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A recent theorem of Hyde proves that the factorization statistics of a random poly-
nomial over a finite field are governed by the action of the symmetric group on the
configuration space of n distinct ordered points in R3 . Hyde asked whether this result
could be explained geometrically. We give a geometric proof of Hyde’s theorem as an
instance of the Grothendieck–Lefschetz trace formula applied to an interesting, highly
nonseparated algebraic space. An advantage of our method is that it generalizes
uniformly to any Weyl group. In the process we study certain non-Hausdorff models
for complements of hyperplane arrangements, first introduced by Proudfoot.

11T06, 14F20, 14N20, 55R80; 14A20, 14G15

1 Introduction

1.1 What, why, and how: factorization statistics and configuration spaces

1.1.1 Let � W Sn ! C be a class function. We consider � as a function on the set of
integer partitions of n. Let Poln.Fq/ denote the set of monic polynomials of degree n

over the finite field Fq . If f 2Poln.Fq/ has the factorization f DQ
i
fi into irreducible

factors over Fq , then the degrees of the fi form a partition of n, and we let �.f /
denote the value of � on the resulting partition. If f is squarefree, we may also define
�.f / as follows: the Frobenius automorphism Frobq acts by permuting the roots of f ,
the resulting permutation is well defined up to conjugation, and we define �.f / as the
value of � on this permutation.

1.1.2 We will be interested in sums of the form
P

f 2Poln.Fq/ �.f /. These sums often
have number-theoretic significance: we may for example compute the average number
of irreducible factors, the variance, the probability of having more linear factors than
quadratic factors, and so on, of a random degree-n polynomial over Fq . In general,
we may compute the expected value of any factorization statistic, by which we mean
any quantity �.f / that only depends on the degrees of the irreducible factors of f .
The subject of this paper is a recent theorem of Hyde [14] that relates these statistics to
point configurations in R3.
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3692 Dan Petersen and Philip Tosteson

1.1.3 To state the theorem we need the following notation. If V is a representation
of the finite group G , then we denote by ch V its character. We denote by h�;�iG

the standard inner product of class functions, for which the characters of irreducible
complex representations form an orthonormal basis.

1.1.4 Theorem (Hyde) Let PConfn.R3/ be the configuration space of n distinct
ordered points in R3. The sum of � over Poln.Fq/ is given by

X

f 2Poln.Fq/

�.f /D q
n

X

i�0

q
�ih�; ch H

2i.PConfn.R
3/;Q/iSn :

1.1.5 Remark The odd-degree cohomology groups of PConfn.R3/ vanish, which
explains why Hyde’s theorem only involves the even cohomology.

1.1.6 It is natural to ask:

What is the meaning of this formula?

If you have some experience with étale cohomology, your first thought is perhaps also:

This must be an instance of the Grothendieck–Lefschetz trace formula:

But how? Why should the two spaces Poln and PConfn.R3/ have any kind of re-
lationship with each other? And isn’t PConfn.R3/ very far from being a complex
algebraic variety? Hyde’s method of proof does not answer these questions: he calcu-
lates explicitly a generating function for all factorization statistics, considered as an
element of the ring of symmetric functions, and then compares with the character of
H

⇤.PConfn.Rd /;Q/, which is well understood.

1.1.7 In this paper we give a fully geometric proof of Hyde’s result, and explain why
there should be a connection between factorization statistics and point configurations
in R3. In a nutshell, we will consider a certain non-Hausdorff scheme Xn over Z
with an action of Sn , satisfying the following two properties: (i) The analytifica-
tion Xn.C/ has the Sn –equivariant weak homotopy type of PConfn.R3/. (ii) The
stack quotient ŒXn=Snç — which happens to be an algebraic space — can be understood
as the badly non-Hausdorff space parametrizing degree-n monic polynomials p.t/,
together with a choice of factorization of p.t/ into irreducibles. In particular we have
a bijection of sets ŒXn=Snç.Fq/ D Poln.Fq/. Applying the Grothendieck–Lefschetz
trace formula with twisted coefficients to ŒXn=Snç produces Hyde’s formula.

Geometry & Topology, Volume 25 (2021)
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1.1.8 A reader may object to the claim in the preceding paragraph that the space
parametrizing a degree-n polynomial with a choice of decomposition into irreducible
factors is not Hausdorff. Surely every polynomial has a unique factorization into
irreducibles? Surely the space of polynomials with a fixed such factorization is just the
space of polynomials, ie affine n–space? But this is precisely the crux of the matter —
the space of polynomials with a factorization into irreducibles is not affine n–space
but rather something deceptively similar: it is a bug-eyed cover of affine n–space. A
bug-eyed cover is a type of geometric peculiarity that occurs in the world of algebraic
spaces: it is a space which fails to be Hausdorff not because it has “too many points”
but rather because it has “too many tangent directions”.

1.1.9 The nonclassical nature of the space ŒXn=Snç, and the relationship to configura-
tions of points in R3, can be understood geometrically in terms of the theory of foliations.
(However, we will not use this perspective in the body of the paper.) Consider a foliated
manifold .M;F /. There is a natural induced foliation on PConfn.M /, which descends
to the quotient manifold Confn.M / WD PConfn.M /=Sn . Now let us specialize to the
product foliation of R3 whose leaves are the lines parallel to the z–axis. Then the leaf
space of the induced foliation of Confn.R3/ can be identified with the analytification
of ŒXn=Snç. In general the leaf space of a foliation is most naturally thought of as
a Lie groupoid, the holonomy groupoid. In this case the holonomy groupoid has
trivial isotropy groups, but is still not weakly equivalent to a manifold, not even a
non-Hausdorff manifold. On the algebraic side this is reflected in the fact that the
algebraic space ŒXn=Snç is not locally separated, which implies that it does not admit
a well-defined analytification in the category of complex-analytic spaces. But if we
consider ŒXn=Snç as a stack then we obtain a well-defined analytification as an étale
groupoid in analytic spaces, weakly equivalent to the leaf space of the above foliation
of Confn.R3/.

1.1.10 The scheme Xn is a special case of a more general construction: for any
arrangement A of hyperplanes in Rn there exists a scheme XA with the property
that the induced codimension-3 subspace arrangement in .R3/n is a fiber bundle
over XA.C/ with fiber Rn (and in particular they are weakly homotopy equivalent),
and similarly the complement of the complexification of the arrangement in Cn is an
Rn –fiber bundle over the set of real points XA.R/. The scheme XA was introduced
by Proudfoot [28] as a non-Hausdorff model for the complement of a complexified real
hyperplane arrangement, although Proudfoot only considered the real points of XA ,
not its set of complex points.

Geometry & Topology, Volume 25 (2021)
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1.1.11 From our geometric approach, we will also see that Hyde’s theorem is a special
case of a formula valid for any Weyl group. This more general formula specializes
to Hyde’s theorem when the Weyl group W is Sn with its action on An given by
permuting the coordinates.

1.1.12 Theorem Let W ⇢ GL.n;Z/ be a Weyl group acting by reflections on affine
n–space. Let � W W ! C be a class function. Let MW be the complement of the
associated codimension-3 subspace arrangement in .R3/n. For any finite field Fq we
have X

x2.An=W /.Fq/

�.x/D q
n

X

i�0

q
�ih�; ch H

2i.MW ;Q/iW :

1.1.13 Let us explain the notation �.x/ in the left-hand side of Theorem 1.1.12. If
x 2 .An=W /.Fq/, choose an arbitrary element y 2 An.xFq/ in the fiber of An ! An=W

over x . Since Frobenius acts preserving the fiber over x , there exists an element
w 2 W such that w �y D Frob.y/. But w is not unique in general; the best we can say
is that we get a well-defined coset w � Stab.y/ ✓ W , where Stab.y/ is the stabilizer
of y . But a stabilizer of a point is precisely what is called a parabolic subgroup of a
reflection group, and it is a standard fact that any coset of a parabolic subgroup has
a distinguished minimal representative (which depends on the choice of a system of
positive roots). Up to conjugacy the minimal representative does not depend on the
choice of y or the choice of system of positive roots, and we define �.x/ to be the
value of � on this conjugacy class.

1.1.14 For a general Weyl group we do not have an interpretation of Theorem 1.1.12
as concrete as the one in the type A case in terms of factorizations of polynomials.
However, in the type B case there is one: we obtain a formula that relates the expected
factorizations of monic even polynomials of degree 2n over finite fields to the action
of the hyperoctahedral group on the cohomology of the complement of the type B
subspace arrangement in .R3/n.

1.2 Structure of the paper

1.2.1 This paper consists of two parts of rather different flavor.

In Section 2 we describe previous work, and how we were led to define the scheme Xn ;
we explain how Hyde’s theorem follows by applying the Grothendieck–Lefschetz trace
formula to ŒXn=Snç; and finally we explain how to generalize the scheme Xn to a more
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general scheme XW for a Weyl group W , so that Grothendieck–Lefschetz applied to
ŒXW =W ç produces Theorem 1.1.12. This part of the paper is rather leisurely written,
with few or no proofs. In particular we will, in the course of the arguments, use some
properties of the schemes Xn and XW without careful justifications, in order to not
disrupt the flow of the text.

