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Abstract
We study stability patterns in the high dimensional rational homology of unordered
configuration spaces of manifolds. Our results follow from a general approach to
stability phenomena in the homology of Lie algebras, which may be of independent
interest.

1 Introduction

The purpose of this paper is to investigate a stability phenomenon in the high dimen-
sional rational homology of the unordered configuration spaces of a d-manifold M .1

Writing

Confn(M) = {(x1, . . . , xn) ∈ Mn | xi "= x j for i "= j}

for the ordered configuration space of n points in M and Bn(M) = Confn(M)/Sn
for the unordered configuration space, classical results of McDuff, Segal, and Church
show that the spaces Bn(M) exhibit rational homological stability. We will restrict
our attention to the case of even d, since there is a simple closed form available for d
odd [3] (see Sect. 4.4 for further commentary).
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B. Knudsen et al.

Theorem 1.1 (Homological stability [4, 9, 12]). Let M be amanifold of even dimension
d ≥ 2. For each i ≥ 0, there is a polynomial in n of degree at most dim H0(M;Q)−1,
which coincides with dim Hi (Bn(M);Q) for all n sufficiently large.

Traditionally, Theorem 1.1 is stated in the case that M is connected, where it is
the statement that the function n %→ dim Hi (Bn(M);Q) is eventually constant. The
general case follows easily from the connected case and the Künneth theorem.

While homological stability is a stability pattern in low homological dimension,
extremal stability, our main theorem, is a pattern in low homological codimension.
Since Hi (Bn(M)) = 0 for i > νn := n(d − 1)+ |π0(M)|, it is reasonable to think of
Hνn−i (Bn(M)) as the codimension i homology of Bn(M), at least generically.

Theorem 1.2 Extremal stability Let M be a manifold of even dimension d ≥ 2. For
each i ≥ 0, there is a quasi-polynomial in n of degree at most dim Hd−1(M;Qw)− 1
and period at most 2, which coincides with dim Hνn−i (Bn(M);Q) for all n sufficiently
large.

Here, we havewrittenQw for the orientation sheaf ofM . Equivalently, Theorem 1.2
states that there are twopolynomials pieven(n) and piodd(n) governing the codimension i
homology of Bn(M) for even and odd n, respectively. See Sect. 2.3 for our conventions
on quasi-polynomials.

Example 1.3 [5]. For # a compact, orientable surface of genus 2 and n ≥ 4, it follows
from [5, Corollary 4.9] and Fig. 1 that

dim Hνn (Bn(#);Q) =
{

n3+4n2−4n−16
16 n even

n3+n2−n+15
16 n odd.

This example shows that the degree bound of Theorem 1.2 is sharp.

Instances of extremal stability for configuration spaces were first noticed by
Maguire in the case M = CP3 [8], who proved a stability theorem for manifolds
with even-dimensional cohomology. The only other prior example of extremal stabil-
ity that we are aware of is in the high dimensional cohomology groups of congruence
subgroups of SLn(Z) [10].

Fig. 1 Homological stability and
extremal stability
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Extremal stability...

If Hd−1(M,Qw) = 0, then Theorem 1.2 is just the statement that the groups
Hνn−i (Bn(M),Q) eventually vanish. In this situation, Hνn−i (Bn(M),Q) should not
be thought of as the codimension i homology of Bn(M). In Theorem 4.10, we prove
a more refined stability result for manifolds with vanishing high degree homology
groups.

Remark 1.4 As observed by the referee, a quasi-polynomial such as the one referenced
in Theorem 1.2 may be written in the form p(n)+ (−1)nq(n) for polynomials p and
q, and, since the polynomials of Example 1.3 have the same leading term, we have
deg q(n) < 3 in this example. We do not know whether this improved bound on q(n)
is a general phenomenon.

1.1 Stabilizationmaps

Extremal stability is induced by a family of maps of the form

Hi (Bn(M);Q) → Hi+2d−2(Bn+2(M);Q).

Heuristically, such a map is obtained as follows (we assume that M is orientable
for simplicity). Fixing a class α ∈ Hd−1(M;Q), which we imagine as a (d − 1)-
parameter family of configurations of a single point in M , we write α ⊗ [v, v] ∈
H2d−2(B2(M);Q) for the class obtained by replacing this single point with a pair of
orbiting points. Here, we think of v as the class of a single point in Rd and [·, ·] as the
Browder bracket in the homology of Euclidean configuration spaces (nontrivial for d
even).

We wish to define our stabilization map by superposition with the class α ⊗ [v, v];
that is, we attempt to send the cycle depicted on the left of Fig. 2 to the cycle depicted
on the right. Unfortunately, this cycle does not lie in the configuration space, since it
contains configurations of non-distinct particles.

Heuristically, this issue can be resolved in the example depicted (where i = 1) by
performing surgery in a Euclidean neighborhood of the intersection point, resulting in
a (2d − 1)-chain in B3(M) whose boundary corresponds to the image of the nested
Browder bracket [v, [v, v]] ∈ H2d−2(B3(Rd);Q) under the coordinate embedding
Rd ⊆ M . Since [v, [v, v]] = 0 by the Jacobi relation, we may choose a bounding
chain, removing the point of intersection.

Fig. 2 Extremal stabilization map
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We now sketch a more categorical approach to this idea. The desired map is a
special case of a map

Hi (Bn(M)) ⊗ Hj (Bm(M)) → Hn(d−1)+i+ j (B2n+m(M))

that replaces points in Bn(M) with pairs of orbiting points and takes the union with
the configuration in Bm(M). Such a map can be obtained by applying factorization
homology [1] to an appropriate chain level map of Ed -algebras in the case M =
Rd . Setting B(Rd) = ⊔

n≥0 Bn(Rd), the tensor product C∗(B(Rd)) ⊗ C∗(B(Rd)) is
obtained from the coproduct of Ed -algebras by attaching an Ed -cell along the Browder
bracket of the respective generators. Universal properties of free algebras and colimits
imply that it is enough to choose two cycles, in our case v and [v, v], together with a
nullhomotopy of their Browder bracket. Since [[v, v], v] = 0, a nullhomotopy exists.

