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Abstract

The emergency generated by the current COVID-19 pandemic has claimed
millions of lives worldwide. There have been multiple waves across the globe that
emerged as a result of new variants, due to unavoidable mutations. The existing
network toolbox to study epidemic spreading cannot be readily adapted to the
study of multiple, coexisting strains. In this context, particularly lacking are
models that could elucidate re-infection with the same strain or a different strain
— phenomena that we are seeing more and more with COVID-19. Here, we
establish a novel mathematical model to study the simultaneous spreading of two
strains over a class of temporal networks. We build on the classical
susceptible—exposed—infectious—removed model, by incorporating additional states
that account for re-infections with multiple strains. The temporal network is
based on the activity-driven network paradigm, which has emerged as a model of
choice to study dynamic processes that unfold at a time scale comparable to the
network evolution. We establish analytical insight into the dynamics of the
stochastic network systems through a mean-field approach, which allows for
characterizing the onset of different behavioral phenotypes (non-epidemic,
epidemic, and endemic). To demonstrate the practical use of the model, we
examine an intermittent stay-at-home containment strategy, in which a fraction
of the population is randomly required to isolate for a period of time.
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1 Introduction
During a disease spread, viral mutations may weaken public health measures as
new transmission dynamics emerge that lessen the effects of vaccination and cause
unseen comorbidities. For instance, influenza exhibits a high mutation rate in the
viral genome that can evolve into new virus strains [1]. In addition, empirical ev-
idence of monkeypox indicates that a single mutation produces genetic variation
that can lead to the emergence of a new variant [2]. During the ongoing COVID-19
pandemic, we have been experiencing a similar scenario, with several SARS-CoV-2
variants [3] propagating across the globe. As of July 2022, we are currently witness-
ing several Omicron sub-variants, such as the BA.1 that emerged at the end of 2021
in Botswana and South Africa [4] and the BA.5 that is threatening vaccine-induced
immunity in the USA [5,6].

Mathematical models of infectious diseases offer important insights into the
spreading process of diseases transmitted by interactions between individuals while

providing a framework to devise containment strategies for the virus. The literature
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on mathematical modeling of disease spreading has grown during the COVID-19
pandemic and several approaches have been developed at different levels of reso-
lution [7,8]. Low-resolution models typically partition the population into a finite
number of compartments and describe their rate of change through a set of differen-
tial equations. While these models may have limited predictive value, they allow for
a simple mathematical treatment that can shed light on the macroscopic epidemic
behavior and highlight the role and criticality of model parameters.

Low-resolution models have been recently proposed to study the effect of multi-
ple strains. For instance, in [9] an extension of the classical susceptible-infected—
removed (SIR) model with mutations, re-infection, and vaccine states has been
proposed to model the spread of a virus with a nominal strain and an emergent one
that is vaccine-resistant. The authors examined the local stability of four different
equilibria, corresponding to the case in which both variants vanish, the cases in
which one variant vanishes and the other persists, and the case in which both vari-
ants persist over time. In [10], the authors have considered additional states, such as
infected-but-asymptomatic and dead, to model the spread of COVID-19 with two
variants. In [11], the authors have proposed a multi-strain epidemic model, along
with an optimal control approach to contain the spread.

At the other end of the spectrum, agent-based models (ABMs) can reproduce
the behavior of a population with great detail [12-15]. For instance, in [12], the
authors have developed an ABM based on the SIR dynamics to investigate the role
of human behavior, in the form of self-regulated or mandated social distancing, on
the spread of a virus with two strains. Likewise, in [14], an ABM at the resolution of
a single individual has been created to study the propagation of COVID-19 in a real
town in the United States. A theoretical analysis of these high-resolution models is
difficult, if not impossible, due to the complexity of the dynamics, the stochasticity
of the spreading, and the large parameter space.

Network theory constitutes a modeling pathway at an intermediate resolution
which allows for some analytical treatment in the spirit of compartmental models,
while granting some fineness in the description of spreading like ABMs [16-20].
Through the lens of networks, individuals are modeled as the nodes of a graph who
interact through the edges of the network of contacts. Such a network captures the
interactions between individuals, through which most viral diseases spread, such
as contact with infected body fluids [21,22], and respiratory droplets or aerosol
generated when a person coughs, sneezes, or simply speaks [23-25].

Within the context of network epidemic models, some efforts have been made to
study the spread of multiple viruses and variants. In [26], the authors have developed
a mathematical model to study consecutive outbreaks with partial immunity after
recovery, using percolation theory. In [27], a mathematical model of two concurrent
diseases spreading over the same static networks of contacts has been established,
detailing the transition between the dominance of each disease over the other and
the presence of a regime in which both co-exist. In [28], it has been shown that co-
existence is a rare phenomenon in most real-world network structures, where one
disease typically dominates the other. A similar study on metapopulation model
has helped clarify the role of the network structure on the transitions between
different regimes [29]. This modeling framework has been extended to account for
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diseases concurrently spreading on distinct networks of contacts [30] or in multi-layer
networks [31]. It has been shown that the network model paradigm can be utilized
to study real-world scenarios [32] while allowing to establish rigorous analytical
treatment, towards the designing techniques to contain the viral spread [33-35].

While early accounts considered static networks [19,36], there is a general consen-
sus that time-varying networks should be preferred to capture the dynamic nature of
human behavior and interactions [17,18,37]. Activity-driven networks (ADNs) [38]
have emerged as an elegant framework to study spreading dynamics over time-
varying networks in which the network dynamics can evolve at the same time scale
of the unfolding disease spreading. This modeling approach allows simple mathe-
matical treatment and provides important insights on how the node and network
dynamics both contribute to the overall spreading process [38—46].

Here, we extend the ADN paradigm to study the simultaneous propagation of
two strains, building on the literature on bi-virus susceptible—infected—susceptible
(SIS) models [28,31,33-35]. In an effort to tackle realistic disease spreading, from
COVID-19 to influenza, dengue, and malaria [47], we formulate the problem within
a susceptible—exposed—infected-removed (SEIR) model and consider re-infections
with tunable parameters for virus-specific and cross immunity. Our modeling frame-
work captures a rich behavioral repertoire where both strains can spread simulta-
neously or independently, also contemplating the scenario of an endemic state with
coexisting variants. Specifically, we characterize three different types of behavior:
i) quick eradication of the disease, ii) eradication of the disease after the occur-
rence of an epidemic outbreak, and iii) emergence of an endemic disease. Through
a mean-field approach [38,48], we establish simple algebraic conditions determining
the stability of the disease-free equilibrium and endemic states.

