
Q representations to chain complexes. Consider the Q representations Jxt� and init(J )xt� defined by
(g : y! c) 7! Jxty and (g : y! c) 7! init(J )xty respectively. In this context, we prove the following
result.

Proposition 5.4. If B(init(J )xt�) is exact, then B(Jxt�) is exact.

Proof. Using the order on S(d) we define a filtration of the Q representation P(d)xt� as follows. Given
f : d! x t c, let F f P(d)xt� be the subrepresentation

(g : y! c) 7! span{eh | h : d! x t y such that (idx t g) � h  f }.

This is a subrepresentation because a morphism g! g0 consists of a morphism s : y! y0 such that
g0 � s = g, and thus (idx t g0)� (idx t s)�h = (idx t g)�h. If f  f 0 then F f P(d)xt� ✓ F f 0 P(d)xt�,
so we obtain a filtration using the total order on C(d, x t c).

We define F f Jxt� to be the intersection of F f P(d)xt� and Jxt�. Then we have:

Lemma 5.5. The associated graded Q representation is isomorphic to init(J )xt�.
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Proof. Define a map (F f Jxt�)g! (init(J )xt�)g by

X

h

�heh 7!

⇢
�h f eh f if there exists h f : d! x t y such that (idx t g) � h f = f ,

0 otherwise.

Because idx t g strictly preserves the total order on functions, this yields a well-defined morphism of
representations

M

f 2P(d)xtc

F f Jxt�

F< f Jxt�
! init(J )xt�.

It is injective because for each g, the monomials eh f are linearly independent for every f . And it is
surjective, because each �heh 2 init(J )xty is hit by the map corresponding to f = (idx t g) � h. ⇤

Thus we have a filtration of Jxt� whose associated graded is isomorphic to init(J )xt�. Since B is
an exact functor, this filtration induces a filtration of the complex B(Jxt�) whose associated graded
is B(init(J )xt�). This filtration is finite, because we have assumed P(d)xtc has finitely many elements.
Therefore, the spectral sequence associated to a filtered complex shows that if B(init(J )xt�) is exact,
then so is B(Jxt�). ⇤

6. Poset ideals associated to ordered languages

Let 6 = {a1, . . . , ad} be a finite alphabet with d letters.

Definition 6.1. Let w 2 6⇤ be a length n word. We consider w as a function w : [n]! 6. Given a
set partition p 2 P(n) with m blocks, order the blocks according to their smallest element to obtain an
identification between p and [m]. We write f p : [n]! [m] for the surjection that takes i 2 [n] to the
block that contains it. We say that w factors through p if there exists a word wp : [m]! 6 such that
wp � f p = w. Because f p is a surjection, wp is necessarily unique if it exists. If w factors through p,
then we call wp the quotient word of w by p.

Let L ✓6⇤ be a regular language. Throughout we assume that L satisfies the following property.

(⇤) Let w1, w2, w3 26
⇤ and a 26. If w1aw2w3 2 L , then w1aw2aw3 2 L .

Definition 6.2. We define an upward ideal, I(w, L) ✓ P(n), associated to w 2 6⇤ and L a language
satisfying property (⇤). A partition p is contained in I(w, L) if and only if w factors through p and wp 2 L .

The subset I(w, L) is upward-closed because of our assumption (⇤) on L . If w 62 L , then I(w, L) =?.

Example 6.3. Let 6 = {a, b} and w = abba. Then w factors through the partitions 1|2|3|4, 14|2|3,
1|23|4 and 14|23. The associated quotient words are abba, abb, aba, and ab respectively. If L is the
language defined by the regular expression ab⇤a(a⇤b⇤)⇤, then L satisfies property (⇤) and we have that
I (w, L) = {1|2|3|4, 1|23|4}.

Recall from [Sam and Snowden 2017, §5.2] that an ordered DFA is a deterministic finite automaton A,
together with a partial order on the set of states of A, such that x1 x2 if and only if there is a word u 26⇤
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such that running A with start state x1 on input u results in the final state x2; symbolically we will write
x1!

u x2. A regular language L is ordered if and only if there is an ordered DFA that accepts it. All the
DFAs we consider will be connected: if ↵ is the start state of A and � is some other state of A, then there
is some word u 26⇤ such that ↵!u �. Any (ordered) DFA may be replaced by a connected (ordered)
DFA accepting the same language, by discarding the states which are not connected to the start state. It is
convenient to introduce the following operation, in order to make inductive arguments.

Definition 6.4. Let A be an ordered DFA and let ↵ be a state of A. Then we define the truncation of A
at ↵, denoted by A�↵ , to be the following ordered DFA. The (accept) states of A�↵ are the (accept) states
of A that are � ↵ in the partial order. The transition function of A�↵ is the restriction of the transition
function of A to A�↵: this is well defined because A is ordered. The start state of A�↵ is ↵.

Let A be an ordered DFA accepting a language L ✓6⇤ which satisfies property (⇤). Let w1, . . . , wr 2

6⇤ be words of length `1, . . . , `r 2 N, and put w = w1 . . . wr . Let `=
P

t `t be the length of w.
There is an embedding of posets

Qr
t=1 P(`t)!P(`), constructed using the bijection [`1]t· · ·t[`r ]! [`]

which maps [`t ] to the interval
�Pt�1

u=1 `u,
Pt

u=1 `u
⇤
. Given partitions qt 2 P(`t) for t = 1, . . . , r the

associated element of P(`) is q1 t · · · t qr , considered as a partition of [`] via the bijection. ThenQr
t=1 P(`t) is isomorphic to its image in P(`) (with subposet structure induced by P(`)), so we identify

both posets and write
Qr

t=1 P(`t)✓ P(`).

Definition 6.5. Let J(w, L) be the ideal I(w, L)\
Qr

t=1 P(`t).

The key combinatorial result underlying Theorem 1.2 is the following.

Theorem 6.6. Let d � 1 and let 6 be an alphabet of size d. Let A be a connected, finite, ordered DFA,
accepting a language L ✓ 6⇤ which satisfies property (⇤). Let w1, . . . , wr 2 6

⇤ be words of length
`1, . . . , `r . Suppose that r is greater than or equal to the length of A (considered as a poset), `t � d for
t = 1, . . . , r � 1 and `r � d + 1. Then B(P(`1),...,P(`r ))(k J(w, L)) is exact.

Proof. We write Bi for the functor B(P(`i ),...,P(`r )) from Rep
Qr

t=i P(`t) to chain complexes.
We induct on the length of A. In the base case, the length of A is 1 and A consists of a single state. If

the state is a reject state, then k J(w, L) = 0 so the statement is trivially true, so assume that the state
is an accept state. Then A accepts every word and J(w, L) is the ideal consisting of all q 2

Q`
i=t P(`t)

such that w factors through q . Let pt be the partition of [`t ] associated to the function wt : [`t ]!6 (in
other words, i and j are in the same block of pt if and only if the i-th letter of wt equals the j-th letter
of wt ). Then J(w, l) =

Qr
t=1 P(`t)�pt . So k J(w, l) = k

�Qr�1
t=1 P(`t)�pt

�
⇥ kP(`r )�pr . Because `r > d

and |6| = d , the pigeon-hole principle implies at least one letter of 6 must be repeated in wr . Therefore,
pr 6= 1̂P(`r ), and so by Proposition 2.27 the complex B(kP(`r )�pr ) is exact. Then by Proposition 2.23,
B1(k J(w, l)) is exact.

For the inductive step assume that the length of A is � 2, and let ↵ be the starting state of A. Consider
the word w1. There are two cases: either (1) ↵!w1 ↵ or (2) ↵!w1 � for some state � > ↵.
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The argument in case (1) is similar to the base case. Let p1 2 P(n) be the partition associated to the
function w1 : [`1]!6. We claim that

J(w, L) = P(`1)�p1 ⇥ J(w2 . . . wr , L).

Indeed, we may write an element of q 2 P(`1)⇥
Qr

t=2 P(`t) uniquely as q1 t q 0, where q1 2 P(`1) and
q 0 2

Qr
t=2 P(`t). Then w factors through q if and only if w1 factors through q1 and w0 := w2 . . . wr factors

through q 0. If w factors through q, then wq = (w1)q1w
0

q 0 . Because (w1)q1 contains only letters which
appear in w1, and ↵!t ↵ for every letter of w, we have that ↵!(w1)q1 ↵. Therefore, A accepts wq if and
only if A accepts w0q 0 . Because w1 factors through q1 if and only if q1 � p1, we have that q 2 J(w, L) if
and only if q1 2 P(n)�p1 and q 0 2 J(w0, L). This establishes the claim.

So we have
k J(w, L) = kP(`1)�p1 ⇥ k J(w2 . . . wr , L).

The word w1 only contains letters a 26 which satisfy ↵!a ↵. Since ↵ is not the only state of A, there
are at most d � 1 such letters. Thus by the pigeon-hole principle it follows that w1 must contain a repeat
letter and therefore p1 6= 1̂P(`1). So Proposition 2.27 implies that B(kP(`1)�p1) is exact. Therefore, by
Proposition 2.23, B1(k J(w, L)) is exact in case (1).

In case (2), let q1 2 P(`1), and consider the ideal of
Qr

t=2 P(`t)

Iq1 := J(w, L)\

✓
q1⇥

rY

t=2

P(`t)

◆
.

We note that
k Iq1 = (k J(w, L))|q1⇥

Qr
t=2 P(`t ),

so by Proposition 2.24, it suffices to show that the homology B2(k Iq1) vanishes for all q1. If w1 does not
factor through q1, then Iq1 = ?, and k Iq1 = 0, so B2(k Iq1) = 0. So suppose that w1 factors through q1,
and let (w1)q1 be the quotient word. Notice that ↵!(w1)q1 � 0 for some state � 0 > ↵. Indeed, if a is the
first letter of w1 which causes A to transition to a state distinct from ↵, then (w1)q1 also contains the
letter a, and so also transitions to a state distinct from ↵.

Now let A0 := A�� 0 be the truncation at � 0. Let L 0 be the language recognized by A0. We claim that

Iq1 = J(w0, L 0),

where w0 = w2 . . . wr . Indeed since w1 factors through q1, we have that for all q 0 2
Qr

t=2 P(`t), w factors
through q1 t q 0 if and only if w0 factors through q 0. If w0 factors through q 0, then wq1tq 0 = (w1)q1w

0

q 0 .
Therefore, wq1tq 0 is accepted by A if and only if ↵!w1q1 � 0 !w0q0 � , where � is an accept state of A.
This occurs if and only if w0q 0 2 L 0. This shows the claim.

The length of A0 is less than the length of A, hence is  r � 1. The language L 0 satisfies property (⇤)

because L does and u 2 L 0 if and only if w1u 2 L . So the induction hypothesis gives that the homology
of B2(k J(w0, L 0)) vanishes. Thus the homology of B2(k Iq1) vanishes for all q1 2P(`1), so we are done. ⇤
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7. OSop modules and Theorem 1.2

In this section, we combine the results of the previous sections in order to prove Theorem 1.2.