We pursue neither of these sketches here. Instead, we notice that both rely on the
samekey fact, namely that [v, v] lies in the center of the shiftedLie algebra H∗(B(Rd)).
This algebraic observation points the way to a simple and rigorous definition of the
desired extremal stabilization maps.

1.2 Transit algebras

We approach Theorem 1.2, a priori a topological statement, in an entirely algebraic
setting. As shown by the first author [7], the total homology of the configuration spaces
of a manifold is the homology of a certain Lie algebra—see Theorem 4.7 below—so
stability phenomena in Lie algebra homology give rise to stability phenomena in the
homology of configuration spaces.

The homology of a Lie algebra g supports two types of action relevant to stability.
First, given an Abelian quotient g → k, there results an action of Sym(k∨[−1]) on
the Lie algebra homology of g; in the example of configuration spaces, this degree
lowering action gives rise to the maps

H∗(Bn(M),Q) → H∗(Bn−1(M),Q)

obtained from the inclusion Confn(M) ⊆ Confn−1(M) × M by pairing with an
element of H∗(M) and applying transfer. Second, given a central subalgebra h ⊆ g,
there results an action of Sym(h[1])on theLie algebra homologyofg; in the example of
configuration spaces, this degree raising action gives rise to the extremal stabilization
maps described heuristically above. For details on the relevant Lie algebras, the reader
may consult Sect. 4.2.

These two actions do not commute, so there does not result an action of the tensor
product of the two algebras. Instead, the two actions interact viaWeyl relations, giving
rise to an action of an algebra that we call a transit algebra—see Definition 3.6. As
shown in Sect. 4.2, transit algebras provide a common source for classical homological
stability and extremal stability.
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2 Algebraic background

In this section, we detail our conventions on graded objects, algebras, and modules.

2.1 Degrees and slopes

Wework in the setting of bigraded vector spaces overQ. Such a vector space V arrives
equipped with a decomposition V = ⊕

n,i∈Z Vn,i . Wewrite 〈r〉 and [s] for the relevant
shift operations, i.e.,

(V 〈r〉[s])n,i = Vn−r ,i−s .

The parameters n and i are called the weight and the (homological) degree, respec-
tively, and we write w(v) = n and d(v) = i for a bihomogeneous element v ∈ V of
bidegree (n, i).

Duals and tensor products of bigraded vector spaces are defined by the stipulations

(V∨)n,i = HomQ(V−n,−i ,Q) (V ⊗ W )n,i =
⊕

a+b=n,c+d=i

Va,c ⊗ Wb,d .

With this tensor product, the category of bigraded vector spaces is monoidal, and we
equip it with the symmetric monoidal structure whose symmetry incorporates Koszul
signs in the homological degree but not in the weight.Because of this symmetry, parity
of degree will play an important role in what follows, and we write

V ε =
⊕

n∈Z

⊕

i≡ε mod 2

Vn,i

for ε ∈ {0, 1}, considered as a bigraded subspace of V .
We say that V is of finite type if Vn,i is finite dimensional for n, i ∈ Z. If V is of finite

type and vanishes in a cofinite set of bidegrees, we say that V is finite dimensional. We
say that V is bounded below if Vn,i = 0 whenever either n or i is a negative number
of sufficiently large absolute value. We say that V is connected if V0,0 = 0.

We record the following simple observations regarding the interaction of these
finiteness properties with duals and tensor products.

Lemma 2.1 Let V and W be bigraded vector spaces.

(1) If V is of finite type or finite dimensional, then so is V∨.
(2) If V and W are finite dimensional, then so is V ⊗ W.
(3) If V and W are bounded below, then so is V ⊗ W.
(4) If V and W are bounded below of finite type, then so is V ⊗ W.

We think of a bigraded vector space as a planar grid of vector spaces, with the
weight recorded on the horizontal axis and the degree on the vertical. Our language
reflects this idea; for example, we say that V is first-quadrant if Vn,i = 0 for n < 0 and
i < 0 (in which case V∨ is third-quadrant). This picture also informs the following.
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Definition 2.2 Fix a bigraded vector space V .

(1) Let 0 "= v ∈ V be a bihomogeneous element of nonzero weight. The slope of v is
the rational number m(v) = d(v)/w(v).

(2) Suppose that V "= 0 is concentrated in nonzero weights. The maximal slope of V
is

mmax(V ) = max{C ∈ Q | ∃v ∈ V : m(v) = C},

provided the maximum exists (resp. minimal slope, mmin(V ), min, minimum).

Given C ∈ Q, we write VC ⊆ V for the span of the bihomogeneous elements of
slope C , and similarly for V<C , V>C , and so on. If V = VC , then we say that V is of
slope C . Note that, if V is of slope C , then V is concentrated in nonzero weight.

A related notion of slope will also be important in what follows.

Definition 2.3 Fix a bigraded vector space V and C ∈ Q. A ray of slope C in V is
a subspace of the form R = ⊕

u≥0 Vau,bu+i0 , where C = b/a with (a, b) = 1. The
graded dimension of R is the function

n %→
{
dimRn,Cn+i0 a | n
0 otherwise.

At times, it will be convenient to work with a third grading, by polynomial degree,
which will typically be either non-negative or non-positive. Bigraded vector spaces
may be regarded as trigraded vector spaces concentrated in polynomial degree 1; tri-
graded vector spaces may be regarded as bigraded vector spaces by forgetting the third
grading. Tensor products and duals of trigraded vector spaces are defined analogously,
with Koszul signs reflecting only the homological degree. Discussions of slope will
never involve the polynomial grading.

Example 2.4 Let Q(n, i, r) denote the trigraded vector space that is nonzero only in
tridegree (n, i, r), where it is 1-dimensional. There is a canonical isomorphism

Q(n, i, r) ⊗ Q(m, j, s) ∼= Q(m + n, i + j, r + s)

of trigraded vector spaces, under which the monoidal symmetry acts by (−1)i j . Fur-
thermore, there is a canonical isomorphism

Q(n, i, r)∨ ∼= Q(−n,−i,−r).

