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REPRESENTATION STABILITY FOR PURE BRAID GROUP
MILNOR FIBERS

JEREMY MILLER AND PHILIP TOSTESON

ABSTRACT. We prove a representation stability result for the Milnor fiber as-
sociated to the pure braid group. Our result connects previous work of Set-
tepanella to representation stability in the sense of Church—Ellenberg—Farb,
answering a question of Denham.
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1. INTRODUCTION

Let Conf,,(C) denote the configuration space of n points in the complex plane.
This configuration space is a hyperplane complement and we will study the homol-
ogy of the associated Milnor fiber

Fo=14(z1,...,20) | [[(xi —2;) =1} € Cont,(C).
i<j
The Milnor fiber F,, admits two natural group actions: the alternating group A,
acts by permuting the coordinates, and the (g)th roots of unity act by multiplying
the coordinates. In fact, we can extend these actions to the action of a single group

S, :={(0,d) €S xZ |dodd < sgno=—1}, n>2.
The element (o, d) acts by

(151, C) xn) — (Cg(nfl) xa(l)a ey g,(nfl) xa(n))v

where (), := exp(%) is the distinguished primitive kth root of unity.

In [Set04] Theorem 1.1], Settepanella showed that, for n > 3i — 2, the action by
roots of unity on H;(F,,Q) is trivial. This result prompted Graham Denham to

Received by the editors September 20, 2019, and, in revised form, March 28, 2021, and April
26, 2021.

2020 Mathematics Subject Classification. Primary 20J06, 55R80, 20F36.

Jeremy Miller was supported in part by NSF grant DMS-1709726. Philip Tosteson was sup-
ported in part by NSF grant DMS-1903040.

(©2021 American Mathematical Society
8177

Licensed to Univ of Chicago. Prepared on Thu May 18 16:14:49 EDT 2023 for download from |IP 205.208.116.24.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use


https://www.ams.org/tran/
https://www.ams.org/tran/
https://doi.org/10.1090/tran/8466

8178 JEREMY MILLER AND PHILIP TOSTESON

ask whether the homology of the Milnor fiber exhibits any form of representation
stability [Denl8, Problem 10]. In this paper, we establish a representation stability
result for the homology of F;, which incorporates the action of S,.

To state this theorem, we use a category FI which is built out of quotients of §n
in the same way as the category FI, of finite sets and injections, is built from S,,.
We define an action of FI on H.(F,,Z), and prove a finite generation result.

Theorem A. For alli, the sequence { H;(F,,7)}, is a finitely generated FI-module.

See Definition 2.2] for a definition of finite generation and see Theorem [B.15] for
a version of Theorem [A] with explicit stability bounds.

This theorem has several consequences. We show that if M,, is a finitely gener-
ated ﬁ-module, then for n sufficiently large, the subgroup Z C gn acts trivially and
hence M,, agrees with a finitely generated FI-module in a stable range. In this way,
Theorem [A]incorporates features of both the phenomenon Settepanella established
and representation stability for symmetric group representations.

Theorem B. For all n > 5+ 11i + 3i2, the roots of unity Fm) act trivially on
2
H;(F,,Z). In this range, H;(F,,Z) agrees with a finitely generated FI-module.

In particular, the rational S,, representations H;(F,,, Q) exhibit representation
stability in the sense of Church-Farb [CE13| Definition 1.1] (see Church-Ellenberg—
Farb [CEF15, Theorem 1.13]). In [Set04, Theorem 1.2], Settepanella computed the
groups H;(F,,Q) in a stable range. Using our results, we are able to extend this
to an integral calculation.

Theorem C. Forn > 5+ 11i + 32, there is an S, -equivariant injection:
H;(F,,Z) — H;(Conf,(C)/C*,Z).

The cokernel agrees with a finitely generated FI-module consisting of torsion abelian
groups.

In particular, the group H;(F,,Z) is noncanonically isomorphic to
H;(Conf, (C)/C*,Z) in a stable range. The homology of Conf, (C)/C* is canoni-
cally isomorphic to the homology of the moduli space of genus 0 curves with n 4 1
marked points, My ny1. The S;, representation Hi(MO,nH) has been calculated by
Getzler [Get95, Theorem 5.7]. In §5 we give a self-contained description of the
homology.

Our method of proof of Theorem [A] involves considering highly connected semi-
simplicial sets with actions of the groups gn and 71 (F,). This is an adaptation of
Quillen’s approach to proving homological stability. The proof is in the spirit of
Putman [Putlb] and largely fits into the axiomatic framework of Patzt [Pat19)].

Similar theorems are likely true for the Milnor fibers associated to the type B
and type D braid groups. Additionally, we expect that the techniques of this paper
apply to prove representation stability for homology of the subgroup of surface braid
groups with total winding number zero. We will not consider these generalizations
here.

1.1. Description of Stabilization Maps. The category FI does not act naturally
on the Milnor fiber Fj,; we only construct an action of FI up to homotopy. Our
situation is analogous to the action of FI on H,(Conf,,(C)) by adding points, where
FT only acts on Conf,(C) up to homotopy. For this FI action, a representative of
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the standard injection [n] < [n + 1] is given by a map Conf,,(C) — Conf,;1(C)
that adds an n 4 1st point to the right of the first n points.

Our stabilization map F,, — F,41 is induced by the map Conf,, (C) — Conf,41(C)
in the following sense. The Milnor fiber F,, is a K(m,1), and we have m(F,) C
71(Conf,, (C)). The FI stabilization map Conf,,(C) — Conf,1(C) takes m(F,) —
7m1(Fry1), and we define the action of FI so that €] €Sni1/Sn = Fl(n,n+ 1) acts
on 7 by this inclusion. This suffices to determine the action e : F,, — F,,41 up to
homotopy.

We have two other, more geometric, descriptions of this stabilization map. To
describe the first, we replace the Milnor fiber F;, by the covering space of Conf,,(C)
associated to the inclusion of fundamental groups w1 (F,) < m1(Conf,(C)), F;.
This space can be described as

F! =< (z;)" € Conf,C,z € C | H(xl —xzj) =exp(z) ¢,
i<j
since taking log shows that this is a cover and there is a deformation retraction
of the map F/ — Conf,C to F, — Conf,C, given by taking z — Az and z; —
ziexp(A/(3)) for A € [0,1]. There is a unique lift of any choice of stabilization
map Conf,(C) — Conf,,1(C) to a map of covers F;, — F) ;. On homology, this
induces the action of [e] € ﬁ(n, n+1).

Second, Gadish has described a stabilization map on the Milnor fiber F,, itself,
which induces the action of [¢] € FI(n,n + 1) on homology. Gadish’s observation
is that given a configuration (z;)j_; such that [[,.; ;. (z; —2;) =1, if we add a
point x,+1 € R C C such that x,1 is > 0, then the complex number

n

a= JI (@—=2)=]]@n—2)

1<i<j<n+1 i=1

has argument > 0 and we can choose a branch of the function that takes (";1)th

roots, and divide each z; by al/(n;l) to continuously obtain a point in Fj, 4.
To formally define Gadish’s map e : F;, — Fj, 1, we fix a branch of the (”gl)th

root function with branch cut along the negative real axis. Then we define
n+1
e(z1,...,2n) to be (y1,...,yny1) Where y; = %‘/al/( 2 )7 a = [[i2) (@41 — z2),

and
n
xn+1=1+Zre Ztan (m/n)
i=1

2. ALGEBRAIC PRELIMINARIES

In this section, we define FI. We recall some facts concerning the theory of
FI-modules and describe their implications for FI-modules.

