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Abstract

The emergency generated by the current COVID-19 pandemic has claimed
millions of lives worldwide. There have been multiple waves across the globe that
emerged as a result of new variants, due to unavoidable mutations. The existing
network toolbox to study epidemic spreading cannot be readily adapted to the
study of multiple, coexisting strains. In this context, particularly lacking are
models that could elucidate re-infection with the same strain or a different strain
— phenomena that we are seeing more and more with COVID-19. Here, we
establish a novel mathematical model to study the simultaneous spreading of two
strains over a class of temporal networks. We build on the classical
susceptible–exposed–infectious–removed model, by incorporating additional states
that account for re-infections with multiple strains. The temporal network is
based on the activity-driven network paradigm, which has emerged as a model of
choice to study dynamic processes that unfold at a time scale comparable to the
network evolution. We establish analytical insight into the dynamics of the
stochastic network systems through a mean-field approach, which allows for
characterizing the onset of different behavioral phenotypes (non-epidemic,
epidemic, and endemic). To demonstrate the practical use of the model, we
examine an intermittent stay-at-home containment strategy, in which a fraction
of the population is randomly required to isolate for a period of time.
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1 Introduction

During a disease spread, viral mutations may weaken public health measures as

new transmission dynamics emerge that lessen the effects of vaccination and cause

unseen comorbidities. For instance, influenza exhibits a high mutation rate in the

viral genome that can evolve into new virus strains [1]. In addition, empirical ev-

idence of monkeypox indicates that a single mutation produces genetic variation

that can lead to the emergence of a new variant [2]. During the ongoing COVID-19

pandemic, we have been experiencing a similar scenario, with several SARS-CoV-2

variants [3] propagating across the globe. As of July 2022, we are currently witness-

ing several Omicron sub-variants, such as the BA.1 that emerged at the end of 2021

in Botswana and South Africa [4] and the BA.5 that is threatening vaccine-induced

immunity in the USA [5,6].

Mathematical models of infectious diseases offer important insights into the

spreading process of diseases transmitted by interactions between individuals while

providing a framework to devise containment strategies for the virus. The literature
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on mathematical modeling of disease spreading has grown during the COVID-19

pandemic and several approaches have been developed at different levels of reso-

lution [7, 8]. Low-resolution models typically partition the population into a finite

number of compartments and describe their rate of change through a set of differen-

tial equations. While these models may have limited predictive value, they allow for

a simple mathematical treatment that can shed light on the macroscopic epidemic

behavior and highlight the role and criticality of model parameters.

Low-resolution models have been recently proposed to study the effect of multi-

ple strains. For instance, in [9] an extension of the classical susceptible–infected–

removed (SIR) model with mutations, re-infection, and vaccine states has been

proposed to model the spread of a virus with a nominal strain and an emergent one

that is vaccine-resistant. The authors examined the local stability of four different

equilibria, corresponding to the case in which both variants vanish, the cases in

which one variant vanishes and the other persists, and the case in which both vari-

ants persist over time. In [10], the authors have considered additional states, such as

infected-but-asymptomatic and dead, to model the spread of COVID-19 with two

variants. In [11], the authors have proposed a multi-strain epidemic model, along

with an optimal control approach to contain the spread.

At the other end of the spectrum, agent-based models (ABMs) can reproduce

the behavior of a population with great detail [12–15]. For instance, in [12], the

authors have developed an ABM based on the SIR dynamics to investigate the role

of human behavior, in the form of self-regulated or mandated social distancing, on

the spread of a virus with two strains. Likewise, in [14], an ABM at the resolution of

a single individual has been created to study the propagation of COVID-19 in a real

town in the United States. A theoretical analysis of these high-resolution models is

difficult, if not impossible, due to the complexity of the dynamics, the stochasticity

of the spreading, and the large parameter space.

Network theory constitutes a modeling pathway at an intermediate resolution

which allows for some analytical treatment in the spirit of compartmental models,

while granting some fineness in the description of spreading like ABMs [16–20].

Through the lens of networks, individuals are modeled as the nodes of a graph who

interact through the edges of the network of contacts. Such a network captures the

interactions between individuals, through which most viral diseases spread, such

as contact with infected body fluids [21, 22], and respiratory droplets or aerosol

generated when a person coughs, sneezes, or simply speaks [23–25].

Within the context of network epidemic models, some efforts have been made to

study the spread of multiple viruses and variants. In [26], the authors have developed

a mathematical model to study consecutive outbreaks with partial immunity after

recovery, using percolation theory. In [27], a mathematical model of two concurrent

diseases spreading over the same static networks of contacts has been established,

detailing the transition between the dominance of each disease over the other and

the presence of a regime in which both co-exist. In [28], it has been shown that co-

existence is a rare phenomenon in most real-world network structures, where one

disease typically dominates the other. A similar study on metapopulation model

has helped clarify the role of the network structure on the transitions between

different regimes [29]. This modeling framework has been extended to account for
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diseases concurrently spreading on distinct networks of contacts [30] or in multi-layer

networks [31]. It has been shown that the network model paradigm can be utilized

to study real-world scenarios [32] while allowing to establish rigorous analytical

treatment, towards the designing techniques to contain the viral spread [33–35].

While early accounts considered static networks [19,36], there is a general consen-

sus that time-varying networks should be preferred to capture the dynamic nature of

human behavior and interactions [17,18,37]. Activity-driven networks (ADNs) [38]

have emerged as an elegant framework to study spreading dynamics over time-

varying networks in which the network dynamics can evolve at the same time scale

of the unfolding disease spreading. This modeling approach allows simple mathe-

matical treatment and provides important insights on how the node and network

dynamics both contribute to the overall spreading process [38–46].

Here, we extend the ADN paradigm to study the simultaneous propagation of

two strains, building on the literature on bi-virus susceptible–infected–susceptible

(SIS) models [28, 31, 33–35]. In an effort to tackle realistic disease spreading, from

COVID-19 to influenza, dengue, and malaria [47], we formulate the problem within

a susceptible–exposed–infected–removed (SEIR) model and consider re-infections

with tunable parameters for virus-specific and cross immunity. Our modeling frame-

work captures a rich behavioral repertoire where both strains can spread simulta-

neously or independently, also contemplating the scenario of an endemic state with

coexisting variants. Specifically, we characterize three different types of behavior:

i) quick eradication of the disease, ii) eradication of the disease after the occur-

rence of an epidemic outbreak, and iii) emergence of an endemic disease. Through

a mean-field approach [38,48], we establish simple algebraic conditions determining

the stability of the disease-free equilibrium and endemic states.

To demonstrate the practical value of our modeling approach, we propose the im-

plementation of a non-pharmaceutical intervention, in the form of an intermittent

stay-at-home strategy. Non-pharmaceutical interventions are key to limit transmis-

sion routes between individuals [49–53] before vaccines become available for mass

use. In particular, intermittent strategies have been examined in [54], where the

authors have studied the role of intermittent social distancing in a static network

model with SIS dynamics. In this vein, individuals might interrupt interactions with

those infected for a fixed period of time to then resume contact. In [55], a similar

control strategy has been studied for potential implementation in the fight against

COVID-19. Similarly, in [56], the authors have examined how an intermittent strat-

egy at a regional level in Italy can mitigate the effects of the COVID-19 spread,

and an equivalent analysis has been carried out in [57] for fast-switching control.

