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REPRESENTATION STABILITY FOR PURE BRAID GROUP

MILNOR FIBERS

JEREMY MILLER AND PHILIP TOSTESON

Abstract. We prove a representation stability result for the Milnor fiber as-
sociated to the pure braid group. Our result connects previous work of Set-
tepanella to representation stability in the sense of Church–Ellenberg–Farb,
answering a question of Denham.
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1. Introduction

Let Confn(C) denote the configuration space of n points in the complex plane.
This configuration space is a hyperplane complement and we will study the homol-
ogy of the associated Milnor fiber

Fn =




(x1, . . . , xn) |
∏

i<j

(xi − xj) = 1




 ⊆ Confn(C).

The Milnor fiber Fn admits two natural group actions: the alternating group An

acts by permuting the coordinates, and the
(n
2

)
th roots of unity act by multiplying

the coordinates. In fact, we can extend these actions to the action of a single group

Ŝn := {(σ, d) ∈ Sn ×Z | d odd ⇐⇒ sgn σ = −1}, n ≥ 2.

The element (σ, d) acts by

(x1, . . . , xn) (→ (ζd
n(n−1) xσ(1), . . . , ζ

d
n(n−1) xσ(n)),

where ζk := exp( 2πi
k ) is the distinguished primitive kth root of unity.

In [Set04, Theorem 1.1], Settepanella showed that, for n ≥ 3i − 2, the action by
roots of unity on Hi(Fn, Q) is trivial. This result prompted Graham Denham to
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8178 JEREMY MILLER AND PHILIP TOSTESON

ask whether the homology of the Milnor fiber exhibits any form of representation
stability [Den18, Problem 10]. In this paper, we establish a representation stability
result for the homology of Fn which incorporates the action of Ŝn.

To state this theorem, we use a category F̂I which is built out of quotients of Ŝn

in the same way as the category FI, of finite sets and injections, is built from Sn.
We define an action of F̂I on H∗(Fn, Z), and prove a finite generation result.

Theorem A. For all i, the sequence {Hi(Fn, Z)}n is a finitely generated F̂I-module.

See Definition 2.2 for a definition of finite generation and see Theorem 3.15 for
a version of Theorem A with explicit stability bounds.

This theorem has several consequences. We show that if Mn is a finitely gener-
ated F̂I-module, then for n sufficiently large, the subgroup Z ⊂ Ŝn acts trivially and
hence Mn agrees with a finitely generated FI-module in a stable range. In this way,
Theorem A incorporates features of both the phenomenon Settepanella established
and representation stability for symmetric group representations.

Theorem B. For all n ≥ 5 + 11i + 3i2, the roots of unity µ(n
2)

act trivially on

Hi(Fn, Z). In this range, Hi(Fn, Z) agrees with a finitely generated FI-module.

In particular, the rational Sn representations Hi(Fn, Q) exhibit representation
stability in the sense of Church–Farb [CF13, Definition 1.1] (see Church–Ellenberg–
Farb [CEF15, Theorem 1.13]). In [Set04, Theorem 1.2], Settepanella computed the
groups Hi(Fn, Q) in a stable range. Using our results, we are able to extend this
to an integral calculation.

Theorem C. For n ≥ 5 + 11i + 3i2, there is an Sn-equivariant injection:

Hi(Fn, Z) → Hi(Confn(C)/C∗, Z).

The cokernel agrees with a finitely generated FI-module consisting of torsion abelian
groups.

In particular, the group Hi(Fn, Z) is noncanonically isomorphic to
Hi(Confn(C)/C∗, Z) in a stable range. The homology of Confn(C)/C∗ is canoni-
cally isomorphic to the homology of the moduli space of genus 0 curves with n + 1
marked points, M0,n+1. The Sn representation Hi(M0,n+1) has been calculated by
Getzler [Get95, Theorem 5.7]. In §5, we give a self-contained description of the
homology.