To demonstrate the practical value of our modeling approach, we propose the im-
plementation of a non-pharmaceutical intervention, in the form of an intermittent
stay-at-home strategy. Non-pharmaceutical interventions are key to limit transmis-
sion routes between individuals [49-53] before vaccines become available for mass
use. In particular, intermittent strategies have been examined in [54], where the
authors have studied the role of intermittent social distancing in a static network
model with SIS dynamics. In this vein, individuals might interrupt interactions with
those infected for a fixed period of time to then resume contact. In [55], a similar
control strategy has been studied for potential implementation in the fight against
COVID-19. Similarly, in [56], the authors have examined how an intermittent strat-
egy at a regional level in ITtaly can mitigate the effects of the COVID-19 spread,
and an equivalent analysis has been carried out in [57] for fast-switching control.

The rest of the paper is organized as follows. In Section 2, we present the model
and provide an example illustrating the rich dynamics of the model. In Section 3,
we conduct a mean-field analysis to predict the regions in the parameter space
where the network either converges to the disease free equilibrium or the endemic
state. We present the intermittent stay-at-home control strategy in Section 4, while
conclusions and future work are presented in Section 5.

2 Model

We consider a set of N nodes, each associated with an individual, which interact
through a temporal network represented by an undirected graph G(¢) = (N, E(¢)),
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where N := {1,--- , N'} is the node set and £(t) C N x N is the edge — (i,7) € E(t)
means that individuals ¢ and j are in contact at time t. Here, ¢t denotes the discrete
time variable t € {0, A, 2A,3A, ...}, with A > 0 being the time step.

Consistent with the literature on bi- and multi-virus models [28, 31, 33-35], we
assume that individuals can be exposed to or be infected with one of two differ-
ent strains of the same virus. As such, an individual cannot carry both strains at
the same time. Upon recovery from an infection, individuals gain (partial) strain-
specific [58-60] and cross-strain immunity, so that they can still be re-infected, but
with a reduced probability [1,61].

2.1 Node dynamics

Taking into account these considerations, for each individual (represented by a node
in the network) we consider the progression illustrated in Fig. 1 — a bi-virus version
of an SEIR model. The health state of each individual, denoted by x;(t) € X for
all i € NV, can take values in X := {S7E17EQ,Il,IQ,Rl,RQ,El,EQ,Tl,TQ,R}. Here, S
denotes the susceptible state, in which the individual is healthy and can potentially
become infected, as they come in contact with infectious individuals.

Upon infection, the health state of an individual changes to exposed, denoted by
Ey, where the index ¢ € {1,2} refers to the strain the individual has been exposed
to. In this state, the virus within an individual is in an incubation phase, so that the
individual is infected, but cannot transmit the disease. The incubation phase lasts
for a stochastic time interval. Specifically, at each time step, an individual who is
exposed to strain £ € {1,2} transitions to the infectious state (I;) with probability
(w.p.) o¢A, independent of the other individuals and of the past. Infected individuals
can transmit the disease with the duration of the infection also governed by a
stochastic mechanism: at each time step, an individual who is infected with strain
¢ € {1,2} transitions to the recovered state Ry w.p. u¢A, independent of the others
and of the past.

After recovery, an individual acquires partial immunity, so that recovered individ-
uals can still be infected by either of the two strains, albeit with reduced probabilities
compared to an individual in a susceptible state. We introduce two further pairs
of progression states, marked with a tilde to model partial immunity to a strain
with which an individual has been previously infected. If an individual in state Ry
is re-infected with the same strain ¢, they transition back to the same progression
sequence, Alternatively, they may be exposed to the other strain. This state is de-
noted by Eg, introduced to keep track of the partial immunity previously gained
through infection; here and in what follows, we use a superimposed bar to identify
the virus other than ¢. An individual who underwent an infection with both strains
gains immunity against both strains, and transitions to the recovered state R.

The contagion mechanism acts as follows. At each time step ¢, a susceptible indi-
vidual (S) who has an interaction with an infected individual with strain ¢ € {1,2}
(I or Tg) becomes exposed with per-contact infection probability equal to Ay, in-
dependent of other contacts that the susceptible individual might have had. We
assume that recovery from strain £ € {1,2} (Ry) yields a partial strain-specific im-
munity against that strain and cross-strain immunity against the other strain /.
The levels of immunity are captured by the strain-specific re-infection probability
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pur € [0,1] and the cross-strain re-infection probability p,; € [0, 1], respectively. In
particular, pgy = 1 means that no immunity is present, while pyy = 0 models the
ideal scenario of perfect immunity. Using these parameters, for individuals who have
recovered from strain ¢ € {1,2} (Ry), the per-contact infection probabilities with
strain ¢ and ¢ are scaled to pg A and p,zAg, respectively. Typically, strain-specific
immunity is stronger than cross-strain immunity, so that we assume py < pg-
Hence, for individuals who have recovered from both strains (R), we scale the in-
fection probabilities using the strain-specific re-infection probability pg for both
strains £ € {1,2}.

The mechanisms described above establish that the dynamics of individual i € N,
with state x;(t + A) € X, are described by a Markov chain [62], with the following
non-zero transition probabilities. With respect to transitions that do not involve
interactions, we have

Iy, w.p. oA, if 2;(t) = Ey,

it 4 A) = Bg, w.p. e, if z;(t) = I~g, ()
! Ig, W.p. O’gA, if l‘l(t) = Eg,
R, w.p. A, if z;(t) :Tg,

for ¢ € {1,2}. Transitions from S to E; and E5 depend on interactions with neigh-
boring individuals in the network of contacts ¢(t), that is,

zi(t+ A) = By, w.p. Pyli,t, 1), if 25(t) = S, (2)

for ¢ € {1,2}. Here, the contagion probability for individual ¢ at time ¢ is defined
as

Py(iyt,r) =1 — (1 —rA)Te 0 (3)
where
To(i,t) == |{j € N : (i,7) € E(t) and x;(t) € {1, T,}}| (4)

is the number of neighbors of i at time ¢t who are infectious with strain ¢, and r €
[0,1] is an auxiliary parameter that re-scales the per-contact infection probability to
account for the possible presence of a level of immunity due to previous infections.
In (2), such a parameter is set to r = 1, since susceptible individuals have no
partial immunity. In plain words, equation (3) indicates that each neighbor of i
who is infected with strain ¢ has a probability A, of transmitting the disease to i,
independent of others.