The rest of the paper is organized as follows. In Section 2, we present the model

and provide an example illustrating the rich dynamics of the model. In Section 3,

we conduct a mean-field analysis to predict the regions in the parameter space

where the network either converges to the disease free equilibrium or the endemic

state. We present the intermittent stay-at-home control strategy in Section 4, while

conclusions and future work are presented in Section 5.

2 Model

We consider a set of N nodes, each associated with an individual, which interact

through a temporal network represented by an undirected graph G(t) = (N , E(t)),



Burbano Lombana et al. Page 4 of 27

where N := {1, · · · , N} is the node set and E(t) ⊆ N×N is the edge — (i, j) ∈ E(t)

means that individuals i and j are in contact at time t. Here, t denotes the discrete

time variable t ∈ {0,∆, 2∆, 3∆, . . . }, with ∆ > 0 being the time step.

Consistent with the literature on bi- and multi-virus models [28, 31, 33–35], we

assume that individuals can be exposed to or be infected with one of two differ-

ent strains of the same virus. As such, an individual cannot carry both strains at

the same time. Upon recovery from an infection, individuals gain (partial) strain-

specific [58–60] and cross-strain immunity, so that they can still be re-infected, but

with a reduced probability [1, 61].

2.1 Node dynamics

Taking into account these considerations, for each individual (represented by a node

in the network) we consider the progression illustrated in Fig. 1 — a bi-virus version

of an SEIR model. The health state of each individual, denoted by xi(t) ∈ X for

all i ∈ N , can take values in X := {S,E1,E2, I1, I2,R1,R2, Ẽ1, Ẽ2, Ĩ1, Ĩ2,R}. Here, S

denotes the susceptible state, in which the individual is healthy and can potentially

become infected, as they come in contact with infectious individuals.

Upon infection, the health state of an individual changes to exposed, denoted by

Eℓ, where the index ℓ ∈ {1, 2} refers to the strain the individual has been exposed

to. In this state, the virus within an individual is in an incubation phase, so that the

individual is infected, but cannot transmit the disease. The incubation phase lasts

for a stochastic time interval. Specifically, at each time step, an individual who is

exposed to strain ℓ ∈ {1, 2} transitions to the infectious state (Iℓ) with probability

(w.p.) σℓ∆, independent of the other individuals and of the past. Infected individuals

can transmit the disease with the duration of the infection also governed by a

stochastic mechanism: at each time step, an individual who is infected with strain

ℓ ∈ {1, 2} transitions to the recovered state Rℓ w.p. µℓ∆, independent of the others

and of the past.

After recovery, an individual acquires partial immunity, so that recovered individ-

uals can still be infected by either of the two strains, albeit with reduced probabilities

compared to an individual in a susceptible state. We introduce two further pairs

of progression states, marked with a tilde to model partial immunity to a strain

with which an individual has been previously infected. If an individual in state Rℓ

is re-infected with the same strain ℓ, they transition back to the same progression

sequence, Alternatively, they may be exposed to the other strain. This state is de-

noted by Ẽℓ̄, introduced to keep track of the partial immunity previously gained

through infection; here and in what follows, we use a superimposed bar to identify

the virus other than ℓ. An individual who underwent an infection with both strains

gains immunity against both strains, and transitions to the recovered state R.

The contagion mechanism acts as follows. At each time step t, a susceptible indi-

vidual (S) who has an interaction with an infected individual with strain ℓ ∈ {1, 2}

(Iℓ or Ĩℓ) becomes exposed with per-contact infection probability equal to λℓ, in-

dependent of other contacts that the susceptible individual might have had. We

assume that recovery from strain ℓ ∈ {1, 2} (Rℓ) yields a partial strain-specific im-

munity against that strain and cross-strain immunity against the other strain ℓ̄.

The levels of immunity are captured by the strain-specific re-infection probability



Burbano Lombana et al. Page 5 of 27

ρℓℓ ∈ [0, 1] and the cross-strain re-infection probability ρℓℓ̄ ∈ [0, 1], respectively. In

particular, ρℓℓ = 1 means that no immunity is present, while ρℓℓ = 0 models the

ideal scenario of perfect immunity. Using these parameters, for individuals who have

recovered from strain ℓ ∈ {1, 2} (Rℓ), the per-contact infection probabilities with

strain ℓ and ℓ̄ are scaled to ρℓℓλℓ and ρℓℓ̄λℓ̄, respectively. Typically, strain-specific

immunity is stronger than cross-strain immunity, so that we assume ρℓℓ ≤ ρℓ̄ℓ.

Hence, for individuals who have recovered from both strains (R), we scale the in-

fection probabilities using the strain-specific re-infection probability ρℓℓ for both

strains ℓ ∈ {1, 2}.

The mechanisms described above establish that the dynamics of individual i ∈ N ,

with state xi(t+∆) ∈ X , are described by a Markov chain [62], with the following

non-zero transition probabilities. With respect to transitions that do not involve

interactions, we have

xi(t+∆) =





Iℓ, w.p. σℓ∆, if xi(t) = Eℓ,

Rℓ, w.p. µℓ∆, if xi(t) = Iℓ,

Ĩℓ, w.p. σℓ∆, if xi(t) = Ẽℓ,

R, w.p. µℓ∆, if xi(t) = Ĩℓ,

(1)

for ℓ ∈ {1, 2}. Transitions from S to E1 and E2 depend on interactions with neigh-

boring individuals in the network of contacts G (t), that is,

xi(t+∆) = Eℓ, w.p. Pℓ(i, t, 1), if xi(t) = S, (2)

for ℓ ∈ {1, 2}. Here, the contagion probability for individual i at time t is defined

as

Pℓ(i, t, r) := 1− (1− rλℓ)
Iℓ(i,t) , (3)

where

Iℓ(i, t) := |{j ∈ N : (i, j) ∈ E(t) and xj(t) ∈ {Iℓ, Ĩℓ}}| (4)

is the number of neighbors of i at time t who are infectious with strain ℓ, and r ∈

[0, 1] is an auxiliary parameter that re-scales the per-contact infection probability to

account for the possible presence of a level of immunity due to previous infections.

In (2), such a parameter is set to r = 1, since susceptible individuals have no

partial immunity. In plain words, equation (3) indicates that each neighbor of i

who is infected with strain ℓ has a probability rλℓ of transmitting the disease to i,

independent of others.

Finally, transitions due to re-infection from the recovered states R1, R2, and R

to the exposed states E1, E2, Ẽ1, and Ẽ2 follow a similar mechanism, with the

re-scaling factor r in equation (3) that takes value equal to the corresponding re-

infection probability. Specifically, we have

xi(t+∆) =





Eℓ, w.p. Pℓ(i, t, ρℓℓ), if xi(t) = Rℓ,

Ẽℓ, w.p. Pℓ(i, t, ρℓ̄ℓ), if xi(t) = Rℓ̄,

Ẽℓ, w.p. Pℓ(i, t, ρℓℓ), if xi(t) = R,

(5)
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for ℓ, ℓ̄ ∈ {1, 2}.