2.1. Fl-modules. We begin by constructing a monoidal structure on the groupoid

§:=| 5.
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Here we define go and §1 to be trivial groups. The monoidal structure is given by
the maps

My, no - Sn1 X §n2 — Sn1+n2, (Ul,dl) X (0’2,(12) — (0'10'2,d1 +d2)
When nq,ny are clear from context, we write m = my,, ,,. We will write il(/S\m) -
Snytn, for m(Sn1 x €), and i3(Sp,) for m(e x S,,). Since the subgroup i,(S,, ) is
isomorphic to SnT, when it is clear which embedding we are taking, we suppress i,
from our notation.

The category S has a braided monoidal structure induced by the surjection p,, :
Br,, — §n More precisely, the braid o, which braids the first a strands over the
last b strands conjugates mqp to mgp. See §3.1.1] for the definition of p, and our
conventions on braid groups. Since the maps i, : § — §n1+n2 are inclusions, the
construction of Randall Williams Wahl [RWW17| Theorem 1. 10] applies to produce
a monoidal category FI = US. We will make the definition of FI and its monoidal
structure explicit.

The category FI has objects indexed by natural numbers, and morphisms given
by the right cosets

FI(n,m) = Sm/i2(Sm—n)-

The composition ﬁ(n,m) X ﬁ(m, ) — ﬁ(n, 1) is given by [s] X [t] — [ti1(s)]. Tt is
well defined because elements of ig(gl,m) commute with ¢;(a), and is associative
because wiy (ti1(s)) = uiy(t)i1(s).

The monoidal structure is given on objects by ni; X ny — ni + no, and on
morphisms by

FL(na, m) x FL(ng, ma) = Fl(ny +ng, my+ma), [s]% [t] = [i1(s)i2(8)] 0 [Ty -y o).
where Ty, —n, n, denotes the element of Br,, +rm,, defined as follows. Writing
[m1 + mg} = [nl] U [m1 — nl] (] [77,2} (] [mg — TLQ],

we let T, —n, n, be the element which braids the strands of [mg — ng] over the
strands of [nq].

Remark 2.1. To obtain the monoidal category FI as we have defined it from
[RWW17| Theorem 1.10], apply their construction to braided monoidal groupoid
defined by:

itch &3
S, x S, 'S, xS, ™5 S, 4.

Given a category C, the term C-module will mean functor from the category C to
the category of abelian groups. Let Mod¢ denote the category of C-modules. For
an Fl-module or S-module M and n a natural number, let M, denote the value
of M on n. There is a functor from S to FI which identifies S with the largest
subcategory of FI such that every morphism is invertible. This gives a forgetful

functor Modg — Modg.
Definition 2.2. Let I: Modg — Modg; be the left adJ01nt to the forgetful functor.
An Fl-module M is called induced if M =~ I(W) for some S-module W. We say M

has generation degree < d if there is a short exact sequence of Fl-modules:

IW)—-M—=0
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REPRESENTATION STABILITY FOR MILNOR FIBERS 8181

with W,, 2 0 for n > d. We say M is finitely generated if there is a short exact
sequence of Fl-modules:

I(W)—-M-—0
with €p,, W, a finitely generated abelian group. We say M has presentation degree
< r if there is a short exact sequence of Fl-modules:

I(V) > I(W)—=M—=0
with W, 2V, 20 for n > r.

Note that if each M, is finitely generated as an abelian group, then M is finitely
generated if and only if it has finite generation degree. Many definitions appearing
in this paper, including the above definitions, are adaptations of definitions for
FI-modules which have appeared in other papers. For the sake of brevity, we will
often only state definitions for FI-modules but will often also use the corresponding
definition for FI-modules.

2.2. Central stability homology and regularity. Central stability homology is
a construction which often appears on E2-pages of spectral sequences used to estab-
lish representation stability. When certain semi-simplicial sets are highly connected,
central stability homology controls degrees of higher syzygies [Pat19, Theorem 5.7].

Definition 2.3. Let M be an ﬁ-module and n a natural number. For p > —1, let

csj\l _ S
Cp ( )n B Indu(sn (p+1))Mn—(p+1)~

These groups assemble to form an augmented semi-simplicial I/T\I—module, defined
in terms of the following maps.
The FI-module structure of M gives maps z,, : ZFI(n,n + 1) ® M,, — M,41.

The automorphism group ﬁ(n, n) = S,, acts on M, on the left and on FI(n,n+1)
on the right. And the map x, factors the quotient to yield

: Ind "+1 M, = ZFI(n n+1)® M, — M,+.
i1(Sn) z8,

For a braid b € Br,,, right multiplication by b gives an automorphism Z§n+m —
ZSn+m as an Sn+m, S bi-module. There is an induced automorphism of Ind M,
which we will also denote b. Let u; € Brp+1 be the element that braids the ith
strand over all the others to the left, u; := 01_171 1—2,1—1 o 017%.

The ith face operator f;:Cp (M), —Cp_1(M), is given by f;= (Indgzwxn_(ml))o
g

Ind§" M, _ (p+1) — Ind§" Mnf(erl)

Shn—(p+1) n—(p+1)

o Indgn Ind>"~* M- (pr1) = Indgn_pgnMn_p

n—p n—(p+1)

These f; satisfy the semi-simplicial identites. This fact is a consequence of the
general definition of central stability chains given in §5.11

We call the associated chain complex CfS’FI(M ) central stability chains. We call
the homology of this chain complex central stability homology and denote it by

Hfs’FI(M ). We note that because induction of representations from a subgroup is

Licensed to Univ of Chicago. Prepared on Thu May 18 16:14:49 EDT 2023 for download from IP 205.208.116.24.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



8182 JEREMY MILLER AND PHILIP TOSTESON

exact, the functor M — C£*" (M) is exact. We will use this fact tacitly throughout
the paper.

One can define central stability chains and homology for FI-modules by analogous
formulas. We will use the notation C<** (M) and HE*F (M) respectively for the
central stability chains and homology of an FI-module M. The following is [MW19,
Corollary 2.25].

Proposition 2.4. Let M be an induced Fl-module with generation degree < d.
Then (HngI(M)) =0fori<n-—2-—d.
n

We will need a slight generalization of this result to a larger class of FI-modules.

Definition 2.5. An FI-module is called semi-induced if it has a filtration with
filtration quotients induced FI-modules.

Corollary 2.6. Let M be a semi-induced FI-module with generation degree < d.
Then (Hfs’FI(M)) <n-2—d.

Proof. By definition, semi-induced FI-modules have filtrations with filtration quo-
tients induced FI-modules. Central stability chains is an exact functor. The claim
follows by induction on this filtration using Proposition 2.4] and the long exact
sequence in homology induced by a short exact sequence of chain complexes. [

Remark 2.7. In §8lwe give more conceptual definitions the central stability homol-
ogy chain complex for FI-modules, in terms of (braided) commutative monoids in
a braided monoidal category.

Vanishing of central stability homology controls the generation and presentation
degree.

Proposition 2.8. Let M be an ﬁ—module, and let v > d. Then Hfsl’FI(M)n >~
for alln > d if and only if M has generation degree < d. Additionally, Hisl’FI(M)n

20 foralln > d and HSS’FI(M)n =0 for alln > r if and only if M has generation
degree < d and presentation degree < T.