Our method of proof of Theorem A involves considering highly connected semi-
simplicial sets with actions of the groups Ŝn and π1(Fn). This is an adaptation of
Quillen’s approach to proving homological stability. The proof is in the spirit of
Putman [Put15] and largely fits into the axiomatic framework of Patzt [Pat19].

Similar theorems are likely true for the Milnor fibers associated to the type B
and type D braid groups. Additionally, we expect that the techniques of this paper
apply to prove representation stability for homology of the subgroup of surface braid
groups with total winding number zero. We will not consider these generalizations
here.

1.1. Description of Stabilization Maps. The category F̂I does not act naturally
on the Milnor fiber Fn; we only construct an action of F̂I up to homotopy. Our
situation is analogous to the action of FI on H∗(Confn(C)) by adding points, where
FI only acts on Confn(C) up to homotopy. For this FI action, a representative of
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REPRESENTATION STABILITY FOR MILNOR FIBERS 8179

the standard injection [n] ↪→ [n + 1] is given by a map Confn(C) → Confn+1(C)
that adds an n + 1st point to the right of the first n points.

Our stabilization map Fn → Fn+1 is induced by the map Confn(C)→Confn+1(C)
in the following sense. The Milnor fiber Fn is a K(π, 1), and we have π1(Fn) ⊂
π1(Confn(C)). The FI stabilization map Confn(C) → Confn+1(C) takes π1(Fn) →
π1(Fn+1), and we define the action of F̂I so that [e] ∈ Ŝn+1/Ŝn = F̂I(n, n + 1) acts
on π1 by this inclusion. This suffices to determine the action e : Fn → Fn+1 up to
homotopy.

We have two other, more geometric, descriptions of this stabilization map. To
describe the first, we replace the Milnor fiber Fn by the covering space of Confn(C)
associated to the inclusion of fundamental groups π1(Fn) ↪→ π1(Confn(C)), F ′

n.
This space can be described as

F ′
n =




(xi)
n
i=1 ∈ ConfnC, z ∈ C |

∏

i<j

(xi − xj) = exp(z)




 ,

since taking log shows that this is a cover and there is a deformation retraction
of the map F ′

n → ConfnC to Fn → ConfnC, given by taking z → λz and xi →
xi exp(λ/

(n
2

)
) for λ ∈ [0, 1]. There is a unique lift of any choice of stabilization

map Confn(C) → Confn+1(C) to a map of covers F ′
n → F ′

n+1. On homology, this

induces the action of [e] ∈ F̂I(n, n + 1).
Second, Gadish has described a stabilization map on the Milnor fiber Fn itself,

which induces the action of [e] ∈ F̂I(n, n + 1) on homology. Gadish’s observation
is that given a configuration (xi)n

i=1 such that
∏

1≤i<j≤n(xj − xi) = 1, if we add a
point xn+1 ∈ R ⊂ C such that xn+1 is + 0, then the complex number

a =
∏

1≤i<j≤n+1

(xj − xi) =
n∏

i=1

(xn+1 − xi)

has argument > 0 and we can choose a branch of the function that takes
(n+1

2

)
th

roots, and divide each xi by a1/(n+1
2 ) to continuously obtain a point in Fn+1.

To formally define Gadish’s map e : Fn → Fn+1, we fix a branch of the
(n+1

2

)
th

root function with branch cut along the negative real axis. Then we define

e(x1, . . . , xn) to be (y1, . . . , yn+1) where yi = xi/a1/(n+1
2 ), a =

∏n
i=1(xn+1 − xi),

and

xn+1 = 1 +
n∑

i=1

re(xi) +
n∑

i=1

im(xi)

tan(π/n)
.

2. Algebraic preliminaries

In this section, we define F̂I. We recall some facts concerning the theory of
FI-modules and describe their implications for F̂I-modules.