2.2 Network dynamics

To model the temporal evolution of the network of contacts G(t) = (N , E(t)), we

adopt a discrete-time ADN [38]. In this paradigm, each agent is associated with an

activity potential ai, which captures the individual’s social activity and tendency

to initiate interactions with others within a single time step. The activity potential

of individual i is a realization of a random variable from a distribution f(ai), where

the activities are bounded by the inverse of the time step (ai ≤ ∆−1) to ensure that

ai∆
−1 is a probability.

At each time instant t, each individual i ∈ N activates w.p. equal to ai∆, inde-

pendent of others. Each active individual will establish m undirected connections

with others, generating the edge set E(t). The overall network dynamics can be

organized into five main steps, which begin at t = 1:

i) the edge set is initialized as the empty set E(t) = ∅;

ii) each individual i ∈ N becomes active w.p. equal to ai∆, independent of

others;

iii) each active individual i ∈ N selects m other individuals uniformly at random

among the other individuals and establishes an undirected link with each of

them, thereby forming the edge set;

iv) each individual i ∈ N updates its state xi(t) according to the transition

mechanisms described in Section 2.1 and illustrated in Fig. 1; and

v) the time step is updated to t+ 1.

All the parameters of the model are summarized in Table 1.

2.3 Example

We illustrate our framework on a case study, with parameters inspired by COVID-

19, to illustrate the wide variety of behaviors that our model can capture and

reproduce. We consider a population of N = 10, 000 individuals and a time step

equal to ∆ = 0.5 day. Following [46, 63], the per unit-time transition probability

from exposed to infectious and from infectious to recovered are set for both strains to

σℓ = 0.5 day−1 and µℓ = 0.2 day−1, respectively. To ease the graphical presentation,

we set the re-infection probabilities to ρℓℓ̄ = 0.1, for all ℓ, ℓ̄ ∈ {1, 2}, which is

equivalent to a 90% reduction of the probability to be infected due to natural

immunity. Regarding the network dynamics, the value of the activity potential of

each individual is drawn from a re-scaled power-law distribution f(a) = η a−y with

exponent y = 2.1, a cut-off ǫ = 10−3, and re-scaling constant η = 10. The number

of connections per active individual is set to m = 20, based on literature [63, 64].

As the initial condition, we consider one individual infected for each strain.

Figure 2 illustrates the time evolution of the epidemic process for different values

of the remaining parameters. In Fig. 2(a), we vary λ1 from 0 to 0.2 while we consider

the second strain to be two times more infectious than the first one, that is, λ2 =

2λ1. Predictably, the second variant dominates the infection count. In fact, once the

epidemic threshold is trespassed, both strains yield an epidemic outbreak, but the

second variant consistently leads the infection count at much higher figures than

the first one.
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The second set of simulations illustrates the role of the re-infection probability

ρ22 on the time evolution of the infection profile. In particular, in Fig. 2(b), as

the re-infection probability increases, the epidemic dynamics of the second variant

exhibit a longer duration of the peak and a slower decay over time. Notably, for

values of ρ22 ≥ 0.5, the second strain tends to settle into an endemic regime that

does not extinguish within the time interval of observation.

In Fig. 2(c), we study how the interplay between the infection probabilities of the

two strains affects the epidemic outcome. Specifically, we vary λ1 from 0 to 0.5, and

set λ2 = 0.5−λ1. All re-infection probabilities are set to ρℓℓ̄ = 0.1. Predictably, the

results indicate that for λ1−λ2 < 0 the second variant is prevalent, for λ1−λ2 = 0

the two variants are equivalent, and for λ1 − λ2 > 0 the first variant is, instead,

prevalent. We also identify a transition from a zero steady-state value to an endemic

state for each variant.

Finally, in Fig. 2(d), we investigate the role of cross-immunity. Specifically, we

vary the re-infection probability ρ12 in [0, 1]. As expected, larger values of ρ12 (low

cross-immunity) lead to an increase in the number of infections from the second

variant.

3 Mean-field analysis

The example in Fig. 2 illustrates that our network epidemic model can exhibit three

different types of emergent behaviors, namely,

i) a non-epidemic regime, characterized by a quick convergence to a disease-free

state, in which the infections monotonically decrease over time;

ii) an epidemic regime, in which the number of infections grow initially, but, after

reaching a peak, they vanish, eventually reaching a disease-free state; and

iii) an endemic regime, where the disease persists over time and a disease-free

state is never reached.

Here, we perform a theoretical analysis of the model to elucidate how model pa-

rameters determine the emerging behavior of the stochastic network system. Specif-

ically, we derive two thresholds for the per-contact infection probability that char-

acterize transition from the non-epidemic regime to the epidemic one, and from

the epidemic regime to the endemic one, termed epidemic threshold and endemic

threshold, respectively.

Following current practice in the study of ADNs [38–46], we use a mean-field

approach to approximate the time evolution of the total number of exposed and

infected individuals using a set of nonlinear ordinary differential equations, in the

limit N → ∞ [48]. In particular, we introduce the functions Iℓ(τ), Eℓ(τ), Rℓ(τ), as

the continuous-time limit of the total number of individuals who are in the infected,

exposed, and removed states of strain ℓ ∈ {1, 2}, when ∆ → 0 (for clarity, we use

τ for the continuous time-variable). Likewise, we use S(τ) and R(τ) to denote the

total number of individuals in the susceptible and removed state, respectively.

Through a series of manipulations, detailed in Appendix A, we can establish that

the dynamics of Iℓ(τ), Eℓ(τ) are governed by
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dIℓ(τ)

dτ
= −µℓIℓ(τ) + σℓEℓ(τ) , (6a)

dEℓ(τ)

dτ
= −σℓEℓ(τ) +

mλℓ

N

[
Ω1

S(τ)Iℓ(t) + S(τ)Ω1
Iℓ
(τ)
]

+
mλℓ

N

[
Ω1

S(τ)Ĩℓ(τ) + S(τ)Ω1
Ĩℓ
(τ)
]

+
mρℓℓλℓ

N

[
Ω1

Rℓ
(τ)Iℓ(τ) +Rℓ(τ)Ω

1
Iℓ
(τ)
]

+
mρℓℓλℓ

N

[
Ω1

Rℓ
(τ)Ĩℓ(τ) +Rℓ(τ)Ω

1
Ĩℓ
(τ)
]
, (6b)

for ℓ ∈ {1, 2}. Here, the function of time Ωd
•(τ) represents the d-th order auxiliary

variable that captures the dth moment of the activity of the individuals in the

susceptible health state, up to the normalization constant N ,

Ωd
S(τ) :=

∑

i∈N :xi(τ)=S

adi , (7a)

Ωd
Iℓ
(τ) :=

∑

i∈N :xi(τ)=Iℓ

adi , (7b)

Ωd

Ĩℓ
(τ) :=

∑

i∈N :xi(τ)=Ĩℓ

adi , (7c)

Ωd
R(τ) :=

∑

i∈N :xi(τ)=R

adi . (7d)

The first and second summands on the right-hand side of equation (6a) denote the

rate at which individuals leave and enter the infected state, respectively. Similarly,

the first term on the right-hand side of equation (6b) identifies the rate at which

individuals transition out from the exposed state to the infectious state. The second

and third terms, instead, indicate the rate of transitions of susceptible individuals

to the exposed state, after an interaction with individuals in Iℓ and Ĩℓ, respectively.