We will defer the proof until the next section. For FI-modules, a similar theorem
is true.
Proposition 2.9. Let M be an Fl-module. Then HSF' (M), =0 for all n > d if
and only if M has generation degree < d. Additionally, Hisl’FI(M),L = HSS’FI(M)n
20 for all n > r, if and only if M has presentation degree < r.
Proof. Let HF! denote the ith left derived functor of H®™. By definition,
Hfsl’FI(M) ~ HEY(M). Tt follows from the proof of [CMNRIS, Proposition 2.4]

that HS>"'(M) vanishes if and only if HF'(M) vanishes. The claim now follows
from Church—Ellenberg [CE17, Proposition 4.2]. O

2.3. Relationship between FI and FI. There is a functor FI — FI given by
gn /§n,m — S,/ Sp—m, which intertwines the monoidal structures on them. This
map is an isomorphism ﬁ(n,m) — FI(n,m) whenever m > n + 2. We say that
an Fl-module M is an Fl-module if the functor M : FI — Mody, factors through
FI — FI.
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REPRESENTATION STABILITY FOR MILNOR FIBERS 8183

Proposition 2.10. An Fl-module M is an Fl-module if and only if (e,2), €
FI(n,n) acts trivially on M, for all n.

Proof. Clearly, if M is an FI-module, then (e, 2),, acts trivially on FI. Conversely,
we have S, /(e,2), = S, and (e,2),\FI(n,n + 1) = FI(n,n + 1), so that if (e, 2),
acts trivially, the action factors through FI(n,n + 1). |

Definition 2.11. The monoidal structure — & — : FI x FI — FI gives rise to a
functor — @ 1 : FI — FI. We define the suspension XM to be the restriction of M

along — @ 1. The unique map 0 — 1 € ﬁ(O, 1), induces a natural transformation
Mn = Mn@o — Mn@l == EM

Definition 2.12. For M an ﬁ—module, we define >¢qM C M to be the submodule

M, ifn>d

0 otherwise

(sz)n—{

Proposition 2.13. Let M be an Fl-module generated in degree < a. Then >qioM

and £°M are Fl-modules. Let W be an Fl-module with "W an Fl-module. Then
>nt2W is an FI-module.

Proof. f n > a + 2, then (e,2), acts trivially on M, since (e,2), acts trivially
on I/J‘\I(a, n) and the map ZI/T\I(a, n) ® M, — M, is a surjective map of S,, modules.
Therefore >,42M is an FI-module. Also (e, 2),, acts trivially on X*M for all n > 2.
So ¥X¢M is an Fl-module.

For the last statement, let (e,2); € S for j > n+2. Then the element (e, 2);_,
acts on (X" M);_, = M; via its image under ¢, : S n Sj7 which is (e, 2);. Since
¥"M is an FI module Proposnlonmlmphes the actlon of (e,2);—n on (E”M)j n
is trivial. Therefore (e,2); acts on M;, so applying Proposition [2.10] again we see
that >p,42M is an FI module. ]

We now compare Fl-module central stability homology with FI-module central
stability homology.

Proposition 2.14. Let N be an FI-module. There is a canonical map of central
stability complezes C5*FY(N), — Cs*FY(N), which induces an isomorphism for
p<n-—3.

Proof. When n — (p + 1) > 2, the projection map S, — Sn gives a canonical
bijection S /S (r+1) = Sn /Sp—(p+1). The projection map induces ZS ®g
N, — 7S, ®S,,L,(,,+1)

S /S (p+1)> We see that it is an isomorphism. O

n—(p+1)
N,,, and writing this map in terms of coset representatives for

Now we return to the proof of Proposition 2.8 The key input is the following
Lemma.

Lemma 2.15. We have that Hgs’ﬁ(I(V)) = O,Hfsl’ﬁ(l(V)) =V for all S repre-
sentations V.

Proof. To simplify notation, we will write H; for H fflp Tand C; for Cfle " throughout
the proof.

Licensed to Univ of Chicago. Prepared on Thu May 18 16:14:49 EDT 2023 for download from IP 205.208.116.24.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



8184 JEREMY MILLER AND PHILIP TOSTESON

First we show the claim in the case V = Zg, where Zg the S representation
that is Z in degree 0 and 0 elsewhere. In this case I(V), = Zﬁ(o,n). We need
only consider the first three terms of the complex. Except for n < 3, this complex
agrees with the FI central stability complex of ZFI(0,—), and hence is exact by
a special case of Patzt [Patl9) Theorem 5.7]. Therefore we have Hoy(I(Zg)), =
Hy(X(Zo))rn, = 0 for all n > 3. It is easy to check directly that Ho(I(Zo))o = Z
and Hy(I(Zo))o = H.(I(Zo));1 = 0. In the case n = 2 the complex takes the
form ZS; — 7S, — Z — 0 where the generator le] — le] — [(0,1)]. Using the
identification §2 > Z, it is clear that this complex is exact. Finally, in the case
n = 3, we have

7F1(2,3) — ZFI(1,3) = ZFI(1,3) — ZFI(0,3) = ZFI1(0,3) — 0.

Since leftmost map factors through the surjection ZF\I(Q,S) — ZFI(2,3), we may
again use the exactness of the FI central stability complex of ZFI(0,—) to show
exactness. This finishes the case V = Z. R

To extend to the general case, notice that the complex of S representations
C.(I(V)) takes the form V « C,(1(Zg)), where V « M denotes the induction product
or Day convolution

_ S,
(V% M), = @ Indg" o Vo ® My.
a+b=n

Write C for the complex C,(I(Zy)). Using the first homology spectral sequence
for V «L C, we see that Ho(V & C) = Ho(V % C) and Hy(V & C) has a two-step
filtration with graded pieces H; (V xC) and Hy(Tor](V,C)). Here Tor} denotes the
i** derived functor for — % — , which can be computed by resolving either factor.
To prove the lemma, it suffices to show that Ho(V #“C) =V and H;(V +~C) = 0.

Using the second hyperhomology spectral sequence, we see that Hy(V *~ C) has
homology bounded above by Tor](V, Ho(C)) and Tory(V, H1(C)). Both of these
groups vanish: in the first case Ho(C) = Zo and the functor V. — V % Zy =V
is exact, and in the second case because Hy(C) = 0. Thus Hy(V s C) vanishes.
Similarly, the hyperhomology spectral sequence gives us Ho(V = C) = V x Hy(C) =
V %« Zo =V, completing the proof. |

Proof of Propo%zon 2.8l Again, to simplify notation, we will write H; for H;}
and C; for C¢*1". Let
I(T)—-IW)—=I(V)>M—=0

be an exact sequence, which is the beginning of a resolution of M by induced
modules. Then by Lemma [2.15] and a hyperhomology spectral sequence we have
Ho(M) and H; (M) are computed by H; and Hj of the complex

D = (Ho(I(T)) — Ho(I(W)) — Ho(I(V))) = (T — W — V).

Suppose that V;, = 0 for all n > d and W,, > 0 for all n > r. Then Hy(M),, =0
for all n > d and Hy(M),, = 0 for all m > r. Thus, the generation degree of M is
at most d and the presentation degree is at most r. This implies the vanishing of
homology.

To prove the converse, we use the notion of a minimal surjection. For any
Fl-module M we say that a surjection I(V) - M is minimal if V C I(V) —
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REPRESENTATION STABILITY FOR MILNOR FIBERS 8185

M is an inclusion, and for all n we have that V,, = Ho(I(V)), — Ho(M), =
M, /FI(n — 1,n)M,_1 is a surjection, and if Ho(M),, = 0 then V,, = 0.