2.1. F̂I-modules. We begin by constructing a monoidal structure on the groupoid

Ŝ :=
⊔

n

Ŝn.
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8180 JEREMY MILLER AND PHILIP TOSTESON

Here we define Ŝ0 and Ŝ1 to be trivial groups. The monoidal structure is given by
the maps

mn1,n2 : Ŝn1 × Ŝn2 → Ŝn1+n2 , (σ1, d1) × (σ2, d2) (→ (σ1σ2, d1 + d2).

When n1, n2 are clear from context, we write m = mn1,n2 . We will write i1(Ŝn1) ⊂
Ŝn1+n2 for m(Ŝn1 × e), and i2(Ŝn2) for m(e × Ŝn2). Since the subgroup ir(Ŝnr) is
isomorphic to Ŝnr , when it is clear which embedding we are taking, we suppress ir
from our notation.

The category Ŝ has a braided monoidal structure induced by the surjection pn :
Brn → Ŝn. More precisely, the braid σa,b which braids the first a strands over the
last b strands conjugates ma,b to ma,b. See §3.1.1 for the definition of pn and our

conventions on braid groups. Since the maps ir : Ŝnr → Ŝn1+n2 are inclusions, the
construction of Randall-Williams Wahl [RWW17, Theorem 1.10] applies to produce

a monoidal category F̂I = U Ŝ. We will make the definition of F̂I and its monoidal
structure explicit.

The category F̂I has objects indexed by natural numbers, and morphisms given
by the right cosets

F̂I(n, m) = Ŝm/i2(Ŝm−n).

The composition F̂I(n, m)× F̂I(m, l) → F̂I(n, l) is given by [s]× [t] (→ [ti1(s)]. It is
well defined because elements of i2(Ŝl−m) commute with i1(a), and is associative
because ui1(ti1(s)) = ui1(t)i1(s).

The monoidal structure is given on objects by n1 × n2 (→ n1 + n2, and on
morphisms by

F̂I(n1, m1)× F̂I(n2, m2) (→ F̂I(n1 +n2, m1 +m2), [s]× [t] (→ [i1(s)i2(t)]◦ [τm1−n1,n2 ],

where τm1−n1,n2 denotes the element of Brm1+m2 defined as follows. Writing

[m1 + m2] = [n1] - [m1 − n1] - [n2] - [m2 − n2],

we let τm1−n1,n2 be the element which braids the strands of [m2 − n2] over the
strands of [n1].

Remark 2.1. To obtain the monoidal category F̂I as we have defined it from
[RWW17, Theorem 1.10], apply their construction to braided monoidal groupoid
defined by:

Ŝa × Ŝb
switch−→ Ŝb × Ŝa

mb,a−→ Ŝa+b.

Given a category C, the term C-module will mean functor from the category C to
the category of abelian groups. Let ModC denote the category of C-modules. For
an F̂I-module or Ŝ-module M and n a natural number, let Mn denote the value
of M on n. There is a functor from Ŝ to F̂I which identifies Ŝ with the largest
subcategory of F̂I such that every morphism is invertible. This gives a forgetful
functor ModF̂I → ModŜ.

Definition 2.2. Let I : ModŜ → ModF̂I be the left adjoint to the forgetful functor.

An F̂I-module M is called induced if M ∼= I(W ) for some Ŝ-module W . We say M

has generation degree ≤ d if there is a short exact sequence of F̂I-modules:

I(W ) → M → 0
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REPRESENTATION STABILITY FOR MILNOR FIBERS 8181

with Wn
∼= 0 for n > d. We say M is finitely generated if there is a short exact

sequence of F̂I-modules:

I(W ) → M → 0

with
⊕

n Wn a finitely generated abelian group. We say M has presentation degree

≤ r if there is a short exact sequence of F̂I-modules:

I(V ) → I(W ) → M → 0

with Wn
∼= Vn

∼= 0 for n > r.

Note that if each Mn is finitely generated as an abelian group, then M is finitely
generated if and only if it has finite generation degree. Many definitions appearing
in this paper, including the above definitions, are adaptations of definitions for
FI-modules which have appeared in other papers. For the sake of brevity, we will
often only state definitions for F̂I-modules but will often also use the corresponding
definition for FI-modules.