The last two terms capture re-infections of individuals who have already recovered

from the same strain, after an interaction with individuals infected with that strain

or the other strain, respectively.

Analogously, the dynamics of the total number of individuals in the re-infected

state Ĩℓ(τ) and re-exposed state Ẽℓ(τ) are governed by

dĨℓ(τ)

dτ
= −µℓĨℓ(τ) + σℓẼℓ(τ) , (8a)

dẼℓ(τ)

dτ
= −σℓẼℓ(τ) +

mρℓ̄ℓλℓ

N

[
Ω1

R
ℓ̄
(τ)Iℓ(τ) +Rℓ̄(τ)Ω

1
Iℓ
(τ)
]

+
mρℓ̄ℓλℓ

N

[
Ω1

R
ℓ̄
(τ)Ĩℓ(τ) +Rℓ̄(τ)Ω

1
Ĩℓ
(τ)
]

+
mρℓℓλℓ

N

[
Ω1

R(τ)Iℓ(τ) +R(τ)Ω1
Iℓ
(τ)
]

+
mρℓℓλℓ

N

[
Ω1

R(τ)Ĩℓ(τ) +R(τ)Ω1
Ĩℓ
(τ)
]
. (8b)
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The summands on the right-hand side of equation (8a) represent individuals that

leave and enter the re-infected state. The first term on the right-hand side of equa-

tion (8b) denotes the rate of individuals who leave the exposed state and become

(re-)infected. The second and third terms denote the rate of individuals who have

already recovered from strain ℓ̄, and become exposed to strain ℓ after an interac-

tion with individuals in Iℓ and Ĩℓ, respectively. The fourth and fifth terms capture

the rate at which individuals who have already recovered from both variants and

become again exposed after an interaction with individuals in Iℓ and Ĩℓ, respectively.

Finally, the dynamics of the first-order auxiliary variable are

dΩ1
Iℓ
(τ)

dτ
= −µℓΩ

1
Iℓ
(τ) + σℓΩ

1
Eℓ
(τ), (9a)

dΩ1
Ĩℓ
(τ)

dτ
= −µℓΩ

1
Ĩℓ
(τ) + σℓΩ

1
Ẽℓ

(τ), (9b)

dΩ1
Eℓ
(τ)

dτ
= −σℓΩ

1
Eℓ
(τ) +

mλℓ

N

[
Ω2

S(t)Iℓ(t) + Ω1
S(t)Ω

1
Iℓ
(t)
]

+
mλℓ

N

[
Ω2

S(t)Ĩℓ(t) + Ω1
S(t)Ω

1
Ĩℓ
(t)
]

+
mρℓℓλℓ

N

[
Ω2

Rℓ
(t)Iℓ(t) + Ω1

Rℓ
(t)Ω1

Iℓ
(t)
]

+
mρℓℓλℓ

N

[
Ω2

Rℓ
(t)Ĩℓ(t) + Ω1

Rℓ
(t)Ω1

Ĩℓ
(t)
]
, (9c)

dΩ1
Ẽℓ

(τ)

dτ
= −σℓΩ

1
Ẽℓ

(τ) +
mρℓ̄ℓλℓ

N

[
Ω2

R
ℓ̄
(τ)Iℓ(τ) + Ω1

R
ℓ̄
(τ)Ω1

Iℓ
(τ)
]

+
mρℓ̄ℓλℓ

N

[
Ω2

R
ℓ̄
(τ)Ĩℓ(τ) + Ω1

R
ℓ̄
(τ)Ω1

Ĩℓ
(τ)
]

mρℓℓλℓ

N

[
Ω2

R(τ)Iℓ(τ) + Ω1
R(τ)Ω

1
Iℓ
(τ)
]

+
mρℓℓλℓ

N

[
Ω2

R(τ)Ĩℓ(τ) + Ω1
R(τ)Ω

1
Ĩℓ
(τ)
]
. (9d)

The dynamics of the auxiliary variables depend recursively on high-order auxiliary

variables making the derivation of global results cumbersome. However, a local

stability analysis can be conducted to shed light on the three different regimes,

namely, non-epidemic, epidemic, and endemic, as articulated in what follows.

3.1 Epidemic threshold

We start by analyzing the parameter conditions under which the non-epidemic be-

havior is observed. To this aim, we study the stability of the disease-free equilibrium

of the stochastic network system in which all individuals are susceptible, that is,

S = N and all other variables are zero. The results of our analysis are summarized

in the following claim.

Theorem 1 In the limit of large-scale networks N → ∞, the non-epidemic be-

havior occurs when

λℓ

µℓ

<
1

m
(
〈a〉+

√
〈a2〉

) , (10)
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for both ℓ ∈ {1, 2}, where

〈a〉 :=

∫ ∞

0

af(a) da , (11a)

〈a2〉 :=

∫ ∞

0

a2f(a) da , (11b)

are the first- and second-order moments of the probability density function of the

activity potentials.

Proof By linearizing equations (6), (9a), and (9c) around the disease-free equilib-

rium S = N , we obtain

dIℓ(τ)

dτ
= −µℓIℓ(τ) + σℓEℓ(τ), (12a)

dEℓ(τ)

dτ
= −σℓEℓ(τ) +mλℓ

[
〈a〉Iℓ(τ) + Ω1

Iℓ
(τ)
]
, (12b)

dΩ1
Iℓ
(τ)

dτ
= −µℓΩ

1
Iℓ
(τ) + σℓΩ

1
Eℓ
(τ), (12c)

dΩ1
Eℓ
(τ)

dτ
= −σℓΩ

1
Eℓ
(τ) +mλℓ

[
〈a2〉Iℓ(τ) + 〈a〉Ω1

Iℓ
(τ)
]
, (12d)

for ℓ = {1, 2}.

The stability of the disease free-equilibrium is fully determined by the stability of

the origin of equation set (12) [65], which is deteremined by the Jacobian




−µ1 σ1 0 0 0 0 0 0

mλ1〈a〉 −σ1 mλ1 0 0 0 0 0

0 0 −µ1 σ1 0 0 0 0

mλ1〈a
2〉 0 m〈a〉λ1 −σ1 0 0 0 0

0 0 0 0 −µ2 σ2 0 0

0 0 0 0 mλ2〈a〉 −σ2 mλ2 0

0 0 0 0 0 0 −µ2 σ2

0 0 0 0 mλ2〈a
2〉 0 m〈a〉λ2 −σ2




, (13)

This 8 × 8 matrix has a block-diagonal structure, so that its eight eigenvalues can

be obtained by computing the eigenvalues of each of the 4 × 4 diagonal blocks.