The careful justifications are supplied in Section 3, where we study the schemes Xn

and XW in detail. As mentioned previously these schemes are special cases of a
more general construction due to Proudfoot, which associates a scheme XA to a
hyperplane arrangement A in Rn. We show that the complement of the induced
codimension-3 subspace arrangement in .R3/n is an Rn –bundle over XA.C/, and that
the complement of the complexification is similarly fibered over XA.R/; in the real
case this is a theorem of Proudfoot. The combinatorial structure of the scheme XA is
independently interesting, and closely tied to the Salvetti complex. Using a theorem of
Delucchi [7] and Lofano and Paolini [25], we construct an algebraic cell decomposition
(also known as an affine paving) of XA , which can be used to determine its cohomology
as a Galois representation.

Acknowledgements We are grateful to Dustin Clausen, Emanuele Delucchi, Trevor
Hyde, Dmitri Panov and David Rydh for comments and suggestions. Will Sawin has
informed us that he has obtained a related geometric approach to Hyde’s theorem. We
also thank Michael Falk for informing us of Proudfoot’s work.

Petersen acknowledges support by ERC-2017-STG 759082 and a Wallenberg Academy
Fellowship. Tosteson acknowledges support by NSF Grant No. DMS-1903040.

2 The path to Hyde’s theorem

2.1 The case of squarefree polynomials

2.1.1 It will be convenient to rewrite the right-hand side of Hyde’s Theorem 1.1.4 as
follows. Let V� be a rational representation of Sn and �D ch V� . If we can computeP

f 2Poln.Fq/ �.f / for any V� , then we can compute this sum for an arbitrary class func-
tion by linearity, so it suffices to prove this case of Hyde’s theorem. If Y is any topolog-
ical space then the finite-sheeted covering PConfn.Y /! Confn.Y /D PConfn.Y /=Sn

is classified by a homomorphism ⇡1.Confn.Y //! Sn . Via this homomorphism, we

Geometry & Topology, Volume 25 (2021)



3696 Dan Petersen and Philip Tosteson

may think of V� as defining a local system V� on Confn.Y / for any Y , and there is
an isomorphism

H
k.Confn.Y /;V�/ä H

k.PConfn.Y /;Q/˝Sn V�

for all k . In these terms we may state Hyde’s formula equivalently in the form

(1)
X

f 2Poln.Fq/

�.f /D q
n

X

i�0

q
�i dim H

2i.Confn.R
3/;V�/:

In this form the connection to Grothendieck–Lefschetz will become more transparent.

2.1.2 Before trying to find a geometric interpretation of Hyde’s formula (1), it is
instructive to first consider a similar but simpler case, namely the case where we restrict
f to be squarefree. In this setting, the analogue of Hyde’s theorem is

(2)
X

f 2Poln.Fq/
f squarefree

�.f /D q
n

X

i�0

.�1/iq�i dim H
i.Confn.C/;V�/;

which is an instance of the Grothendieck–Lefschetz trace formula in a more direct
manner. The formula (2) can be found in a paper of Church, Ellenberg and Farb [5];
as they point out, closely related statements were in the literature previously, eg [19].
In fact, Hyde was led to discover his formula by investigating what happens when
the “squarefree” condition is dropped from the left-hand side of (2). We give a brief
account of the proof of (2) here, and refer to [5] for a more detailed account. We will
use the Grothendieck–Lefschetz formula in the form

(3)
X

x2X .Fq/

Tr.ˆq jFxx/D q
dim X

X

i

.�1/i Tr.ˆq jH i

ét.XxFq
;F//;

where X is a smooth finite type scheme over Fq , F is a locally constant Q` –sheaf
on X (where ` is a prime invertible in Fq ), Fxx is the stalk of F at a geometric point xx
over x , and ˆq is the arithmetic Frobenius (whose eigenvalues are the inverses of
those of the geometric Frobenius).

2.1.3 We apply Grothendieck–Lefschetz to the scheme Confn.A1/ over Z, which
parametrizes squarefree monic degree-n polynomials. In the same way that the rep-
resentation V� defined a local system V� on Confn.Y / for any topological space Y ,
we obtain a locally constant `–adic sheaf V�;` on Confn.A1/. Now recall that when
the polynomial f is squarefree we may also define �.f / as follows: the Frobenius
automorphism acts by permuting the roots of f , the resulting permutation is well defined
up to conjugation, and we define �.f / as the value of � on this conjugacy class. But
the monodromy of the covering PConfn.A1/! Confn.A1/ is precisely given by the
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action of Sn permuting the roots, which implies that �.f /D Tr.ˆq j.V�;`/ xf /, and so
the left-hand sides of (2) and (3) agree.

2.1.4 To identify the right-hand sides of (2) and (3) we need to prove that

H
i.Confn.C/;V�/˝ Q` ä H

i

ét.Confn.A
1/xFq

;V�;`/

for all i , or equivalently that there is an Sn –equivariant isomorphism

H
i.PConfn.C/;Q`/ä H

i

ét.PConfn.A
1/xFq

;Q`/I

we also need to know that all eigenvalues of ˆq acting on H
i

ét.PConfn.A1/xFq ;Q`/

equal q
�i. The first part can be deduced in all characteristics from the Artin comparison

theorem and the fact that PConfn.A1/ is the complement of a simple normal crossing
divisor in a smooth proper scheme over Z (using the Fulton–MacPherson compacti-
fication [11]). However, to understand the Galois action as well, it is more efficient
to argue that both Betti and étale cohomology of the complement of an arrangement
of hyperplanes can be computed by an identical deletion–restriction scheme; the
latter argument implies in addition that the étale cohomology of the complement of
any hyperplane arrangement is pure Tate of weight 2i in degree i , as needed. This
argument is independently due to Kim [18] and Lehrer [24].

2.1.5 As we mentioned in Section 1.1.14, our more general formula Theorem 1.1.12
has an interpretation in the type B case in terms of expected factorizations of even
polynomials of degree 2n over Fq . There is also a “squarefree” Type B version of the
formula, which relates the expected factorizations of squarefree even polynomials of
degree 2n over Fq and the action of the hyperoctahedral group on the cohomology of the
complement of the type B arrangement in Cn. This formula is due to Jiménez Rolland
and Wilson [16], and is proven using the Grothendieck–Lefschetz trace formula in
much the same way as in the type A case.

2.1.6 The upshot is that in the squarefree case we have a good geometric understanding
of the factorization statistics in terms of `–adic cohomology, and we would like a
similar geometric description of the factorization statistics for general polynomials.

2.2 The plot thickens: weighted statistics

2.2.1 We saw that to compute the factorization statistics of squarefree polynomials (2),
one uses the cover PConfn.A1/! Confn.A1/. So at first it may seem that if we wish
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to compute the factorization statistics for all polynomials, we need to replace the cover
of the space of squarefree polynomials, PConfn.A1/ ! Confn.A1/, by the ramified
cover of the space of all polynomials, h W .A1/n ! An. Even though h is not étale, we
can still associate a sheaf on An to every irreducible representation V� of Sn , namely
the sheaf

.h⇤Q`/� WD HomSn.V�; h⇤Q`/:

Here V� is considered as a constant sheaf of Q`ŒSnç–modules on An (and should not
be confused with the local system V� ), so that .h⇤Q`/� ˝Q V� is the V� –isotypic
component of the sheaf h⇤Q` with respect to its canonical Sn –action. Over the locus
of squarefree polynomials .h⇤Q`/� restricts to the local system V�;` of Section 2.1.3.

2.2.2 This approach to computing factorization statistics was carried out by Gadish [12],
resulting in the identity

(4)
X

f 2Poln.Fq/

1

jAut.f /j
X

�2Aut.f /

�.Ff ı �/D q
n � h�; 1iSn :

Let us explain the notation
P

�2Aut.f / �.Ff ı �/. Suppose f 2 Poln.Fq/ factors as
f D Q

f ai

i
, where all the fi are distinct and irreducible, and let us number the roots

of f as z1; : : : ; zn . Then we define Aut.f / WD Q
i

Sai
, and the ordering of the roots

identifies Aut.f / with a Young subgroup of Sn . We let Ff 2 Sn denote the permutation
representing the action of Frobenius on the roots, ie such that Frobq.zi/D zFf .i/ . The
permutation Ff is not uniquely determined unless f is squarefree. Nevertheless
the sum X

�2Aut.f /

�.Ff ı �/

is well-defined and independent of our choices. Note that if f is squarefree then this
sum is just �.f /.