Finally, transitions due to re-infection from the recovered states Rj, Rs, and R
to the exposed states Eq, Eo, El, and Eg follow a similar mechanism, with the
re-scaling factor r in equation (3) that takes value equal to the corresponding re-
infection probability. Specifically, we have

Ee,  w.p. Po(ist, pee), if 2i(t) = Ry,
l‘i(t + A) = Ey, w.p. Pg(i, t, p@)7 if xl(t) =Ry, (5)
Ey, w.p. Pg(i, t, pu)7 if :L‘l(t) =R,

Page 5 of 27
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for £,0 € {1,2}.

2.2 Network dynamics

To model the temporal evolution of the network of contacts G(t) = (N, E(t)), we
adopt a discrete-time ADN [38]. In this paradigm, each agent is associated with an
activity potential a;, which captures the individual’s social activity and tendency
to initiate interactions with others within a single time step. The activity potential
of individual i is a realization of a random variable from a distribution f(a;), where
the activities are bounded by the inverse of the time step (a; < A1) to ensure that
a; A~ is a probability.

At each time instant ¢, each individual ¢ € N activates w.p. equal to a;4, inde-
pendent of others. Each active individual will establish m undirected connections
with others, generating the edge set £(t). The overall network dynamics can be
organized into five main steps, which begin at ¢t = 1:

i) the edge set is initialized as the empty set £(t) = 0;

ii) each individual i € AN becomes active w.p. equal to a;A, independent of
others;

iii) each active individual ¢ € N selects m other individuals uniformly at random
among the other individuals and establishes an undirected link with each of
them, thereby forming the edge set;

iv) each individual ¢ € N updates its state x;(t) according to the transition
mechanisms described in Section 2.1 and illustrated in Fig. 1; and

v) the time step is updated to t + 1.

All the parameters of the model are summarized in Table 1.

2.3 Example

We illustrate our framework on a case study, with parameters inspired by COVID-
19, to illustrate the wide variety of behaviors that our model can capture and
reproduce. We consider a population of N = 10,000 individuals and a time step
equal to A = 0.5 day. Following [46, 63|, the per unit-time transition probability
from exposed to infectious and from infectious to recovered are set for both strains to

oy =0.5day ! and pup = 0.2 day~*

, respectively. To ease the graphical presentation,
we set the re-infection probabilities to p,; = 0.1, for all ¢,¢ € {1,2}, which is
equivalent to a 90% reduction of the probability to be infected due to natural
immunity. Regarding the network dynamics, the value of the activity potential of
each individual is drawn from a re-scaled power-law distribution f(a) =na~¥ with
exponent y = 2.1, a cut-off e = 1073, and re-scaling constant n = 10. The number
of connections per active individual is set to m = 20, based on literature [63, 64].
As the initial condition, we consider one individual infected for each strain.

Figure 2 illustrates the time evolution of the epidemic process for different values
of the remaining parameters. In Fig. 2(a), we vary A from 0 to 0.2 while we consider
the second strain to be two times more infectious than the first one, that is, Ay =
2)\1. Predictably, the second variant dominates the infection count. In fact, once the
epidemic threshold is trespassed, both strains yield an epidemic outbreak, but the
second variant consistently leads the infection count at much higher figures than
the first one.
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The second set of simulations illustrates the role of the re-infection probability
P22 on the time evolution of the infection profile. In particular, in Fig. 2(b), as
the re-infection probability increases, the epidemic dynamics of the second variant
exhibit a longer duration of the peak and a slower decay over time. Notably, for
values of pas > 0.5, the second strain tends to settle into an endemic regime that
does not extinguish within the time interval of observation.

In Fig. 2(c), we study how the interplay between the infection probabilities of the
two strains affects the epidemic outcome. Specifically, we vary A1 from 0 to 0.5, and
set Ag = 0.5 — A;. All re-infection probabilities are set to p,7 = 0.1. Predictably, the
results indicate that for Ay — Ay < 0 the second variant is prevalent, for Ay — Ao =0
the two variants are equivalent, and for Ay — Ay > 0 the first variant is, instead,
prevalent. We also identify a transition from a zero steady-state value to an endemic

state for each variant.

Finally, in Fig. 2(d), we investigate the role of cross-immunity. Specifically, we
vary the re-infection probability pi2 in [0, 1]. As expected, larger values of p1o (low
cross-immunity) lead to an increase in the number of infections from the second

variant.

3 Mean-field analysis
The example in Fig. 2 illustrates that our network epidemic model can exhibit three
different types of emergent behaviors, namely,
i) a non-epidemic regime, characterized by a quick convergence to a disease-free
state, in which the infections monotonically decrease over time;

ii) an epidemic regime, in which the number of infections grow initially, but, after

reaching a peak, they vanish, eventually reaching a disease-free state; and

iii) an endemic regime, where the disease persists over time and a disease-free

state is never reached.

Here, we perform a theoretical analysis of the model to elucidate how model pa-
rameters determine the emerging behavior of the stochastic network system. Specif-
ically, we derive two thresholds for the per-contact infection probability that char-
acterize transition from the non-epidemic regime to the epidemic one, and from
the epidemic regime to the endemic one, termed epidemic threshold and endemic

threshold, respectively.
Following current practice in the study of ADNs [38-46], we use a mean-field

approach to approximate the time evolution of the total number of exposed and
infected individuals using a set of nonlinear ordinary differential equations, in the
limit N — oo [48]. In particular, we introduce the functions Ip(7), E¢(7), Re(7), as
the continuous-time limit of the total number of individuals who are in the infected,
exposed, and removed states of strain ¢ € {1,2}, when A — 0 (for clarity, we use
7 for the continuous time-variable). Likewise, we use S(7) and R(7) to denote the

total number of individuals in the susceptible and removed state, respectively.