Moreover, the structure of each block allows for an explicit computation of its four

eigenvalues. In fact, the four eigenvalues of each blockΛℓ
1,2,3,4 as the solution of the

following equation:

[
(µℓ + Λℓ)(σℓ − Λℓ)

]2
+ σℓmλℓ〈a〉(µℓ + Λℓ)(σℓ − Λℓ)−m2σ2

ℓλ
2
ℓ〈a

2〉 = 0. (14)

The solution of such an equation can be computed in closed-form, as

Λℓ
1,2,3,4 := −

µℓ + σℓ

2
∓

1

2

√
(µℓ − σℓ)2 + 4σℓmλℓ

(
〈a〉 ∓

√
〈a2〉

)
, (15)
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with ℓ = {1, 2}. An epidemic outbreak does not occur if all the eigenvalues have

negative real part, yielding the following condition:

λℓ

µℓ

<
1

m
(
〈a〉+

√
〈a2〉

) , (16)

for both ℓ ∈ {1, 2}, which completes the proof.

Such a condition corresponds to the well-known threshold of SIS, SIR, and SEIR

models with a single variant [38,46,66]. Thus, the stability of the disease-free equi-

librium in the presence of two strains is governed by the strain ℓ with higher ratio

λℓ/µℓ, that is, the strain which, on average, is able to infect more individuals dur-

ing the entire transmissibility period. In fact, each infection occurs with per-contact

transmission probability equal to λℓ, and the average duration of the transmissibil-

ity period is equal to 1/µℓ. This observation is in agreement with prior research on

deterministic compartmental models [9].

3.2 Endemic threshold

The simulations in Fig. 2 suggest that some combinations of parameters yield

regimes where the infection dynamics does not spontaneously extinguish. These

regimes, called endemic, are of particular interest for the epidemiological commu-

nity, as they underline scenarios where the population is required to “live with the

virus [67].” Here, we determine a threshold, labeled as endemic, for the occurrence

of this phenomenon.

Theorem 2 In the limit of large-scale networks N → ∞, the endemic regime

occurs if and only if

λℓ

µℓ

>
1

mρℓℓ

(
〈a〉+

√
〈a2〉

) , (17)

for at least one ℓ ∈ {1, 2}, where 〈a〉 and 〈a2〉 are defined in equation (11).

Proof The determination of the endemic threshold is equivalent to isolating the

conditions under which the dynamics does not converge to a disease-free state. To

this aim, we study the stability of the equilibrium R = N for the stochastic network

system. By linearizing equation set (6), along with equations (9b) and (9d) about

R = N , we obtain

dĨℓ(τ)

dτ
= −µℓĨℓ(τ) + σℓẼℓ(τ) , (18a)

dẼℓ(τ)

dτ
= −σℓẼℓ(τ) +mρℓℓλℓ

[
〈a〉Ĩℓ(τ) + Ω1

Ĩℓ
(τ)
]
, (18b)

dΩ1
Ĩℓ
(τ)

dτ
= −µℓΩ

1
Ĩℓ
(τ) + σℓΩ

1
Ẽℓ

(τ) , (18c)

dΩ1
Ẽℓ

(τ)

dτ
= −σℓΩ

1
Ẽℓ

(τ) +mρℓℓλℓ

[
〈a2〉Iℓ(τ) + 〈a〉Ω1

Ĩℓ
(τ)
]
. (18d)
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Following a procedure similar to the one used in the proof of Theorem 1, we evaluate

the Jacobian of the system of equations at R = N , and we establish conditions for

which one of the eigenvalues has a positive real part so that the equilibrium is

unstable. Hence, we establish that

λℓ

µℓ

>
1

mρℓℓ

(
〈a〉+

√
〈a2〉

) , (19)

for at least one ℓ ∈ {1, 2}, which yields the claim.

Remark 1 Both of the proofs in Theorems 1 and 2 rely on the block-diagonal

structure of a Jacobian matrix, which begets two decoupled four-dimensional eigen-

value problems. Should one consider a multi-strain model (see, [9, 34]), with more

than two strains, results would be equivalent.

We assess the validity of the epidemic thresholds in Theorems 1 and 2 through a

series of simulations, in which we seek to map the parameter space into alternative

behaviors of the stochastic network system. In particular, we create two-dimensional

diagrams varying λ1 = λ2 = λs and ρ11 = ρ22 = ρs on the intervals [0, 0.5] and

[0, 1], respectively. All other simulation parameters are the same as in the example

in Section 2.3. For each parameter combination, a total of 100 simulations were per-

formed, each of 3,600 time steps (see Appendix B for more details on the numerical

simulations). Results are shown in Fig. 3(a) where the the blue region indicates the

non-epidemic regime where the disease monotonically vanishes in time, the yellow

region identifies the epidemic regime in which an outbreak occurs but it is eventu-

ally eradicated, and the red region marks the endemic regime where the disease will

persist over time. Each point is indicative of the average behavior observed over the

100 simulations.

Theoretical predictions of the epidemic thresholds are shown by the dashed white

curves. The epidemic threshold (10) from Theorem 1 is depicted by the vertical

white line while the endemic threshold (17) from Theorem 2 is depicted by the

white curve. Our results follow the intuition that highly infectious strains might

enter the endemic region more easily, as they requires lower values of the re-infection

parameter ρs for crossing the threshold.

Our theoretical claims from Theorems 1 and 2 clarify whether the stochastic net-

work system will alternatively exhibit a quick eradication of the disease, an epidemic

outbreak, or an endemic state. However, they do not allow for disentangling the in-

fection count of each single strain. In particular, the two interacting strains can

exhibit nontrivial behaviors, in which one of is dominant or in both strains coexist

— two cases that are indistinguishable from our theoretical predictions. The anal-

ysis of these complex behaviors is nontrivial, and it is still an open problem, even

for models much simpler than ours [33–35, 68]. Here, we use numerical simulations

to shed light on the matter.

Through our simulations, we span different infection and re-infection parameter

values: λ1 and ρ11 are varied in the intervals [0, 0.5] and [0, 1], respectively, while the

parameters of the second strain are determined as λ2 = 0.5−λ1 and ρ22 = 1−ρ11. In
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all the simulations, µ1 = µ2 = 0.2. Note that, under these assumptions, Theorem 1

guarantees that the non-epidemic regime cannot occur, that is, at least one of the

strains becomes epidemic (or endemic). To illustrate our findings, we color-code the

behavior of the stochastic network system in a two-dimensional map, varying the

infection parameters λ1 − λ2 and re-infection parameters ρ22 − ρ11 in the interval

[−0.5, 0.5] and [−1, 1], respectively, as shown in Fig. 3(b). For each combination, we

perform 100 simulations over 3,600 time steps (see Appendix B for more details on

the numerical simulations).

Our numerical results highlight the non-trivial interplay of model parameters,

which shape complex behaviors associated with seven different regions in Fig. 3(b).

Specifically, in Region I, strain 1 remains non-epidemic, while strain 2 yields an

epidemic outbreak. In Region II, strain 1 remains non-epidemic, while strain 2

becomes endemic. Regions III and IV are characterized by a behavior symmetric

to regions I and II, respectively, where strain 2 remains non-epidemic and strain 1

becomes epidemic and endemic. In Region V, strain 1 exhibits an epidemic behavior,

while strain 2 exhibits an endemic state, whereas the opposite occurs in Region VI.