For any Fl-module M, we construct a minimal surjection I(V) — M as fol-
lows. Let V,, € M, be an §n subrepresentation that surjects onto Ho(M), =
Mn/ﬁ(n,n + 1)M,,—1, such that V;, = 0 for all n such that Hy(M),, = 0. Then
the S representation V' gives a map I(V) — M. This map is surjective by the
graded Nakayama lemma: clearly I(V)q = Vo — My = Ho(M) is surjective and
inductively I(V'),,—1 — M,,_; implies that ﬁ(n— L,n)I(V)p_1 — f‘\I(n— 1,m)Mp_1
and so V,, — Mn/ﬁ(n —1,n)M,,—; implies that I(V), — M,,. By construction it
is minimal.

Let M be a module such that Hyo(M), = 0 for n > d and H,(M),, = 0 for
n > r > d. Choose a minimal surjection p : I(V) - M and a minimal surjection
I(W) - K := kerp, to obtain a presentation I(WW) — I(V) — M. By minimality
of I(V) — M, V is nonzero only in degrees < d. Further, the long exact sequence
in homology induced by 0 — K — I(V) — M — 0 gives an exact sequence

Thus in degrees > r > d we have that Hy(K) vanishes. By minimality of I(W) —
K, we have that W,, = 0 for n > r. Thus the generation degree of M is < d and
the presentation degree is < r. O

2.4. Stable degree and local degree. In this subsection, we describe how the
theory of stable and local degree of FI-modules can be adapted to FI-modules.

Definition 2.16. Let M be an Fl-module. The local degree of M is the smallest
number N > —1 such that N+ M is a semi-induced FI-module.

Following [CMNR18], we denote the local degree of M by h"*(M).

Definition 2.17. Let M be an Fl-module. Let AM be the cokernel of the natural
map M — X M. We say that M is torsion if for all n and all z € M,,, there is an
element f € Homg(n, m) with f.(x) = 0. The stable degree of M is the smallest
number N > —1 such that ANTLM is torsion.

Following [CMNR18], we denote the stable degree of M by 6(M). In [CMNRI1S],
the stable degree of an FI-module was defined using an analogous formula. Note
that the functors ¥ and A in the category of FI-modules defined in [CMNR1S]
agrees with their FI analogs on the subcategory of the category of Fl-modules with
trivial Z-action. Similarly, an FI-module is torsion if and only if it is torsion when

viewed as an FI-module. Thus, for M an Fl-module which is also an FI-module,
0(M) as defined in [CMNRI18] agrees with (M) as defined here. Thus, we will not

—~

distinguish between the FI-module and the FI-module versions of these notions.

Proposition 2.18. Let M be an Fl-module. If SN M is an FI-module with gener-
ation degree < d, then 6(M) < d.

Proof. By [CMNRIS, Page 2, Equation (x*)], (XY M) < d. To prove the claim,
we just need to show that §(XV M) = §(M). This is the case because A commutes
with N and the fact that an Fl-module T is torsion if and only if ZNT is torsion.
Also see [CMNRIS, Proposition 2.9]. O
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The following proposition is immediate from the definition.
Proposition 2.19. Let M be an Fl-module. Then h™*(M) < N + h™maz (SN ).

Lemma 2.20. Let M be an Fl-module with £ M generated in degrees < d. Then
M has generation degree < d+ N.

Proof. Since ¥V M is generated in degrees < d,
Indg" (=N M) — =V M,
d
is surjective for all n > d. This is equivalent to the statement that
Ind" Mgy — (EV M),
d
is surjective for all n > d. This implies that
Ind%‘*NMd_,_N — M7L+N
Sa+nN
is surjective for all n > d and so M is generated in degree < d 4+ N. O

The following is an adaptation of [CMNRI8, Proposition 3.1] to the case of
FI-modules.

Proposition 2.21. Let M be an Fl-module with local degree N and stable degree
d. Then the generation degree of M is < d+ N + 3 and the presentation degree is
< 2N +d +6.

Proof. As noted in the proof of Proposition R.18 stable degree is independent
of shifts. Thus, §(XN¥+*1M) = d. Since SVNT1M is a semi-induced Fl-module,
[CMNRIS, Proposition 2.9 (1)] implies that XV *1M has generation degree equal
to d. By Lemma 2200 M has generation degree < d + N + 1. This implies
H (M), =20 for n > d + N + 1 by Proposition 2.8
By Proposition 2.13] >n43M is an FI-module. The stable degrees of >ni3M

and M agree since they agree after sufficiently many shifts. Since SV+3 5y 3 M =
YNH3M is a semi-induced Fl-module, >yi3M has local degree < N + 2. By
[CMNRIS, Page 2, Equation (%)], >n4+3M has generation degree < N +d+ 3 and
presentation degree < 2N + d + 6 as an FI-module. By Proposition 2.9] we have
that

HiSfFI(ZNJr?,M)n “0forn>N-+d+3
and

HE (s n3M), 20 for n > 2N +d +6.

By Proposition 2.14] we have that
H T (snpsM)n 20 forn> N +d+3

and -
HE (s nysM), 20 for n > 2N +d + 6.

The natural map of Fl-modules >N+3M — M induces an isomorphism on (C;S’ﬁ)n
forn > p+ N + 4. Thus,

HEFY (M), =20 for n. > 2N +d + 6.
The claim now follows by Proposition 2.8 O
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3. REPRESENTATION STABILITY

In this section, we will prove that {H;(F,)}, assemble to form an Fl-module
which is generated in finite degree. We adapt the algebraic techniques of [CMNRIS)]

to the case of FI-modules. We use connectivity results of Hatcher—Wahl [HW10].

3.1. Fundamental group of the Milnor fiber and §n Our first goal is describe
an action up to homotopy of FI on the spaces F;,. We begin with a discussion of
braid groups and fundamental groups of Milnor fibers.

3.1.1. Braid Conventions. Let Br,, be the braid group on n strands. We will write
{0741 }7=] for the Artin generators of Br,. Diagramatically, our convention is
that strands are numbered 1,...,n from left to right, and we read the braids from
top to bottom. The element o; ;41 braids the ith strand over the 7 + 1st strand.
The element biby denotes the braid b; followed by the braid bs. Similarly, given
a decomposition of [n] into disjoint subsets [n] = A U B, such that b > a for all
a € Ab e B, welet 04,5 € B, denote the element that braids the strands of A
over the strands of B.

We will write PBr,, for the pure braid group. The pure braid group is generated
by elements a; ; C Br, which braids the ith strand over and around the jth strand.
That iS7 we have Qi 5 = 04441+ Uj,j+1Uj,j+IU;j1,j . Ui_,i1+1'

The groups Br,, and PBr,, are the fundamental groups of the unordered and
ordered configuration spaces of C respectively. When we take the fundamental
group of a configuration space, we implicitly choose a base point where all of the
points are on the z-axis, and are in order if the configuration space is ordered.

Throughout, for n € N, we define [n] = {1,...,n} to be the distinguished set
with n elements. If we speak of an order on [n] it will be the standard order.

Let g, : Conf,(C) — C* be the map gn(2;) = [[;;(#; — x;). Then the nth
type A Milnor fiber is F,, = ¢, '(1). We write PBr, := m1(F,) for its fundamental
group. To compute the map m1q, : PBr, — Z, notice that it factors through the
abelianization, so we may compute the map on H;, or its dual on H'. The form
dz/z = dlog(z) that generates H},,(C*) pulls back along ¢, to dlog(][;;(zi —
zj)) = > dlog(z; — x;). So the map on H'is 1 — >i; Wij, where w;; €
H'(PBr,,Z) is the cohomology class that gives the winding number between two
points. Thus mg, is given by a; ; — 1 for the generators of the pure braid group
a; ; dual to w;;.