Through a series of manipulations, detailed in Appendix A, we can establish that

the dynamics of I;(7), E¢(7) are governed by
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dly(7)
dr

dEz(T)
dr

= —pelo(T) + 00 Ey(T), (6a)

m/\g

N
+ mT)\Z [Q}g(T)Ig(T) + S(T)Q%Z (T)}
mpeeAe
N
mpeeAe
N

= —oEy(7) + [Q5(r)Le(t) + S(r)Q, ()]

[Qk, () Le(7) + Re(7),(7)]

[k, (NI(7) + Re(1) 0% (7)] (6b)

for £ € {1,2}. Here, the function of time QZ(7) represents the d-th order auxiliary
variable that captures the dth moment of the activity of the individuals in the
susceptible health state, up to the normalization constant N,

Qd(r):= Z al, (7a)

1€EN:z; (T)=S

Z al, (7b)

€Nz (T)=1,
Q% (1) := Z a?, (7c)
iEN!Zi(T):Tg

Q%(r) := Z al. (7d)

€Nz (T)=R

)
~=
—~
3
~
I

The first and second summands on the right-hand side of equation (6a) denote the
rate at which individuals leave and enter the infected state, respectively. Similarly,
the first term on the right-hand side of equation (6b) identifies the rate at which
individuals transition out from the exposed state to the infectious state. The second
and third terms, instead, indicate the rate of transitions of susceptible individuals
to the exposed state, after an interaction with individuals in I, and Tg, respectively.
The last two terms capture re-infections of individuals who have already recovered
from the same strain, after an interaction with individuals infected with that strain
or the other strain, respectively.

Analogously, the dynamics of the total number of individuals in the re-infected
state I;(7) and re-exposed state Ey(7) are governed by

) — Tu(r) + oein(r), (80)
d]ffT(T) — —ouEy(r) + %W [k, (T)1(7) + Re(7)2}, (7)]
MO ol (1)To(r) + Rilr)Q, (7)]
+ mp]ff“ QL (r)Ie(7) + R(1)Q, (7)]
- mp]ff“ [QR(M)L(7) + RDQL (7)] (8b)

Page 8 of 27
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The summands on the right-hand side of equation (8a) represent individuals that
leave and enter the re-infected state. The first term on the right-hand side of equa-
tion (8b) denotes the rate of individuals who leave the exposed state and become
(re-)infected. The second and third terms denote the rate of individuals who have
already recovered from strain ¢, and become exposed to strain ¢ after an interac-
tion with individuals in I, and Tg, respectively. The fourth and fifth terms capture
the rate at which individuals who have already recovered from both variants and
become again exposed after an interaction with individuals in I, and Tg, respectively.

Finally, the dynamics of the first-order auxiliary variable are

dQl (7
d’;( ) =~y (1) + 0eQp, (1), (9a)
dOL (1)
é‘; =~ (1) + 0 (1), (9b)
B o, )+ "2 [020)70) + 24012, (1)
+ [0 L(1) + b ()9, (1)
+ P (02 (1(1) + O, ()2} (1)
+ TN (08 ()T (1) + O, (02 (). (%)
dQ}Z (1)

B 1 mPgAL [ o2 1 1
T —O’eQEZ (T) + N {QRZ(T)IE(T) + QR[(T)QIE (T)

& T 08 () (r) + 2, ()2 ()]

mpeeAe
QRN L) + Q) 2, ()]

+ P (03 (r)Ty(r) + Oh(r), (7). &)

The dynamics of the auxiliary variables depend recursively on high-order auxiliary

variables making the derivation of global results cumbersome. However, a local
stability analysis can be conducted to shed light on the three different regimes,
namely, non-epidemic, epidemic, and endemic, as articulated in what follows.

3.1 Epidemic threshold

We start by analyzing the parameter conditions under which the non-epidemic be-
havior is observed. To this aim, we study the stability of the disease-free equilibrium
of the stochastic network system in which all individuals are susceptible, that is,
S = N and all other variables are zero. The results of our analysis are summarized

in the following claim.

Theorem 1 [In the limit of large-scale networks N — oo, the non-epidemic be-

havior occurs when

A 1
l<

e m ((a) + <a2>) (10)

)
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for both £ € {1,2}, where

(a) := /000 af(a)da, (11a)
(a®) := /000 a’f(a)da, (11b)

are the first- and second-order moments of the probability density function of the

activity potentials.

Proof By linearizing equations (6), (9a), and (9¢) around the disease-free equilib-

rium S = N, we obtain

d[g(T)

gy = Hede() +oeB(T), (12a)
AT — —um(r) + me [fa) () + 24, ()], (12b)
% = — Sy, (7) + 00, (7), (12¢)
% = —0eQ, (1) + mAg [(a®)1o(7) + (@), (7)] | (12d)

for £ = {1,2}.

The stability of the disease free-equilibrium is fully determined by the stability of
the origin of equation set (12) [65], which is deteremined by the Jacobian

I o1 0 0 0 0 0 0 ]
mAi{a) —o1  mA 0 0 0 0 0
0 0  —wm o 0 0 0 0
mAi(a®) 0  ma)A\y —o1 0 0 0 0 (13)
0 0 0 0 — o o2 0 0 |’
0 0 0 0 mAa(a) —o2 mAs 0
0 0 0 0 0 0 — M2 g9
0 0 0 0 ml(a®) 0 mla)hy —oo

This 8 x 8 matrix has a block-diagonal structure, so that its eight eigenvalues can
be obtained by computing the eigenvalues of each of the 4 x 4 diagonal blocks.
Moreover, the structure of each block allows for an explicit computation of its four
eigenvalues. In fact, the four eigenvalues of each blockA‘i_’m’ , as the solution of the

following equation:
2
[(1e + M) (o0 = A)]™ + aemAe(a)(ue + M) (o — AY) = mPo7 A (a®) = 0. (14)

The solution of such an equation can be computed in closed-form, as

+ 0 1
Mg = 2 L e 002+ doama (o) = Vi), (15)

Page 10 of 27
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with £ = {1,2}. An epidemic outbreak does not occur if all the eigenvalues have
negative real part, yielding the following condition:

A 1
=< : (16)
te ({0 + /a%)

for both ¢ € {1,2}, which completes the proof. O

Such a condition corresponds to the well-known threshold of SIS, SIR, and SEIR
models with a single variant [38,46,66]. Thus, the stability of the disease-free equi-
librium in the presence of two strains is governed by the strain ¢ with higher ratio
e/ 1, that is, the strain which, on average, is able to infect more individuals dur-
ing the entire transmissibility period. In fact, each infection occurs with per-contact
transmission probability equal to Ay, and the average duration of the transmissibil-
ity period is equal to 1/p,. This observation is in agreement with prior research on
deterministic compartmental models [9].