Definition 7.1. Let OS be the category of ordered surjections of [Sam and Snowden 2017, §8]. The
objects of OS are finite sets equipped with a total order. A morphism from X to Y in OS is an ordered
surjection: a surjection f : X ⇣ Y such that if y1 < y2 then min f �1(y1) < min f �1(y2).

FSop is equivalent to the subcategory spanned by the sets [n] := {1, . . . , n} for n 2N. Similarly OSop is
equivalent to the subcategory spanned by the sets [n] equipped with their canonical order 1 2 · · · n.
A functor with domain FSop or OSop is determined by its restriction to the corresponding subcategory,
so we will freely pass between the ambient categories and their respective subcategories. When we use a
natural number n 2 N to denote an object of OSop or FSop, we are referring to the object [n].

Disjoint union endows OSop with a monoidal structure

�t� : OSop
⇥ OSop

! OSop,

where we define the total order on StT by extending the order on S and T and declaring every element of S
to be less than every element on T . There is an essentially surjective, monoidal functor ⇡ : OSop! FSop,
given by forgetting the total ordering. Thus we may restrict any FSop module M to obtain an OSop

module ⇡⇤M . We now prove two propositions relating OSop and FSop modules.

Proposition 7.2. For X 2 OSop, the functor OSop/X ! FSop/X is an isomorphism of categories.
Consequently, KX and BX are defined for OSop modules, and for any FSop module M there are natural
isomorphisms BX (⇡⇤M)⇠= ⇡⇤BX (M) and KX (⇡⇤M)⇠= ⇡⇤KX (M).

Proof. Let X 2 OSop be a set with a total order. Given any surjection f : X ⇣ Y there is a unique
total order on Y such that f is an ordered surjection: define y  y0 if min f �1(y)min f �1(y0). And
given any X ⇣ Y1 ⇣ Y2, the orders induced on Y1 and Y2 are compatible, so that Y1 ⇣ Y2 is an ordered
surjection. Thus OSop/X! FSop/X is an isomorphism and the other statements follow immediately. ⇤

Proposition 7.3. Let N be an FSop module generated in degreed. Then ⇡⇤N is generated in degreed.

Proof. Let l 2 N and let x 2 Nl be an element. Then for any m 2 N, any surjection f : [m] ⇣ [l] factors
as an ordered surjection, followed by a bijection [l]! [l]. Thus the FSop submodule generated by x
equals the OSop module generated by {� x}�2Sl . ⇤

For d 2N, let P(d) be the free OSop module generated in degree d: P(d)m := k OSop(d, m). The next
proposition applies Theorem 6.6 and Proposition 5.4 to prove a variant of Theorem 1.2 for submodules
of P(d).

Proposition 7.4. Let k be a field. Let J be an OSop submodule of P(d). Then there exists an s 2 N such
that K`1 � · · ·�K`r (J ) is exact for all r � s and all (`t)

r
t=1 2Nr satisfying `t � d for t = 1, . . . , r � 1 and

`r � d + 1.
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Proof. By [Sam and Snowden 2017, Theorem 8.1.1], the category OSop is Gröbner: in particular the
functor S(d), defined by n 7! OSop(d, n), carries an ordering satisfying the conditions of Section 5.
(We will not use the particular definition of the ordering, so we do not recall it.) We let init(J ) be the
monomial ideal associated to J with respect to this ordering.

For n 2 N, let Tn ✓ init(J )n be the set of f 2 S(d)n such that e f 2 init(J ). Then n 7! Tn is
functor OSop! Set, and there is a canonical morphism kT ! init(J )n given by e f 7! e f . This map is
injective for any ring, and because k is a field it is surjective: if �e f 2 init(J ) is a nonzero element, then
e f = ��1�e f 2 init(J ).

Let 6 = [d] and ◆ :
F

n2N OSop(n, d)!6⇤ be the tautological embedding taking f : [n]! [d] to its
word. In the terminology of Sam and Snowden [2017],

G

n2N

OSop(n, d) = |S(d)| = |C[d]|,

where C = OSop. Sam and Snowden [2017, §8.2] show that the embedding ◆ : |S(d)|!6⇤ endows S(d)

with an O-lingual structure [loc. cit., Definition 6.2.1]. In particular, this implies there is an ordered DFA A
which accepts the language L := ◆

�F
n Tn

�
✓6⇤ (we take A to be connected). We will prove the statement

for s equal to the length of A, considered as a poset. So fix r � s.
There is a quasi-isomorphism K`1 � · · · �K`r ' B`1 � · · · � B`r by Proposition 2.13. Fix x 2 OSop.

As discussed in Section 3E, it suffices show that B(OSop/`1,...,OSop/`r )(Jxt�) is exact. To do this, we
identify P(`t) with the full subcategory of OSop/`t spanned by the canonical ordered surjections [`t ]⇣ p
for every p 2 P(`t). Then

B(OSop/`1,...,OSop/`r )(Jxt�)⇠= B(P(`1),...,P(`r ))(Jxt�),

and by Proposition 5.4 it suffices to show that

B(P(`1),...,P(`r ))((init J )xt�)⇠= B(P(`1),...,P(`r ))(kTxt�)

is exact. So we consider the functor Txt� : P(`1)⇥ · · ·⇥P(`r )! Set,

(q1, . . . , qr ) 7! Txtq1t···tqr .

Since S(d) f is injective for all OSop morphisms f , by Proposition 2.28 we see that Txt� =
F

u SI hui,
where the sum is over words u : x t [`1]t · · ·t [`r ]! [d].

Fix u : x t [`1]t · · ·t [`r ]! [d] and write u = zw1 . . . wr , where z : x! [d] and wt is a word on `t

letters for t = 1, . . . , r . Let ↵ be the state obtained by running A with input z. Let L 0 be the language
accepted by A�↵.

Because T is an OSop set, the languages L and L 0 both satisfy property (⇤) of Section 6: under the
identification between words and functions, the substitution w1aw2w3 7! w1aw2aw3 corresponds to
precomposition with the obvious ordered surjection [n]⇣ [n�1]. Therefore, the ideal J(w1 . . . wr , L 0)⇢
P(`1)⇥ · · ·⇥P(`r ) is defined.

Lemma 7.5. The ideal I hui equals the ideal J(w1 . . . wr , L 0).
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Proof. Let `=
P
`t . By definition, a partition p 2 P(`1)⇥ · · ·⇥P(`r ) lies in I hui if and only if there is an

element u0 2 Txtp such that for the ordered surjection f p : [`] ⇣ p we have Tidxt f p(u0) = u. This occurs
if and only if (1) there is an element of u0 2 S(d)xtp satisfying S(d)idxt f (u0) and (2) u0 2 Txtp. These
two conditions correspond to (1) the word w1 . . . wr factoring through p and (2) the word z(w1 . . . wr )p

lying in L . (Here (w1 . . . wr )p is the quotient word.) Since L 0 is the language accepted by A�↵ , (2) holds
if and only if w1 . . . wr 2 L 0. ⇤

Therefore, by Theorem 6.6, we have that B(P(`1),...,P(`r ))(k Iu) is exact. Summing over u, we see that
B(P(`1),...,P(`r ))(kTxt�) is exact, completing the proof. ⇤

The remainder of the proof of Theorem 1.2 is a dévissage.

Proof of Theorem 1.2. Let M be an FSop module that is a subquotient of one generated in degree  d.
By Proposition 7.2 it suffices to show that there is an s 2 N such that the complex

K`1 � · · · �K`r (⇡
⇤M)

is exact for all r � s and choices of `t � d for t = 1, . . . , r � 1 and `r � d + 1.
Embed M into an FSop module N which is finitely generated in degree  d . By Proposition 7.3, ⇡⇤N

is also generated in degree  d . Choose a surjection p : G ⇣ ⇡⇤N , where G =
LR

i=1 P(ni ) for {ni }
R
i=1 a

finite list of natural numbers ni  d . We obtain the following commutative diagram with exact rows:

0 ⇡⇤N G ker p 0

0 ⇡⇤M J J 0 0

p

Here J = p�1(⇡⇤M) and J 0 = ker p \ p�1(⇡⇤M). If B is any exact functor from OSop modules to
chain complexes, we have that B(⇡⇤M) is exact if both B(J ) and B(J 0) are. Now filter G by defining
FI G =

LI
i=1 P(ni ). Intersecting with J and J 0 we obtain filtrations FI J and FI J 0. To show that

B(⇡⇤M) is exact, it suffices to show that the complexes obtained by applying B to the associated graded
modules FI J/FI�1 J and FI J 0/FI�1 J 0 are exact. These associated graded modules are submodules of
FI G/FI�1G = P(nI ). By Proposition 7.4 there exists an sI 2N such that for all r � sI and (`t)

r
t=1 2Ns

with `t � nI and `r � nI + 1, the complex K(`1,...,`r )(FI J/FI�1 J ) is exact. Identically, there exists
an s 0I 2 N such that for all r 0 � s 0I and (`0t)

r 0
t=1 2 Ns0I with `0t � nI and `0r 0 � nI + 1, the complex

K(`1,...,`r 0 )(FI J 0/FI�1 J 0) is exact. Take s to be max
�S

I {sI , s 0I }
�
. Then we conclude that K(`1,...,`r )(M)

is exact for all choices of r � s, `t � d and `r � d + 1. ⇤

Part II. Characters of FSop modules

8. The character of Kd(M)

Let M be a chain complex of FSop modules over a commutative ring R. The purpose of this section
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is, when R is a field of characteristic zero, to compute the virtual Sd ⇥ Sn representation associated
to Kd(M)n , in terms of certain differential operators on the ring of symmetric functions.

Definition 8.1. We write S• to denote the groupoid
F

n2N Sn . Any FSop module M determines a
representation of S• by n 7! M[n].

The category Ch(Mod R) of chain complexes of R modules is symmetric monoidal, using the Koszul
braiding. Thus there is a symmetric monoidal induction product

~ : Ch(Mod R)S• ⇥Ch(Mod R)S•! Ch(Mod R)S•,

constructed by tensoring and applying the adjoint to the restriction functor

Rest : Ch(Mod R)S•⇥S• Ch(Mod R)S• .

Concretely, if M and N are S• representations, then

(M ~ N )n =

M

i+ j=n

IndSn
Si⇥S j

Mi ⌦ N j .

Finally, there is a composition product

� : Ch(Mod R)S• ⇥Ch(Mod R)S•! Ch(Mod R)S•,

defined by
M � N :=

M

r

Mr ⌦Sr N~r ,

where Sr acts on N~r in the way induced by the Koszul sign rule. ⇤
Our first step will be to describe the underlying representation of Kd(M) in terms of these operations

and the top Whitney homology of the partition lattice.

Definition 8.2. For b a set of size � 1, let Wb be the degree n � 1 homology group of the pair�
N(P(b)), ZP(b)

�
with coefficients in R. We consider Wn := W[n] to be a chain complex concentrated in

homological degree n�1, so that Wn 2Ch(Mod R)Sn . Define W0 =0 and W :=
L

n2N Wn 2Ch(Mod R)S• .