Since the map g, is a fibration and PBr,, — Z is surjective, we have a short
exact sequence

1—>1§B\rn—>PBrn—>Z—>1,
where Z is the fundamental group of C*. From the long exact sequence in homotopy
groups associated to the fiber sequence

F,, — Conf(C) — C*,
we see that the Milnor fiber is homotopy equivalent to the classifying space of ]?TB\rn

We have the following chain of inclusions PBr,, C PBr, C Br,. The next
proposition explains how S,, relates to PBr,,.

Proposition 3.1. Let p, : Br, — §n be the map defined on generators by o; ;41 —
((i,i4+1),1), which takes a braid to its associated permutation and winding number.
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The map p, gives a short exact sequence:
1 - PBr, — Br, 2§, — 1.

Proof. The kernel of p,, equals the kernel of its restriction to the pure braid group
PBr,, — e x 2Z. This map takes the generator of the pure braid group a; ; to (e, 2).

Thus the map agrees with 71p,,, and the kernel is ITB\rn O

The category FI acts on F,, up to homotopy. We may see this by producing an
action of FI on lgﬁrn up to inner automorphisms. The most direct way to define
this action is as follows. .

For [s] € Sy, /i2(Sn—m) = FI(n,m), choose a lift § € Br,, such that p,,(5) = s.
Then [s] : F,, — F,, is given by f ~ 3i;(f)s~!. This map is well defined up to
conjugation by elements of lgB\rm since

(1) any other lift of s differs by an element of PBr,n,
(2) if [t] = [s], then ¢ = su for u € i3(Sp_n) and every lift of u to an element
@ in i9(Bry—m,) commutes with elements of ITB\rn
These maps compose properly to give a functor from FI to the category of groups
modulo inner automorphisms. Composing with the ith homology functor gives a
functor from FI to abelian groups. We denote this Fl-module by H;(F'). We use the
convention that if we do not specify coefficients for homology, then the statement
we make is true with any choice of untwisted coefficients.

3.2. Construction of a spectral sequence. Our first goal is to construct spectral
sequences, E ,(N), such that the E? page is

Ep o(N)n = Hy? " (S Hy (F))n
and which converges to zero for p + ¢ < n — 3. We do this by constructing an

augmented semi-simplicial space which is highly connected. The main input that
we use is a connectivity result of Hatcher-Wahl [HW10| Proposition 7.2].

Definition 3.2. Let Bry y be the preimage of 41 (Sg) under the map Bryiny —
Sk+nN-
Definition 3.3. Let Z,(IN),, be the following semi-simplicial set. We let Z,(N),, =
Bry,n /i1(Bry—(pt1y,n) for n < p—1, and Z,(N), = 0 for p > n. The kth face
map is induced by

— -y : Bry, v — Bry, w,
where uy € Bryy1 is as in Definition [2.3] and Bry,y; is included into Br,, y C Br,4n
by

Brp1 N Br, N Br,yn-

We will show that the complex Z,(N), agrees with a simplicial complex that
Hatcher-Wahl [HW10] proved is highly connected.

Proposition 3.4. Z,(N), is (n — 2)-connected.

Proof. We will write Z, for Z,(N),, throughout the proof.
Elements of Bry n are isotopy classes of braids on k + N strands which return

the last IV strands to themselves. Therefore, Bry n is the fundamental group of
ConkaV ((C)/ Sk .
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Let
Arc,y1(Conf, x(D?)/S,)
be the space of configurations of n+ N points, where the first n points are unlabelled,
and p+ 1 arcs connecting a subset of the n points to an interval on the boundary of
D?, see Kupers—Miller [KM14] Appendix] and Miller-Wilson [MW19, Section 3.2].
This space is homotopy-equivalent to Conf,,_(,41)4+n(C)/Sp—(p+1), and so we have

Br,,—(p+1),n = m (Arcpi1(Conf,yn(D?)/S,)).

Further, the map Arcy1(Conf,4n(D?)/S,) = Conf,n(D?)/S,), given by for-
getting the p 4+ 1 arcs is a fibration, and on fundamental groups it is given by the
inclusion Bry,_p,11,y — Br, v used to defined Z,. By the long exact sequence in
homotopy,

fib(Arc,11(Conf, y(D?)/S,) — Conf,n(D?)/S,),
is homotopy discrete and its connected components are identified with

Brn,N/Brn,(p+1)7N = Zp.

Simultaneously, the connected components of the fiber are of isotopy classes of p+1
arcs from the boundary, connecting to the first n of N4+n points, so that the arcs are
not allowed to cross or pass through the points. Under this identification, the face
maps of Z, correspond to forgetting arcs, and so Z, is isomorphic to the complex
A(D*—[NJ; [n], [n])e appearing in Hatcher-Wahl [IW10), Section 7]. Hatcher—Wahl
[IW10, Proposition 7.2] implies states A(D? — [N]; [n], [n]) (n — 2)-connected. O

It is convenient to use the variant of Bry y for §m and of the semi simplicial set
Zo(N)y.

Definition 3.5. Let ]/S\rk’N be the preimage of il(gk) under the map Brpyy —
Sk+N- R L

The sets Z,(N), = Br, n/Br,_(p+1),ny form a semi-simplicial set defined by
the same formulas as in Definition [3.3]

Notice that ]/_))\Ik’N C Bry . In fact, the two groups are often the same.
Lemma 3.6. We have ]/B\r;mv = Bry n for k> 2.

Proof. We need that the preimage of S; under the projection §k+N — Sg4n I8

gk. This follows from the fact that §k+ N /§k — Sg+n / Sk is an isomorphism for
k> 2. a

Definition 3.7. Let lgﬁrn,N - E;n,N be the kernel of the surjection f%}n,N —» gn.
Then PBr, y acts on the semi-simplicial set Z,(N),, = Br, n/Br,_(,41),n by left
multiplication. Let X,(N), := PTB\rn)N\\Zp(N)n, where ]?TIB\rmN\\— denotes a

functorial homotopy quotient. Then X4(N), is a semisimplicial space, which is
augmented by the map X,(N),, = X_1(N),, := PBr, ny\\*.

We will suppress n, N from the notation for X, (NN), when the context is clear.

Proposition 3.8. For every j, the associated chain complex Hj(Xo(N)y) is canon-
ically isomorphic to the central stability chains Cs¥* (SN H;(F_)).

Licensed to Univ of Chicago. Prepared on Thu May 18 16:14:49 EDT 2023 for download from IP 205.208.116.24.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



8190 JEREMY MILLER AND PHILIP TOSTESON

Proof. We have that
ISB\I'n N\\]/—D)\rn N//B.;'n, (p+1),N = lglgrn N\\/B-}n N///B-}nf(erl),N

~ PBrn N\Brn N//Brn (p+1),N = ~S //Br (p4+1),N-
Thus H;(X,) = H; (Brn_(p_H),N,ZSn). Under this identification, the ith face op-

erator acts by restricting ZS,, to Br,_, and multiplying by u;, where u; is as in

2.2,
Now the map Brn_(p_H) N — S factors as Brn_(p+1) N — S (p+1) < S,L By
definition of Brn,(pﬂ))N C Bry,—(p+1)+n, the kernel of this map equals the kernel

We have

Ha(Snf(p%»l)y Hy (PBrn,(p+1)+N, ZSn)) = Ha(Snf(p%»l)y 7S, ® Hy (PBrnf(pqu)qLN))
since the coefficients are free, this last term vanishes for @ # 0, and for a = 0
is equal to IndS (Hb(PBrn,(pHHN)). By the Serre spectral sequence, this

Sn—(p+

shows that Hj(Xp,Z) = IndA (H, (151??1""_(,,+1)+N)), as desired. O

Sn—(p+1)

We now show that the augmented semi-simplicial space is connected in a range
growing in n.