2.2 Symmetric (co)algebras and their duals

Given a trigraded vector space V , wewrite Symk(V ) = (V⊗k)Sk , where the symmetric
group acts via the symmetry of the symmetric monoidal structure introduced above.
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Definition 2.5 Let V be a trigraded vector space. The symmetric algebra on V is the
trigraded vector space Sym(V ) = ⊕

k≥0 Sym
k(V ), equipped with the product given

componentwise by the dashed filler in the commuting diagram

V⊗k ⊗ V⊗& ∼ V⊗(k+&)

Symk(V ) ⊗ Sym&(V ) Symk+&(V ),

where the vertical arrows are the respective projections to the coinvariants.

This multiplication map furnishes the symmetric algebra with the structure of a
commutative algebra object in the category of trigraded vector spaces. It is a universal
commutative algebra in the sense of the commutative diagram

V A

Sym(V )

∃!

of trigraded vector spaces, in which A is a trigraded commutative algebra and the
dashed filler a map of such. In particular, there is a canonical, natural map of algebras

Sym(V ⊕ W ) → Sym(V ) ⊗ Sym(W )

induced by the assignment (v,w) %→ v ⊗ 1 + 1 ⊗ w, which is easily seen to be
an isomorphism. This map furnishes the symmetric algebra functor with an oplax
monoidal structure; in particular, Sym(V ) is canonically a bicommutative bialgebra
with comultiplication induced by the diagonal of V .

Given a trihomogeneous basis {ti }i∈I for V , a trihomogeneous basis for Symk(V )

is provided by the set of equivalence classes of degree k monomials ti1 · · · tik under
the equivalence relation generated by the relation

ti1 · · · ti j ti j+1 · · · tik ∼ (−1)d(ti j )d(ti j+1 )ti1 · · · ti j+1 ti j · · · tik .

In this way, we obtain a trihomogeneous basis for Sym(V ), which we refer to as the
monomial basis. In this basis, multiplication is given by concatenation of monomials
and comultiplication by the usual shuffle coproduct. It should be emphasized that a
generator behaves as an exterior or polynomial generator according to the parity of its
homological degree alone.

In the presence of the above basis, we write ∂ti ∈ V∨ for the functional dual to
ti , i.e., ∂ti (t j ) = δi j . We extend these functionals to endomorphisms of Sym(V ) by
requiring them to act as derivations, i.e.,

∂t (pq) = ∂t (p)q + (−1)d(p) p∂t (q)
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for monomials p and q. In other words, the functional ∂t acts according to the usual
rules of differential calculus, with appropriate Koszul signs. Note that the resulting
endomorphism of Sym(V ) lowers each degree by the corresponding degree of t .

When V is of finite type, the functionals ∂ti generate V∨. In this case, since
∂t1∂t2 = (−1)d(t1)d(t2)∂t2∂t1 , there is a well-defined endomorphism of Sym(V ) for
every monomial in Sym(V∨). In light of the preceding observation on the tridegree
of ∂t , this construction determines a trigraded linear embedding

Sym(V∨) → Sym(V )∨,

which is an isomorphism under appropriate finiteness assumptions; in particular, the
isomorphism holds if V is a bigraded vector space bounded below of finite type,
regarded as concentrated in polynomial degree 1. Since this fact is essentially standard,
we content ourselves with reminding the reader that symmetric group invariants and
coinvariants are canonically isomorphic in characteristic zero, and that our conventions
on trigraded duals ensure that the target of the map in question is an infinite sum rather
than an infinite product.

In this situation, by adjunction, there is a one-to-one correspondence of sets of
maps

ϕ : Sym(V∨) ⊗ M → M ⇐⇒ ϕ̃ : M → Sym(V ) ⊗ M

for any bounded below trigraded vector space M, which is given explicitly by the
formulas ϕ̃(m) = ∑

p p ⊗ ϕ(∂p ⊗ m) and ϕ(∂p ⊗ m) = ∂p ∩ ϕ̃(m), where p ranges
over the monomial basis (finite in each tridegree). In this way, a Sym(V∨)-module
structure on M determines a Sym(V )-comodule structure, referred to as the adjoint
comodule. IfM is finite dimensional in each tridegree, then this comodule structure is
in turn equivalent to the Sym(V∨)-module structure onM∨ determined by the map

Sym(V∨) ⊗ M∨ ∼= (Sym(V ) ⊗ M)∨
ϕ̃∨
−→ M∨.

We refer to this module as the dual adjoint module.

2.3 Modules and growth

Inwhat follows,wewill be interested in the eventual growth rates of graded dimensions
of vector spaces.

Definition 2.6 A quasi-polynomial is an element of *[t], where * is the ring of
periodic functions fromZ toQ. The period of a quasi-polynomial is the least common
multiple of the periods of its coefficients.

When working over a symmetric algebra with first-quadrant generators of fixed
slope, rays of this slope exhibit predictable growth. As a matter of notation, we write
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lcm(V ) = lcm{n ∈ Z | ∃i ∈ Z : Vn,i "= 0},

where V is assumed to vanish in a cofinite set of degrees including zero.

Lemma 2.7 Let V be a finite dimensional, first-quadrant bigraded vector space of
slope C ∈ Q and M a finitely generated Sym(V )-module. The graded dimension of
any ray in M of slope C is eventually equal to a quasi-polynomial of degree at most
dim V 0 − 1 and period dividing lcm(V 0).

Proof Any ray in M is a Sym(V )-submodule, since V has slope C , and Sym(V ) is
Noetherian, since V is finite dimensional, so we assume thatM is itself a ray of slope
C . Applying the shift functor [r ] to this ray does not change its graded dimension,
so we may assume that M = MC . Lastly, we may assume that V = V 0; indeed,
Sym(V ) ∼= Sym(V 0)⊗Sym(V 1), and Sym(V 1) is finite dimensional, since V 1 is, so
M is necessarily finitely generated over Sym(V 0). With these assumptions in place,
the homological degree in Sym(V ) and in M is determined by the weight, so the
claim follows from the classical theory of the Hilbert function of a finitely generated
graded module over a graded polynomial ring [2, Theorem 11.1].