3.2 Endemic threshold

The simulations in Fig. 2 suggest that some combinations of parameters yield
regimes where the infection dynamics does not spontaneously extinguish. These
regimes, called endemic, are of particular interest for the epidemiological commu-
nity, as they underline scenarios where the population is required to “live with the
virus [67].” Here, we determine a threshold, labeled as endemic, for the occurrence
of this phenomenon.

Theorem 2 In the limit of large-scale networks N — oo, the endemic regime

occurs if and only if

oo
He mpe <<a> + (a2>)

; (17)

for at least one £ € {1,2}, where (a) and (a®) are defined in equation (11).

Proof The determination of the endemic threshold is equivalent to isolating the
conditions under which the dynamics does not converge to a disease-free state. To
this aim, we study the stability of the equilibrium R = N for the stochastic network
system. By linearizing equation set (6), along with equations (9b) and (9d) about
R = N, we obtain

dfdziq(j') = —pelo(7) + o0 Ee(7), (18a)
db;fT(T) =~ Be(r) + mpeede [(@)To(7) + 94 (7)] (18b)
dQk (1)

é[T = _WQ}[ (1) + O'gﬂlge (1), (18¢)
dQL (1)
—L = 0, () + mprede [ (@) () + (@2 ()] - (184)
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Following a procedure similar to the one used in the proof of Theorem 1, we evaluate
the Jacobian of the system of equations at R = N, and we establish conditions for
which one of the eigenvalues has a positive real part so that the equilibrium is
unstable. Hence, we establish that

A 1
= : (19)
He " mpy ((a) +v/(a?))

for at least one ¢ € {1,2}, which yields the claim. O

Remark 1 Both of the proofs in Theorems 1 and 2 rely on the block-diagonal
structure of a Jacobian matriz, which begets two decoupled four-dimensional eigen-
value problems. Should one consider a multi-strain model (see, [9, 34]), with more
than two strains, results would be equivalent.

We assess the validity of the epidemic thresholds in Theorems 1 and 2 through a
series of simulations, in which we seek to map the parameter space into alternative
behaviors of the stochastic network system. In particular, we create two-dimensional
diagrams varying Ay = Ay = Ag and p11 = pa2 = ps on the intervals [0,0.5] and
[0, 1], respectively. All other simulation parameters are the same as in the example
in Section 2.3. For each parameter combination, a total of 100 simulations were per-
formed, each of 3,600 time steps (see Appendix B for more details on the numerical
simulations). Results are shown in Fig. 3(a) where the the blue region indicates the
non-epidemic regime where the disease monotonically vanishes in time, the yellow
region identifies the epidemic regime in which an outbreak occurs but it is eventu-
ally eradicated, and the red region marks the endemic regime where the disease will
persist over time. Each point is indicative of the average behavior observed over the
100 simulations.

Theoretical predictions of the epidemic thresholds are shown by the dashed white
curves. The epidemic threshold (10) from Theorem 1 is depicted by the vertical
white line while the endemic threshold (17) from Theorem 2 is depicted by the
white curve. Our results follow the intuition that highly infectious strains might
enter the endemic region more easily, as they requires lower values of the re-infection
parameter pg for crossing the threshold.

Our theoretical claims from Theorems 1 and 2 clarify whether the stochastic net-
work system will alternatively exhibit a quick eradication of the disease, an epidemic
outbreak, or an endemic state. However, they do not allow for disentangling the in-
fection count of each single strain. In particular, the two interacting strains can
exhibit nontrivial behaviors, in which one of is dominant or in both strains coexist
— two cases that are indistinguishable from our theoretical predictions. The anal-
ysis of these complex behaviors is nontrivial, and it is still an open problem, even
for models much simpler than ours [33-35,68]. Here, we use numerical simulations
to shed light on the matter.

Through our simulations, we span different infection and re-infection parameter
values: A1 and p1; are varied in the intervals [0,0.5] and [0, 1], respectively, while the
parameters of the second strain are determined as Ay = 0.5— X1 and pa2 = 1—p11. In
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all the simulations, ;3 = p2 = 0.2. Note that, under these assumptions, Theorem 1
guarantees that the non-epidemic regime cannot occur, that is, at least one of the
strains becomes epidemic (or endemic). To illustrate our findings, we color-code the
behavior of the stochastic network system in a two-dimensional map, varying the
infection parameters \; — Ao and re-infection parameters pss — p11 in the interval
[—0.5,0.5] and [—1, 1], respectively, as shown in Fig. 3(b). For each combination, we
perform 100 simulations over 3,600 time steps (see Appendix B for more details on
the numerical simulations).

Our numerical results highlight the non-trivial interplay of model parameters,
which shape complex behaviors associated with seven different regions in Fig. 3(b).
Specifically, in Region I, strain 1 remains non-epidemic, while strain 2 yields an
epidemic outbreak. In Region II, strain 1 remains non-epidemic, while strain 2
becomes endemic. Regions III and IV are characterized by a behavior symmetric
to regions I and II, respectively, where strain 2 remains non-epidemic and strain 1
becomes epidemic and endemic. In Region V, strain 1 exhibits an epidemic behavior,
while strain 2 exhibits an endemic state, whereas the opposite occurs in Region VI.
Finally, in Region VII, both strains exhibit an endemic state. Notably, regions I
and III form the overall epidemic regime of the system, whereas the other regions
pertain to the overall endemic regime. We should comment that two further regions
may be possible, for other sets of parameters: a region in which the strains are
non-epidemic, and a region in which both strains are epidemic — both regions are
visible in Fig. 2(a).