Finally, in Region VII, both strains exhibit an endemic state. Notably, regions I

and III form the overall epidemic regime of the system, whereas the other regions

pertain to the overall endemic regime. We should comment that two further regions

may be possible, for other sets of parameters: a region in which the strains are

non-epidemic, and a region in which both strains are epidemic — both regions are

visible in Fig. 2(a).

4 Intermittent stay-at-home containment strategy

Our modeling framework can be used to inform containment policies. Here, we

demonstrate its practical value by informing the implementation of an intermittent

stay-at-home strategy as a viable solution to mitigate the epidemic spread, while

limiting the social and economic impact for the population. In particular, we analyze

the effect of a stay-at-home containment strategy that involves randomly selected

portions of the population to be home-isolated for limited time periods. We assume

that home-isolated individuals are healthy during the isolation time and that they

will remain healthy throughout the isolation period. Hence, in our simulations, we

assign the “removed” state to these individuals, who temporarily do not contribute

to the epidemic dynamics. More formally, we will randomly select a fraction p ∈ [0, 1]

of the population to be home-isolated for a period of D consecutive time steps and

we repeat this process every T > D time steps.

Note that the total number of individuals who take part into the network dynamics

are N(t), a number that changes in time according to a periodic switching law given

by

N(t) =

{
(1− p)N, kT ≤ t < kT +D,

N, kT +D ≤ t < (k + 1)T,
(20)

for k = {0, 1, . . .}.
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By duplicating the mean-field analysis for this case, for each strain ℓ ∈ {1, 2}, we

obtain a periodic, switched linear system of four coupled equations,

dIℓ(τ)

dτ
= −µℓIℓ(τ) + σℓEℓ(τ) , (21a)

dEℓ(τ)

dτ
= −σℓEℓ(τ) + ωℓ(τ)

[
〈a〉Iℓ(τ) + Ω1

Iℓ
(τ)
]
, (21b)

dΩ1
Iℓ
(τ)

dτ
= −µℓΩ

1
Iℓ
(τ) + σℓΩ

1
Eℓ
(τ) , (21c)

dΩ1
Eℓ
(τ)

dτ
= −σℓΩ

1
Eℓ
(τ) + ωℓ(τ)

[
〈a2〉Iℓ(τ) + 〈a〉Ω1

Iℓ
(τ)
]
, (21d)

where ωℓ(τ) is a square wave,

ωℓ(τ) =

{
mλℓ(1− p), kT∆ ≤ τ < kT∆+D∆,

mλℓ, kT∆+D∆ ≤ τ < (k + 1)T∆,
(22)

for k = {1, . . .}.

To study the stability of the periodic, switched linear system (21), we use Floquet

theory [65]. The transition matrix Φ(τ, τ ′) of any periodic linear system can be

decomposed into

Φ(τ, τ ′) = P (τ) exp (M(τ − τ ′))P−1(τ ′) , (23)

where exp(·) is the matrix exponential. The matrix function P (τ) is T∆-periodic,

continuously differentiable, and invertible for all τ , while M is a constant, possibly

complex matrix that can be calculated from the monodromy matrix Φ(T∆, 0), as

follows

M :=
1

T∆
log (Φ(T∆, 0)) , (24)

with log(·) being the matrix logarithm.

The Floquet decomposition can be used to transform the four-dimensional peri-

odic system (22) into a time-invariant system, whose stability is dictated by the

four eigenvalues of matrix M . For a switched system, the monodromy matrix takes

the simple form of the product of matrix exponentials,

Φ(T∆, 0) := exp
(
(1− δ)T∆ J0

)
exp(δT∆ Jp) , (25)

where δ = D/T is the duty cycle and

Jp :=




−µℓ σℓ 0 0

(1− p)mλℓ〈a〉 −σℓ (1− p)mλℓ 0

0 0 −µℓ σℓ

(1− p)mλℓ〈a
2〉 0 (1− p)mλℓ〈a〉 −σℓ


 . (26)

To investigate when an epidemic outbreaks occur for the switched, stochastic net-

work systems, we examine the eigenvalues of M . By monitoring when the real part
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of at least one of these eigenvalues become positive, we pinpoint at the epidemic

threshold. The same analysis can be performed around the equilibrium in which all

the in individuals are in the R state to identify the endemic threshold, following the

same steps as in Section 3.

The effect of the proposed intermittent stay-at-home containment strategy is il-

lustrated in Fig. 4, through numerical simulations employing the same parameters

as in the example in Section 2.3. We perform 100 simulations for each parameter

combination, each of 1,000 time steps (see Appendix B for more details on the

numerical simulations). We vary the fraction of individuals to be removed in the

network p, and set the period to be one week (T∆ = 7), while the stay-at-home

number of days is set to 5 days (D∆ = 5).

The dashed white curves represent the stability thresholds computed from the

eigenvalues of M for both the epidemic and the endemic regimes. As the fraction of

controlled nodes p increases, the region of stability of the disease-free equilibrium

widens, while the one corresponding to the endemic regime shrinks. This can be

observed by comparing the dashed white curves with the dashed red ones, which

represent the stability thresholds in the absence of any containment strategy. In

agreement with one’s intuition, both the peak count of infections and its steady-state

value decrease for larger p. In fact, in the worst case scenario with λ1 = λ2 = 0.5

and ρ11 = ρ22 = 1, both values are reduced from more than 1, 500 cases per 10, 000

inhabitants, to less than 1, 000 as p goes from 30% to 60%. To summarize, our results

indicate that the presence of an intermittent stay-at-home containment strategy has

a beneficial effect on the epidemic spreading. Not only can this strategy be used to

mitigate new strains that might be more infectious than existing ones, but can it

also be used to replace strict lock-down measures with long isolation periods.

5 Conclusions

We developed and analyzed a two-strain virus model using the ADN paradigm.

Building on the state-of-the art models, we put forward a SEIR-based progression

model that accounts for re-infections with the same strain or a different strain —

scenarios that are presently unfolding during the COVID-19 pandemic as immunity

is waning and new variants are emerging. The resulting model reveals rich dynam-

ics through the stochastic network system that can experience different phenotypes,

ranging from a disease-free equilibrium to epidemic outbreaks and endemic regimes

in which the disease persists over time, through one of both its strains. Alongside

computational insight, we establish closed-form expressions for the epidemic and

endemic thresholds through a mean-field approach, which is valid in the thermody-

namic limit of large networks. Predictably, the epidemic threshold is the same as the

one corresponding to a classical SIS model over an ADN, with the most infectious

single strain. In agreement with one’s intuition, the endemic threshold is inversely

proportional to the strain-specific re-infection parameter.