Definition 8.3. Let M be a S•⇥ S• representation. Then for an S• representation N we write M �2 N to
denote the S•⇥S• representation M

{(n,r):r�1}

M(n,r)⌦Sr N~r ,

where the subscript 2 indicates that we are performing the composition product with respect to the second
factor.

Proposition 8.4. Let M be a chain complex of FSop modules. The S•⇥ S• complexes
L

d�1 Kd(M) and

(Rest M)�2 W

have isomorphic underlying graded S•⇥S• representations.
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Proof. First we describe (Rest M)�2 W more concretely. We have an isomorphism of Sd representations

(W~r )d =

M

e1+···+er =d
ei�1

IndSd
Se1⇥···⇥Ser

(We1 ⌦ · · ·⌦Wer )
⇠=

M

[d]=b1t···tbr

Wb1 ⌦ · · ·⌦Wbr ,

where the second sum is over partitions of [d] into r labeled blocks. To construct this isomorphism, note
Sd acts on the set of such ordered partitions, with orbits in bijection with {(e1, . . . , er ) | ei � 1,

P
i ei = e},

and each orbit contains a distinguished element with stabilizer Se1 ⇥ · · ·⇥ Ser . Now, Sr acts on the right
by relabeling the blocks and permuting the tensor factors by the Koszul sign rule. And we have that

((Rest M)�2 W)n,d ⇠=
M

r

M[n]t[r ]⌦Sr

✓ M

[d]=b1t···tbr

Wb1 ⌦ · · ·⌦Wbr

◆
.

Next, we have that

Kd(M)n =

M

p2P(d)

M[n]tp⌦ Hr(p)(N[p, 1̂], Z
[p,1̂]

; R).

Let p 2 P(d) be a partition with r blocks. There is an isomorphism of posets
Y

b block of p

P(b)! [p, 1̂],

given by disjoint union. Choose an arbitrary labeling of the blocks of p as b1, . . . , br , giving a bijection
�p : p ! [r ]. Since for any pair of posets P and Q with top and bottom elements, we have that
Z P⇥Q = NP ⇥ Z Q [ Z P ⇥NQ, and the Künneth formula for pairs gives

Kun�p : Hr(p)(N([p, 1̂]), Z
[p,1̂]

)⇠= H|b1|�1(NP(b1), ZP(b1))⌦ · · ·⌦ H|br |�1(NP(br ), ZP(br ))

= Wb1 ⌦ · · ·⌦Wbr .

Here the coefficients are in R, and we have used the fact that by the universal coefficient theorem, Wb is
a free R module. For a different ordering of the blocks, the Künneth isomorphism we obtain differs by a
permutation of the tensor factors modified by a sign according to the Koszul sign rule. Then summing the
morphism Mid[n]t�p ⌦Kun�p over all partitions p of [d] with r blocks, we obtain an isomorphism

M

p

M[n]tp⌦ Hr(p)(N([p, 1̂]), Z
[p,1̂]

)⇠= M[n]t[r ]⌦Sr

✓ M

[d]=b1t···tbr

Wb1 ⌦ · · ·⌦Wbr

◆
.

This isomorphism does not depend on the choices of �p, because any two choices differ by an element
of Sr , and in the target we have quotiented by the action of Sr . It is compatible with the action of Sn

and Sd , and hence an isomorphism of representations.
To check the compatibility with ⌧ 2 Sd , let p 2 P(d) and label the blocks of p and ⌧ (p) such that ⌧

maps the i-th block of p to the i-th block of ⌧ (p). Then both pairs of maps Mid[n]t�p , Mid[n]t�⌧ (p)
and

Kun�p , Kun�⌧ (p) are compatible with the action of ⌧ . ⇤



Categorifications of rational Hilbert series and characters of FSFSFSop
modules 2467

8A. Symmetric functions and Frobenius characters. We now specialize to R = Q. For the remainder of
this paper, we will work with FSop modules over Q. Since all of the irreducible representations of Sn are
defined over Q, all of our arguments and results carry over to FSop modules over any field of characteristic
zero.

Definition 8.5. Let be 3 be the ring of symmetric functions with Q coefficients, 3n the subspace of
symmetric functions of degree n, and 3̂ :=

Q
n2N3n its completion with respect to the filtration by

degree.
We use standard notation for symmetric functions. Let � = 1m12m2 . . . be an integer partition. We

write p� for the power-sum monomial
Q

i pmi
i . Similarly e�, h�, and s�, denote respectively the elementary,

homogeneous, and Schur symmetric functions corresponding to �. An element of f 2 3̂ admits a unique ex-
pansion as a power series with respect to any of these collections of monomials. For instance, we may write

f =

X

�

a� p�

for a unique vector (a�) 2
Q
� integer partition Q.

We set �! :=
Q

i mi ! and z� := �!
Q

i (i)
mi and sgn(�) =

Q
i even (�1)mi . We define |�| :=

P
i imi and

rank(�) :=
P

i mi and write �� to denote an element of the conjugacy class of S|�| corresponding to �.
Thus sgn(�) is the trace of �� on the sign representations of S|�|.

The Hall inner product on 3 is defined by

hp�/z�, p⌫i= �(�, ⌫) = hs�, s⌫i,

for �(�, ⌫) the Kronecker delta. The Hall inner product extends uniquely to a pairing h�,�i :3⇥3̂!Q,
which induces an isomorphism 3̂!3⇤, given by s 2 3̂ 7! h�, si. ⇤

Definition 8.6. Let N be a finite-dimensional Sn representation over Q. Then its Frobenius character
ch(N ) 23n is defined to be

ch(N ) :=

X

�`n

Tr(��, ch(N ))
p�
z�

=

X

�`n

mult�(N )s�.

Let M be a finite-dimensional representation of Sn1 ⇥ · · ·⇥Snr . Then

ch(M) 23n1 ⌦ · · ·⌦3nr

is uniquely defined by setting ch
�Nr

i=1(Ni )
�
=

Nr
i=1 ch(Ni ) and extending bilinearly. For D a bounded

finite-dimensional chain complex of Sn1 ⇥ · · ·⇥Snr representations, we define

ch(D) :=

X

i

(�1)i ch(Hi (D)) =

X

i

(�1)i ch(Di ).

Finally, if C is a chain complex of finite-dimensional
�F

n Sn
�r representations which is bounded for

each (n1, . . . , nr ), we define ch(C) 2 d3⌦r =
Q

(n1,...,nr )
3n1 ⌦ · · ·⌦3nr to be

P
(n1,...,nr )

ch(Cn1,...,nr ).
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The Frobenius character intertwines operations on chain complexes of S• representations and operations
on symmetric functions. We have that ch(M � N ) = ch(M)[ch(N )], where the square brackets denote
plethysm [Stanley 1999, A2.6]. And ch(Rest M) =1(ch(M)), where 1 : 3̂! d3⌦2 is the coproduct,
characterized by 1(pi ) = 1⌦ pi + pi ⌦ 1 for i 2N. These compatibilities are standard for ordinary Sn

representations: for a discussion of their extension to chain complexes, see for instance [Getzler 1995, §5].

8B. Character computation. To translate Proposition 8.4 into a statement about Frobenius characters,
we need the following.

Proposition 8.7 [Stanley 1982]. Let µ : N�1! {1, 0,�1} be the arithmetic Möbius function. Then

ch(W) = w :=

X

d�1

µ(d)

d
log(1 + pd).

The element w is the plethystic inverse of
P

n�1 hn .

Definition 8.8. We write @n for the differential operator on @/@pn : 3̂! 3̂, given by expressing s 2 3̂
as a power series in the pi and differentiating with respect to pn . We define

Dn :=

X

d |n

µ(d)

d
@n/d ,

where µ : N! {+1, 0,�1} is the arithmetic Möbius function. To an integer partition �= 1m12m2 . . . ,
we associate a differential operator, which is a polynomial in the Di defined by

✓
D
�

◆
:=

Y

i

✓
Di

mi

◆
.

The main theorem of this section describes ch(Kd(M)) in terms of ch(M) and the differential opera-
tors

�D
�

�
.

Theorem 8.9. Let M be a chain complex of FSop modules which is bounded and finite-dimensional in
each degree. Let d 2 N such that d � 1. Then there is an identity in \3⌦3,

ch(Kd(M)) =

X

�`d

✓
D
�

◆
ch(M)⌦ p�.

Proof. In terms of symmetric functions, Proposition 8.4 implies that
X

d

ch(Kd(M)) =1(ch(M))[w]2.

The brackets [�]2 denote plethysm in the second factor.
To calculate this expression, note that since 1(pi ) = pi ⌦ 1 + 1⌦ pi for any s 2 3̂, expanding s as a

power series in the p� we have

1(s) =

X

� integer partition

@�(s)
�!
⌦ p�,
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where if �= 1m12m2 . . . , then @� :=
Q

i @
mi
i . Therefore

1(ch(M)) =

X

� integer partition

@�(ch(M))

�!
⌦ p�.

Since p�[w] =
Q

i (w[pi ])
mi and w[pi ] =

P
d�1(µ(d)/d) log(1 + pid) we have

X

d�1

ch(Kd(M)) =

X

�=1m1 2m2 ...

Y

i�1

@
mi
i (ch(M))

mi !
⌦

Y

i�1

✓X

d�1

µ(d)

d
log(1 + pid)

◆mi

.

To rearrange this sum, we introduce formal variables ti which commute with pi and consider the formal
expression

X

�=1m1 2m2 ...

Y

i�1

tmi
i

mi !

✓X

d�1

µ(d)

d
log(1+ pid)

◆mi

= exp
✓X

i

ti
✓X

d

µ(d)

d
log(1+ pid)

◆◆

= exp
✓X

n�1

log(1+ pn)
X

d |n

µ(d)

d
tn/d

◆
=

Y

n�1

(1+ pn)
Tn ,

where Tn :=
P

d |n(µ(d)/d)tn/d and the final expression is interpreted as a power series via the binomial
theorem (1 + pn)

Tn =
P

k
�Tn

k

�
pk

n . Expanding the product, we see that this expression equals
X

�=1m1 2m2 ...

p�
Y

i

✓
Ti

mi

◆
.

Now, we may interpret the formal variables ti (resp. pi ) as the operators \3⌦3! \3⌦3 defined by
a⌦ b 7! @i (a)⌦ b (resp. a⌦ b 7! a⌦ pi b), because these operators commute with each other. Applying
the operator defined by our formal expression in pi , ti to ch(M)⌦ 1, we obtain an equality

X

d

ch(Kd(M)) =

X

�

✓
D
�

◆
ch(M)⌦ p�.

Equating degree d pieces in the second factor, we obtain the desired result. ⇤

9. Differential equations and characters of bounded type

In this section, motivated by Theorem 8.9, we first describe the solution space to a system of differential
equations involving

�D
�

�
. Then we introduce a notion of type of FSop module and rephrase the results so

far in terms of the type. We also prove Theorem 1.11.

9A. Solution space to a system differential equations. It is convenient to introduce generators of 3̂
adapted to Di .