4 Intermittent stay-at-home containment strategy

Our modeling framework can be used to inform containment policies. Here, we
demonstrate its practical value by informing the implementation of an intermittent
stay-at-home strategy as a viable solution to mitigate the epidemic spread, while
limiting the social and economic impact for the population. In particular, we analyze
the effect of a stay-at-home containment strategy that involves randomly selected
portions of the population to be home-isolated for limited time periods. We assume
that home-isolated individuals are healthy during the isolation time and that they
will remain healthy throughout the isolation period. Hence, in our simulations, we
assign the “removed” state to these individuals, who temporarily do not contribute
to the epidemic dynamics. More formally, we will randomly select a fraction p € [0, 1]
of the population to be home-isolated for a period of D consecutive time steps and
we repeat this process every T' > D time steps.

Note that the total number of individuals who take part into the network dynamics

are N (t), a number that changes in time according to a periodic switching law given

N@){(lmN,kT§t<kT+D, 0)

N, KT+ D<t<(k+1T,

for k ={0,1,...}.
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By duplicating the mean-field analysis for this case, for each strain ¢ € {1,2}, we
obtain a periodic, switched linear system of four coupled equations,

d[g(’]’)

g = Hede(r) +oeEy(r), (21a)
BLT) — gy () + ) [(a) () + 24, ()] (210)
% = — S, (1) + 00, (1) , (21c)

GO _ 5,08, (1) + () [@)10(0) + (@02, (7)] (1)

where wy(7) is a square wave,
mi(1 —p), kTA <7 <kTA+ DA,
we(T) = (22)
mMg, ETA+ DA <7< (k+1)TA,

for k={1,...}.

To study the stability of the periodic, switched linear system (21), we use Floquet
theory [65]. The transition matrix ®(7,7’) of any periodic linear system can be
decomposed into

®(7,7') = P(1)exp (M(1 — 7)) P~(7), (23)

where exp(-) is the matrix exponential. The matrix function P(7) is TA-periodic,
continuously differentiable, and invertible for all 7, while M is a constant, possibly
complex matrix that can be calculated from the monodromy matrix ®(TA,0), as
follows

M= ﬁlog(@(TA,O)) , (24)
with log(-) being the matrix logarithm.

The Floquet decomposition can be used to transform the four-dimensional peri-
odic system (22) into a time-invariant system, whose stability is dictated by the
four eigenvalues of matrix M. For a switched system, the monodromy matrix takes
the simple form of the product of matrix exponentials,

®(TA,0) :=exp ((1 = 6)TA Jo) exp(6TA Jp) , (25)

where § = D/T is the duty cycle and

e o¢ 0 0
g, = (1 —p)mAeay —0¢ (1 —p)m 0 . (26)
0 0 —He oy

(1 —p)ymAe(a®) 0 (1 —p)mAla) —oy

To investigate when an epidemic outbreaks occur for the switched, stochastic net-
work systems, we examine the eigenvalues of M. By monitoring when the real part

Page 14 of 27
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of at least one of these eigenvalues become positive, we pinpoint at the epidemic
threshold. The same analysis can be performed around the equilibrium in which all
the in individuals are in the R state to identify the endemic threshold, following the
same steps as in Section 3.

The effect of the proposed intermittent stay-at-home containment strategy is il-
lustrated in Fig. 4, through numerical simulations employing the same parameters
as in the example in Section 2.3. We perform 100 simulations for each parameter
combination, each of 1,000 time steps (see Appendix B for more details on the
numerical simulations). We vary the fraction of individuals to be removed in the
network p, and set the period to be one week (TA = 7), while the stay-at-home
number of days is set to 5 days (DA = 5).

The dashed white curves represent the stability thresholds computed from the
eigenvalues of M for both the epidemic and the endemic regimes. As the fraction of
controlled nodes p increases, the region of stability of the disease-free equilibrium
widens, while the one corresponding to the endemic regime shrinks. This can be
observed by comparing the dashed white curves with the dashed red ones, which
represent the stability thresholds in the absence of any containment strategy. In
agreement with one’s intuition, both the peak count of infections and its steady-state
value decrease for larger p. In fact, in the worst case scenario with A\; = Ao = 0.5
and p11 = p2 = 1, both values are reduced from more than 1,500 cases per 10,000
inhabitants, to less than 1,000 as p goes from 30% to 60%. To summarize, our results
indicate that the presence of an intermittent stay-at-home containment strategy has
a beneficial effect on the epidemic spreading. Not only can this strategy be used to
mitigate new strains that might be more infectious than existing ones, but can it
also be used to replace strict lock-down measures with long isolation periods.

5 Conclusions

We developed and analyzed a two-strain virus model using the ADN paradigm.
Building on the state-of-the art models, we put forward a SEIR-based progression
model that accounts for re-infections with the same strain or a different strain —
scenarios that are presently unfolding during the COVID-19 pandemic as immunity
is waning and new variants are emerging. The resulting model reveals rich dynam-
ics through the stochastic network system that can experience different phenotypes,
ranging from a disease-free equilibrium to epidemic outbreaks and endemic regimes
in which the disease persists over time, through one of both its strains. Alongside
computational insight, we establish closed-form expressions for the epidemic and
endemic thresholds through a mean-field approach, which is valid in the thermody-
namic limit of large networks. Predictably, the epidemic threshold is the same as the
one corresponding to a classical SIS model over an ADN, with the most infectious
single strain. In agreement with one’s intuition, the endemic threshold is inversely
proportional to the strain-specific re-infection parameter.

We demonstrated the potential of the approach in the development of a stay-
at-home containment strategy to mitigate the effects of the spread. Contrary to
harsh lockdown measures that we have seen during the COVID-19 pandemic, this
approach only requires that a small fraction of the population (selected uniformly
at random) isolates for a period of time. After the isolation ends, individuals can
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return to normal activities and others will isolate in their place. We leverage Floquet
theory to obtain the epidemic thresholds of such an intermittent strategy. We found
that the region in the parameter space of the disease-free equilibrium grows with
the fraction of individuals selected for isolation, thereby reducing the epidemic and
endemic regions; a two-fold increase in the fraction of home-isolated inhabitants
causes an equivalent drop in both the peak count of infections and its steady-state
value.