We pair this result with a criterion for detecting finite generation over symmetric
algebras with generators of fixed slope.

Lemma 2.8 Let V be a finite dimensional bigraded vector space of positive weight.
Let M be a finitely generated Sym(V )-module. If mmax(V 0) ≤ C, then every ray in
M of slope C is finitely generated over Sym(V 0

C ). If mmax(V 0) < C then every ray
inM of slope C is eventually 0.

Proof Ifmmax(V 0) < C , then V 0
C = 0 by assumption, so Sym(V 0

C ) = Q, themonoidal
unit. A finitely generated Q-module is simply a finite dimensional bigraded vector
space, so the first claim implies the second.

For thefirst claim, note thatM is a quotient of afinite sumof shifts of the freemodule
Sym(V ). Hence any slope C ray in M is a quotient of a finite sum of shifts of slope
C rays in Sym(V ). Since finite sums, shifts, and quotients preserve finite generation,
it suffices to consider the case M = Sym(V ). As in the proof of Lemma 2.7, we
may further assume that V = V 0. Choosing a bihomogeneous basis {u1, . . . , um}
for V<C , we observe that M is a free module over Sym(V 0

C ) with basis given by
the set of monomials of the form u j1

1 . . . u jm
m with j1, . . . , jm ∈ Z≥0. Fixing a ray

R = ⊕
t≥0 Mat,bt+i0 with b/a = C and (a, b) = 1, a > 0, such a monomial lies in

R if and only if

m∑

k=1

jk(ad(uk) − bw(uk)) = ai0.

By assumption, we have ad(uk) − bw(uk) < 0 for 1 ≤ k ≤ m, so only finitely many
monomials lie inR. Since the product of a monomial and an element of Sym(V 0

C ) lies
inR if and only if the monomial does, the claim follows.
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At times, an alternative to finite generation will be the relevant property.

Definition 2.9 Let V be a finite type first-quadrant bigraded vector space and M a
Sym(V∨)-module. We say that M is finitely detected if there is a surjective linear
map q : M → N with finite dimensional target such that, for every m ∈ M \ {0},
there is a monomial p ∈ Sym(V ) with q(∂p · m) "= 0.

Through duality, finite detection is closely related to other notions of finiteness. For
simplicity, we do not state the following results in the greatest possible generality.

Lemma 2.10 Let V be a finite dimensional, first-quadrant bigraded vector space. The
following are equivalent for a bounded below Sym(V∨)-module M.

(1) The Sym(V∨)-module M is finitely detected.
(2) The adjoint Sym(V )-comodule structure on M is finitely cogenerated.
(3) The dual adjoint Sym(V∨)-module structure onM∨ is finitely generated.

Proof Let q : M → N be a surjection with finite dimensional target. The composite

M δ−→ Sym(V ) ⊗ M id⊗q−−−→ Sym(V ) ⊗ N

is given by the formula m %→ ∑
p p ⊗ q(∂p · m), where p ranges over the monomial

basis for Sym(V ), which is finite in each tridegree. Since q cogenerates if and only if
this composite is injective, the implication (1) ⇐⇒ (2) follows. Since the dual of an
injection is surjective, and vice versa, we also have the implication (1) ⇐⇒ (3).

It follows that finitely detected modules enjoy many of the properties of finitely
generated modules.

Lemma 2.11 Let V be a finite dimensional, first-quadrant bigraded vector space. Any
submodule or quotient of a finitely detected Sym(V∨)-module is also finitely detected.

Proof The claim follows from Lemma 2.10 and Noetherianity of Sym(V∨).

Lemma 2.12 Let V be a finite dimensional, first-quadrant bigraded vector space of
slope C ∈ Q and M a finitely detected Sym(V∨)-module. The graded dimension of
any ray in M of slope C is eventually equal to a quasi-polynomial of degree at most
dim V 0 − 1 and period dividing lcm(V 0).

Proof The claim follows from Lemma 2.7 and 2.10 after negating bidegrees. 67

3 Transits and transit algebras

In this section, we introduce a family of algebras acting on the homology of a Lie
algebra.
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3.1 Lie algebras and transits

Throughout, the term “Lie algebra” refers to a Lie algebra in the category of bigraded
vector spaces detailed above. Explicitly, a Lie algebra is a bigraded vector space g
equipped with a map of bigraded vector spaces [−,−] : g⊗g → g, called the bracket
of g, satisfying the equations

(1) [x, y] + (−1)d(x)d(y)[y, x] = 0
(2) (−1)d(x)d(z)[[x, y], z] + (−1)d(y)d(x)[[y, z], x] + (−1)d(z)d(y)[[z, x], y] = 0

for bihomogeneous elements x, y, z ∈ g. A map of Lie algebras is a map of bigraded
vector spaces intertwining the respective brackets.

Example 3.1 Wemaintain the notation of Example 2.4. If i is even, the free Lie algebra
on Q(n, i) is simply Q(n, i) with trivial bracket. If i is odd, the free Lie algebra on
Q(n, i) is Q(n, i) ⊕ Q(2n, 2i), with bracket given by the isomorphism Q(n, i) ⊗
Q(n, i) ∼= Q(2n, 2i).

We emphasize that, while weight is additive under the bracket, all signs are inde-
pendent of weight. We write z = z(g) for the center of the Lie algebra g and a = a(g)
for its Abelianization.

We now formulate the definition from which all stability phenomena considered
herein arise. Although the concept is simple, it appears to be new.

Definition 3.2 Let g be a Lie algebra. A transit of g is a pair of maps of Lie algebras

h
f−→ g

g−→ k

with h and k Abelian and f central. We say the transit is null or split if g f is trivial
or bijective, respectively, and exact if f and g form a short exact sequence. A map
of transits from ( f1, g1) to ( f2, g2) is a commutative diagram of Lie algebras of the
form

h1
f1

h2 f2
g

g1

g2
a2

a1.