2.2.3 Note also that the right-hand side of (4) can trivially be rewritten as

h�; 1iSn D
X

i�0

.�1/ih�; ch H
i

ét..A
1/n;Q`/iSn ;

since the cohomology of .A1/n is just a single copy of the trivial representation of Sn

in degree 0. Thus, as expected, on the right-hand side of (4) we see the cohomology
of .A1/n, together with its symmetric group action.
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2.2.4 Now, clearly the application of Grothendieck–Lefschetz to the map .A1/n ! An

did not result in the formula for the factorization statistics that we wanted. Instead,
it gave us a different formula, for weighted factorization statistics. Here the quantity
associated to a polynomial f involves an averaging procedure, weighted by jAut.f /j�1 ,
where Aut.f / is the stabilizer group of the action of Sn on the fiber above f . So the
key problem in recovering Hyde’s formula from the action of Sn on .A1/n seems to
be that Sn does not act freely.

2.2.5 Indeed, the presence of the weight jAut.f /j�1 in Gadish’s formula suggests
that it may alternatively be obtained by using the stack quotient Œ.A1/n=Snç. The
Grothendieck–Lefschetz trace formula for a smooth algebraic stack X takes the form
[2, Corollary 6.4.10]

(5)
X

x2X.Fq/='

1

jAut.x/j Tr.ˆq jFxx/D q
dimX

X

i

.�1/i Tr.ˆq jH i

ét.XxFq
;F//;

where Aut.x/ denotes the Fq –points of the isotropy group of X at x . This formula,
applied to the cohomology of Œ.A1/n=Snç, with coefficients in the local system V�

induced by the étale Sn –cover .A1/n ! Œ.A1/n=Snç, reproduces Gadish’s formula (4). In
fact, Gadish proved a general formula applicable to a ramified G –cover h W X ! X=G ,
where G is any finite group, and it can be realized as the Grothendieck–Lefschetz
trace formula applied to ŒX=Gç. The reason why the two approaches produce the same
formula is that the pushforward of V� along ŒX=Gç ! X=G is precisely the sheaf
.h⇤Ql/� that Gadish uses to obtain his formula (Section 2.2.1).

2.2.6 All of the above suggests that the nonfree action of Sn on .A1/n is the culprit
that causes weighted factorization statistics to appear, rather than ordinary factorization
statistics, when applying Grothendieck–Lefschetz to .A1/n ! An. In other words,
the isotropy of the stack Œ.A1/n=Snç is the source of the weights jAut.f /j�1 , and to
recover Hyde’s formula geometrically we should somehow try to remove the stackiness
of Œ.A1/n=Snç. We could try to do this by replacing .A1/n by a space Xn that looks
somehow “similar” to affine space but which has a free action of Sn . In particular,
there should be a bijection of sets

ŒXn=Snç.Fq/
⇠�! Poln.Fq/:

This is in contrast to Œ.A1/n=Snç.Fq/, which is a groupoid with ⇡0Œ.A1/n=Snç.Fq/D
Poln.Fq/ but with nontrivial stabilizers. Moreover, we saw that the right-hand side
of Gadish’s formula corresponds to the cohomology of .A1/n (Section 2.2.3); if we
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want the Grothendieck–Lefschetz trace formula to replicate the right-hand side of
Hyde’s formula (1), then the space Xn should have the same cohomology groups as
PConfn.R3/, and the cohomology groups H

2i

ét should be pure Tate of weight 2i .

2.3 Bug-eyed configuration spaces

2.3.1 The simplest way to modify .A1/n into a space with a free Sn –action is to
add extra data at the points stabilized by Sn . Accordingly, we propose the following
construction. Let us define a nonseparated scheme Xn as the space parametrizing
n not-necessarily-distinct ordered points on the line A1, together with an auxiliary total
ordering on each of the sets of points which happen to coincide. For example, X2 is the
plane with doubled diagonal. In general, Xn is obtained by gluing together n! copies
of affine n–space An along open subspaces given by complements of diagonal loci.
(A more general construction will be carefully described in Section 3.2.3.) There is
a natural action of Sn on Xn , which is now a free action: the loci in An which have
been “duplicated” are precisely those with nontrivial Sn –stabilizers. Thus the quotient
stack ŒXn=Snç has trivial isotropy groups and is now actually an algebraic space. The
algebraic space ŒXn=Snç is smooth and looks deceptively similar to affine n–space An :
there is a natural map p W ŒXn=Snç ! An such that for the natural stratification of
ŒXn=Snç with strata indexed by the partition lattice, the restriction of p to each stratum
is an isomorphism onto its image. Nevertheless p is not an isomorphism — for one,
ŒXn=Snç is not separated (in fact not even locally separated), since Xn is not separated.
This is a geometric phenomenon which is impossible for schemes but possible for
algebraic spaces: informally speaking, schemes can only be nonseparated because they
have “too many points”, whereas algebraic spaces can be nonseparated also because
they have “too many tangent directions”; cf [20, Example 1, page 9]. For example,
ŒX2=S2ç is the plane with doubled tangent directions along the diagonal. In general
ŒXn=Snç is a “bug-eyed cover” of An, in the terminology of Kollár [21].

2.3.2 Our first claim is that if we associate a locally constant `–adic sheaf V�;` on
ŒXn=Snç as before, then the left-hand side of the Grothendieck–Lefschetz trace formula
applied to X D ŒXn=Snç and F D V�;` becomes precisely the left-hand side of (1).
The argument is almost exactly the same as in the squarefree case: we observe that
since ŒXn=Snç ! An is a bug-eyed cover, it follows that ŒXn=Snç.Fq/ ! Poln.Fq/

is a bijection. Moreover, the monodromy of Xn ! ŒXn=Snç over a polynomial f
is given by Sn acting on the set of roots of f . This identifies Frobenius acting on
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the set of roots with a permutation whose cycle type is given by the degrees of the
irreducible factors of f . This explains why factorization statistics are connected to the
cohomology of Xn . But how is Xn related to PConfn.R3/?

2.3.3 Our second claim (Theorem 3.3.5) is that there exists an Sn –equivariant map

f W PConfn.R
3/! Xn.C/

which is a fiber bundle with fiber Rn and in particular a weak homotopy equivalence.
Let us define this map f . A point in R3 has an x–, a y–, and a z–coordinate; by
forgetting the z–coordinate we obtain a point in R2 ä C . In this way we obtain from a
configuration of n distinct ordered points in R3 a configuration of n points in C , where
the points may now coincide with each other. But note that if some subset of these
points in C are equal, then their preimages in R3 must have distinct z–coordinates. It
follows that the z–coordinate defines a total ordering on this set of coinciding points.
In this way we obtain from each point of PConfn.R3/ a point of Xn.C/. We remark
that this construction is quite similar to the stratification of Confn.C/ considered by
Fox–Neuwirth [9] and Fuks [10, Section 3].

2.3.4 The two claims combined together give a “philosophical” explanation of Hyde’s
theorem: the sum

P
f 2Poln.Fq/ �.f / can be evaluated in terms of the Sn –equivariant

étale cohomology of Xn , and over the complex numbers the space Xn has the same
cohomology as PConfn.R3/. If we want to actually re-prove Hyde’s theorem by purely
geometric considerations we need two further ingredients:

✏ By the Artin comparison theorem, and general constructibility and base change
results, the Betti cohomology of Xn.C/ is isomorphic to the étale cohomology of
X

n;xFq
away from finitely many characteristics. To recover Hyde’s theorem in all

characteristics we need to know that the sheaves R
q⇡⇤Q` are locally constant

over Spec.ZŒ1=`ç/, where ⇡ W Xn ! Spec.Z/ is the structural morphism.

✏ To apply the Grothendieck–Lefschetz formula, we need to know the Galois
action on H

i.Xn;xFq ;Q`/; specifically, what is needed for Hyde’s theorem is the
statement that H

i is pure Tate of weight i .

Just as in the squarefree case, we will resolve these issues by finding a direct geometric
method to compute the cohomology of Xn that works independently of the characteristic
and which also keeps track of the Galois action.
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2.4 A cellular decomposition

2.4.1 There are many examples of algebraic varieties Z with the property that H
i.Z/

is pure Tate of weight i (and then nonzero only for even i ), such as smooth Schubert
varieties and smooth projective toric varieties. The most hands-on way in which this
can happen is when Z is smooth and admits an algebraic cell decomposition, a certain
kind of decomposition into locally closed subschemes each of which is isomorphic to
an affine space Ad (Definition 3.5.1). If this holds then H

2i is pure Tate of weight 2i

for all i , and if Z is d –dimensional then dim H
2i.Z/ is given by the number of cells

of dimension d � i (Proposition 3.6.7).