2.2. Central stability homology and regularity. Central stability homology is
a construction which often appears on E2-pages of spectral sequences used to estab-
lish representation stability. When certain semi-simplicial sets are highly connected,
central stability homology controls degrees of higher syzygies [Pat19, Theorem 5.7].

Definition 2.3. Let M be an F̂I-module and n a natural number. For p ≥ −1, let

Ccs,F̂I
p (M)n = IndŜn

i1(Ŝn−(p+1))
Mn−(p+1).

These groups assemble to form an augmented semi-simplicial F̂I-module, defined
in terms of the following maps.

The F̂I-module structure of M gives maps xn : ZF̂I(n, n + 1) ⊗ Mn → Mn+1.

The automorphism group F̂I(n, n) = Ŝn acts on Mn on the left and on F̂I(n, n + 1)
on the right. And the map xn factors the quotient to yield

xn : IndŜn+1

i1(Ŝn)
Mn = ZF̂I(n, n + 1) ⊗ZŜn

Mn → Mn+1.

For a braid b ∈ Brm, right multiplication by b gives an automorphism ZŜn+m →
ZŜn+m as an Ŝn+m, Ŝn bi-module. There is an induced automorphism of IndŜn+m

Ŝn
Mn,

which we will also denote b. Let ui ∈ Brp+1 be the element that braids the ith
strand over all the others to the left, ui := σ−1

i−1,iσ
−1
i−2,i−1 . . .σ−1

1,2.

The ith face operator fi :Cp(M)n→Cp−1(M)n is given by fi =(IndŜn

Ŝn−p
xn−(p+1))◦

ui:

IndŜn

Ŝn−(p+1)
Mn−(p+1) → IndŜn

Ŝn−(p+1)
Mn−(p+1)

∼= IndŜn

Ŝn−p
Ind

Ŝn−p

Ŝn−(p+1)
Mn−(p+1) → IndŜn−p

ŜnMn−p

These fi satisfy the semi-simplicial identites. This fact is a consequence of the
general definition of central stability chains given in §5.1.

We call the associated chain complex Ccs,F̂I
∗ (M) central stability chains. We call

the homology of this chain complex central stability homology and denote it by

Hcs,F̂I
∗ (M). We note that because induction of representations from a subgroup is
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8182 JEREMY MILLER AND PHILIP TOSTESON

exact, the functor M (→ Ccs,F̂I
∗ (M) is exact. We will use this fact tacitly throughout

the paper.

One can define central stability chains and homology for FI-modules by analogous
formulas. We will use the notation Ccs,FI

∗ (M) and Hcs,FI
∗ (M) respectively for the

central stability chains and homology of an FI-module M . The following is [MW19,
Corollary 2.25].

Proposition 2.4. Let M be an induced FI-module with generation degree ≤ d.

Then
(
Hcs,FI

i (M)
)

n
= 0 for i ≤ n − 2 − d.

We will need a slight generalization of this result to a larger class of FI-modules.

Definition 2.5. An FI-module is called semi-induced if it has a filtration with
filtration quotients induced FI-modules.

Corollary 2.6. Let M be a semi-induced FI-module with generation degree ≤ d.

Then
(
Hcs,FI

i (M)
)

n
≤ n − 2 − d.

Proof. By definition, semi-induced FI-modules have filtrations with filtration quo-
tients induced FI-modules. Central stability chains is an exact functor. The claim
follows by induction on this filtration using Proposition 2.4 and the long exact
sequence in homology induced by a short exact sequence of chain complexes. !
Remark 2.7. In §5,we give more conceptual definitions the central stability homol-
ogy chain complex for F̂I-modules, in terms of (braided) commutative monoids in
a braided monoidal category.

Vanishing of central stability homology controls the generation and presentation
degree.