Proposition 3.9. Let n > 2. Then the augmentation map |Xe| — X_1 induces
an isomorphism on H; fori <n — 3.

Proof. Tt suffices to prove that the semi-simplicial set 2\ is n — 3 connected since
1t has the homotopy type of the homotopy fiber of |X,| — X_;. The inclusion
Brk ~ C Bry n induces a map of simplical sets Z — Zo. By Lemma [3.6] this map
is an isomorphism on p simplices for p < n — 3. Since we have assumed n > 2, it
is a surjection on n — 2 simplices. Thus Ze is n — 3 connected if Z, is. Finally by
Proposition [3.4] we have that Z, is n — 2 connected (and hence n — 3 connected),
completing the proof. |

From the above two propositions, we obtain a spectral sequence with the desired
properties.

Proposition 3.10. For all n and N, there is a homologically graded spectral se-
quence By (N), with

B2 (N), = (H FlsN g (F))) and

Ey(N)p =0 forp+q<n-3.
Here we take p > —1 and ¢ > 0.

3.3. Proof of stability. The following three lemmas will be used in an induction
argument to prove representation stability for Milnor fibers.

Lemma 3.11. We have that §(Hy(F)) <0 and h™**(Hy(F)) = —1.

Proof. Since Hy(F,) = Z and all of the stabilization maps are isomorphisms,
§(Ho(F)) is generated in degree 0 and so 6(Ho(F)) < 0. Since X°Hy(F) is an
induced FI-module, h™%* (Hy(F)) = —1. O
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The following lemma is an adaptation of the arguments in [CMNRI18, Theorem
5.1, Part 1)].

Lemma 3.12. Let ¢ > 1 and suppose 0(Hy(F)) 2q + 1 for all ¢ < i and

H <
hmaer(H,(F)) is finite for all ¢ < i. Then §(H;(F)) < 2i + 1.
Proof. Let N be a number larger than h™* (H,(F)) for all ¢ < ¢ and take n > 2i+1.
By Proposition [3.10] we have that
Ei°u(N ) 20

and .
By f(N)n = Hi> (SN Hy (F)).

By Proposition 218 and Proposition2.9] it suffices to show HF (SN H,(F)),, 0.
Since E?, ;(N), = HY (SN Hy(F)), and E* ;(N)n 20, it suffices to show that
E?, ((N)n = E> (N)n. To do this, we will show that E?, ,(N), = 0 for all
0<t<itl. B

We have E} (N), = H:*FI (SN Hy(F)). Consider g <i. Since N >h™*"(H,(F)),
SNH,(F) is a semi-induced Fl-module. Since XV H,(F) has generation degree
< 2qg + 1 and is semi-induced, Corollary [2.6] implies that

(H;&FI(ENHQ(F)))” =0forp<n—-2-2¢—1.
By Proposition 2.14]
(Hp =N H(F))) = (HE SN H,(F)),, forp<n =3,

Consider t < ¢+ 1,7 > 0. Since n > 2i+ 1, and 7 > 1, we have that ¢ < n —3. Thus
Et%i_t(N)n ~( for all 0 <t < i+ 1 and so the claim follows. O

The following lemma is an adaptation of the arguments in [CMNRI18, Theorem
5.1, Part 2)].

Lemma 3.13. Leti > 0 and assume 6(Hy(F')) < 2g+1 for g < i and h™**(Hy(F))
< f(q) for q < i for some increasing function f. Then h™**(H;(F)) < f(i—1)+
67 + 6.

Proof. Let N = f(i—1)+ 1 and let N’ > N. As in the proof of Lemma B.12] we
have that
2 ~ .
E; (N'),=0forp<n—2-2¢—1andq<i.
This means there are no nontrivial differentials into or out of E”; ;(N'), for r > 2

and n > 2 + 1 since E} , (N'), =0 for ¢ < i and n > 2i 4+ 1. Thus

HSEN H(F)), 2 B2 (N'), = B (N'), 20 for n > 2i + 1.
By considering E&i(]\f’)n instead of E2, ;(N'),, we get the inequality

HE P SN Hy(F)), 20 for n > 2i + 2.
Let M = SN*+2143H,(F). By Proposition 2.13) M is an FI-module. By Proposition
214, HF(M) =2 0 for n > max(2i + 1,2) = 2i + 1 and H;¥" (M) = 0 for
n > max(2i + 2,3) = 2i + 2. By Proposition 2.9] we have that M has generation
degree < 2i + 1 and presentation degree < 2i + 2. By [CMNRI18, Page 2, Equation
(x%)], the local degree of M is < 4i + 2. Note that M is an N + 2i + 3-fold shift of
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H;(F) and N 4 2i +3 = f(i — 1) 4+ 2i + 4. Proposition .19 implies that the local
degree of H;(F)is < f(i — 1) + 6i + 6. O

Solving the recurrence and combining Lemma B.11] Lemma [B.12] Lemma [B.13]
gives the following.

Proposition 3.14. The stable degree of H;(F) is < 2i + 1 and the local degree is
< =1+ 9+ 3%

Combining this with Proposition [2.21] gives the following.

Theorem 3.15. The generation degree of H;(F) is < 3 + 11i + 3i® and the pre-
sentation degree is < 5+ 207 + 6i2.

Since F,, is an algebraic variety, H;(F},) is finitely generated as an abelian group
for all i and n, Theorem [A] follows from Theorem [3.15l Theorem [B follows from
Theorem [3.15] and Proposition [2.13]

Remark 3.16. It seems very plausible that a linear stable range is in fact optimal.
Gan-Li [GL17] were able to prove linear stable ranges for congruence subgroups of
general linear groups. Can one adapt their techniques to the case of Milnor fibers?
One major obstacle to doing this is the fact that the chains on the Milnor fibers do
not seem to be homotopy equivalent to an Fl-chain complex.

4. STABLE CALCULATIONS

In this section, we will study H;(F,,Z) in the range where the action of () is
2

trivial. In particular, we will compare its homology to H;(Conf, (C)/C*,Z) using
the fact that Conf, (C)/C* = Fn/u()
2

5
H;(F,,Z) is torsion free for i < k, and the map F,, — Conf, (C)/C* induces an S,
equivariant isomorphism on rational homology in degrees < k.

Theorem 4.1. Suppose that 760 acts trivially on H;(F,,Z) for i < k. Then

The main content of the above theorem is that the homology of F}, is torsion free.
The rank of the group was already determined by Settepanella [Set04] Theorem 1.2].

4.1. Comparing Conf,(C)/C* and F,. First we note that with Q coefficients,
the homology of F,, is canonically isomorphic to the homology of Conf,, (C)/C* in
the range where f(n) acts trivially.

"

Proposition 4.2. If 1) acts trivially on H;(F,,Q) for i <k, then H;(F,,Q) &
2

H;(Conf, (C)/C*,Q) fori < k.

Proof. The group H(y) acts freely on F,, and its quotient is Conf,,(C)/C*. Thus the

rational homology of Conf, (C)/C* is canonically identified with the coinvariants
Hi(Fn,@)M(n) under the pushforward map. Since () acts trivially for i < k, we

2
obtained the desired isomorphism. |
Proposition 4.3. If 70 acts trivially on H;(F,,Z) for all i <k, then H;(F,,Z)
2
is torsion free for all i < k — 1.