Definition 9.1. For n 2 N define

yn :=

X

k�1

pnk

k
=

X

i

�log(1� xn
i ).
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The elements yn satisfy several elementary identities: for example, y1 = log
�P

n�0 hn
�

and yn = y1[pn].
The most important one follows from Möbius inversion:

Proposition 9.2. For all n, m � 1 we have Dn(ym) = �(n, m), where �(n, m) is the Kronecker delta.

Proof. We have
ym =

X

e, m |e

(m/e)pe.

So

Dn(ym) =

X

d |n

µ(n/d)

n/d
@d

X

e, m |e

(m/e)pe =

X

e, m |e |n

µ(n/e)
(n/e)

(m/e).

Factoring out m/n and applying Möbius inversion for the poset (N�1, | ), we see that this sum is 1 if n = m
and zero otherwise. ⇤

A similar Möbius inversion to Proposition 9.2 yields

pn =

X

d�1

µ(d)

d
ynd .

Definition 9.3. Let (3̂)
pow
i denote the closure of the span of the degree i monomials in the power-sum

symmetric functions. Thus an arbitrary element of (3̂)
pow
i takes the form

X

(m1,m2,...)P
m j =i

a(m1,...)

Y

j

pm j
j ,

for some choice of a(m1,...) 2Q. We also write (3̂)
pow
i :=

L
ji (3̂)

pow
j .

Our main theorem of this section describes the space of solutions to a system of differential equations.

Theorem 9.4. Let j1 � j2 � · · · � jr 2 N. Then the space of solutions in 3̂ to the system of linear
differential equations

✓
D
�1

◆
· · ·

✓
D
�r

◆
s = 0 for all (�1, . . . , �r ) integer partitions such that |�t |� jt (9.5)

is the subspace
rX

t=1

(3̂)
pow
t�1

⇢
exp

✓X

i�1

ai yi

◆ ��� A = 1a12a2 . . . and |A| < jt
�
.

Example 9.6. Let r = 2, j1 = 3 and j2 = 2. Then Theorem 9.4 states that the space of solutions to (9.5)
is the closure of the span of

{1, exp(y1), exp(y2), exp(2y1)}[ {pk, pk exp(y1)}k2N.

The proof of Theorem 9.4 is straightforward, but occupies some space. We defer the proof until the
end of this section, and first explain the consequences of Theorem 9.4.
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9B. Spaces of characters of type < J. To summarize the results so far, we introduce a notion of type
for FSop modules.

Definition 9.7. Let M be an FSop module let J be the integer partition j1 � j2 � · · ·� jr . We say that M
has type < J if

K`r � · · · �K`1(M)

is exact for all choices of `t � jt .

Remark 9.8. By Proposition 3.17 and the quasi-isomorphism Kd
⇠�! Bd , we may equivalently define M

to have type < J if K`1 � · · · �K`r (M) is exact for all choices of `t � jt . ⇤

In terms of the type, Theorem 1.2 states that if M is a subquotient of an FSop module generated
in degree d, then there exists an r � 0 such that M has type < (d + 1)dr�1. (Here (d + 1)dr�1 is the
partition d + 1� d � · · ·� d , with d repeated r � 1 times.) Theorem 8.9 implies that if M has type < J ,
then s = ch(M) satisfies the system of differential equations (9.5). (Note that the collection of operators��D
�

� 
� partition all commute.) Theorem 9.4 describes the space of solutions to this system of equations,

and thus constrains characters of FSop modules of type < J . We introduce some terminology in order to
restate these results in a convenient way.

Definition 9.9. Let A = 1a12a2 . . . be an integer partition and r 2N such that r > 1. We define VA,r ✓ 3̂

to be the subspace

VA,r := exp
✓X

i

ai yi

◆
(3̂)pow

<r .

By convention VA,0 = 0. Note that VA,r is 1-dimensional for r = 1 and infinite-dimensional for r > 1.

Let J = j1 � · · ·� jr be an integer partition. Theorems 8.9 and 9.4 combine to show:

Theorem 9.10. If M is an FSop module of type < J for J = j1 � · · ·� jr , then

ch(M) 2
M

A integer partition

VA,t (A,J ) ✓ 3̂,

where t (A, J ) is the number of i 2 {1, . . . , r} such that ji > |A|.

Proof. By Theorem 8.9, if M has type < J then

0 = ch(K`1 �K`2 · · · �K`r (M)) =

X

�1``1,...,�r``r

✓ rY

i=1

✓
D
�i

◆
ch(M)

◆
⌦ p�1 ⌦ · · ·⌦ p�r ,

for all `t � jt . Since the terms p�1⌦ · · ·⌦ p�r are linearly independent, ch(M) satisfies the equations (9.5).
Since

L
A integer partition VA,t (A,J ) is simply an alternate description of the solution space of Theorem 9.4,

the result follows. ⇤

In particular, we have the following immediate corollary, in the case J = d .
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Corollary 9.11. If M is an FSop module and Kd(M) is exact, then ch(M) is contained in the finite-
dimensional subspace of 3̂ spanned by exp

�P
i ai yi

�
for all integer partitions A = 1a12a2 . . . such

that |A| < d.

In fact, the statement of Corollary 9.11 is sharp, in the sense that the characters of projective FSop

modules generated in degree d span the subspace.
In contrast, when J = j1 � · · · � jr for r > 1 the space of solutions to (9.5) is no longer finite-

dimensional. For instance, the space V0,1 consists of arbitrary linear combinations of the power-sum
symmetric functions.

However, for any d > 0 the image of VA,r under the ring homomorphism

3̂!
^

Q[p1, p2, . . . , pd ]

setting pi = 0 for i > d is finite-dimensional. In the next section, we combine this fact together with
the constraint that the irreducible representations appearing in a finitely generated FSop module have
bounded rank to produce finite-dimensional spaces of FSop characters.

Finally, in the special case J = ds�1(d + 1)1, Theorem 9.10 implies Theorem 1.11, as follows.

9C. From symmetric functions to class functions. We show how to recover the results of the introduction,
stated in terms of class functions, from the results of the body of the paper, stated in terms of symmetric
functions.

There is a one-to-one correspondence between elements of 3̂ and class functions on
F

n Sn , under
which ch(M) corresponds to the character of M , � 7! Tr(�, M). If s 2 3̂, then s corresponds to the class
function �� 7! hp�, si, where �|�| 2 S|�| is an element in the conjugacy class of the integer partition �.

The following fact allows us to translate into the language of the introduction.

Proposition 9.12. Let A = 1a12a2 . . . and ⌫ = 1`12`2 . . . integer partitions. Then the symmetric function
(p⌫/z⌫) exp

�P
i ai yi

�
corresponds to the class function

✓
X

⌫

◆
AX�⌫

=

Y

n�1

✓
Xn

`n

◆✓X

d |n

dad

◆Xn�`n

.

Proof. Let � be an integer partition. We wish to determine
⌦
p�, (p⌫/z⌫) exp

�P
i ai yi

�↵
, in other words, the

coefficient of p�/z� in the power series expansion of (p⌫/z⌫) exp
�P

i ai yi
�
. To do this, it is convenient

to introduce the variables tn := pn/n, so that if �= 1m12m2 . . . , we have (p�/z�) =
Q

i (t
mi
i /mi !), and

exp
✓X

i�1

ai yi

◆
=

Y

n�1

exp
✓

tn
X

d |n

dad

◆
=

✓Y

n�1

1X

m=0

(tn)m

m!

✓X

d |n

dad

◆m◆
.

Now, if ⌫ = 1`12`2 . . . , we have

p⌫
z⌫

exp
✓X

i

ai yi

◆
=

Y

n�1

✓ 1X

m=0

t`n
n

`n!

(tn)m

m!

✓X

d |n

dad

◆m◆
.
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So the coefficient of
Q

n(t
mn
n /mn!) is

Y

n

✓
mn

`n

◆✓X

d |n

dad

◆mn�`n

. ⇤

Proof of Theorem 1.11. Let M be an FSop module of class (d, s). Then, by definition, M has type
< ds�1(d + 1)1. Thus, by Theorem 9.10,

ch(M) 2
M

A`d

VA,1�
M

A integer partition
|A|<d

VA,s .

Concretely, this means that ch(M) is an infinite sum of terms proportional to p⌫ exp
�P

i ai yi
�
, with

restrictions on the ⌫ and ai appearing. Using Proposition 9.12 to translate, we obtain Theorem 1.11. ⇤

9D. Proof of Theorem 9.4.

Proof of Theorem 9.4. Using the transition matrix between {pi } and {yi }, we may write any s 2 3̂ as a
power series in the variables {yi }i�1:

s =

X

(d1,d2,...)2N�1

cd1,d2,...

Y

i

ydi
i .

We cut down the space of possible solutions to (9.5) in several steps.
We first note that if s is a solution to (9.5) and (di ) 2N�1 satisfies

P
i� j1 di � r then cd1,d2,... = 0. To

see this apply the operator D0 :=
Q

i (Ddi
i /di !) to s. On the one hand, the constant term of D0(s) is cd1,d2,....

On the other hand, by our hypothesis on (di ), we may choose a monomial yi1 yi2 · · · yir dividing
Q

i ydi
i

with it � j1. Then Di1 · · · Dir divides D0 and taking �t = it we see that (9.5) implies that Di1 · · · Dir (s)= 0
and thus D0(s) = 0.

Therefore, assuming that s satisfies (9.5), we may write

s =

X

w

w fw(y1, . . . , y j1�1), (9.13)

where the sum is over monomials w of degree < d in the variables y j1, y j1+1, . . . . (Throughout this proof,
if
Q

i ydi
i is a monomial we define its degree to be deg(m) :=

P
i di ). Now consider the operators

�Di
j1

�r
for

i =1, . . . , j1�1. Equation (9.5) implies that
�Di

j1

�r
(s) equals zero. Because Di only affects the yi variable,

✓
Di

j1

◆r

fw = 0 for all i = 1, . . . , j1� 1.

These j1� 1 equations have the following consequence.

Lemma 9.14. The function fw is a linear combination of functions of the form

exp
✓ j1�1X

i=1

ai yi

◆ j1�1Y

i=1

ydi
i ,

where (ai ), (di ) 2 N j1�1, and ai < j1 and di < r for all i .
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For each A = 1a12a2 . . . , let VA,r ✓ 3̂ be the subspace of functions of the form

exp
✓X

i

ai yi

◆✓X

m

cmm
◆

, (9.15)

where the sum is over monomials m of degree < r and cm 2Q. Then (9.13) and Lemma 9.14 imply the
crude statement that if s is a solution to (9.5) then

s 2
X

A=(ai )2{0,..., j1�1}r

VA,r .

Note that the linear independence of finitely many exponentials of distinct orders implies that the right-
hand sum is in fact a direct sum. And for any A = 1a12a2 . . . , the action of {Di }i2N preserves VA,r . This
means that the solution space to the system (9.5) is a sum over (ai ) 2 {0, . . . , j � 1}r to the space of
solutions in VA,r . We compute these spaces of solutions in the following lemma.