Maps of transits compose in the obvious way, forming a category. Note that a Lie
algebra admits an exact transit if and only if it is two-step nilpotent.

Example 3.3 The pair z → g → a given by inclusion and projection is a transit, called
the universal transit.

The term “universal” refers to the property of being a terminal object in the category
of transits.
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Example 3.4 Given transits ( f1, g1) and ( f2, g2) of g, the product transit is the pair

h1 × h2
f1+ f2−−−→ g

(g1,g2)−−−−→ k1 × k2

(we use that the fi are central). We say the product is clean if g2 f1 = g1 f2 = 0.

Lemma 3.5 Every transit is isomorphic (non-canonically) to the clean product of a
split transit and a null transit.

Proof Given a transit ( f , g) of g, set h1 = k1 = im(g f ), h2 = ker(g f ), and k2 =
coker(g f ). Choosing splittings, which are splittings of Lie algebras by Abelianness,
we have the product decomposition

h1 × h2 ∼= h
f−→ g

g−→ k ∼= k1 × k2.

To conclude the argument, we consider the following four composites:

h1 → g → k2

h2 → g → k1

h2 → g → k2

h1 → g → k1

The first is the restriction to im(g f ) of the quotient map to coker(g f ); the second is
the restriction of g f to ker(g f ); and the third is the composite of the previous two.
Since all three vanish, it follows that the product in question is clean and that the transit
represented by the third composition is null. Since the fourth composite is the identity,
the corresponding transit is split, and the proof is complete. 67

3.2 Transit algebras

The purpose of this section is to associate to each transit a naturally occurring algebra.
As a matter of notation, we write 〈−,−〉 for the graded commutator of an algebra A,
i.e., 〈x, y〉 = xy − (−1)d(x)d(y)yx for bihomogeneous elements x, y ∈ A.

Definition 3.6 The transit algebra associated to the transit h
f−→ g

g−→ k is the quotient

W ( f , g) = T (h[1] ⊕ k[1]∨)/I ,

where T denotes the tensor algebra and I the two-sided ideal generated by the relations

〈x, y〉 = 〈λ, µ〉 = 0

〈λ, x〉 = λ(g( f (x)))

for x, y ∈ h[1] and λ, µ ∈ k[1]∨.

123



Extremal stability...

Although the definition ofW ( f , g) depends only on the composite g f , this algebra
interacts in an important way with the Lie algebra g, as we show in the next section.

The transit algebra extends in the obvious way to a functor from transits to algebras.
In particular, given an arbitrary transit ( f , g), there is a canonical map of algebras

W ( f , g) → W (g),

where W (g) is the transit algebra of the universal transit.

Remark 3.7 The transit algebra is functorial for maps between transits of different Lie
algebras, in the sense of the following commutative diagram:

h g k

h′ g′ k′.

Note that this diagram specializes to our earlier definition of a map of transits when
the middle arrow is the identity. We make no use of this extended functoriality.

Example 3.8 If ( f , g) is null, then W ( f , g) = Sym(h[1] ⊕ k[1]∨).

Example 3.9 If ( f , g) is split, then W ( f , g) is isomorphic to the Weyl algebra on the
vector space h[1].

Lemma 3.10 The transit algebra of a clean product is canonically isomorphic to the
tensor product of the transit algebras of the factors.

Proof Cleanness implies that 〈λ, x〉 = 0 for x ∈ hi and λ ∈ k j when i "= j ∈ {1, 2},
and the claim follows.

We record the following simple result, although we make no use of it in what
follows.

Proposition 3.11 Let h
f−→ g

g−→ k be a transit with h and k finite dimensional. The
transit algebra W ( f , g) is Noetherian.

Proof By Lemmas 3.5 and 3.10 and Examples 3.8 and 3.9, it suffices to show that
the tensor product of a finitely generated symmetric algebra and a finitely generated
Weyl algebra is Noetherian. Both algebras are examples of skew polynomial rings in
the sense of [11, Thm.2.9], which implies that iterated skew polynomial rings over a
Noetherian base ring (such as Q) are Noetherian. 67

3.3 Action on homology

The role of the transit algebras introduced above is as a source of extra structure on
the homology of Lie algebras.
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Definition 3.12 TheChevalley–Eilenberg complex of the Lie algebra g is the bigraded
vector space CE(g) = Sym(g[1]) equipped with the differential ∂ determined as a
coderivation by the formula

∂(xy) = (−1)d(x)[x, y].

The Lie algebra homology of g is the bigraded vector space HLie
∗ (g) = H∗(CE(g), ∂).

The reader interested in an explicit formula for ∂ may consult [6, Ch. 22], for
example. Since it plays no direct role in our arguments, we omit it as an unnecessary
distraction.

Remark 3.13 Our notation is abusive in that the symbols x , y, and [x, y] refer to the
corresponding elements of g[1], while d(x) is the degree of x as an element of g.

The implicit claim that ∂2 = 0 is equivalent to the Jacobi identity (2) above. Note
that ∂ ≡ 0 if g is Abelian, whence CE(g) = Sym(g[1]) as a chain complex.

Theorem 3.14 Let g be a Lie algebra, and suppose that g is bounded below of finite
type as a bigraded vector space. For any transit ( f , g) of g, there is a canonical, func-
torial action by chain maps of W ( f , g) on CE(g). In particular, there is a canonical,
functorial action on HLie

∗ (g).

Proof It suffices to consider the universal case. By Abelianness, addition equips z
with the structure of a commutative monoid with respect to the Cartesian monoidal
structure on Lie algebras. For the same reason, the composite map

z × g ⊆ g × g
+−→ g

is a map of Lie algebras, equipping gwith the structure of a z-module. The Chevalley–
Eilenberg complex is a symmetricmonoidal functor, sowe obtain an action ofCE(z) =
Sym(z[1]) on CE(g), hence on its homology (we again use that z is Abelian).