Proposition 2.8. Let M be an F̂I-module, and let r ≥ d. Then Hcs,F̂I
−1 (M)n

∼= 0

for all n > d if and only if M has generation degree ≤ d. Additionally, Hcs,F̂I
−1 (M)n

∼= 0 for all n > d and Hcs,F̂I
0 (M)n

∼= 0 for all n > r if and only if M has generation
degree ≤ d and presentation degree ≤ r.

We will defer the proof until the next section. For FI-modules, a similar theorem
is true.

Proposition 2.9. Let M be an FI-module. Then Hcs,FI
−1 (M)n

∼= 0 for all n > d if

and only if M has generation degree ≤ d. Additionally, Hcs,FI
−1 (M)n

∼= Hcs,FI
0 (M)n

∼= 0 for all n > r, if and only if M has presentation degree ≤ r.

Proof. Let HFI
i denote the ith left derived functor of Hcs,FI

−1 . By definition,

Hcs,FI
−1 (M) ∼= HFI

0 (M). It follows from the proof of [CMNR18, Proposition 2.4]

that Hcs,FI
0 (M) vanishes if and only if HFI

1 (M) vanishes. The claim now follows
from Church–Ellenberg [CE17, Proposition 4.2]. !

2.3. Relationship between F̂I and FI. There is a functor F̂I → FI given by
Ŝn/Ŝn−m → Sn / Sn−m, which intertwines the monoidal structures on them. This

map is an isomorphism F̂I(n, m) → FI(n, m) whenever m ≥ n + 2. We say that

an F̂I-module M is an FI-module if the functor M : F̂I → ModZ factors through
F̂I → FI.
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REPRESENTATION STABILITY FOR MILNOR FIBERS 8183

Proposition 2.10. An F̂I-module M is an FI-module if and only if (e, 2)n ∈
F̂I(n, n) acts trivially on Mn for all n.

Proof. Clearly, if M is an FI-module, then (e, 2)n acts trivially on FI. Conversely,

we have Ŝn/(e, 2)n
∼= Sn and (e, 2)n\F̂I(n, n + 1) ∼= FI(n, n + 1), so that if (e, 2)n

acts trivially, the action factors through FI(n, n + 1). !

Definition 2.11. The monoidal structure − ⊕ − : F̂I × F̂I → F̂I gives rise to a
functor −⊕ 1 : F̂I → F̂I. We define the suspension ΣM to be the restriction of M
along − ⊕ 1. The unique map 0 → 1 ∈ F̂I(0, 1), induces a natural transformation
Mn = Mn⊕0 → Mn⊕1 = ΣM .

Definition 2.12. For M an F̂I-module, we define ≥dM ⊂ M to be the submodule

(≥dM)n =

{
Mn if n ≥ d

0 otherwise

Proposition 2.13. Let M be an F̂I-module generated in degree ≤ a. Then ≥a+2M

and ΣaM are FI-modules. Let W be an F̂I-module with ΣnW an FI-module. Then

≥n+2W is an FI-module.

Proof. If n ≥ a + 2, then (e, 2)n acts trivially on Mn, since (e, 2)n acts trivially

on F̂I(a, n) and the map ZF̂I(a, n)⊗ Ma → Mn is a surjective map of Ŝn modules.
Therefore ≥a+2M is an FI-module. Also (e, 2)n acts trivially on ΣaM for all n ≥ 2.
So ΣaM is an FI-module.

For the last statement, let (e, 2)j ∈ Ŝj for j ≥ n + 2. Then the element (e, 2)j−n

acts on (ΣnM)j−n = Mj via its image under i1 : Ŝj−n → Ŝj , which is (e, 2)j . Since
ΣnM is an FI module Proposition 2.10 implies the action of (e, 2)j−n on (ΣnM)j−n

is trivial. Therefore (e, 2)j acts on Mj , so applying Proposition 2.10 again we see
that ≥n+2M is an FI module. !

We now compare F̂I-module central stability homology with FI-module central
stability homology.