Lemma 9.16. Let (ai ) 2 N�1. Let
P

m cmm, where cm 2 Q, be a sum over monomials in the yi of
bounded degree. By convention we set jt = 0 if t > r .

The symmetric function s := exp
�P

ai yi
��P

m cmm
�

is a solution to (9.5) if and only if for every
monomial m appearing in the sum with cm 6= 0 we have

P
i iai < jdeg(m)+1.

Assuming the lemma, we have that the space of solutions is spanned by functions of the form
exp

�P
i ai yi

��P
m cmm

�
, where the sum is over monomials m in the yi of degree t�1 and (ai )2N�1 sat-

isfies
P

i iai < jt . Since the change of coordinates between pi and yi is linear, this completes the proof. ⇤
Proof of Lemma 9.14. Set j := j1 and f := fw. Note that the space of solutions to the one-variable
differential equation

�
@u
j

�r
= 0 in the ring Q[[u]] is spanned by the functions ud exp(au) for a, d 2 N,

d < r and a < j , since
�
@u
j

�r
is proportional to @r

u(@u � 1)r · · · (@u � j + 1)r .
To obtain the multivariable statement from the single-variable one, first expand f (y1, . . . , y j ) asP
m m fm(y1), where m is a monomial in y2, . . . , y j . Then each fm(y1) satisfies the single-variable

equation, and hence is a linear combination of yd1
1 exp(a1u) for a1 < j and d1 < r . So we can write

f =

X

m

m
X

a1,d1

cm(a1, d1)yd1
1 exp(a1 y1) =

X

a1,d1

yd1 exp(a1 y1) fa1,d1(y2, . . . , y j�1),

where cm(a1, d1) 2Q is some choice of coefficients; the sum is over a1 (resp. d1) ranging from 0 to j �1
(resp. r � 1); and fa1,d1(y2, . . . , y j ) =

P
m cm(a1, d1)m. Applying this same process to the variable y2 in

the function fa1,d1 and continuing on like this, expanding out the resulting sums, we obtain the result. ⇤
Proof of Lemma 9.16. First suppose that there is a monomial m in the sum such that

P
i iai � jdeg(m)+1.

We may assume that m has maximal degree, since any monomial of degree � deg(m) will also satisfy the
inequality. Write m =

Q
i ydi

i and d = deg(m).
We will choose a sequence of partitions �1, . . . , �max(r,d) such that |�t |� jt and

Qmax(r,d)
t=1

�D
�t

�
does not

annihilate s. This suffices for the forward direction, because it shows that
Qr

t=1
�D
�t

�
does not annihilate s.

Let ⌫ := 1a12a2 . . . , and write
Q

i ydi
i as yi1 · · · yid . For 1  t  d we choose �t = it

t , where t 2 N is
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sufficiently large that t > ait and t it � jt . If d < t  r , we set �t := ⌫. In both cases, by construction
we have |�t |� jt , since |�t | = t it � jt and |�t | =

P
i iai � jd+1 � jt respectively.

That the operator corresponding to this choice of (�t)
max(r,d)
t=1 does not annihilate s follows from two

claims:

(1)
�D
�1

�
· · ·

�D
�d

�
(s) is a nonzero scalar times exp

�P
i ai yi

�
.

(2) exp
�P

i ai yi
�

is an eigenvector for
�D
⌫

�
with nonzero eigenvalue.

To see claim (1), we factor
✓

D
�1

◆
· · ·

✓
D
�d

◆
=

✓
Di1

1

◆
· · ·

✓
Did

d

◆

as D0
Q

i (Di�ai )
di , where D0 is a nonzero scalar times a product of terms of the form (Di�bi ) for bi 6= ai .

Let n =
Q

i yei
i be a monomial distinct from m. Then by maximality of the degree of m there exists

an i0� 1 such that ei0 < di0 , so the factor (Di0�ai0)
di0 annihilates n exp

�P
i ai yi

�
. Therefore we have that�D

�1

�
· · ·

�D
�d

�
(s) =

�D
�1

�
· · ·

�D
�d

��
cmm exp

�P
i ai yi

��
. Further, we have that

�Q
i (Di �ai )

di m exp
�P

i ai yi
��

is a nonzero scalar times exp
�P

i ai yi
�
. And because (D� bk) exp

�P
i ai yi

�
= (bk � ak) exp

�P
i ai yi

�
,

we see that exp
�P

i ai yi
�

is an eigenvector of D0 with nonzero eigenvalue, establishing the first claim.
To see the second claim, notice that

�D
⌫

�
is a nonzero scalar times a product of operators of the form

(Di � bi ) for bi < ai .
For the converse, let

Q
i ydi

i be a monomial of degree d and suppose that
P

i iai < jd+1. (Note that
this implies d < r .) Let (�1, . . . , �d+1) be a sequence of integer partitions with |�t |� jt . We show that

✓ d+1Y

t=1

✓
D
�t

◆◆
exp

✓X

i

ai yi

◆✓Y

i

ydi
i

◆
= 0. (9.17)

The converse follows from this statement via linearity and the fact that if the product of the first d operators
annihilates s then so does the full product.

To see that (9.17) holds, note that for each �t = 1m1,t 2m2,t . . . , there must exist an i such that mi,t > ai ,
since otherwise we would have

|�t | =

X

i

imi,t 
X

i

iai < jd+1  jt ,

contradicting the hypothesis on �t . For each t choose such an i , and denote it by it . Then
Qd+1

t=1 (Dit �at)

is a factor of
�Qd+1

t=1
�D
�t

��
. Because (Dk � ak)

�
m exp

�P
i ai yi

��
= exp

�P
i ai yi

�
Dk(m), we see that each

factor in the product
Qd+1

t=1 (Dit � at) reduces the degree of the coefficient of exp
�P

i ai yi
�

by one. Since
there are d + 1 factors and

Q
i ydi

i has degree d we have that
✓ d+1Y

t=1

(Dit � at)

◆
exp

✓X

ai

yi

◆✓Y

i

ydi
i

◆
= 0,

finishing the proof of the converse. ⇤
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10. Characters of bounded rank

In Sections 8 and 9, we examined the constraints on the characters of FSop modules of type < J for J
an integer partition. The purpose of this section is to study an additional constraint on the characters of
FSop modules.

Definition 10.1. Let M be an S• module over Q. Let k 2N. We say that rank(M) k if, in the decompo-
sition of Mn into irreducibles, every irreducible representation appearing corresponds to a Young diagram
with  k rows. We say that an FSop module has rank  k when its underlying S• representation does.

Definition 10.2. We write Fk ✓ 3̂ for the closure of the span of Schur functions s� such that the Young
diagram of � has  k rows.

Notice that an S• representation M has rank  k if and only if ch(M)2Fk . The reason that the rank is
useful is the following folklore proposition, which appears in [Proudfoot and Young 2017, Theorem 4.1].

Proposition 10.3. Let M be an FSop module over Q. If M is a subquotient of a module generated in
degree  d , then rank(M) d.

Therefore, by Theorems 1.2 and 9.10, if M is a subquotient of an FSop module generated in degree d ,
there exists an r 2 N such that ch(M) 2 3̂ lies in the subspace

Fd \

✓M

A`d

VA,1�
M

A integer partition
|A|<d

VA,r

◆
.

In this section, we prove that this intersection is finite-dimensional, and characterize it using the Hall
inner product.

Definition 10.4. Write ✏k : 3̂!
^

Q[p1, . . . , pk] for the specialization homomorphism pi 7! pi for i  k
and pi 7! 0 for i > k.

We prove the following theorem over the course of this section.

Theorem 10.5. Let Ai for i 2 I be a finite collection of distinct integer partitions, and let ri 2 N for i 2 I
be a finite collection of natural numbers (not necessarily distinct). Let k 2 N and k �maxi (|Ai |). Then

Fk \
M

i2I

VAi ,ri =

M

i2I

Fk \VAi ,ri .

Further, given any element s 2 3̂, there is a unique element ⇡k(s) 2 Fk such that

✏k(⇡k(s)) = ✏k(s).

And if s 2 VAi ,ri , then ⇡k(s) 2 VAi ,ri .

Because the space ✏k(VA,r ) is finite-dimensional, Theorem 10.5 implies that Fk \ VA,r is finite-
dimensional, since the elements of this intersection are uniquely determined by their image in ✏k(VA,r ). In
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particular, the elements ⇡k
�

p⌫ exp
�P

i ai yk
��

, where p⌫ ranges over degree < r monomials in p1, . . . , pk ,
form a basis of Fk \VA,r , because ✏k

�
p⌫ exp

�P
i ai yk

��
is a basis for ✏k(VA,r ).

Under the correspondence between class functions and symmetric functions, the specialization ✏k

corresponds to restricting the class function to elements � 2 Sn whose cycles all have length  k. So
Theorem 10.5 provides a unique lift from restricted class functions to class functions.

Assuming Theorem 10.5, we can prove Theorem 1.13.

Proof of Theorem 1.13. Let (d, s) 2 N2. If M has type (d, s) then by Proposition 10.3 we have that the
rank of M is  d and M has type < J for J = ds�1(d + 1). Define

Ud,s :=

M

A`d

Fd \VA,1�
M

A integer partition
|A|<d

Fd \VA,s .

By Theorems 10.5 and 9.10, we have that ch(M) 2 Ud,s . Since the elements ⇡k
�

p⌫ exp
�P

i ai yk
��

,
where p⌫ ranges over degree < r monomials in p1, . . . , pk , form a basis of Fk \VA,r , we see that Ud,s

has dimension p(d) +
�d+s�1

s�1

�P
i<d p(i), where p(i) is the number of integer partitions of i . ⇤

To prove Theorem 10.5 and describe the projection operator ⇡k : 3̂! Fk , we characterize the spaces
Fk and VA,r using the Hall inner product.

Definition 10.6. If W is a subspace of 3, we write W? ✓ 3̂ for the perpendicular space with respect to
the Hall inner product, characterized by the property t 2W? if and only if hw, ti= 0 for all w 2W .

We record the following general fact from linear algebra.

Proposition 10.7. Let W ✓ 3. The Hall inner product induces an isomorphism W? ! (3/W )⇤, by
t 7! h�, ti. In particular, there is a unique element of W? corresponding to every linear function
L :3/W !Q, namely, X

� integer partition

L([p�]) p�,

where [p�] denotes the equivalence class of p� mod W .

The next two propositions characterize Fk and VA,r as the perpendicular spaces to two different ideals
in 3. The first is certainly known, but we do not have a reference so we include the proof.

Proposition 10.8. Let (ek+1, ek+2, . . . )3 be the ideal of 3 generated by ei for i > k. Then

Fk = ((ek+1, ek+2, . . . )3)?,

with respect to the Hall inner product.