Our proposed approach is not free of limitations and raises important questions
to be addressed in future endeavors. First and foremost, the activity potential is
assumed to be time-invariant, which may not fully capture the complexity of human
behavior; for example, recent work from our group has demonstrated an extension
of the ADN paradigm to account for memory effects through Hawkes’ processes [69]
and for the inclusion of human behavior [70,71]. Second, all individuals might not
uniformly establish connections with others, rather, their interactions may be based
on nodes’ properties [72], strong ties and dyadic relations [73,74], or higher-order
relations [75]. Third, our containment strategy is open-loop, so it does not con-
sider any feedback that could potentially enhance its mitigation, by anticipating
outbreaks as reported in compartmental models [56]. Although there are several
directions to be further explored, our results offer important insights into the dy-
namics and control of disease spreading processes with multiple strains over ADNs,
an area which, to be best of our knowledge, was understudied till now.

Appendix A: Mean-field dynamics

Mean-field theory [48] can be adapted to study the dynamics of the stochastic
network system (1)-(5). Consistent with Fig. 2, we utilize italic letters to quantify
the number of individuals in each state of the progression model in Fig. 1. In
particular we define S(¢) and R(t) as the number of agents in the susceptible and
recovered states a time ¢, respectively. Variables Ej(t) and Es(t) and R;(t) and
Ry (t) count the number of exposed and recovered individuals from strain 1 and 2,
respectively. Similarly, variables Ey(t), Ea(t), I1(t), and Iy(t) count the agents in
re-infected states, while R(¢) is the total number of removed agents. Note that the
total number of individuals N satisfies N = S(¢) + E1(¢) + Eao(t) + I (t) + Ia(t) +
Ri(t) 4+ Ra(t) + Ex(t) + Ea(t) + I'(t) + Ix(t) + R().

Following [38], we consider a generic activity level a and we denote with a super-
script a the number of individuals with activity level a in each state. For instance,
S%(t) is the number of susceptible individual with activity a at time ¢. All the vari-
ables of the stochastic network system can be rewritten in a form analogous to the
following one for the susceptible state and the related auxiliary variable:

S(t) = / S'(t)da, QL) = / a5 (t)da, (27)

where, here and in what follows, integrals are all defined from 0 to co. Furthermore,
for individual i with activity level a, we have that the expected value of (4) reads

el56.0) = o | GO LT Oy / OO LT W) 0 gy
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Within the mean-field approach, we substitute P (i,¢,7) from (3) with its expected
value, which is approximated by using (28), thereby obtaining

/ ~ ! !’ - !
Am (af g O+ ®) o ¢ oA 0T “)’da’>
) - (29)

E[Py(i,t,r)] ~ 1 — (1 — A\

Such an expression is further simplified by considering a first-order McLaurin ex-

pansion in A, which yields

Py(i,t,r) = rAcAm <a/(Ig/(t)*Ell(t))daw/“/(Igl(tﬂﬁl(t))da') - (30)

N N

Within a mean-field approach, for an infinitely large network N — oo, we can
establish that the number of individuals exposed to strain ¢ € {1,2} and belonging
to the activity level a at a time t + A is approximated for small A by its expected
value. From the dynamics described in the main article and recalling the progression
illustrated in Fig. 1, we conclude that the change in the average number of exposed
individuals to strain £ € {1, 2} belonging to the activity level a from time ¢ to t + A
is equal to the number of individuals who transition to E;, from S and I; minus the

number who transition from E, to I,. Hence, we approximate Ef (¢t + A) as follows:

Ef(t+A) = Ej(t) — Ef (t)P[zi(t + A) = L[ zi(t + A) = By, a; = a
+ SE(OP[zi(t + A) = E¢|zi(t + A) =S, a; = a
+ R?(t)]?[l‘z(t + A) = Eg | JCi(t + A) = Rg, a; = a} (31)

At this stage, from (1), we derive
Plzi(t+A) =1¢|z;(t + A) = Eg,a; = a] = 00/, (32)
while from (2), and using the approximation in (30) with » = 1, we obtain

Pla;(t+A) =E; |2;(t + A) = S,a; = a] ~

~amy ( IeN(t)da'> A+ amhy ( h}é”da’) A

+mAy (/ Wda’) A+ mM (/ Wda') A (33)

Similar, from (5) and using the approximation in (30) with r = pg, we establish

P[xi(t + A) =Eyp|z;(t+ A) =Ry, a; = a] ~
t)

W ., I,
N da)A-i—pggam)\g( N da | A

/Ia’ /'fa’
+ pumAe < / ‘Ljv(t)da’> A+ prm ( / “5\[(”(1@) A (34)

R Por@ MmN (
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Finally, by replacing (32)—(34) into (31), we obtain the following approximation:

+ S%t)amAe ( )
4570 W( @I 0 >A
+ R{ () pee amy ( ) A

a T
+ R{ (t) pee mAe ( ‘

Ep(t+ A) = Ef(t) — o Ef (H) A

A

+ S%t)amAe ( )
+ S(t) mA ( /If >
d

+ Ry (t )Petzam)\e<

/Ia
A (35)

A

) A
+ Ry () pee mAe ( >
The first summand on right-hand side of equation (35) corresponds to the number
of individuals who are in the exposed state at time ¢. The second summand is the
average number of individuals who transition from the exposed state to the infec-
tious state. The third and fourth summmands correspond to the average number
of individuals who transition from the susceptible state to the exposed one. Specif-
ically, the third summand accounts for susceptible individuals with activity a who
activate and interact with infectious individuals through the network of contacts
G(t) = (W,E(t)); the fourth summand accounts instead for infected individuals
who activate and interact with susceptible individuals with activity a. The fifth
and sixth summands correspond to re-infection cases corresponding to the active
and passive cases that transition in from the recovered state R{(t). Similarly, the
last four summands correspond to incoming transitions due to interactions with re-
infected individuals I¢(t). In addition, using equation (1), the number of infected

individuals with strain ¢ and activity a at a time ¢t + A is approximated by
I3(t+ A) R I () + 0o B (DA — peIE (DA (36)

Similar to equation (35), we approximate the number of re-exposed individuals at

time t + A for small A with its expected value, computed following the same steps
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n (31)—(34), obtaining

Ef(t+ A) = E{(t) — o0 Bf(H)A

4 REO) ampuh ( ) A
+ R (t) mpgghe ( ) A
+ ROt mwm< >A
+ R(t) mpee e ( ) A
+ Ry (t) ampgghe ( ) A
+%wmmM<a” )A
+ R*(t) ampeg e ( ) A
+ R(t) mpeee (/ aljv()da> A (37)

In addition, similar to (36), we approximate the number of re-infected individuals
as

Tt + DAY= IE(t) + 0e BE()A — peIg (H)A. (38)

Taking the limit A — 0, equations (35)—(38) yield a set of ordinary differential
equations for E¢(7), I¢(1), E¢(t), and I¢(7). For instance, from equation (36), by
collecting all the terms in A on the right-hand-side, dividing by A, and taking the

limit, we find

dry(7)
dr

= oo B (1) = e (7). (39)

A similar computation can be carried our for the other variables. Integrating across
all the activity classes through (27) yields system of equations (6) and (8). To obtain
the dynamics of the auxiliary variables, we multiply both sides of equations (35)—
(38) by a, integrate across activity classes using (27), and take the limit A — 0,
which yield (9).