2.4.2 We now claim that the schemes Xn admit such an algebraic cell decomposition.
For example, X2 is the plane with doubled diagonal, which can be decomposed as the
union of a plane and a line:

X2 D A2 [ A1;

where A2 is the locus fx1 ¤ x2g[fx1 D x2; 1  2g and A1 is the line fx1 D x2; 2  1g.
Similarly X3 looks like A3 except the planes defined by x D y , x D z and y D z

have all been doubled, and there are six copies of the line x D y D z ; this gives rise to
a decomposition

X3 D A3 [ A2 [ A2 [ A2 [ A1 [ A1:

What will happen in general is indeed that each Xn admits an algebraic cell decompo-
sition (which is far from unique or canonical, as can be seen even for X2 ). Although
this statement might seem simple, there is in fact a nontrivial combinatorial theorem
lurking in the background here, which is a theorem of Delucchi [7] and Lofano and
Paolini [25] stating that the set of chambers of an arrangement of real hyperplanes
always admits a “valid order”. Each choice of valid order gives rise to an algebraic cell
decomposition of Xn , so it follows that the Betti numbers of Xn in étale cohomology
are independent of the characteristic of the base field, and the i

th étale cohomology
group of Xn is pure Tate of weight i in any characteristic. Moreover, even though

the cell decomposition is not Sn –equivariant, it follows that the decomposition of the
étale cohomology into irreducible Sn –representations is the same in any characteristic.
Indeed, the `–adic sheaf on Spec.ZŒ1=`ç/ given by the q

th étale cohomology of Xn with
Q` –coefficients is the direct sum of its isotypical components under the action of Sn , by
Maschke’s theorem. But this sheaf is locally constant, and a direct summand of a locally
constant sheaf is locally constant, so each isotypical component must itself be locally
constant over Spec.ZŒ1=`ç/. Hence the étale cohomology of ŒXn=Snç with coefficients
in V� , which is identified with this isotypic component, is locally constant as well.
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2.5 Conclusion

2.5.1 We are now in a position to assemble what has been said so far into a proof.
More precisely, putting these three ingredients together gives a completely geometric
proof of Hyde’s theorem:

✏ The identification between the Grothendieck–Lefschetz trace formula for ŒXn=Snç

and the left-hand side of Hyde’s formula (Section 2.3.2).

✏ The weak equivalence between PConfn.R3/ and Xn.C/ (Theorem 3.3.5).

✏ The space Xn having an algebraic cell decomposition over the integers, so
that its cohomology is pure of Tate type, with Betti numbers independent of
characteristic of the base field (Corollary 3.5.8 and Proposition 3.6.7).

2.5.2 Remark Amusingly, while jPConfn.A1/.Fq/j D q � .q � 1/ � � � .q � .n � 1//

has its point counts given by a falling Pochhammer symbol .q/n , the point counts of
Xn.Fq/ are given by a rising Pochhammer symbol .q/n D q.q C 1/ � � � .q C n � 1/.
We can see this directly by considering the map Xn.Fq/! Xn�1.Fq/ which forgets
the last point, and has fiber of size q C .n � 1/. This may be compared with the map
of configuration spaces PConfn.A1/! PConfn�1.A1/, which can be used to derive in
a similar fashion the number of Fq –points of PConfn.A1/. Furthermore, just as we
may consider the configuration space PConfn.Y / for any space Y , we may construct a
variant of Xn where A1 is replaced by an arbitrary Y . If we take Y to be the finite
set ŒkçD f1; : : : ; kg, then we obtain a set with .k/n elements, on which Sn acts freely,
with quotient exactly the set of multisubsets of Œkç. In some sense, this whole paper is
an elaboration on this bijective proof that Œkç has .k/n=n! multisubsets.

2.5.3 Remark As a final remark on the proof let us point out that in our argument we
applied Artin’s comparison theorem between étale and singular cohomology to Xn , and
not to the quotient ŒXn=Snç. One reason is psychological — the scheme Xn is easier
to visualize than the bug-eyed algebraic space ŒXn=Snç — but another reason is that it
makes the argument significantly technically simpler. The reason is that a finite type
algebraic space over C admits an analytification if and only if it is locally separated
[6, Theorem 2.2.5], so the space ŒXn=Snç doesn’t even have an analytification to which
Artin’s theorem could have been applied. The fact that ŒXn=Snç does not admit an
analytification is perhaps not surprising, if one accepts that no sensible map of analytic
spaces could possibly correspond to the bug-eyed cover ŒXn=Snç! An. Thus, if we
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wanted to apply Artin’s theorem to ŒXn=Snç we would have to form the analytification
in a larger category of groupoids in complex-analytic spaces, to which a version of
Artin’s theorem could have been applied only after a cohomological descent argument
(which to our knowledge is not written out in the literature).

2.6 General Weyl groups

2.6.1 An advantage of our geometric approach to Hyde’s theorem is that it gener-
alizes to a general Weyl group, as we now discuss. Suppose that we are given an
n–dimensional root system, and that W is the associated reflection group acting on An.
We will associate to this data a nonseparated scheme XW obtained by gluing together
copies of An along complements of reflecting hyperplanes, in such a way that when W

is the symmetric group Sn acting on An by permuting coordinates, then we recover the
scheme Xn . The correct definition of XW is clear once one realizes that a total order
on the set f1; : : : ; ng is precisely the same thing as a Weyl chamber for the symmetric
group Sn . More generally, a partition of the set f1; : : : ; ng corresponds to a parabolic
subgroup of Sn , and a total order on each block of the partition is a Weyl chamber for that
parabolic subgroup. (We recall that a parabolic subgroup of a reflection group W is a
subgroup which is the stabilizer of some point of An.) Thus we define in general XW to
be the nonseparated scheme parametrizing a point y 2 An together with a Weyl chamber
for the parabolic subgroup Stab.y/. The stabilizer Stab.y/ is itself a reflection group; it
is the subgroup generated by reflections in hyperplanes containing y , so we can think of
the data of a Weyl chamber for Stab.y/ as a chamber of the subarrangement consisting
of the reflecting hyperplanes through x . Just as Xn is glued from n! copies of An, we
may glue together XW from jW j copies of An, one for each Weyl chamber of W .

2.6.2 Let us now discuss how to generalize the statement of Hyde’s theorem. Indeed, in
formulating Hyde’s theorem we used that to any element of Poln.Fq/D .An=Sn/.Fq/

we can associate a well-defined conjugacy class in Sn . In the squarefree case we
could take this conjugacy class to be the action of Frobenius on the set of roots of the
polynomial, ie on the fiber of An ! An=Sn , but for a polynomial with repeated roots
this does not prescribe a unique conjugacy class and our recipe was instead that we took
the conjugacy class specified by the partition given by the degrees of the irreducible
factors. How should this procedure be generalized?

2.6.3 First, we take a step back and consider a finite group G acting freely on a
scheme X over Fq . Then any Fq –point x of X=G determines a conjugacy class of
elements of G . Indeed, we lift x 2 .X=G/.Fq/ to a point y 2 X.xFq/, and there is
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a unique element g 2 G such that g � y D Frob.y/. If we had chosen another lift y

then the element g would have been changed by conjugation, so the conjugacy class
of g is independent of choices made. Alternatively, the conjugacy class is the image of
Frobenius under the composite

yZ ä ⇡ét
1
.Spec.Fq//

x�! ⇡ét
1
.X=G/! G;

where we omit basepoints and the second homomorphism classifies the G–torsor
X ! X=G . In any case, if G does not act freely on X then we can still lift x 2
.X=G/.Fq/ to y 2 X.xFq/, but now an element g 2 G carrying y to Frob.y/ is only
well defined as a left coset modulo the subgroup Stab.y/; we do not get a well-defined
conjugacy class in G but rather a conjugacy class of cosets, and in general this is the
best we can say.

2.6.4 Now suppose however that we are given a Weyl group W acting on An as above.
As already mentioned, a parabolic subgroup Stab.y/ is itself a reflection group; it is
the subgroup generated by reflections through hyperplanes containing y . In particular,
Stab.y/ acts freely and transitively on the set of chambers of the arrangement of
reflecting hyperplanes through y . An immediate consequence is that if we fix the
choice of a Weyl chamber C0 for W , then any coset of a parabolic subgroup has a
distinguished representative: every left coset of Stab.y/ contains a unique element w
with the property that w �C0 and C0 are on the same side of every reflecting hyperplane
passing through y . This element w is called the minimal representative of the coset. It
can also be characterized as the unique element of the coset of smallest Coxeter length
with respect to C0 . See eg [17, Sections I.5-1 and I.5-2]. It follows that in the Weyl
group case we can, in a canonical manner, associate to an Fq –point x of An=W a
conjugacy class of elements of W . Indeed, we may lift x to a point y 2 An.xFq/, there is
a unique left coset modulo Stab.y/ carrying y to Frob.y/, and this coset has a unique
minimal representative w once we choose a base chamber C0 . Choosing a different
base chamber or a different lift would have the effect of changing w by conjugation, so
we get a well-defined conjugacy class in W associated to x . If � W W ! C is a class
function, then we denote by �.x/ the value of � on the conjugacy class associated to
x 2 .An=W /.Fq/.