Proof. For � an integer partition, we write rank(�) for the number of rows in the Young diagram of �.
Write t =

P
� b�s� for b� 2Q. Let w 23 and i > k. By [Stanley 1999, 7.15.4],

hwei , ti=
X

�

b�hwei , s�i=
X

�

b�hw, s�/1i i.
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If t 2 Fk then b� = 0 for all � of rank > k. By the (transpose of) the Pieri rule [Stanley 1999, 7.15.9],
we have that s�/1i is zero if � does not have rank � i . Hence hwei , ti= 0, and so Fk ✓ (ek+1, . . . )3

?.
For the converse note that the degree n component of the ideal (ek+1, . . . )3 is spanned by the set

of e� where � ` n is an integer partition with > k columns in its Young diagram. Thus its perpendicular
space in 3̂n has the same dimension as the number of integer partitions of n with  k columns. Taking a
transpose, we see that this is the same as the dimension of the degree n component of Fk . Thus the
containment Fk ✓ (ek+1, . . . )3

? is an equality. ⇤

Proposition 10.9. Let A = 1a12a2 . . . , and let r 2 N such that r > 1. Define un := pn �
P

i |n iai for
all n � 1. Then Let (u1, u2, . . . )

r3 be the r-th power of the ideal generated by the un. Then

VA,r = ((u1, u2, . . . )
r3)?,

with respect to the Hall inner product.

Proof. Any element t 2 3̂ can be expanded uniquely as

t =

X

� integer partition

c� p� exp
✓X

i

ai yi

◆

for c� 2Q, because the lowest degree term of p� exp
�P

i ai yi
�

is p�. Then t 2 3̂ if and only if c� = 0
for all � whose Young diagrams have � r rows.

For �= 1m12m2 . . . , put u� :=
Q

i umi
i .

Lemma 10.10. We have that ⌧
u�
z�

, p⌫ exp
✓X

i

ai yi

◆�
= �(�, ⌫),

where �(�, ⌫) is the Kronecker delta.

Proof. First notice that for any � and ⌫ we have

h@i (p�/z�), p⌫i= hp�/z�, (pi/ i)p⌫i,

using the fact that hp�/z�, p⌫i= �(�, ⌫). By linearity, it follows that the operator @i and multiplication
by pi/ i are adjoint. Thus for any pair of symmetric functions f 23, g 2 3̂ we have that

⌧
f, g exp

✓X

d�1

ad yd

◆�
=

⌧
f, g exp

✓X

d�1

add
X

d |k

pk/k
◆�

=

⌧
exp

✓X

d

add
X

d |k

@k

◆
f, g

�
.

Taylor expanding with respect to pk , we see that for any k 2N, the operator exp(@k) acts on 3 by the ring
homomorphism pk 7! pk + 1 and pn 7! pn for d 6= k. Thus we have that exp

�P
d dad

P
k @k

�
acts on 3

by the substitution pn 7! pn +
P

d |n dad . In particular, we have that exp
�P

d dad
P

k @k
�
u� = p�. So

⌧
u�/z�, p⌫ exp

✓X

d

ad yd

◆�
= hp�/z�, p⌫i= �(�, ⌫). ⇤
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Applying Lemma 10.10 to the expansion of t , we see that t 2 VA,r if and only if hu�/z�, ti= 0 for all
�= 1m12m2 . . . such that

P
i mi � r . Rescaling by z�, we see that t 2 VA,r if and only if every degree � r

monomial in the ui pairs to zero with it. Taking linear combinations of monomials finishes the proof. ⇤
Since sums of subspaces correspond to intersections of perpendicular spaces, Propositions 10.8 and 10.9

imply:

Proposition 10.11. Let A = 1a12a2 . . . , let un = pn �
P

i |n iai , and let r 2 N. Then

VA,r \Fk = ((u1, u2, . . . )
r
+ (ek+1, ek+2, . . . ))

?.

Next we need:

Proposition 10.12. The ring homomorphism

◆k : Q[p1, . . . , pk]!3/(ek+1, . . . ),

given by ◆k(pi ) := pi , is an isomorphism. In particular, the images of {p�/z�}�=1m1 ...kmk in 3/(ek+1, . . . )

form a basis. Here � ranges over partitions whose associated Young diagrams have  k columns.

Proof. We have that 3/(ek+1, . . . ) = Q[e1, . . . , ek] ⇠= Q[x1, . . . , xk]
Sk is isomorphic to the ring of

symmetric functions in k variables. It is well known that the power sums p1, . . . , pk form an independent
set of generators of this ring. ⇤

Now Propositions 10.7, 10.8, and 10.12 allow us to define ⇡k(s).

Definition 10.13. Let s 2 3̂. We define ⇡k(s) 2 Fk to be the element corresponding (as in Proposition
10.7) to the linear function 3/(ek+1, . . . )!Q defined by p�/z� 7! hp�/z�, si for all integer partitions
�= 1m1 . . . kmk whose Young diagrams have  k columns.

Because hp�/z�, ti is precisely the coefficient of p� in the power-sum expansion of t , it is clear that s
and ⇡k(s) have the same image under ✏k . And by Propositions 10.7, 10.8, and 10.12, ⇡k(s) is the only
element of Fk with this property.

To actually compute ⇡k(s) as a sum of power functions, as in Proposition 10.7, we need to know
how to write p⌫ as a sum of monomials in p1, . . . , pk under the specialization 3! 3/(ek+1, . . . ) ⇠=

Q[x1, . . . , xk]
Sk .

Proposition 10.14. Let A = 1a12a2 . . . be an integer partition and r, k 2N, and let un denote the difference
pn �

P
d |n dad. Suppose that k � n. Let (u1, u2, . . . )r be the image of (u1, u2, . . . )

r in 3/(ek+1, . . . ).
Then ◆�1

k ((u1, u2, . . . )r ) = (u1, . . . , uk)
r .

Proof. It suffices to show that ◆�1
k ((u1, u2, . . . )) = (u1, . . . , uk), where (u1, u2, . . . ) is the image of

(u1, u2, . . . ) in 3/(ek+1, . . . ).
Now ◆�1

k ((u1, u2, . . . )) clearly contains (u1, . . . , uk), which is a maximal ideal. So it suffices to prove
that (u1, u2, . . . ) is a proper ideal of 3/(ek+1, . . . ). To do this, we construct a nontrivial homomorphism
3/(ek+1, . . . )!Q under which ui vanishes.
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Consider the Z-set S :=
F

d�1(Z/d ⇥ [ad ]). Linearizing it we obtain an |A|-dimensional vector
space QS and an operator T : QS!QS defined to be the action of +12Z. Then there is a specialization
homomorphism  :3!Q defined by

pn 7! Tr(T n, QS).

Since QS has dimension |A| k we have that
Vi

QS = 0 for all i > k. Thus (ei ) = Tr
�
T,

Vi
QS

�
= 0

for all i > k. So  factors through 3/(ek+1, . . . ). Finally, (pn) is the number of fixed points of the
action of +n 2 Z on S. If d | n then +n fixes all of the points of Z/d , otherwise it fixes none of them. So
we see that the number of fixed points of +n is

P
d |n dad . Therefore (un) = 

�
pn �

P
d |n dad

�
= 0.

Thus  is the desired homomorphism with kernel (u1, u2, . . . )+ (ek+1, . . . ) and so we are done. ⇤

Remark 10.15. The homomorphism  constructed in the proof of Proposition 10.14 can also be directly
given by pn 7! pn(⇣1, ⇣2, . . . , 0, 0, . . . ), where the ⇣i are the roots of unity obtained by diagonalizing T . ⇤

Proposition 10.14 has the following immediate consequence.

Proposition 10.16. Let A = 1a12a2 . . . , and let un = pn �
P

i |n iai . There is an isomorphism

Q[u1, . . . , uk]

(u1, . . . , uk)r !
3

(u1, u2, . . . )r + (ek+1, ek+2, . . . )

induced by the maps ui 7! ui for i = 1, . . . , k.

Proof. The morphism is surjective because its image equals the image of Q[p1, . . . , pk], and it is injective
by Proposition 10.14. ⇤

Proposition 10.17. Let A be an integer partition such that |A| k. If s 2 VA,r then ⇡k(s) 2 VA,r .

Proof. Let A = 1a12a2 . . . , and let ui = pi �
P

i iai . By Proposition 10.9, it suffices to show that
hb,⇡k(s)i = 0 for every b 2 (u1, u2, . . . )

r . Consider ◆�1
k (b) 2 Q[p1, . . . , pk]. By Proposition 10.14 it

lies in the ideal (u1, . . . , uk)
r . By Propositions 10.9 and 10.7, it suffices to show that hm,⇡k(s)i = 0,

where m is any degree > r monomial in u1, . . . , uk . Because m is a linear combination of monomials
in p1, . . . , pk , by the definition of ⇡k(m) we have that hm,⇡k(s)i= hm, si= 0. ⇤

Proof of Theorem 10.5. We have already constructed ⇡k and shown that it is unique. Proposition 10.17
states that ⇡k preserves the subspace VA,r when k � |A|. It remains to show that Fk \

L
i2I VAi ,ri =L

i2I Fk\VAi ,ri . Suppose that we have si 2VAi ,ri such that
P

i2I si 2Fk . The operator ⇡k is projection
onto the subspace Fk , so we have

P
i2I si = ⇡k

�P
i2I si

�
=

P
i ⇡k(si ). By linear independence of VAi ,ri

and the fact that ⇡k(si ) 2 VAi ,ri , it follows that ⇡k(si ) = si for all i . Thus all of the si are in Fk . This
completes the proof. ⇤

Finally, we include an alternate description of Fk , which can be used to compute ⇡k quickly some cases.

Proposition 10.18. Let (3̂)
homog
k denote the closure of the span of monomials of degree  k in the

homogenous symmetric functions. Then Fk = (3̂)
homog
k .
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Proof. We need to show that the closure of the span s�, where � are integer partitions with  d rows,
equals (3̂)

homog
d . By the Pieri rule [Stanley 1999, 7.15.9], we have that every monomial hi of length  d

is a sum of such s�, showing one direction of the containment. To prove equality, observe that in degree n
the two subspaces have the same dimension: the number of integer partitions of n with  d rows. ⇤

We conclude this section with an example.

Example 10.19. Consider the space V1,2, which is the closure of the span of exp(y1) and {pn exp(y1)}n�1.
Then, because

exp(y1) =

X

n�0

hn,

we have ⇡2(exp(y1)) = exp(y1) and ⇡2(p1 exp(y1)) = p1 exp(y1). We also have that ⇡2(pn exp(y1)) = 0
for n � 3, because ✏2(pn exp(y1)) = 0. So the interesting case is ⇡2(p2 exp(y1)). Observe that we have

X

n�2

pn exp(y1) =

X

n�2

nhn

by Newton’s identity. Hence this element lies in F2 and its image under ✏2 agrees with p2 exp(y1). So it
must be ⇡2(p2 exp(y1)).

It is also possible to compute ⇡2(p2 exp(y1)) directly from Definition 10.13. We describe a systematic
method for computing ⇡k in Section 11D.

11. Generating functions valued in the dual character space

We begin with a summary of what we know so far. First, Theorems 10.5 and 9.10 immediately imply the
following.