On the other hand, the diagonal equips any Lie algebra with the structure of cocom-
mutative comonoidwith respect to theCartesianmonoidal structure, and the composite
map

g
,−→ g × g

π×id−−−→ a × g

equips gwith the structure of an a-comodule, where π is the projection to the quotient.
Applying the Chevalley–Eilenberg complex and dualizing, we obtain by adjunction
an action of Sym(a[1]∨) ∼= CE(a)∨ on CE(g), hence on its homology (we use that a
is Abelian and g bounded below of finite type).

It remains to check that these two actions descend to an action of W (g), for which
it suffices to verify the last relation. To begin, we note that, at the level of underlying
graded objects, the first action is given by the composite

Sym(z[1]) ⊗ Sym(g[1]) ⊆ Sym(g[1]) ⊗ Sym(g[1]) m−→ Sym(g[1]),
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where m is the usual multiplication (note that m is not itself a chain map), while the
second action is given by the composite (cap product)

Sym(a[1]∨) ⊗ Sym(g[1]) Sym(π∨)⊗δ−−−−−−−→ Sym(g[1]∨) ⊗ Sym(g[1]) ⊗ Sym(g[1])
ev·id−−→ Sym(g[1]),

where δ is the usual comultiplication.
Choose a bihomogeneous basis for g, and fix nonzero bihomogeneous elements

x ∈ z[1] and λ ∈ a[1]∨ and a monomial p ∈ Sym(g[1]). Writing δ(p) = ∑
i pi ⊗ p′

i ,
and abusively identifying λ and Sym(π∨)(λ), we calculate from the definitions that

〈λ, x〉 · p = λ · (xp) − (−1)d(λ)d(x)x(λ · p)
= (λ ⊗ 1)(δ(xp)) − (−1)d(λ)d(x)x(λ ⊗ 1)(δ(p))

=
∑

i

[
(λ ⊗ 1)

(
xpi ⊗ p′

i + (−1)d(x)d(pi ) pi ⊗ xp′
i

)

−(−1)d(λ)d(x)x(λ ⊗ 1)(pi ⊗ p′
i )

]

=
∑

i

[
λ(xpi )p′

i + (−1)d(x)d(pi )λ(pi )xp′
i − (−1)d(λ)d(x)λ(pi )xp′

i

]

= λ(x)p +
∑

i

[
(−1)d(x)d(pi )λ(pi )xp′

i − (−1)d(λ)d(x)λ(pi )xp′
i

]

= λ(x)p +
∑

i :d(λ)+d(pi )=0

[
(−1)d(x)d(pi )λ(pi )xp′

i − (−1)d(λ)d(x)λ(pi )xp′
i

]

= λ(x)p,

where we use that λ vanishes on monomials of polynomial degree different from 1
and on those of bidegree different from (−w(λ),−d(λ)). Since p was arbitrary, this
calculation establishes the desired relation. 67

4 Stability phenomena

In this section, we give examples of stability phenomena in Lie algebra homology
arising from the transit algebra action introduced above. We then deduce our results
about the homology of configuration spaces.

4.1 Transit algebras and stability

The purpose of this section is to demonstrate that the transit algebra actions described
in Theorem 3.14 give rise to stability phenomena in the homology of Lie algebras. For
simplicity, we work under the following standing assumptions.
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Assumption 4.1 The Lie algebra g is finite dimensional with g[1] first-quadrant and
connected.

There are two versions of the following result. We state the version for the maximal
slope; the version for the minimal slope is obtained by reversing inequalities and
interchanging min andmax. Throughout, a ray in H∗(g) is with respect to the bigraded
structure of Definition 3.12.

Proposition 4.2 Let g : g → k be an Abelian quotient, and suppose that we have the
inequalities

mmax(k[1]0) ≤ C

mmax(ker g[1]0) < C .

Each ray of slope C in HLie
∗ (g) is finitely detected over Sym(k∨[−1]0C ) ⊆ W (0, g). In

particular, the gradeddimensionof sucha ray is eventually equal to aquasi-polynomial
of degree at most dim(k[1]0C ) − 1 and period dividing lcm(k[1]0C ).

Proof Any ray of slopeC in HLie
∗ (g) is a Sym(k∨[−1]0C )-submodule and a subquotient

of the corresponding ray in CE(g); therefore, by Lemmas 2.10, 2.11, and 2.12, it
suffices to show that every ray of slopeC in the dual adjoint module CE(g)∨ is finitely
generated.

The action of Sym(k∨[−1]0C ) on CE(g)∨, which respects the differential, extends
along the monomorphism g∨ to an action of Sym(g∨[−1]), which does not respect the
differential. Under this action, CE(g)∨ is free of rank 1, hence finitely generated. Since
mmax(g∨[−1]0) ≤ C , it follows from Lemma 2.8 that each ray of slope C is finitely
generated over Sym(g∨[−1]0C ). Our assumption implies that g[1]0C ∩ ker g[1]0 = 0,
so g∨[−1]0C = k∨[−1]0C . 67

In a sense, the next result is dual to Proposition 4.2. Again, there are two versions,
only one of which we state.

Proposition 4.3 Let f : h → g be a central subalgebra, and suppose that we have the
inequalities

mmax(h[1]0) ≤ C

mmax(coker f [1]0) < C .

Each ray of slope C in HLie
∗ (g) is finitely generated over Sym(h[1]0C ) ⊆ W ( f , 0). In

particular, the gradeddimensionof sucha ray is eventually equal to aquasi-polynomial
of degree at most dim(h[1]0C ) − 1 and period dividing lcm(h[1]0C ).
Proof Since each ray of slope C in CE(g) is a submodule with subquotient the cor-
responding ray of slope C in HLie

∗ (g), it suffices by Noetherianity and Lemma 2.7 to
show that each ray of slope C in CE(g) is finitely generated.

The action of Sym(h[1]0C ), which respects the differential, extends along the inclu-
sion of h to an action of Sym(g[1]), which does not respect the differential. Under this
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action, CE(g) is free of rank 1, hence finitely generated. Sincemmax(g[1]0) ≤ C , it fol-
lows from Lemma 2.8 that each ray of slope C is finitely generated over Sym(g[1]0C ),
but g[1]0C = h[1]0C by our assumption. 67

The same method yields the following mild extension.