2.6.5 We may now state the general form of Hyde’s result. We state the result for a
Weyl group, for the convenience of having everything defined over Z; for a general finite
Coxeter group, the scheme XW would be defined over the ring of integers of a number
field, and the statement of the following theorem would become more complicated.
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2.6.6 Theorem Let W ⇢ GL.n;Z/ be a Weyl group acting by reflections on affine
n–space. Let � W W ! C be a class function. Let MW be the complement of the
associated codimension-3 subspace arrangement in .R3/n. For any finite field Fq ,
we have X

x2.An=W /.Fq/

�.x/D q
n

X

i�0

q
�ih�; ch H

2i.MW ;Q/iW :

2.6.7 The proof of the theorem follows, just as the proof of Hyde’s theorem, by
applying the Grothendieck–Lefschetz trace formula to ŒXW =W ç and combining the
following ingredients:

✏ The W–equivariant weak homotopy equivalence MW ' XW .C/ (Theorem 3.3.5).

✏ The space XW admits an algebraic cell decomposition over the integers, so that its
cohomology is pure of Tate type, with Betti numbers independent of characteristic of
the base field (Corollary 3.5.8 and Proposition 3.6.7).

✏ W acts freely on XW , and the algebraic space ŒXW =W ç is a bug-eyed cover of
An=W ä An, so that there is a bijection of Fq –points ŒXW =W ç.Fq/

⇠�! .An=W /.Fq/.

✏ Under this bijection, the W–conjugacy class associated to an element of the space
ŒXW =W ç.Fq/ (as in Section 2.6.3, using that W acts freely on XW ) coincides with
the conjugacy class associated to the corresponding element in .An=W /.Fq/ (as in
Section 2.6.4).

The first three ingredients work out in exactly the same way as for Hyde’s theorem, so
let us only comment on the last one. Pick a point x 2 .An=W /.Fq/D ŒXW =W ç.Fq/.
An xFq –point of XW over x is given by a pair .y;C / where y 2 An.xFq/ is in the
fiber of An ! An=W over x , and C is a Weyl chamber of Stab.y/ acting on An. The
Galois group acts as

Frob..y;C //D .Frob.y/;C /;

and since W acts freely on XW , there is a unique w 2 W such that w � .y;C / D
.Frob.y/;C /. The claim is that if we choose a base chamber C0 for the Coxeter
group W contained inside C , then w is the minimal representative inside the coset
consisting of elements which move y to Frob.y/. Indeed, w � C0 and C0 being on the
same side of every reflecting hyperplane for the parabolic subgroup Stab.y/ implies
that w preserves the Weyl chamber of this parabolic subgroup containing C0 , ie C.
This completes the proof of the generalized version of Hyde’s theorem.
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2.6.8 Remark A cute application of our construction for a general reflection group
is as follows. Consider a finite reflection group W acting on affine space. Consider on
one hand our space XW , which parametrizes pairs .y;C / of a point in affine space and
C a chamber of Stab.y/, and on the other hand the “inertia variety” IW parametrizing
pairs .y; w/ with y a point in affine space and w an element of Stab.y/. Since
Stab.y/ acts freely and transitively on its set of chambers, we obtain a set-theoretic
bijection between XW and IW after choosing a base chamber C0 of W : indeed, such
a choice fixes also the choice of a base chamber for each parabolic Stab.y/, and hence
a bijection between Stab.y/ and its set of chambers for every point y . Now

IW ä
a

w2W

Fix.w/;

where Fix.w/✓ An denotes the linear subspace fixed by w , and each subset Fix.w/
is carried isomorphically to a locally closed subscheme of XW under this bijection. In
particular we may partition both XW and IW into locally closed subschemes which are
pairwise isomorphic; both spaces XW and IW have the same class in the Grothendieck
ring of varieties, and we obtain a calculation of ŒXW ç2 K0.Var/. Thus for any algebraic
cell decomposition of XW , the number of d –dimensional cells in the decomposition
is just the number of w 2 W whose set of fixed points has dimension d . Since the
Betti numbers of the complement of the arrangement of reflecting hyperplanes can be
read off from a cell decomposition, we obtain the formula

X

w2W

q
codim Fix.w/ D

X

i

dim H
2i.MW ;Q/ � qi :

The result is of course not new: both sides are equal to
Q

i
.1 C miq/, where mi are

the exponents of the group, by classical results of Shephard–Todd [33, Theorem 5.3]
and Brieskorn [4, Théorème 6(ii)], respectively. Strictly speaking, Brieskorn’s results
concern the cohomology of the complement of the complexified arrangement, so we
also need to know that the complements of the arrangements in Cn and .R3/n have
the same Betti numbers up to a degree shift, which is, for example, a consequence of
the Goresky–MacPherson formula [13].

2.6.9 Remark The construction of the previous paragraph produces a decomposition
of XW into pairwise disjoint locally closed subschemes isomorphic to affine spaces,
indexed by elements w 2 W , after the choice of a base chamber. At an earlier stage of
this project we expected this decomposition to be an algebraic cell decomposition in
the sense of Definition 3.5.1. This is not true, however: for the scheme X4 , the “cells”
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corresponding to the permutations .14/ and .13/.24/ both have the property that they
intersect each other’s closure nontrivially. According to Corollary 3.5.8 it is still true
that XW admits an algebraic cell decomposition, but the construction is more nontrivial.

2.6.10 Remark As explained by Hyde [14, Section 2.5], one can evaluate the q D 1

specialization of Hyde’s theorem to produce an expression for the direct sum of all
cohomology groups of PConfn.R3/ as a representation of Sn , and the result is that

M

k

H
k.PConfn.R

3/;Q/ä QŒSnç;

ie one obtains the regular representation. (As Hyde points out, the result is not new.) It
is natural to ask whether our geometric approach can shed light on this observation,
in particular given that setting q D 1 amounts to counting the number of cells in an
algebraic cell decomposition. Unfortunately we do not see an easy way to see this
result (in particular since the cell decomposition is not equivariant), but we remark that
the analogous statement remains true for any finite reflection group; see for example
[27, Theorem 1.4(b)]. Let us give a short proof. Suppose W acts by reflections on Rn,
and for any d �1 let M

.d/ denote the associated codimension-d subspace arrangement
in .Rd /n. We claim that the W–equivariant Euler characteristic of M

.d/ depends only
on the parity of d . Indeed, writing Rd D C ⇥ Rd�2 we get an induced C⇤ –action
on M

.d/ with fixed-point set M
.d�2/, and by localization the two Euler characteristics

coincide. More explicitly, one may apply Mayer–Vietoris to the open cover of M
.d/

given by the complement of M
.d�2/ (whose Euler characteristic vanishes because

C⇤ acts freely) and the W ⇥ C⇤ –equivariant tubular neighborhood of M
.d�2/ given

by Cn ⇥ M
.d�2/ . When d D 1 we have that M

.1/ is a disjoint union of contractible
components which are freely and transitively permuted by W , so in this case the
equivariant Euler characteristic is the regular representation of W . Then the same is
true for M

.3/ D MW , and since MW has no odd cohomology, the claim follows.

2.7 Type B and even polynomials

2.7.1 Let us examine our formula more closely in the type B case. The type B Weyl
group is the hyperoctahedral group Bn WD Sn Ë Z=2n, which we can think of as the
automorphism group of the .Z=2/–set Œnç˙ D f1;�1; : : : ; n;�ng. The group Bn acts
on An D Spec ZŒz1; : : : ; znç, and its ring of invariants is well known to be generated by

wd .z/ WD
X

1i1<���<id n

z
2

i1
� � � z2

id
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for d D 1; : : : ; n. These invariants give coordinates on the quotient space An=Bn D
Spec.ZŒw1; : : : ; wnç/. We can interpret the coordinate wd as the coefficient of t

2d in
the product

nY

iD1

.t2 � z
2

i
/D

nY

iD1

.t � zi/.t C zi/:

Over an algebraically closed field, a polynomial f .t/ admits a factorization of this
form if and only if it is even. Thus we see that An=Bn is a parameter space for monic
degree-2n even polynomials, where wd records the 2d

th coefficient, and An !An=Bn

is the finite map that takes .z1; : : : ; zn/ to the even monic degree-2n polynomialQ
i
.t2 � z

2

i
/. In these terms, our space XBn

parametrizes even monic degree-2n

polynomials, together with a choice of labeling of the set of roots by the set Œnç˙ ,
subject to the condition that ˛�j D � j̨ for all j 2 Œnç˙ .

2.7.2 Let f 2 Poleven
2n
.Fq/ be an even monic degree-2n polynomial. Its factorization

into irreducibles takes the form

f .t/D
Y

g even
g.t/

Y

h not even

h.t/h.�t/;

where we have used that the factorization into irreducibles must be invariant under the
transformation t 7! �t . We associate to f a double integer partition of n, which we
call its factorization type:

.�;�/D .1u12
u2 � � � ;x1v1x2v2 � � � /; d D

X

i

uii C
X

j

vj j:

Here ui is the number of degree-2i irreducible even factors of f , and vj is the number
of pairs fh.t/; h.�t/g of degree-j irreducible noneven factors of f . Similarly, a signed
permutation � 2 Bn gives rise to a .Z=2/–equivariant partition of the set Œnç˙ into
cycles, and the cycle type of � may be encoded by a double partition,

.1a12
a2 � � � ;x1b1x2b1 � � � /;

where ai denotes the number of .Z=2/–invariant blocks of size 2i in the partition,
and bj denotes the number of pairs of blocks of size j that are interchanged by the
.Z=2/–action. This construction determines a bijection between conjugacy classes
of Bn and double partitions. A polynomial f has factorization type .�;�/ if and only
if Frobenius permutes a signed labeling of its roots in XBn

.xFq/ by an element � 2 Bn

in the conjugacy class .�;�/. Thus we have proved the following.
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2.7.3 Theorem Let � be a character of Bn , considered as a function on the set of
double integer partitions of n. We write �.f / for the value of � on the factorization
type of f . Then

X

f 2Poleven
2d .Fq/

�.f /D q
n

X

i�0

q
�ih�; ch H

2i.PConfZ=2

n
.R3/;Q/iBn

:

Here PConfZ=2

n .R3/ denotes the orbit configuration space, which parametrizes .Z=2/–
equivariant injections of Œnç˙ into R3, considered with its .Z=2/–action x 7! �x .