Theorem 11.1. Let J = j1 � · · ·� jr be an integer partition, and let k 2 N satisfy k � j1. Then if M is
an FSop module of type < J and rank  k, we have

ch(M) 2
M

A integer partition

Fk \VA,t (A,J ), (11.2)

where t (A, J ) = #{i 2 {1, . . . , r} | ji > |A|}.

In this section, we study each summand of (11.2) individually. Thus, for the remainder of this section,
we fix an integer partition A = 1a12a2 . . . and r, k 2 N such that |A|  k. We set un := pn �

P
d |n dad

and u� :=
Q

i umi
i for �= 1m1 . . . an integer partition. We will consider VA,r \Fk and the projection

operator ⇡k : VA,r ! VA,r \Fk .
Now, Propositions 10.11 and 10.16 show that there are isomorphisms

VA,r \Fk ⇠=

✓
3

(u1, u2, . . . )r + (ek+1, ek+2, . . . )

◆⇤
⇠=

✓
Q[u1, . . . , uk]

(u1, . . . , uk)r

◆⇤
, (11.3)

which take an element s 2Fk\Va,r to the function h�, si :3!Q, and to the restriction of this function
to degree < r monomials in u1, . . . , uk .
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11A. An interpretation. We can interpret the isomorphisms of (11.3) in the following way, which
we find clarifying. Let ch(V ) 2 3̂ be the character of some sequence of Sn representations V . Then
elements m 2 3 correspond to different measurements that we can perform on V , by taking the inner
product hm, ch(V )i. For example:

• The element m = p� measures the trace of an element of S|�| with cycle type �:

hp�, ch(V )i= Tr(��, V|�|).

• The element m = hn measures the dimension of the space of Sn invariants:

hhn, ch(V )i= dim(Vn)
Sn .

• The element m = u� measures the coefficient c� in the unique expansion

ch(V ) =

X

� integer partition

c�
p�
z�

exp
✓X

i�1

ai yi

◆
,

by Lemma 10.10.

In these terms, the first isomorphism states that if ch(V ) 2 VA,r \Fk then the value of the measure-
ment m 23 only depends on its image in the quotient 3/((u1, u2, . . . )

r + (ek+1, ek+2, . . . )). (Measure-
ments that were independent for arbitrary characters are correlated for elements of VA,r \Fk .) And
the second isomorphism shows that to determine the value of an arbitrary measurement m 23 we can
proceed in two steps:

(1) Compute the measurements, which are monomials in u1, . . . , uk .

(2) Express the image of m in the quotient ring as a linear combination of monomials in u1, . . . , uk .

Step (2) is nontrivial, since we have to actually compute the isomorphism which Proposition 10.16
provides abstractly. One can use Gröbner bases to algorithmically reduce m into a normal form, but this
does not yield explicit formulas. The purpose of this section is to introduce a strategy for accomplishing
step (2) in the cases m = u� and m = hn , using generating functions. We use this strategy to construct an
explicit basis for VA,r \Fk , to describe how to compute ⇡k , and to prove Theorem 1.17.

11B. A generating function identity. We let R :=3/((u1, u2, . . . )
r + (ek+1, ek+2, . . . )) be the quotient

ring, and write f :3! R for the quotient homomorphism.
Let � be an integer partition. We wish to express f (u�) as a linear combination of f (u⌫), where

⌫ = 1`1 . . . k`k has  k columns (in other words u⌫ is a monomial in u1, . . . , uk). Our strategy is to first
compute this expression for f (un) and then use the homomorphism property to compute it for f (u�).
Accordingly, we compute an expression for the R-valued generating function

X

n�0

f (un)

n
tn
2 R[[t]].
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We will also consider generating functions valued in3 (i.e., elements of3[[t]]). There is a specialization
homomorphism f :3[[t]]! R[[t]], given by applying f :3! R coefficientwise. Now, consider

exp
✓
�

X

n

untn/n
◆
23[[t]].

We have

exp
✓
�

X

n�1

untn/n
◆

= exp
✓
�

X

n�1

pntn/n
◆

exp
✓X

n�1

X

i |n

iai tn/n
◆

= exp
✓
�

X

n�1

pntn/n
◆

exp
✓ X

e,i�1

ai (t i )e/e
◆

=

✓
1 +

X

n�1

(�1)nentn
◆

exp
✓X

i�1

�ai log(1� t i )

◆

=
1 +

P
n�1(�1)nentn

Q
i�1(1� t i )ai

, (11.4)

where we have used the well-known identity
✓

1 +

X

n�1

(�1)nentn
◆

= exp
✓
�

X

n�1

pntn/n
◆

, (11.5)

which can be proved by writing pn =
P

j xn
j and using the power series expansion of log.

Applying the specialization homomorphism f :3[[t]]! R[[t]], we obtain the identity

exp
✓
�

X

n

f (un)

n
tn
◆

=
1� f (e1)t + · · · + (�1)k f (ek)tk

Q
i�1(1� t i )ai

.

Now we wish to express the numerator in terms of the variables u1, . . . , uk 2 R. Before doing this, we
introduce some notation.

Definition 11.6. For m 2 Z, let cm be the coefficient of tm in
Q

i�1(1 � t i )ai . Concretely, cm is an
alternating sum of products of binomial coefficients. (We may also interpret it as the trace of an operator
constructed as in the proof of Proposition 10.14.)

Definition 11.7. For m 2 N we define Em 2 3 to be Em := �(�1)mem + cm . Notice that E0 = 0 and
Em =�(�1)mem for m > |A|. We extend this definition to integer partitions, by defining E� :=

Q
i Emi

i
if �= 1m12m2 . . . .

By definition, we have that

1 +

X

n�1

(�1)nentn
=�

X

m�0

Emtm
+

Y

i�1

(1� t i )ai .

Therefore

exp
✓
�

X

n�1

untn/n
◆

= 1�
P

m�1 Emtm
Q

i�1(1� t i )ai
.
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Proposition 11.8. We have that

Em =�

mX

n=1

(�1)ncm�n
X

�`n

sgn(�)
u�
z�

.

In particular, Em 2 (u1, u2, . . . )3.

Proof. By (11.4), we have

exp
✓
�

X

n�1

untn/n
◆Y

i�1

(1� t i )ai = 1�
X

n�1

(�1)nentn.

We have the well-known identity

exp
✓
�

X

n�1

vntn/n
◆

=

X

n

(�1)n
X

�`n

sgn(�)
v�

z�
,

for any family of independent variables vn . (In particular, for vn = pn this identity follows from (11.5)
and the character of the sign representation.)

Thus the coefficient of tm in exp
�
�
P

untn/n
�Q

i (1� t i )ai is

cm +

X

n�1

cm�n(�1)n
X

�`n

sgn(�)
u�
z�

.

Subtracting cm and multiplying by �1, we obtain the result. ⇤
Since |A| k we have that Em = ±em for all m > k. Hence f (Em) = 0 for all m � k, and specializing,

we obtain

exp
✓
�

X

n

f (un)tn/n
◆

= 1�
Pk

m=1 f (Em)tm
Q

i�1(1� t i )ai
.

Therefore
X

n

f (un)

n
tn

=�log
✓

1�
Pk

m=1 Emtm
Q

i�1(1� t i )ai

◆
.

Because the numerator
Pk

m=1 f (Em)tm is nilpotent of order r , we obtain a finite Taylor expansion

X

n

f (un)

n
tn

=

Pk
m=1 f (Em)tm

Q
i�1(1� t i )ai

+

�Pk
m=1 f (Em)tm�2

2
Q

i�1(1� t i )2ai
+ · · · +

�Pk
m=1 f (Em)tm�r�1

(r � 1)
Q

i�1(1� t i )(r�1)ai

=

X

�2Part(r,k)

f (E�)t |�| (rank(�)� 1)!

�!
�Q

i (1� t i )ai
�rank(�)

, (11.9)

where the sum in the second line is over all integer partitions whose Young diagrams have  k columns
and < r rows. In the passage to the second line we have used the multinomial identity

✓ kX

i=1

xi

◆n

=

X

�=1m1 ...kmkP
i mi =n

✓
n

m1, . . . , mk

◆
x�.
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Equation (11.9) is our desired expression for
P

n( f (un)/n)tn . The remaining subsections are indepen-
dent of each other. In the next two subsections we apply (11.9) to construct a basis for VA,r \Fk , then
describe how to use (11.9) to compute the operator ⇡k . After that, we prove Theorem 1.17 using a related
identity. Finally, we discuss the relationship between characters of FSop and FIr modules.

11C. A convenient basis for VA,r \Fk.

Definition 11.10. Let Part(r, k) be the set of integer partitions whose Young diagrams have  k columns
and < r rows.

From the point of view of character functions, the elements ⇡k
�

p⌫ exp
�P

i ai yk
��

for ⌫ 2 Part(r, k)

are a natural basis for VA,r . However, we do not know a simple expression for these elements. In this
subsection we construct a different basis, better adapted to (11.9).

Proposition 11.11. There is an isomorphism

R ⇠=
Q[E1, . . . , Ek]

(E1, . . . , Ek)r ,

defined by Ei 7! f (Ei ) for i = 1, . . . , k. Consequently, the set { f (E⌫)}⌫2Part(r,k) is a basis for R.

Proof. We already know, by Proposition 10.16, that ui 7! f (ui ) for i = 1, . . . , k gives an isomorphism
Q[u1, . . . , uk]/(u1, . . . , uk)

r! R. Since Em 2 (u1, . . . ) we have that f (s) = 0 for all s 2 (E1, . . . , Ek)
r ,

and thus the homomorphism is well defined.
To see that it is surjective, note that, by Proposition 11.8,

Em ⌘ um/m +

X

1n<m

cm�nun/n mod (u1, u2, . . . )
2.

Using this equation, by upper-triangularity we may write any f (um) as a linear combination of f (Em)

modulo (u1, . . . , uk)
2. Since any collection of elements x1, . . . , xk 2Q[u1, . . . , uk]/(u1, . . . , uk)

r satis-
fying xi ⌘ ui mod (u1, . . . , uk)

2 generate the ring, it follows that these linear combinations of f (Em)

generate it. Thus the homomorphism is surjective, and comparing dimensions, it is also injective. ⇤
Since by Proposition 11.11 the elements { f (E⌫)}⌫2Part(r,k) form a basis of R, we may make the

following definition.

Definition 11.12. We define {L⌫}⌫2Part(r,k) to be the basis of VA,r \Fk which is dual to { f (E⌫)}�2Part(r,k).

Thus L⌫ is the unique element of VA,r \Fk satisfying hE�, L⌫i = �(�, ⌫) for all integer partitions
�, ⌫ 2 Part(r, k). We will now an explicit expression for L⌫ .

Definition 11.13. Let B = 1b12b2 . . . be an integer partition. For n 2 Z we define gB(n) be the coefficient
of tn in

Q
i (1� t i )�bi . In particular, gB(n) = 0 for n < 0. For n � 0 we have

gB(n) =

X

�`n
�=1m2 2m2 ...

Y

i�1

✓✓
bi

mi

◆◆
.