To prove this proposition, we will need the following lemma.
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Lemma 4.4. Let Z/m be an abelian group, and let C be a chain complex of
Fo[Z/m] = Fplz]/(z™ — 1) modules concentrated in homological degree > 0. As-
sume that H;(C) 1is finite dimensional for all i < k, and x — 1 acts nilpotently on
H;(C). Then there exists a chain complex G. of projective Fy,[Z/m] modules and a

quasi-isomorphism f : G, =5 O, such that:

(1) for all i <k, G; is isomorphic P®" for some r € N, where P is the module
P :=F,z]/(x — 1)pd, and p? is the largest power of p dividing m,
(2) for alli < k+ 1, the differential d; : G; — G;—1 1is zero mod x — 1.

Proof. First, note that (xpd -1)=(z- 1)pd is the largest power of z — 1 dividing
™ — 1. Therefore P is a summand of F,[z]/(z™ — 1) by the Chinese remainder
theorem, and so is projective. Since x — 1 acts invertibly on all of the other factors,
if a power of (x — 1) annihilates an element of a F,[Z/m]-module, then (x — 1
annihilates it.

We construct the resolution G, inductively in the usual way. To determine G,
choose my, ..., my, a collection generators of Hy(C\) which is minimal in the sense
that the associated map P®™ — Hy(C,) is an isomorphism mod x — 1. We let
Go = PP, and choose a lift of Gy — Ho(Cy) to fo : Go — Zo(C.) C Cy.

To determine Gy, we consider Hy(cone(Gy — Cy)) = ker(Go® Cy — Cp)/d(C2),
and again choose a collection of minimal generators which give a map P —
Hi(cone(Gy — C.)), which lifts to a map dy @ fo : P™ — Go @ C1. The map from
the two term complex induces an isomorphism of homology groups in degree 0, and
a surjection on homology in degree 1. The map d; : G; — Gy is minimal because
its image is {g € Go | Jc € C1, fo(g) = d(c)} and we have that for every such g
the homology class of fy(g) vanishes and so g must be divisible by (x — 1) by the
minimality of fy.

To determine G3, we choose minimal generators of the second homology of the
cone, ker(Gy @ Cy — Gy & C1)/d(C3), and so on. We continue in this way until
determining Gy1, where we replace the role of the module P by the free module
Fp[z]/(z™ — 1), and no longer require minimality of generators. O

Proof of Proposition &3l Fix i <k —1 and let p = K(n)- We have that H;(F,,Z)
is a finitely generated abelian group, with rank equal to the rank of the group
H;(Conf, (C)/C*, Z) for all j <k by Proposition[d.2] The group H,;(Conf,(C)/C*,Z)
is torsion free, see §5.31 Thus by the universal coefficient theorem, to show that
H;(F,,Z) is torsion free, it suffices to show that the dimension of H;11(F),,F,)
equals the dimension of H;q(Conf, (C)/C*,F,) for all primes p and all ¢ < k — 1.

Since Conf,(C)/C* is a quotient of F,, by a free u action, we have that
C«(Conf,(C)/C*,F,) is quasi-isomorphic to G« ®F, [, Fp with G. any chain com-
plex of projective F,[u]-modules quasi-isomorphic to C.(F,;F,). We will choose
G.. so it satisfies the conditions of Lemma [4.4]

For j < k, we have G; = P%7%. By Condition 2 of Lemma 4] we have
G, ®F, 4] F, has zero differential in degrees < k. Thus r; is the dimension of
H,;(Conf, (C)/C*,F,).

The dimension of H,;(F),,F,) is the dimension of H;(G,). Call this number c;.
We want to show that r; = ¢;. We have that r; < ¢; because H;(Conf, (C)/C*,Z)
is torsion free and agrees with H;(F,,Z) rationally and because the dimension of
H;(F,,F,) is at least as large as the dimension of H;(F,,Q).
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To show that ¢; < r;, we show that any subquotient of P®"i (in particular
H;(G,)) can be generated by less than or equal to r; elements. It suffices to show
this for submodules, and the preimage every submodule of M C P®" under the
projection F,[z]®"5 — P®"i is an F,[z] submodule M C F,[z]®"5. Since F,[z] is
a PID, the submodule M is free and thus generated by at most r; elements. The
images of these elements in P®"j generate M and so the claim is proved, r; = ¢;,
and we are done. ]

From Proposition [4.3] and Proposition [4.2] we immediately obtain Theorem [4.1]
Theorem [B and Theorem K.1] imply Theorem [C.

5. APPENDIX

5.1. Central Stability Homology of Braided Monoidal Groupoids. Let
K, C Br, be a sequence of normal subgroups such that the image of K, x Kj
under the map mg : Br, x Bry — Brgyy is contained in K, ;. Denote the quo-
tient by G,,. Then {G, },en forms a braided monoidal groupoid. We have maps
Map : Go X Gy = Ggqp. The braiding is the natural transformation mgp — mp 4
induced by multiplication by o4 € Bry4s.

Write A = Rep U, G, for the category of sequences of abelian groups A,, with
a G, action. The induction product makes A into a braided monoidal category as
follows (see e.g. Joyal-Street [JS93]).

(1) We define
My % Ny = Indg&™ e, My, © Nyy = ZGlinin ©26,x Gy Min @ Ny

(2) We define the map t,, p, : My, * Ny, = Ny, % M, from the action of oy, ., on
Z.G i+, by right multiplication.

As usual, in a monoidal category associative algebras and modules can be de-
fined diagramatically. From the braided monoidal structure on A = Rep U,, G,
we can define a commutative algebra to be a unital associative algebra A, with a
multiplication p: A x A — A such that pot =m.

Let V' be an object of A, and let Sym (V') = P, V*"/Br, be the free com-
mutative algebra. A right module over Sym, (V') consists of M € A and a map
a: M+V — M, such that ao(axidy) : MV «V — M equals ao(axidy)o(idas *t).

Then for any Sym, (V)-module M, there is a chain complex of Sym, (V')-modules
Ce(M):

M+% MxV D MsVsV R M VaVaV ...,
defined as follows. We have C5*(M) = M « V***! for p > —1. The differential

dp = foll (—=1)%f; is defined from an augmented semisimplicial set where the face
operator f; : M % V*PtL — M x V*P acts by using the braiding to move the ith
factor of V' over the other factors to M and then applying the multiplication a :
Mx*xV — M.

More formally, write u; € Br,4 for the element 0;1112»0; 12’1-71 0y, ; that braids
the 4th strand over all the others to the left. Then f; acts by (a*id;?) o (idas * u;).
The semisimplicial identities hold because the multiplication map M *V «V — M

factors through M % (V %« V)/Bra — M. For similar reasons C¢(M) has the

IMore properly, we could call A a braided commutative algebra, or an Eo-algebra.
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structure of a chain complex of right Sym, (V') modules, where Sym, (V) acts on
M * V** by using the braiding to move over the factors of V.

Remark 5.1. The construction generalizes to produce a semisimplicial object for
any object with an action of a free commutative monoid in a braided monoidal
category.

In the cases we consider, V' is Z, the trivial representation of G; concentrated in
degree 1. That is, we have

i=2

V:{Vn}nEN:{V_O Z#l

Further, we will only be concerned with cases corresponding to FI and FL

Example 5.2. Let G,, = §n, and V = Z as above. Then right Sym,(V')-module
are canonically equivalent to Fl-modules: the data of a right Sym,(V')-module is
given by maps M,, * Symfz(V) — M,,+;, which correspond to

Further, we have that (M % V*P), = Ind,g"(§ )Mn_p, and C(M) agrees with
21 (Pn—p

Cfs’ﬁ(M) as defined in Definition 2.3

Example 5.3. For G, = S,,, Sym,(V)-modules are the same as FI-modules, and
we obtain the FI central stability complex in the same way.