2.7.4 Thus we see that in the type B case, our generalized version of Hyde’s theorem
gives a formula for the factorization statistics of even polynomials. These statistics
record the number of even and noneven factors in the factorization type of p . As
mentioned previously, Jiménez Rolland and Wilson [16] studied a type B analogue
of squarefree factorization statistics. Their formulation of factorization statistics is
different, but equivalent to the one used here. Jiménez Rolland and Wilson consider
monic squarefree polynomials q.t/ of degree d with nonzero constant term, and their
statistics concern the factorization of q.t/ into irreducibles and whether the roots
of q are quadratic residues. The statistics we consider are related to theirs by the
transformation f .t/D q.t2/. Indeed, let i.t/ be a degree-d irreducible polynomial.
Then i.t2/ either remains irreducible or factors as h.t/h.�t/. Further, i.t2/ factors if
and only if all of the roots of i.t/ in Fqdeg i are quadratic residues, and i.t2/ remains
irreducible if and only if all of the roots of i.t/ are nonresidues.

3 Non-Hausdorff models for complements of arrangements

3.1 Conventions and terminology on hyperplane arrangements

3.1.1 Let A be a finite set of affine hyperplanes in Rn. We let L.A/ denote the
partially ordered set consisting of all nonempty intersections of hyperplanes in A,
including Rn itself as the empty intersection, ordered by reverse inclusion. Elements
of L.A/ are called flats. If K 2 L.A/ is a flat, then K n S

K<L
L is a finite union of

convex open regions inside K called faces. We denote by F.A/ the set of all faces of
the arrangement A. We partially order the set of faces according to

F  G () F ◆ G:

If E is a subset of affine n–space (typically a flat), then we denote by Supp.E/✓ A

the set of hyperplanes containing E .
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3.1.2 The minimal elements of F.A/ are called chambers, and we denote the set of
chambers by Ch.A/. For C;D 2 Ch.A/ we denote by Sep.C;D/✓ A the subset of
hyperplanes H which separate C from D, ie such that C and D are contained in
different connected components of V n H.

3.1.3 We define Strat.A/ to be the partially ordered set consisting of pairs .K;C /
where K 2 L.A/ and C 2 Ch.Supp.K//. The partial order relation is given by
.K;C / � .L;D/ if K  L and C ◆ D . This poset will parametrize the strata for a
natural stratification of the scheme XA , which we will define shortly.

3.1.4 The poset Strat.A/ is an analogue of the Salvetti poset Sal.A/, which is the
partially ordered set consisting of pairs .F;C / where F 2F.A/ and C 2 Ch.Supp.F //.
The partial order relation is given by .F;C /� .G;D/ if F  G and C ◆ D . Usually
in the literature elements of Sal.A/ are described as pairs .F;C / where F 2F.A/ and
C 2 Ch.A/ is a chamber adjacent to F (ie whose closure contains F ); this is equivalent
to the definition given here, since every chamber of Supp.F / contains a unique chamber
of A that is adjacent to F. This poset was introduced by Salvetti [31], who proved that
the complement of the complexification of the arrangement A deformation retracts
onto a regular CW complex whose poset of cells is precisely the Salvetti poset. The
similarity between the Salvetti poset and our stratification of XA is no coincidence, as
we explain in Remark 3.4.3.

3.2 Construction of the scheme XA

3.2.1 Let A be as above. Following Proudfoot [28], we are going to associate to A a
nonseparated scheme XA over Spec.R/, which will be obtained by gluing together a
copy of the affine space An for each chamber of the arrangement. If all hyperplanes
in A are defined over a subring R ⇢ R, then XA is defined over R, too.

3.2.2 Let us first recall Zariski gluing of schemes in general. Let X D S
i2I

Xi be an
open cover of a scheme X. Let Xij D Xi \ Xj . Then the identity map on X induces
a collection of isomorphisms Xij

⇠�! Xji for all i and j , and X can be uniquely
reconstructed from the collection fXig and the isomorphisms Xij ä Xji . In the other
direction, let fXigi2I be an arbitrary family of schemes. Suppose we are given a
Zariski open subset Xij ⇢ Xi for every i; j 2 I, and an isomorphism �ij W Xij ! Xji

for every i; j 2 I. This family of schemes fXig may be glued together along the
isomorphisms �ij to a scheme X, which is then unique up to canonical isomorphism,
if and only if the gluing data satisfy the following two axioms:

Geometry & Topology, Volume 25 (2021)



3712 Dan Petersen and Philip Tosteson

✏ Xii D Xi , and �ii D id for all i 2 I.
✏ �ij restricts to an isomorphism from Xij \Xik to Xji \Xjk , and �jk ı�ij D�ik

on Xij \ Xik , for every i; j ; k 2 I (cocycle condition).

3.2.3 We can now write down gluing data for the scheme XA . For every C 2 Ch.A/
we let XC D An. For any pair D;C 2 Ch.A/ we define

XCD D An n
✓ [

H 2Sep.C;D/

H

◆
✓ XC :

The identity map on An gives an isomorphism �CD W XCD ä XDC , and the resulting
gluing data is easily checked to satisfy the cocycle condition, since

Sep.C;E/⇢ Sep.C;D/[ Sep.D;E/:

We denote the resulting scheme by XA .

3.2.4 Remark A reader may wonder why we took care to say that we glued together
copies of the scheme An to obtain a scheme over Spec.R/, instead of just saying
that we are gluing together copies of Rn or Cn. The reason is that once we have a
scheme XA over a base ring R then we can talk freely about its set of points over an
arbitrary R–algebra. In particular, the scheme XA will be defined over Z whenever
all the hyperplanes have integer coefficients, and in this case we can make sense
of XA.Fq/ for any prime power q , which is at the core of our intended application to
factorization statistics. If K is a field and an R–algebra, then a K–valued point of XA

is an element .b1; : : : ; bn/ of K
n D An.K/, together with the choice of a chamber

of Supp.f.b1; : : : ; bn/g/, ie the subarrangement of A consisting of all hyperplanes
containing .b1; : : : ; bn/.

3.3 Construction of the fiber bundle

3.3.1 Let A be a finite arrangement of hyperplanes in V ä Rn. We write VC for
the complexification of V , and AC D fHC W H 2 Ag for the induced arrangement
of complex hyperplanes in VC . The complement of AC in VC will be denoted
by M.AC/. Similarly we write V.3/ D VC ⇥ V , we set A.3/ for the codimension-3
subspace arrangement consisting of the subspaces fHC ⇥ H W H 2 Ag, and we let
M.A.3// denote the complement of this codimension-3 arrangement.

3.3.2 Example If A consists of the diagonal hyperplanes xi D xj in Rn, then
M.AC/ is the configuration space of n distinct ordered points in C and M.A.3// is
the configuration space of n distinct ordered points in R3.
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3.3.3 If C 2 Ch.A/ is a chamber, then define

UC D
˚
.x; z/ 2 VC ⇥ V W if x 2 HC , then z is in the component of V n H containing C

 
:

Observe that the collection fUC gC 2Ch.A/ is an open cover of M.A.3//. Write f for
the projection from VC ⇥ V onto VC . Note that

(6) f .UC \ UD/D VC n
[

H 2Sep.C;D/

HC:

3.3.4 Recall from Section 3.2.3 the open cover XA DS
C 2Ch.A/ XC of the scheme XA ,

where each XC is an affine space An. We will now construct a continuous map
M.A.3//! XA.C/:

✏ Cover M.A.3// by the open sets UC .
✏ Map each open set UC onto VC ä XC .C/ via f .
✏ By comparing equation (6) and the description of the intersections XC \ XD D

XCD from Section 3.2.3, observe that these glue to a map M.A.3//! XA.C/.

3.3.5 Theorem The map M.A.3//! XA.C/ is a fiber bundle with fiber Rn.

Proof The question is local on the base, so it suffices to show that we get a fiber bundle
over each set of the open cover XA.C/D S

C 2Ch.A/ XC .C/, ie that UC ! VC ä Cn

is a fiber bundle for every C 2 Ch.A/. Now UC is an open subset of the trivial vector
bundle R3n ä VC ⇥V ! VC . Moreover, the fiber of UC ! VC over an element x 2 VC

is nothing but the chamber of the arrangement Supp.x/ containing C , considered as
an open subspace of V . In particular, the fibers are nonempty and convex, which by
the following Lemma 3.3.6 implies that the map is a fiber bundle.