The function gB(n) equals a quasipolynomial of degree rank(B) for all n � 0.
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Definition 11.14. If ⌫ = 1`12`2 . . . and ⌫ 0 = 1`012`02 . . . , we write ⌫ 0+ ⌫ for the partition 1`1+`
0

12`2+`
0

2 . . . ,
making the set of partitions into a commutative monoid (corresponding to multiplication of monomials).
For n 2 N write n · ⌫ for the n-fold addition of ⌫ in this monoid.

Definition 11.15. H⌫(n) := n grank(⌫)·A(n� |⌫|)(rank(⌫)� 1)!/⌫!.

By (11.9), we have that f (un) =
P

⌫2Part(r,k),|⌫|>0 H⌫(n) f (E⌫). So, for �= n1 � n2 � · · · ,

f (u�) =

Y

i

✓ X

⌫2Part(r,k)

H⌫(ni ) f (E⌫)
◆

=

X

⌫2Part(r,k)

f (E⌫)
X

⌫=
P

i ⌫i
|⌫i |>0

Y

i�1

H⌫i (ni ).

Pairing with L⌫ we get a formula for hu�, L⌫i. By Lemma 10.10 we obtain:

Proposition 11.16. There is an explicit formula for L⌫ ,

L⌫ = exp
✓X

i

ai yi

◆ X

�=n1�n2�···

p�
z�

X

⌫=
P

i ⌫i
|⌫i |>0

Y

i

H⌫i (ni ),

where the last sum is over all finite tuples of integer partitions (⌫1, ⌫2, . . . , ⌫l) with |⌫i | > 0 and ⌫ =
P

i ⌫i .

Example 11.17. Let ⌫ be the partition 3� 2. Then L⌫ is exp
�P

i ai yi
�

times

X

n�1

pn

n
H3�2(n) +

X

n>m�1

pn pm

nm
�
H3(n)H2(m) + H2(n)H3(m)

�
+

X

n�1

✓
pn

n

◆2

H3(n)H2(n).

11D. Computing the operator ⇡k. Let � be an integer partition. In this section, we discuss how to
compute ⇡k

�
p⌫ exp

�P
i ai yk

��
.

We assume that p⌫ exp
�P

i ai yk
�
2 VA,r or, equivalently, that rank(⌫) < r . If the Young diagram of �

has > k columns, then ✏k(p⌫) = 0 and thus ⇡k
�

p⌫ exp
�P

i ai yk
��

= 0.
Therefore, suppose that ⌫ 2 Part(r, k). By Lemma 10.10 the coefficients b�,⌫ in the expansion

⇡k

✓
p⌫ exp

✓X

i

ai yi

◆◆
=

X

�

b�,⌫
p�
z�

exp
✓X

i

ai yi

◆

are given by
⌦
u�,⇡k

�
p⌫ exp

�P
i ai yk

��↵
. Let

f (u�) =

X

⌫2Part(r,k)

b�,⌫ f (u⌫) (11.18)

be the unique expansion f (u�) in R. By Proposition 10.11, since ⇡k
�

p⌫ exp
�P

i ai yi
��
2 Fk \VA,r , we

have that
⌦
u�,⇡k

�
p⌫ exp

�P
i ai yk

��↵
only depends on f (u�). And by the definition of ⇡k , we have that,

for every  2 Part(n, k),
⌧
u ,⇡k

✓
p⌫ exp

✓X

i

ai yi

◆◆�
=

⌧
u , p⌫ exp

✓X

i

ai yi

◆�
= �( , ⌫).
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Applying this to (11.18) we obtain
b�,⌫ = b�,⌫ .

The coefficients b�,⌫ can be computed from {bn,⌫}n2N by multiplication. And (11.9) can be used to
compute bn,⌫ . However, the equation for b�,⌫ one obtains in this way is unwieldy. So we will just carry
out this computation in an example.

Example 11.19. Suppose that k = 2, r = 3, a1 = 1, and ai = 0 for i > 1. Then c0 = 1, c1 =�1, and ci = 0
for i > 1. So f (E1) =� f (u1), f (E2) =

1
2 f (u2)�

1
2 f (u1)

2 + f (u1), and f (Ei ) = 0 for i > 3. Then
Pk

m=1 f (Em)tm
Q

i�1(1� t i )ai
=� f (u1)t +

( f (u2) + f (u1)
2)t2

2(1� t)
.

So by (11.9) we compute that
P

n�1( f (un)/n)tn is

f (u1)(�t) + f (u2)
t2

2(1� t)
+ f (u2

1)

✓
t2

+
t2

2(1� t)

◆
+ f (u1u2)

�t2

2(1� t)
+ f (u2

2)
t4

4(1� t)2 .

Thus for n � 4 we have that

f (un) =
1
2 n f (u2) +

1
2 n f (u2

1)�
1
2 n f (u1u2) +

1
4 n(n + 1) f (u2

2).

This computes bn,⌫ for all ⌫ and n � 4. To compute b�,⌫ for the remaining cases, � = n � m, simply
perform the multiplication f (un) f (um).

11E. Proof of Theorem 1.17. We use a generating function argument to prove Theorem 1.17.

Proof of Theorem 1.17. Fix an integer partition � and consider the generating function

F�(t) =

X

k�0

s(k,�) tk+|�|
23[[t]].

The following identity appears in the theory of FI modules:

F�(t) = q�(t) +

X

{⌫ | ��⌫2VS}

(�1)|�|�|⌫|s⌫ t |⌫|
X

m�0

hmtm, (11.20)

where the sum is over all ⌫ such that the Young diagram of � minus the Young diagram of ⌫ is a
vertical strip, and q�(t) 2 3[t] has degree  |�| (in both 3 and t). In [Sam and Snowden 2016, §5],
these polynomials also go under the name q�, although they use the coordinates ti := pi/ i for the
ring of symmetric functions. (They show that this identity corresponds to a resolution in the quotient
of Mod FI/ Mod FI tors and interpret q� in terms of local cohomology [loc. cit., §7.4].)

Now fix an integer partition A and r, k 2 N with k � |A|. We use the notation R and E� from above,
relative to these choices of parameters. From here on we consider the image of our generating functions
under the specialization 3[[t]]! R[[t]]. We have that

s⌫ t |⌫|
X

m�0

hmtm
=

s⌫ t |⌫|

1 +
P

m�1(�1)memtm =
s⌫ t |⌫|

Q
i (1� t i )ai �

Pk
m=1 Emtm

.
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Factoring out
Q

i (1� t i )ai and applying a geometric series expansion we have that this equals

s⌫ t |⌫|

Q
i (1� t i )ai

r�1X

n=0

✓Pk
m=1 Emtm

Q
i (1� t i )ai

◆n

.

For any u 2 VA,r \Fk , applying h�, ui to this expression produces a rational function in Z[[t]]. ThusP
m�0hs⌫hm, uitm+|⌫| is rational and therefore so is

P
m�|⌫|hs(m,⌫), uitm+|⌫| by (11.20). The denominator

of this function is of degree  r |A| and its roots are roots of unity of order  |A|.
Finally, if M is an FSop module of type (d, s), then ch(M) is a finite sum of u A,r,k 2 VA,r \ Fk

for |A|  d and r  s. So the generating function
P

m�|⌫|hs(m,⌫), ch(M)itm+|⌫| is rational and its
denominator has degree  sd , and the roots of the denominator are roots of unity of order  d . ⇤

Remark 11.21. In practice, the strategy of the proof of Theorem 1.17 can be used to make computations.
For example, fix A an integer partition and d, k 2N with d > |A|. Then the proof of Theorem 1.17 yields
a formula for

P
nhhn, L�itn . Namely, it is

X

n

hhn, L�itn
=

t |�| rank(�)!

�!
�Q

i (1� t i )ai
�rank(�)+1 . ⇤

11F. Relationship with FI d module characters. Sam and Snowden [2018] characterized the Hilbert
series of modules over the category FId . They express these characters as polynomials in the elements
�n :=

P
k�0

�n
k

�
hn , and observe that �n takes the form qn(T1, T2, . . . ) exp(y1), where qn is a polynomial

in Tk :=
P

n�0
�n

k

�
(pn/n). In fact, qn is the n-th complete ordinary Bell polynomial. For �= 1m12m2 . . . ,

define �� :=
Q

i �
mi
i . Then if k 2 N and � satisfies rank(�) k we have that

���
k�rank(�)
0 2 Fk \V1k ,|�|+1.

Sam and Snowden show that these elements are linearly independent. Thus as � ranges over partitions
with  k rows and |�| < r , we obtain a collection of linearly independent elements in Fk \V1k ,r . Since
the dimension of this space is the number of partitions with  k rows and < r columns, which is strictly
larger than the number of ��� k�rank(�)

0 , this collection of elements is not spanning.
Sam and Snowden compute the character of an FId module to be a sum of elements s⌫� ��

k�rank(�)
0 .

We do not know if it is possible to use such elements to construct a basis of Fk0 \V1k ,r 0 for some r 0 and k 0.

12. Further questions

We list some questions related to our work. Many of these questions stem from the fact that we still do
not understand the representation theory of FSop modules.

12A. Behavior of the type under kernels and cokernels. For applications, it would be useful to have
more sophisticated methods of proving that a specific FSop module is of class (d, s).

There are two numerical invariants associated to an FI module M , the stable degree �(M) and the
local degree hmax(M), introduced and used to great effect in [Church et al. 2018]. The type of an FSop



Categorifications of rational Hilbert series and characters of FSFSFSop
modules 2489

module is roughly analogous to these invariants. Given a morphism of FSop modules f : N1! N2, is it
possible to bound the type of ker f and coker f in terms of the type of N1 and N2 (or other invariants)?

12B. Grothendieck group of FSop modules. When do two finitely generated FSop modules have the same
character? In other words, what is the kernel of the map of Grothendieck groups K0(FSop)!

Q
n K0(Sn)?

12C. Are FSop module characters cycle-bounded? We say that a symmetric function is cycle-bounded
if it is a linear combination of finitely many functions of the form

exp
✓X

i�1

ai yi

◆ X

� integer partition

c� p�,

where only finitely many c� are nonzero and (a1, a2, . . . ) 2 N�1. Is the character of every finitely
generated FSop module cycle-bounded? If not, what is an example of a finitely generated FSop module
that is not cycle-bounded?

We note that projective FSop modules are cycle-bounded, and cycle-bounded characters are closed
under sums, induction product and Kronecker product. And if t is cycle-bounded, then s�[t] is also
cycle-bounded. On the other hand, Sam and Snowden [2018] show that when d > 1 there are FId modules
that are not cycle-bounded.

12D. Characters of FSop modules in characteristic > 0. What are the consequences of Theorem 1.2
for fields of positive characteristic? Is it possible to carry out a similar combinatorial analysis for the
characters of FSop modules in this case?

12E. Other combinatorial categories. The arguments we use to prove Theorem 1.2 are mostly general.
The specific combinatorics of FSop only enters in Section 6. We are interested in extensions of the
method of proof of Theorem 1.2 to other categories studied by Sam and Snowden [2017]. See for instance
Conjecture 3.22. For which combinatorial categories does the method of proof of Theorem 1.2 work?
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