We demonstrated the potential of the approach in the development of a stay-

at-home containment strategy to mitigate the effects of the spread. Contrary to

harsh lockdown measures that we have seen during the COVID-19 pandemic, this

approach only requires that a small fraction of the population (selected uniformly

at random) isolates for a period of time. After the isolation ends, individuals can
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return to normal activities and others will isolate in their place. We leverage Floquet

theory to obtain the epidemic thresholds of such an intermittent strategy. We found

that the region in the parameter space of the disease-free equilibrium grows with

the fraction of individuals selected for isolation, thereby reducing the epidemic and

endemic regions; a two-fold increase in the fraction of home-isolated inhabitants

causes an equivalent drop in both the peak count of infections and its steady-state

value.

Our proposed approach is not free of limitations and raises important questions

to be addressed in future endeavors. First and foremost, the activity potential is

assumed to be time-invariant, which may not fully capture the complexity of human

behavior; for example, recent work from our group has demonstrated an extension

of the ADN paradigm to account for memory effects through Hawkes’ processes [69]

and for the inclusion of human behavior [70, 71]. Second, all individuals might not

uniformly establish connections with others, rather, their interactions may be based

on nodes’ properties [72], strong ties and dyadic relations [73, 74], or higher-order

relations [75]. Third, our containment strategy is open-loop, so it does not con-

sider any feedback that could potentially enhance its mitigation, by anticipating

outbreaks as reported in compartmental models [56]. Although there are several

directions to be further explored, our results offer important insights into the dy-

namics and control of disease spreading processes with multiple strains over ADNs,

an area which, to be best of our knowledge, was understudied till now.

Appendix A: Mean-field dynamics

Mean-field theory [48] can be adapted to study the dynamics of the stochastic

network system (1)-(5). Consistent with Fig. 2, we utilize italic letters to quantify

the number of individuals in each state of the progression model in Fig. 1. In

particular we define S(t) and R(t) as the number of agents in the susceptible and

recovered states a time t, respectively. Variables E1(t) and E2(t) and R1(t) and

R2(t) count the number of exposed and recovered individuals from strain 1 and 2,

respectively. Similarly, variables Ẽ1(t), Ẽ2(t), Ĩ1(t), and Ĩ2(t) count the agents in

re-infected states, while R(t) is the total number of removed agents. Note that the

total number of individuals N satisfies N = S(t) + E1(t) + E2(t) + I1(t) + I2(t) +

R1(t) +R2(t) + Ẽ1(t) + Ẽ2(t) + Ĩ1(t) + Ĩ2(t) +R(t).

Following [38], we consider a generic activity level a and we denote with a super-

script a the number of individuals with activity level a in each state. For instance,

Sa(t) is the number of susceptible individual with activity a at time t. All the vari-

ables of the stochastic network system can be rewritten in a form analogous to the

following one for the susceptible state and the related auxiliary variable:

S(t) =

∫
Sa(t)da , Ωd

S(t) =

∫
adSa(t)da , (27)

where, here and in what follows, integrals are all defined from 0 to ∞. Furthermore,

for individual i with activity level a, we have that the expected value of (4) reads

E[Iℓ(i, t)] = a∆m

∫
(Ia

′

ℓ (t) + Ĩa
′

ℓ (t))

N
da′ +m

∫
a′∆(Ia

′

ℓ (t) + Ĩa
′

ℓ (t))

N
da′ . (28)
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Within the mean-field approach, we substitute Pℓ(i, t, r) from (3) with its expected

value, which is approximated by using (28), thereby obtaining

E[Pℓ(i, t, r)] ≈ 1− (1− rλℓλ)
∆m

(
a
∫ (Ia

′

ℓ
(t)+Ĩ

a
′

ℓ
(t))

N
da′+

∫ a
′(Ia

′

ℓ
(t)+Ĩ

a
′

ℓ
(t))

N
da′

)

. (29)

Such an expression is further simplified by considering a first-order McLaurin ex-

pansion in ∆, which yields

Pℓ(i, t, r) ≈ rλℓ∆m

(
a

∫
(Ia

′

ℓ (t) + Ĩa
′

ℓ (t))

N
da′ +

∫
a′(Ia

′

ℓ (t) + Ĩa
′

ℓ (t))

N
da′

)
. (30)

Within a mean-field approach, for an infinitely large network N → ∞, we can

establish that the number of individuals exposed to strain ℓ ∈ {1, 2} and belonging

to the activity level a at a time t+∆ is approximated for small ∆ by its expected

value. From the dynamics described in the main article and recalling the progression

illustrated in Fig. 1, we conclude that the change in the average number of exposed

individuals to strain ℓ ∈ {1, 2} belonging to the activity level a from time t to t+∆

is equal to the number of individuals who transition to Eℓ from S and Iℓ minus the

number who transition from Eℓ to Iℓ. Hence, we approximate Ea
ℓ (t+∆) as follows:

Ea
ℓ (t+∆) ≈Ea

ℓ (t)− Ea
ℓ (t)P

[
xi(t+∆) = Iℓ |xi(t+∆) = Eℓ, ai = a

]

+ Sa
ℓ (t)P

[
xi(t+∆) = Eℓ |xi(t+∆) = S, ai = a

]

+Ra
ℓ (t)P

[
xi(t+∆) = Eℓ |xi(t+∆) = Rℓ, ai = a

]
(31)

At this stage, from (1), we derive

P
[
xi(t+∆) = Iℓ |xi(t+∆) = Eℓ, ai = a

]
= σℓ∆ , (32)

while from (2), and using the approximation in (30) with r = 1, we obtain

P
[
xi(t+∆) =Eℓ |xi(t+∆) = S, ai = a

]
≈

≈ amλℓ

(∫
Ia

′

ℓ (t)

N
da′

)
∆+ amλℓ

(∫
Ĩa

′

ℓ (t)

N
da′

)
∆

+mλℓ

(∫
a′Ia

′

ℓ (t)

N
da′

)
∆+mλℓ

(∫
a′Ĩa

′

ℓ (t)

N
da′

)
∆ (33)

Similar, from (5) and using the approximation in (30) with r = ρℓℓ, we establish

P
[
xi(t+∆) = Eℓ|xi(t+∆) = Rℓ, ai = a

]
≈

≈ ρℓℓamλℓ

(∫
Ia

′

ℓ (t)

N
da′

)
∆+ ρℓℓamλℓ

(∫
Ĩa

′

ℓ (t)

N
da′

)
∆

+ ρℓℓmλℓ

(∫
a′Ia

′

ℓ (t)

N
da′

)
∆+ ρℓℓmλℓ

(∫
a′Ĩa

′

ℓ (t)

N
da′

)
∆ (34)
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Finally, by replacing (32)–(34) into (31), we obtain the following approximation:

Ea
ℓ (t+∆)≈Ea

ℓ (t)− σℓE
a
ℓ (t)∆

+ Sa(t) amλℓ

(∫
Ia

′

ℓ (t)

N
da′

)
∆

+ Sa(t)mλℓ

(∫
a′Ia

′

ℓ (t)

N
da′

)
∆

+Ra
ℓ (t) ρℓℓ amλℓ

(∫
Ia

′

ℓ (t)

N
da′

)
∆

+Ra
ℓ (t) ρℓℓ mλℓ

(∫
a′Ia

′

ℓ (t)