3.3.6 Lemma Let p W E ! X be a rank-n vector bundle over a metrizable topological
space , and U ⇢ E an open subspace such that U \ p

�1.x/ is convex and nonempty
for all x 2 X. Then U ! X is an Rn –fiber bundle , and U is homeomorphic to E as
a bundle over X.

Proof By a partition of unity there is a section contained in U, which we may assume
to be the zero section. The strategy will be to construct an exhaustion of U by fiberwise
compact subsets

f0g b B1 b B2 b B3 b � � � with
[

k�1

Bk D U;
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together with a compatible system of homeomorphisms between Bk and the disk
bundle of radius k inside E , for some bundle metric which we fix from now on. Let
S ! X be the unit-sphere bundle inside E . Define a map � W S ! R>0 [ f1g by

�.z/D supft 2 R W t � z 2 U g;
so that if we identify E

⇤ (the complement of the zero section in E ) with S ⇥ R>0

then
U

⇤ D f.z; t/ 2 S ⇥ R>0 W t < �.z/g:
Since U is open, � is lower semicontinuous, and then there exists a strictly increasing
sequence of continuous functions  1;  2; : : : W S ! R>0 converging pointwise to � ;
see eg [30, Theorem 2.1.3]. Define

B
⇤
k

D f.z; t/ 2 S ⇥ R>0 W t   k.z/g:
If we then let Bk be the union of B

⇤
k

with the zero section, then each Bk is home-
omorphic to the radius-k disk bundle by rescaling, these homeomorphisms may be
chosen compatibly with each other, and by construction the bundles Bk exhaust U.

3.3.7 Remark It is not hard to see that the construction of Lemma 3.3.6 can, with
only a little extra care, be done smoothly, so that if the base X were a smooth manifold
then E and U would be diffeomorphic.

3.3.8 Remark The arguments given here generalize to show that similarly M.AC/

is an Rn –fiber bundle over the set of real points XA.R/ of XA , which recovers (by a
somewhat different argument) a theorem of Proudfoot [28]. Even more generally, the
induced c–arrangement in .Rc/n is an Rn –bundle over a non-Hausdorff topological
space obtained by gluing together copies of the euclidean space .Rc�1/n along com-
plements of subspaces in exactly the same way that we glued together XA from copies
of affine space An. The only difference when c > 3 is that the base of the fiber bundle
can not be interpreted as the real or complex points of an algebraic scheme.

3.4 Stratification of XA

3.4.1 Let X be a topological space (or a scheme). A stratification of X is a decom-
position of X into finitely many nonempty pairwise disjoint locally closed subspaces
(subschemes) X˛ , which are called strata, such that the closure of a stratum is a union
of strata. We partially order the set of strata by the rule

˛ � ˇ () X ˛ ◆ Xˇ:
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Observe that a stratification is uniquely determined by the set of closed strata X ˛ , and
we will sometimes find it convenient to describe a stratification of a space by specifying
the closed strata.

3.4.2 In particular, if A is an arrangement of hyperplanes in Rn, then the collection of
flats L.A/ constitute the set of closed strata for a stratification of An into subschemes.
When we form the scheme XA then we glue together copies of An along unions of
strata, which means in particular that the stratification of An induces a stratification
of the scheme XA . Explicitly, we can understand XA and its stratification by starting
from the scheme a

C 2Ch.A/

An;

together with its natural stratification with strata indexed by L.A/⇥ Ch.A/. To obtain
the scheme XA we need to impose an appropriate gluing relation on strata: the stratum
.K;C / is identified with .L;D/ if K D L, and the chambers C and D are not
separated by any hyperplane containing K . Thus the poset of strata of XA is the poset
Strat.A/ introduced in Section 3.1.3.

3.4.3 Remark Each stratum .K;C / of XA is itself the complement of an arrangement
of hyperplanes inside a vector space of dimension dim.K/. This implies in particular
that the set of real points of each stratum in XA is disconnected, with each connected
component contractible. More precisely, a connected component of the real points of
the stratum .K;C / is just a face in F.A/ which is open in K . Thus XA.R/ has a more
refined stratification indexed by pairs .F;C / with F 2F.A/ and C 2 Ch.Supp.F //, so
we have recovered the Salvetti poset of Section 3.1.4. Now it is not hard to verify that the
closures of strata are contractible and that their intersections are empty or contractible,
so that by the nerve lemma it follows that XA.R/ is weakly homotopy equivalent
to the order complex of Sal.A/. On the other hand we have the Rn –fiber bundle
M.AC/! XA.R/ of Remark 3.3.8, so M.AC/ is homotopic to the order complex
of Sal.A/, as originally proven by Salvetti. A more direct way of understanding this
connection is that the stratification of XA.R/ pulls back to a stratification of M.AC/,
and the stratum inside M.AC/ corresponding to a pair .F;C / 2 Sal.A/ is precisely
the cartesian product

F ⇥ C:

This coincides with the stratification of M.AC/ described by Björner and Ziegler in
terms of “sign vectors” [3].
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3.5 Algebraic cell decomposition

3.5.1 Definition An algebraic cell decomposition of a scheme X is a filtration of X

by open subschemes

¿ D U
.0/ ⇢ U

.1/ ⇢ � � � ⇢ U
.t/ D X;

where for each j there is an isomorphism U
.i/ nU

.i�1/ ä Adi . We call U
.i/ nU

.i�1/

a cell of dimension di .

3.5.2 We will now show that XA admits an algebraic cell decomposition. Our strategy
will be to make use of the open cover XA D S

C 2Ch.A/ XC considered in Section 3.2.3,
where XC ä Ad for all C 2 Ch.A/. To be more precise, suppose that C1;C2; : : : ;Ct

is an enumeration of the elements of Ch.A/ in some order. Define for each 0  i  t

the open subset U
.i/ ✓ XA by the formula

U
.i/ WD XC1

[ XC2
[ � � � [ XCi

:

Clearly we have a chain of inclusions

¿ D U
.0/ ⇢ U

.1/ ⇢ � � � ⇢ U
.t/ D XA;

so all that is needed for this to be an algebraic cell decomposition is that U
.i/ n U

.i�1/

is isomorphic to an affine space for every index i . Now we have

U
.i/ n U

.i�1/ D XCi
n

[

j<i

.XCi
\ XCj

/;

and if we also note that

(7) XCi
\ XCj

D Ad n
[

H 2Sep.Ci ;Cj /

H;

then we see that an enumeration C1;C2; : : : ;Ct of the chambers of the arrangement A

will give us an algebraic cell decomposition if and only if the following condition is
satisfied:

(?) For any i D 1; : : : ; t ,
\

j<i

[

H 2Sep.Ci ;Cj /

H is an affine subspace of Ad.

3.5.3 Definition An enumeration C1;C2; : : : ;Ct of Ch.A/ is called a valid order if
the condition (?) is satisfied.

3.5.4 Perhaps surprisingly, the notion of a valid order is not new; when expressed
combinatorially, it coincides with a notion introduced by Delucchi. One has the
following theorem:
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3.5.5 Theorem (Delucchi, Lofano–Paolini) Every real hyperplane arrangement
admits a valid order.

3.5.6 Theorem 3.5.5 was proven by Delucchi in the case of a central hyperplane
arrangement [7, Theorem 4.15]. The general case of Theorem 3.5.5 is due to Lofano
and Paolini [25, Theorem 5.6], who also introduced the terminology “valid order”.
Lofano–Paolini’s construction of valid orders is particularly simple: let x0 be a generic
point of our ambient real vector space, and suppose that the chambers are enumerated
in any weakly increasing order by their euclidean distance from the point x0 , ie

d.Ci ;x0/ < d.Cj ;x0/ D) i < j:

Then this is always a valid order. We remark that there is a small gap in Delucchi’s
argument for Theorem 3.5.5: he uses an induction on the number of hyperplanes in the
arrangement, and that a total order on Ch.A/ induces a total order on Ch.A n fH g/
for any H 2 A. Unfortunately the family of total orders considered by Delucchi is
not closed under the operation of removing a hyperplane, which breaks the inductive
strategy. Delucchi has communicated to us that if one runs the same argument using, for
instance, the euclidean orderings of Lofano–Paolini, which are closed under removing
a hyperplane, then the argument works.

3.5.7 Combining Theorem 3.5.5 with the observations of Section 3.5.2, we immedi-
ately deduce the following:

3.5.8 Corollary For any real hyperplane arrangement A, the associated nonseparated
scheme XA admits an algebraic cell decomposition.

3.5.9 Remark The cell decomposition of XA obtained from Corollary 3.5.8 is a
refinement of the stratification of XA , in the sense that each affine cell is a union of
strata. In this way we can think of the algebraic cell decomposition as an increasing
filtration of the poset Strat.A/, such that the union of strata that are in the k

th step of
the filtration but not the .k�1/st form a cell.