For any inclusion of subgroups J,, C K,, with quotient p : H,, - G,,, there is a
pullback p* : Rep U,, G,, — Rep U,, H,. The pullback is braided lax monoidal in
the sense that there is a canonical map p*M * p* N — p*(M x N), and this map is
compatible with the braiding.

Using this structure, Sym,(V')-modules pull back to Sym,(V)-modules. Because
central stability complexes are defined in terms of tensor powers of V', the braiding,
and the action of V on M, there is an induced map of semisimplicial complexes of
Sym,, (V)-modules C¢*(p* M) — p*Cg*(M).

Example 5.4. In the case of p : §n — S,,, the map of central stability complexes
agrees with the map of Proposition [2.14]

5.2. Comparison with the central stability complex of Patzt. Let C,®, be
a monoidal category such that the unit object 0 € C is initial. Let I, : Mod C —
Mod C denote the left adjoint to S,, defined to be restriction along the functor
— @z :C — C. Let M be a C-module. Let A;,; denote the category governing
augmented semi-simplicial objects. That is, As,; is the category with objects finite
ordered sets and morphisms given by order preserving injections. Patzt defines the
central stability chains of M with respect to x, to be the chain complex associated
to the augmented semi-simplicial abelian group

ASP . — Mod C, [n] — Len M.

ing
For an ordered injection f : [n] — [m] € A;y;([n],[m]), the associated map
I,en « I em is adjoint to the natural transformation S e» — S e= induced by
the morphism f : " — 9™,
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In our setting C is the category ﬁ, and x is the object 1. To compute the functor
I? in this case, we note that there are restriction and induction functors S? and I?
defined on the category ModS.

In fact, when M is an Fl-module I?M carries a canonical FI-module structure.
To see this, we identify FI-modules with Sym,, (V)-modules, where V' is the S rep-

resentation consisting of V' concentrated in degree 1. Observe that I?M =MxV,
where * denotes the induction tensor product of S-modules. Then M x V' becomes
a right Sym,(V')-module through the map

M %V x Sym, (V) —idarxt pr Sym, (V) * V —exidv M sV

where t denotes the braiding, and a denotes the action map for the Fl-modules
structure on M.

This lifts IS to a functor Mod FI — Mod FI and we have that I? ~ IFI i
adjoint to Sfl. In other words, let M, N be Fl-modules. Then a map of S-modules
I$M — N is a map of FIl-modules if and only if M — S{N = S\ is a map of
Fl-modules.

Under this identification, the central stability complex of Patzt corresponds to
the central stability complex of §2.2 The presence of a braiding in the differentials
of our central stability complex corresponds to the braiding used to deﬁne the
Fl-module structure of I$ M, and thus the corresponding adjoint maps Il®, M —

5. M.

5.3. Combinatorial description of the homology of Conf,(C)/C*. There
is a well known homeomorphism Conf, (C)/(C* x C) = Conf,;(P')/PGLy =
Moy pt1 for all n > 2. Because C is contractible, this gives an isomorphism
H;(Conf,(C)/C*,Z) = H;(Moyn+1,Z). These homology groups were first com-
puted by Getzler [Get95]. These groups have also appeared in the representation
stability literature in the work of Hyde—Lagarias [HL17].

In this section, we describe Hy(Conf,, (C)/C*, Z) combinatorially, following Get-
zler [Get96, Sec 1.17]. We write Cj, for the k' graded piece of the Arnold ring,
also known as the Orlik—Solomon algebra associated to the braid arrangement. C.
is the free graded commutative algebra generated by classes {wsj}izjef1,... 0} i
degree 1, subject to the relations w;; = wj; and w;;wjr + WjrWr + Wriw;; = 0
for all 4,5,k € {1,...,n}. The group C} was computed to be the homology of
H*(Conf,(C)) by Arnold [Arn69], it is a free abelian group of rank (—1)*s(n,n—k)
where s(n, k) denotes the signed Stirling number of the first kind.

Define a differential d : Co — Co_1 by setting d(w;;) = 1 for all 4, j and extending
to all of C, by linearity and the Leibniz rule. We write dj : Cy — Ci_1 for the
degree k component of the differential.

Theorem 5.5 (Getzler). The map dy : Cy, — Ci_1 makes C, into an ezact chain
complex of S,, representations. Further, coker(d)) = Hj(Conf,(C)/C*,Z) as S,
representations.

Proof. Getzler |[Get96, Sec 1.17] shows that (Ce,ds) is exact, and identifies dj
with the action of the fundamental class, €, of C* ~ S' on H*(Conf, (C)). This
suffices to determine the integral cohomology of the quotient S,, equivariantly. One
method of computation is as follows. The E? page of the Moore spectral sequence
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TorH+(€)(z, H,(Conf, (C))) (see e.g. McCleary [McCOI, Theorem 7.28]) can be

~

computed using He(C*) 22 Z[e]/€*> and the minimal resolution of Z over this ring,
to be a direct sum of shifts of truncations of the complex CV. This, together with
Getzler’s exactness, shows that the spectral sequence degenerates at E? and Hy, is
isomorphic to coker dj. O

As a consequence of the exactness of Cy, we can compute the rank of coker(d)),
as well as the S,, character as an alternating sum.

Corollary 5.6. The group Hg(Conf, (C)/C*,Z) is free abelian of rank

rq = (—1)% Z s(n,n —1).

i<d
As S, representations we have
ch(H4(Conf, (C)/C*,Q)) = (—1)¢ Z(—l)kch(Ck),
k<d
where ch denotes the Frobenius character.
The character ch(C}) may also be described in terms of Lie characters as follows.

For any set S, we define Lie(S) to be the free abelian group on all bracketings of the
elements of S modulo insertions of the anticommutativity and the Jacobi relations.

Example 5.7. As an S3 representation, may write a presentation of Lie({1, 2, 3})
as

ZSs{[[12]3], [1[23]]}
[[12]3] = —[[21]3], [[12]3] = —[3[12]], [1[23] + [3[12]] + [2[31]] = O

Define lie, := ch(sgn ® Lie({1,...,n})). Then Sundaram-Welker proved the
following theorem [SW97], stated in this form in [HR17, Sec 2.3].

Lie({1,2,3}) =

Proposition 5.8. The Frobenius character of Cy is given by the symmetric func-

tion
ch(Cy) = Z H B, [lie) ] H em, [lie} ]

(m1,ma,...) | >, imi=n, > ,(i—1)m;=k i even i odd

where hy, is the homogeneous symmetric function, and f[g] denotes plethysm of
symmetric functions.

There are formulas that express the symmetric functions lie” in terms of power
sums and mobius numbers (of N), which can be used to make the above formula
more explicit.

Theorem 5.9 (Stanley, [Sta82]). We have lie, = % 2din u(d)(—l)"/dpg/d,

Remark 5.10. Because s(n,n —1) is a degree 2¢ polynomial in n, it follows from the
arguments of this section that the ranks of H;(F),, Z) eventually agree with a degree
2i polynomial in n. This can be used to show that the stable degree of H;(F,Z) is
exactly 2¢. One can use this improved bound on stable degree to slightly improve
the bounds for local degree, generation degree, and presentation degree of H;(F,Z).
Plausibly, these improved ranges are also suboptimal. In fact, we conjecture that
these quantities grow linearly with i.
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