Corollary 4.4 Let g be as in Proposition 4.3 and consider a semidirect product g̃ =
g ! l with l free and finitely generated. If l centralizes h[1]0C , then the conclusion of
Proposition 4.3 holds for g̃.

Proof The action of Sym(h[1]0C ) on CE(g) described in the proof of Proposition 4.3
extends to an action on the underlying bigraded vector space ofCE(g̃), the latter being a
sum of bigraded shifts of the former. Our assumption on the relationship between l and
h guarantees that this action is compatible with the differential, and the homological
Lyndon–Hochschild–Serre spectral sequence [6, Ch. 34]

HLie
∗ (l; HLie

∗ (g)) 9⇒ HLie
∗ (g̃)

is a spectral sequence of Sym(h[1]0C )-modules.2 By Noetherianity and Lemma 2.7, it
suffices to show that each ray of slope C in the initial page of this spectral sequence
is finitely generated.

Writing V for the finite dimensional bigraded vector space generating l as a free
Lie algebra, the page in question is isomorphic to TorT (V )

∗ (HLie
∗ (g),Q), which may

be calculated as the homology of the complex

HLie
∗ (g) ⊗ V → HLie

∗ (g)

of Sym(h[1]0C )-modules. Each ray of slopeC in this complex is a finite sumof bigraded
shifts of rays of slopeC in HLie

∗ (g), each ofwhich has already been shown to be finitely
generated. By Noetherianity of Sym(h[1]0C ), the homology of this complex is finitely
generated. This completes the proof. 67
Remark 4.5 The same method of proof establishes the analogous conclusion for iter-
ated semidirect products with free Lie algebras. Details are left to the reader.

Our final corollary uses the action of both halves of the transit algebra to establish
that rays are free modules in certain cases.

Corollary 4.6 Let h
f−→ g

g−→ k be a split transit, and suppose that we have the inequal-
ities

mmax(h[1]0) ≤ C

mmax(coker f [1]0) < C .

Each ray of slope C of HLie
∗ (g) is a finitely generated free module over Sym(h[1]0C ) ⊆

W ( f , g).

2 For information on Lie algebra homology with coefficients, the reader may consult [6, Ch. 22].
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Proof Finite generation follows from Proposition 4.3. By Example 3.9 and Theorem
3.14, the action of Sym(h[1]0C ) extends to an action of the Weyl algebra on h[1]0C . It
is well known that a finitely generated module over a polynomial ring whose action
extends to the Weyl algebra is free—briefly, choosing a minimal set of generators and
a relation R of minimal degree, we note that, unless R is constant (contradicting the
first requirement of minimality), the derivative of R is a relation of strictly smaller
degree. Here R is an inhomogeneous relation in the generators, and its degree is the
maximum of the degrees of its nonzero homogeneous terms, and a constant relation
is one of degree 0. 67

4.2 Application to configuration spaces

Fix a d-manifold M , and write

gM = H∗
c (M;Qw) ⊗ v ⊕ H∗

c (M;Q) ⊗ [v, v],

where v and [v, v] are formal parameters of bidegree (1, d − 1) and (2, 2d − 2),
respectively, and cohomology is regarded as concentrated in negative degrees and
weight 0 (the reader is reminded thatQw denotes the orientation sheaf). This bigraded
vector space becomes a Lie algebra by declaring that the only nonzero components of
the bracket are given by the equation

[α ⊗ v,β ⊗ v] = (−1)d(β)(d−1)αβ ⊗ [v, v],

where α and β are multiplied via the twisted cup product.

Theorem 4.7 [7]. Let M be a manifold of even dimension d. There is an isomorphism
of bigraded vector spaces

⊕

n≥0

H∗(Bn(M);Q) ∼= HLie
∗ (gM ).

Through Theorem 4.7, stability phenomena in Lie algebra homology become sta-
bility phenomena in the homology of configuration spaces. As a matter of notation, we
write hM = H∗

c (M;Q) ⊗ [v, v] and kM = H∗
c (M;Qw) ⊗ v, considered as Abelian

Lie algebras. Thus, we have the exact transit hM → gM → kM . We observe that, for
degree j cohomology classes α ∈ H j

c (M,Q) and α′ ∈ H j
c (M,Qw), as elements of

gM [1], we have

d(α′ ⊗ v) = m(α′ ⊗ v) = d − j

d(α ⊗ [v, v]) = 2d − j − 1

m(α ⊗ [v, v]) = d − j + 1
2

.

Note that gM satisfies Assumption 4.1.
As a first example, we give a proof of classical homological stability.
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Proof of Theorem 1.1 Since M is a manifold, we have 0 ≤ j ≤ d in the equations
above, so we have the inequalities

mmin(hM [1]) ≥ d − 1
2

> 0

mmin(kM [1]) ≥ 0

(we use that d > 1). We now invoke the minimal slope version of Proposition 4.2
with C = 0. Observing that kM [1]00 ∼= Hd

c (M;Qw) ∼= H0(M;Q) "= 0 by Poincaré
duality, the degree bound on the resulting growth quasi-polynomial follows. Since kM
is concentrated in weight 1, this quasi-polynomial is in fact a polynomial. 67

We turn now to extremal stability, our main result.