3.5.10 Remark At first sight it is perhaps surprising that the question whether there
always exists a total order on Ch.A/ satisfying the strange condition (?) has already
been considered (and answered) in the literature. But in fact Delucchi’s motivation for
introducing the condition (?) was not unrelated to ours. Recall that a CW complex
is said to be minimal if its k

th Betti number coincides with the number of k –cells.
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By a theorem due independently to Randell [29] and Dimca and Papadima [8], the
complement of any complex hyperplane arrangement has the homotopy type of a
minimal CW complex; see also [1]. On the other hand, as we have already mentioned,
the complement of a complexified real arrangement of hyperplanes deformation retracts
onto the Salvetti complex, and it is natural to try to make minimality explicit in this case
by writing down an explicit perfect discrete Morse function on the Salvetti complex.
Delucchi [7] showed that a valid order on Ch.A/ induces a perfect discrete Morse
function on Sal.A/, and this was his motivation for introducing the notion of a valid
order. What we have explained above is precisely that a valid order on Ch.A/ induces
a filtration of the poset Strat.A/ — and hence also of Sal.A/ — such that the union of
strata within each successive difference is homeomorphic to an open cell. Delucchi
showed instead that the poset of strata within each successive difference admits an
acyclic matching with a single critical cell, so that these can be “glued together” to a
discrete Morse function on the whole poset Sal.A/. For another approach to minimality
via discrete Morse theory on the Salvetti complex, see [32].

A related fact is that the filtration that we obtain is “minimal” in the sense that the cells
form a basis for the Borel–Moore homology of the complement of the arrangement.
See [15] for another quite similar construction of such stratifications of complements
of complexified real hyperplane arrangements. In fact it is not hard to show that more
is true: the cells make up a CW decomposition of the one-point compactification of
the complement, in which the attaching maps are nullhomotopic by a straight-line
homotopy, so that the one-point compactification is a wedge of spheres in a very explicit
way. This works for both M.A.3// and M.AC/.

3.5.11 Remark One can think of the notion of a valid ordering as an analogue of
the notion of a shelling of a simplicial complex. Let us explain this. We consider all
posets to have the Alexandroff topology, in which the open subsets are the downwards
closed subsets. Then the poset Strat.A/ has an evident open cover indexed by Ch.A/,
with each open subset isomorphic to L.A/: explicitly, to C 2 Ch.A/ we associate the
subposet

SC D f.K;D/ 2 Strat.A/ W C ✓ Dg ä L.A/:

The open cover Strat.A/D S
C 2Ch.A/ SC corresponds geometrically to the open cover

of the scheme XA by the subschemes XC of Section 3.2.3. In these terms we can define
a valid order as an enumeration of these open sets, say S1; : : : ;St , such that the poset

Si n
[

j<i

Sj
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has a unique minimum element for all i . If instead F is the face poset of a finite
purely d –dimensional simplicial complex, then F has an open cover by subposets each
isomorphic to the boolean poset of rank d (corresponding to the maximal-dimensional
faces), and a shelling is an enumeration of the sets in this open cover satisfying precisely
the same condition. However, we will not pursue this analogy further here.

3.6 Cohomology of nonseparated schemes via algebraic cell
decompositions

3.6.1 In this section we explain why the cohomology of a smooth scheme with an
algebraic cell decomposition (Definition 3.5.1) is torsion free, and why one can read off
its Betti numbers from the number of cells in each dimension. This result is certainly
well known, but we do not know a reference stating it in the generality we need, ie for
the étale cohomology of potentially nonseparated schemes. But let us first recall the
(easy) argument in the case of a complex algebraic variety.

3.6.2 The arguments are naturally phrased in terms of the Borel–Moore homology

groups xHi.X;Z/, which can be defined as the reduced homology groups of the one-
point compactification of X. If X is smooth then Poincaré–Lefschetz duality gives an
isomorphism xHi.X;Z/ä H

2d�i.X;Z/, where d D dimC.X /.

3.6.3 Proposition Let X be a complex algebraic variety with an algebraic cell
decomposition. Then the odd-degree Borel–Moore homology groups of X vanish ,
and for all i there is an isomorphism xH2i.X;Z/ ä Z˚ni, where ni denotes the
number of cells of dimension i . In particular , if X is , in addition , smooth and of pure
dimension d , then we also have that the odd cohomology groups of X vanish , and
H

2i.X;Z/ä Z˚nd�i, by Poincaré duality.

Proof This is proven by induction on the number of cells, the base case being X D ¿.
For the induction step we consider the filtration

¿ D U
.0/ ⇢ U

.1/ ⇢ � � � ⇢ U
.t/ D X

of Definition 3.5.1, with U
.t/ n U

.t�1/ ä Ad. Then we know the result for U
.t�1/ by

induction. To conclude the result for X D U
.t/ we use the long exact sequence in

Borel–Moore homology

� � � ! xHi.U
.t�1/;Z/! xHi.X;Z`/! xHi.Cd ;Z/! xHi�1.U

.t�1/;Z/! � � �
and the fact that xHi.Cd ;Z/D 0 for i ¤ 2d, and xH2d .Cd ;Z/ä Z.
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3.6.4 Remark A common variant of Proposition 3.6.3 in the literature is to assume
X proper but not necessarily smooth. For proper varieties Borel–Moore homology
coincides with ordinary homology, and under the hypotheses of Proposition 3.6.3
one has H

2i.X;Z/ ä Z˚ni. If X is neither proper nor smooth, there is no reason
that one should be able to determine its cohomology groups from an algebraic cell
decomposition.

3.6.5 In generalizing Proposition 3.6.3 to the non-Hausdorff setting, one runs into the
problem that Borel–Moore homology (or its dual, cohomology with compact support),
and the Verdier duality theory, are typically only defined for Hausdorff spaces. (But
see [26] for a basic theory of compactly supported sheaf cohomology for non-Hausdorff
manifolds.) In this respect the situation in étale cohomology is in fact significantly nicer.
Although textbook treatments of étale cohomology only define the functors Rf!; f

!

for separated morphisms, this can now be completely sidestepped using the work of
Laszlo and Olsson [22; 23]. Their main focus is to construct an `–adic formalism of
“six functors” for stacks, but even for schemes their lack of separation hypotheses is
new. Their approach to the functors Rf! and f ! is to first construct the Verdier duality
functor D , and then define

Rf! D D ı Rf⇤ ı D and f ! D D ıf ⇤ ı D;

and this, crucially, does not require f to be separated.

3.6.6 Let us recall how to define Borel–Moore homology in terms of Grothendieck’s
six functors. For f W X ! Spec.k/ a finite type scheme, say over a separably closed
field, its étale Borel–Moore homology is defined as xH ét

i
.X;Z`/D H

�i.Rf⇤f !Z`/;
compare this with the usual étale cohomology H

i

ét.X;Z`/ D H
i.Rf⇤f ⇤Z`/. This

theory has the following properties:

(1) If X is smooth and of pure dimension d, then there is a Poincaré duality
isomorphism

H
i

ét.X;Z`/˝ Z`.d/ä xH ét
2d�i

.X;Z`/:

(2) If U ⇢ X is open with closed complement Z , then there is a long exact sequence

� � � ! xH ét
i
.Z;Z`/! xH ét

i
.X;Z`/! xH ét

i
.U;Z`/! xH ét

i�1
.Z;Z`/! � � � :

The first property is immediate from our definition of Borel–Moore homology and
the fact that f !.�/ ä f ⇤.�/˝ Z`.d/Œ2d ç if f is smooth of relative dimension d ;
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see [23, Lemma 9.1.2]. The second property can be proven by considering the distin-
guished triangle

i⇤i
!
F ! F ! Rj⇤j

!
F

C1�!;

where j W U ! X and i W Z ! X are the inclusions, setting F D f !Z` where f W X !
Spec.k/ is the structural morphism, and applying Rf⇤ . The distinguished triangle is
constructed in case of finite coefficients in [22] as equation (4.10.ii), and the same
reasoning works in the `–adic case.

3.6.7 Proposition Let X be a finite type scheme over a base field k equipped with
an algebraic cell decomposition. Then the odd-degree Borel–Moore homology groups
of X vanish , and for all i there is an isomorphism xH ét

2i
.X;Z`/ä Z`.i/

˚ni, where ni

denotes the number of cells of dimension i . In particular , if X is in addition smooth
and of pure dimension d , then we also have that the odd cohomology groups of X

vanish , and H
2i

ét .X;Z`/ä Z`.�i/˚nd�i , by Poincaré duality.

Proof This can now be proven in an identical manner to Proposition 3.6.3.

3.6.8 Remark A fortiori we also see that the analogue of Proposition 3.6.3 remains
valid for the singular cohomology of nonseparated complex schemes, by applying the
`–adic Proposition 3.6.7 and Artin’s comparison isomorphism.
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