Appendix B: Numerical simulations

To create the two-dimensional diagrams in Fig. 3, we divided the parameter space
of ps € [0,1] and As € [0,0.5] (or p11 € [0,1] and A € [0,0.5]) in a 400 x 400 grid.
For each parameter combination in the grid, we ran 100 independent simulations of
the stochastic network system with one infected node per strain. The time window
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of each simulation was between 0 and 1,800 days with a time step of A = 0.5day
(3,600 time steps). In all the simulations, we set o, = 0.5day " and p, = 2day ™ *.
To classify the behavior of each strain into the three possible regimes (non-epidemic,
epidemic, and endemic), we follow the steps below.

e First, we average the solution across all trials.

e Second, we compute the peak and steady-state values of the number of infected
with the strain. The steady-state is obtained as the time average of the last
50 time steps.

e Third, we classify the behavior of each strain as i) non-epidemic, if the peak
of the infection count is equal to one and the steady-state is below a tolerance
¢ (that is, the infection count monotonically decays); ii) epidemic, if the peak
is above one and the steady-state below € (that is, the infection count has a
peak before decaying toward the disease-free equilibrium); and iii) endemic if
the peak is above one and the steady-state above €. We heuristically selected
€ = 0.1 to be the steady-state tolerance.

To create the diagrams in Fig. 4, we utilized a coarser grid of 100 x 100 and 500
days (1,000 time steps). For each parameter combination in the grid, we ran 100
independent simulations of the stochastic network system with one infected node
per strain. The diagrams report the peak count of infections and its steady-state
value, considering both variants, averaged over the 100 independent simulations.
The steady-state is obtained as the time average of the last 50 time steps.
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Figure 1 Progression of a virus spread with two strains. The diagram describes the transitions
that each individual undergoes between states. All parameters are constant and represent
transition probabilities.
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Figure 2 lllustrative example of the time evolution of the epidemic spreading process. Evolution of
the epidemic in terms of the total infection counts for strain 1 (I1(t) + I1(¢)) and 2

(I2(t) + I2(t)), averaged over 1,000 independent Monte Carlo simulations for (a) different values
of A1 with A2 = 21 being twice infectious than the first variant. Here A1 is varied from 0 to 0.2,
thus representing cases where both variants are in the non-epidemic regime and transition to an
epidemics as A1 increases. (b) Re-infection parameter of the second variant p22 with p21 = pa2
and A\ = A2 = 0.2. (c) A1 varies between 0 and 0.5, while Ay = 0.5 — A1 (d) Number of
re-infected individuals varying the cross-strain re-infection probability p12 with A1 = Ao = 0.2.
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Figure 3 Two-dimensional diagram illustrating different types of behaviors of the stochastic
network systems. In (a), the two strains have equal infection and re-infection parameters. We vary
the infection parameters A\; = Ay = A on the interval [0, 0.5], while the re-infection parameters
P11 = p22 = ps are also varied on the interval [0, 1]. The blue region represents the non-epidemic
regime, the orange the epidemic regime, and the red the endemic regime. Dashed lines indicate
theoretical predictions. In (b), we vary the infection and re-infection parameter values. Specifically,
A1 and p11 are varied on the interval [0,0.5] and [0, 1], respectively, while we set Ao = 0.5 — A1
and p22 = 1 — p11. Seven regions are highlighted, depending on the behavior of the two strains. In
Region |, strain 1 is non-epidemic and strain 2 is epidemic; in Region Il, strain 1 is non-epidemic
and strain 2 is endemic; In Region Ill, strain 2 is non-epidemic and strain 1 is epidemic; In Region
IV, strain 2 is non-epidemic and strain 1 is endemic; in Region V, strain 1 is epidemic and strain 2
is endemic; in Region VI, strain 2 is epidemic and strain 1 is endemic; in Region VII, both strains
are endemic.
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Figure 4 Two-dimensional diagrams illustrating the outcome of the intermittent stay-at-home
containment strategy for three different values of the fraction of population: (a,b) p = 60%, (c,d)
p = 50%, and (e,f) p = 30%. For each case, we report the peak count of infections (a,c,e) and
the steady-state value (b,d,f), as determined from averaging the last 50 time steps. The
white-dashed lines represent the stability thresholds computed from Floquet theory and the red
dashed lines are stability threshold for p = 0% (absence of the containment strategy,
corresponding to Theorems 1 and 2).
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Tables

Table 1 Notation used in the paper.

Notation

Meaning

n
N={1,...,n}
t

A
G(t)
E(t)

z;(t)

number of individuals

population set

discrete time variable

time step

time varying graph denoting the network of contacts

node set (interaction links) at time ¢

state of individual 7 at time ¢

discrete set of health states

susceptible to both strains

exposed to strain 1

exposed to strain 2

infectious with strain 1

infectious with strain 2

recovered from strain 1

recovered from strain 2

exposed to strain 1 after being recovered from an infection
exposed to strain 2 after being recovered from an infection
infectious with strain 1 after being recovered from an infection
infectious with strain 2 after being recovered from an infection
recovered from both strains

index to denote a particular strain

per-contact infection rate of strain ¢

latency to become infectious of strain £

recovery rate for strain ¢

strain-specific re-infection probability for strain ¢
cross-strain re-infection probability for strain ¢

average number of contacts per individual

activity potential of individual ¢

probability distribution of the activity potentials

first order moment of the probability density function f(-)
second order moment of the probability density function f(-)
time period of the control strategy

duration of the home-isolation period

fractions of home-isolated individuals in the control strategy
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