Proof of Theorem 1.2 Assume first that M has no compact component. By Poincaré
duality,wehave H0

c (M;Qw) ∼= Hd(M;Q) = 0. Sincewe likewise have H0
c (M;Q) ∼=

H̃0(M+;Q) = 0, it follows that 0 < j ≤ d in the above equations, whence

mmax(hM [1]) ≤ d − 1

mmax(kM [1]) ≤ d − 1

We observe that d(α ⊗ v) is even if and only if j is even, so mmax(kM [1]0) < d − 1;
thus, we may apply Proposition 4.3 with C = d − 1. The degree bound follows as
before upon noting that h[1]0d−1

∼= H1
c (M;Q) ∼= Hd−1(M;Qw) by Poincaré duality,

and the period estimate follows from the fact that hM is concentrated in weight 2.
In general, write {Mi }i∈I for the (finite) set of compact components of M and Ṁ

for the manifold obtained by removing a single point from each. We have the exact
sequence of Lie algebras

gṀ → gM →
∏

i∈I
li ,

where li is free on one generator of bidegree (1, d − 1) or (2, 2d − 2) according to
whetherMi is orientable. This sequence splits, expressing gM as an iterated semidirect
product of gṀ with free Lie algebras. Since the li centralize hM = H∗

c (M;Q)⊗[v, v],
the claim follows from Corollary 4.4 and Remark 4.5. 67

We note the following structural statement, which we have established in the proof
of Theorem 1.2.

Theorem 4.8 Let M be as in Theorem 1.2. Then every ray of slope d − 1 in⊕
n≥0 H∗(Bn(M)) is a finitely generated module over Sym(Hd−1(M;Qw)〈2〉[2d −

2]) (the free commutative algebra on Hd−1(M,Qw), with generators in bi-degree
(2, 2d − 2)). If Hd(M;Q) = 0, then these modules are free.

Proof The proof of Theorem 1.2 uses the central subalgebra H1
c (M)⊗ [v, v] ⊆ hM ⊆

gM . By Poincaré duality H1
c (M) ∼= Hd−1(M;Qw). It is shown that every slope
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d − 1 ray is a finitely generated Sym(H1
c (M)〈2〉[1]) module. When H0

c (M;Qw) ∼=
Hd(M;Q) = 0, we have that

jM :=
⊕

j>0

H j
c (M;Qw) ⊗ v ⊕

⊕

j "=1

H j
c (M;Q) ⊗ [v, v]

is an ideal—in fact [gM , gM ] ⊆ jM since any element of gM of the form α ⊗ [v, v]
is central, and any pair of elements β1 ⊗ v,β2 ⊗ v ∈ gM with d(βi ) > 0 satisfies
[β1 ⊗ v,β2 ⊗ v] ∈ jM .

Further, H1
c (M) ⊗ [v, v] → gM → gM/jM is a split transit. Hence as in the proof

of Corollary 4.6, the action of Sym(Hd−1(M;Qw)[1]〈2〉) extends to an action of the
Weyl algebra. Therefore every ray of slope d − 1 is a finitely generated free module.

67
Example 4.9 The assumption that Hd(M;Q) = 0 is needed to ensure that the mod-
ules are free. For example, let # be a compact orientable surface of genus 1. If⊕

n≥0 Hn(Bn(#);Q)were free, then the sequence dim H2n(B2n(#);Q)would agree
with a polynomial of degree 1. However, it follows from [5, Corollary 4.6] that
dim H0(B0(#);Q) = 1, dim H2(B2(#);Q) = 1, but dim H4(B4(#);Q) = 4.

4.3 Vanishing and a loose end

If Hd−1(M;Q) = 0, then the conclusion ofTheorem1.2 is that Hνn−i (Bn(M);Q) = 0
for n large, which is to say that every ray of slope d − 1 eventually vanishes. In such a
situation, the question of extremal stability should concern rays of smaller slope. For
simplicity, we assume that M is orientable.

Theorem 4.10 Let M be an orientable manifold of even dimension d ≥ 2. Fix r ≥ 3,
and suppose that Hd−s(M;Q) = 0 for 0 < s < r . Fix i ∈ Z. For n sufficiently large,
the function n %→ dim Hn(d−1−: r

2 ;)−i (Bn(M);Q) is equal to a quasi-polynomial in
n of period dividing two and degree at most dim Hd−r (M;Q) − 1 if r is odd and
dim Hd−r−1(M;Q) − 1 if r is even.

Proof The proof mirrors that of Theorem 1.2, with the reduction to the non-compact
case proceeding unchanged. We aim to apply Proposition 4.3 with C = d − 1− : r

2;.
Since M is orientable, twisted and untwisted cohomology coincide, and Hs

c (M;Q) ∼=
Hd−s(M;Q) = 0 for 0 ≤ s < r . Thus, we have

mmax(hM [1]) ≤ d − r + 1
2

mmax(kM [1]) ≤ d − r < C,

where we use that r ≥ 3. We observe that d(α ⊗ [v, v]) is even if and only if α has
odd degree, so

mmax(hM [1]0) ≤





d − r+1

2 r odd

d − r+2
2 r even,
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as desired. As before, the claim follows from Poincaré duality. 67
In the case r = 2, the situation is unclear, and we ask the following.

Question 4.11 Suppose that Hd−1(M;Q) = 0. For i ∈ Z, is the Hilbert function

n %→ dim Hn(d−2)−i (Bn(M);Q)

eventually a quasi-polynomial?

This question has an affirmative answer under the further assumption that
Hd−2(M;Q) = 0, by Theorem 4.10, and it is not hard to show that the same is
true when Hd−3(M;Q) = 0 using Proposition 4.2.

Remark 4.12 Since the initial draft of this paper appeared,Yameen has answeredQues-
tion 4.11 in the affirmative in the case of M = CPm [13].

4.4 The odd dimensional case

We comment briefly on the case of d odd, which is encompassed implicitly by the
results of [3].

In odd dimensions, the corresponding Lie algebra provided by [7] is the Abelian
Lie algebra H∗

c (M;Qw) ⊗ v, so

⊕

n≥0

H∗(Bn(M);Q) ∼= Sym(H∗(M;Q))

by Poincaré duality (as was originally proven in [3]). It follows easily that every ray of
slope zero is free and finitely generated over Sym(H0(M)), so dim Hi (Bn(M);Q) is
a polynomial in n of exact degree dim H0(M;Q)−1. Thus, Theorem 1.1 holds in this
case. As for Theorem 1.2, the corresponding statement is that every ray of slope d −1
is free and finitely generated over Sym(Hd−1(M;Q)), so dim Hνn−i (Bn(M);Q) is a
polynomial in n of exact degree dim Hd−1(Bn(M);Q) − 1.
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