N
da′

)
∆

+ Sa(t) amλℓ

(∫
Ĩa

′

ℓ (t)

N
da′

)
∆

+ Sa(t)mλℓ

(∫
a′Ĩa

′

ℓ (t)

N
da′

)
∆

+Ra
ℓ (t) ρℓℓ amλℓ

(∫
Ĩa

′

ℓ (t)

N
da′

)
∆

+Ra
ℓ (t) ρℓℓ mλℓ

(∫
a′Ĩa

′

ℓ (t)

N
da′

)
∆ . (35)

The first summand on right-hand side of equation (35) corresponds to the number

of individuals who are in the exposed state at time t. The second summand is the

average number of individuals who transition from the exposed state to the infec-

tious state. The third and fourth summmands correspond to the average number

of individuals who transition from the susceptible state to the exposed one. Specif-

ically, the third summand accounts for susceptible individuals with activity a who

activate and interact with infectious individuals through the network of contacts

G(t) = (N , E(t)); the fourth summand accounts instead for infected individuals

who activate and interact with susceptible individuals with activity a. The fifth

and sixth summands correspond to re-infection cases corresponding to the active

and passive cases that transition in from the recovered state Ra
ℓ (t). Similarly, the

last four summands correspond to incoming transitions due to interactions with re-

infected individuals Ĩaℓ (t). In addition, using equation (1), the number of infected

individuals with strain ℓ and activity a at a time t+∆ is approximated by

Iaℓ (t+∆)≈ Iaℓ (t) + σℓE
a
ℓ (t)∆− µℓI

a
ℓ (t)∆ . (36)

Similar to equation (35), we approximate the number of re-exposed individuals at

time t+∆ for small ∆ with its expected value, computed following the same steps
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in (31)–(34), obtaining

Ẽa
ℓ (t+∆)≈ Ẽa

ℓ (t)− σℓẼ
a
ℓ (t)∆

+Ra
ℓ̄
(t) amρℓℓ̄λℓ

(∫
Ia

′

ℓ (t)

N
da′

)
∆

+Ra
ℓ̄
(t)mρℓℓ̄λℓ

(∫
a′Ia

′

ℓ (t)

N
da′

)
∆

+Ra(t) amρℓℓλℓ

(∫
Ia

′

ℓ (t)

N
da′

)
∆

+Ra(t)mρℓℓλℓ

(∫
a′Ia

′

ℓ (t)

N
da′

)
∆

+Ra
ℓ̄
(t) amρℓℓ̄λℓ

(∫
Ĩa

′

ℓ (t)

N
da′

)
∆

+Ra
ℓ̄
(t)mρℓℓ̄λℓ

(∫
a′Ĩa

′

ℓ (t)

N
da′

)
∆

+Ra(t) amρℓℓλℓ

(∫
Ĩa

′

ℓ (t)

N
da′

)
∆

+Ra(t)mρℓℓλℓ

(∫
a′Ĩa

′

ℓ (t)

N
da′

)
∆ . (37)

In addition, similar to (36), we approximate the number of re-infected individuals

as

Ĩaℓ (t+∆)≈ Ĩaℓ (t) + σℓẼ
a
ℓ (t)∆− µℓĨ

a
ℓ (t)∆ . (38)

Taking the limit ∆ → 0, equations (35)–(38) yield a set of ordinary differential

equations for Ea
ℓ (τ), I

a
ℓ (τ), Ẽ

a
ℓ (τ), and Ĩaℓ (τ). For instance, from equation (36), by

collecting all the terms in ∆ on the right-hand-side, dividing by ∆, and taking the

limit, we find

dIaℓ (τ)

dτ
= σℓE

a
ℓ (τ)− µℓI

a
ℓ (τ) . (39)

A similar computation can be carried our for the other variables. Integrating across

all the activity classes through (27) yields system of equations (6) and (8). To obtain

the dynamics of the auxiliary variables, we multiply both sides of equations (35)–

(38) by a, integrate across activity classes using (27), and take the limit ∆ → 0,

which yield (9).

Appendix B: Numerical simulations

To create the two-dimensional diagrams in Fig. 3, we divided the parameter space

of ρs ∈ [0, 1] and λs ∈ [0, 0.5] (or ρ11 ∈ [0, 1] and λ1 ∈ [0, 0.5]) in a 400× 400 grid.

For each parameter combination in the grid, we ran 100 independent simulations of

the stochastic network system with one infected node per strain. The time window
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of each simulation was between 0 and 1, 800 days with a time step of ∆ = 0.5 day

(3,600 time steps). In all the simulations, we set σℓ = 0.5 day−1 and µℓ = 2day−1.

To classify the behavior of each strain into the three possible regimes (non-epidemic,

epidemic, and endemic), we follow the steps below.

❼ First, we average the solution across all trials.

❼ Second, we compute the peak and steady-state values of the number of infected

with the strain. The steady-state is obtained as the time average of the last

50 time steps.

❼ Third, we classify the behavior of each strain as i) non-epidemic, if the peak

of the infection count is equal to one and the steady-state is below a tolerance

ε (that is, the infection count monotonically decays); ii) epidemic, if the peak

is above one and the steady-state below ε (that is, the infection count has a

peak before decaying toward the disease-free equilibrium); and iii) endemic if

the peak is above one and the steady-state above ε. We heuristically selected

ε = 0.1 to be the steady-state tolerance.

To create the diagrams in Fig. 4, we utilized a coarser grid of 100× 100 and 500

days (1,000 time steps). For each parameter combination in the grid, we ran 100

independent simulations of the stochastic network system with one infected node

per strain. The diagrams report the peak count of infections and its steady-state

value, considering both variants, averaged over the 100 independent simulations.

The steady-state is obtained as the time average of the last 50 time steps.
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Tables

Table 1 Notation used in the paper.

Notation Meaning
n number of individuals

N = {1, . . . , n} population set
t discrete time variable

∆ time step
G(t) time varying graph denoting the network of contacts
E(t) node set (interaction links) at time t
xi(t) state of individual i at time t

X discrete set of health states
S susceptible to both strains

E1 exposed to strain 1
E2 exposed to strain 2
I1 infectious with strain 1
I2 infectious with strain 2
R1 recovered from strain 1
R2 recovered from strain 2

Ẽ1 exposed to strain 1 after being recovered from an infection

Ẽ2 exposed to strain 2 after being recovered from an infection

Ĩ1 infectious with strain 1 after being recovered from an infection

Ĩ2 infectious with strain 2 after being recovered from an infection
R recovered from both strains
ℓ index to denote a particular strain

λℓ per-contact infection rate of strain ℓ
σℓ latency to become infectious of strain ℓ
µℓ recovery rate for strain ℓ
ρℓℓ strain-specific re-infection probability for strain ℓ

ρ
ℓℓ̄

cross-strain re-infection probability for strain ℓ̄
m average number of contacts per individual
ai activity potential of individual i

f(·) probability distribution of the activity potentials
〈a〉 first order moment of the probability density function f(·)

〈a2〉 second order moment of the probability density function f(·)
T time period of the control strategy
D duration of the home-isolation period
p fractions of home-isolated individuals in the control strategy