Proposition 2.14. Let N be an FI-module. There is a canonical map of central

stability complexes Ccs,F̂I
p (N)n → Ccs,FI

p (N)n which induces an isomorphism for
p ≤ n − 3.

Proof. When n − (p + 1) ≥ 2, the projection map Ŝn → Sn gives a canonical
bijection Ŝn/Ŝn−(p+1) → Sn / Sn−(p+1). The projection map induces ZŜn ⊗Ŝn−(p+1)

Nn → Z Sn ⊗Sn−(p+1)
Nn, and writing this map in terms of coset representatives for

Ŝn/Ŝn−(p+1), we see that it is an isomorphism. !

Now we return to the proof of Proposition 2.8. The key input is the following
Lemma.

Lemma 2.15. We have that Hcs,F̂I
0 (I(V )) = 0, Hcs,F̂I

−1 (I(V )) = V for all Ŝ repre-
sentations V .

Proof. To simplify notation, we will write Hi for Hcs,F̂I
i−1 and Ci for Ccs,F̂I

i−1 throughout
the proof.

Licensed to Univ of Chicago. Prepared on Thu May 18 16:14:49 EDT 2023 for download from IP 205.208.116.24.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



8184 JEREMY MILLER AND PHILIP TOSTESON

First we show the claim in the case V = Z0, where Z0 the Ŝ representation
that is Z in degree 0 and 0 elsewhere. In this case I(V )n = ZF̂I(0, n). We need
only consider the first three terms of the complex. Except for n ≤ 3, this complex
agrees with the FI central stability complex of ZFI(0,−), and hence is exact by
a special case of Patzt [Pat19, Theorem 5.7]. Therefore we have H0(I(Z0))n =
H1(I(Z0))n = 0 for all n ≥ 3. It is easy to check directly that H0(I(Z0))0 = Z
and H1(I(Z0))0 = H∗(I(Z0))1 = 0. In the case n = 2 the complex takes the
form ZŜ2 → ZŜ2 → Z → 0 where the generator [e] (→ [e] − [(σ, 1)]. Using the
identification Ŝ2

∼= Z, it is clear that this complex is exact. Finally, in the case
n = 3, we have

ZF̂I(2, 3) → ZF̂I(1, 3) = ZFI(1, 3) → ZF̂I(0, 3) = ZFI(0, 3) → 0.

Since leftmost map factors through the surjection ZF̂I(2, 3) → ZFI(2, 3), we may
again use the exactness of the FI central stability complex of ZFI(0,−) to show
exactness. This finishes the case V = Z0.

To extend to the general case, notice that the complex of Ŝ representations
C∗(I(V )) takes the form V ∗C∗(I(Z0)), where V ∗M denotes the induction product
or Day convolution

(V ∗ M)n =
⊕

a+b=n

IndŜn

Ŝa×Ŝb
Va ⊗ Mb.

Write C for the complex C∗(I(Z0)). Using the first homology spectral sequence
for V ∗L C, we see that H0(V ∗L C) = H0(V ∗ C) and H1(V ∗L C) has a two-step
filtration with graded pieces H1(V ∗C) and H0(Tor∗1(V, C)). Here Tor∗i denotes the
ith derived functor for − ∗ − , which can be computed by resolving either factor.
To prove the lemma, it suffices to show that H0(V ∗L C) = V and H1(V ∗L C) = 0.

Using the second hyperhomology spectral sequence, we see that H1(V ∗L C) has
homology bounded above by Tor∗1(V, H0(C)) and Tor∗0(V, H1(C)). Both of these
groups vanish: in the first case H0(C) = Z0 and the functor V (→ V ∗ Z0 = V
is exact, and in the second case because H1(C) = 0. Thus H1(V ∗L C) vanishes.
Similarly, the hyperhomology spectral sequence gives us H0(V ∗L C) = V ∗H0(C) =
V ∗ Z0 = V , completing the proof. !

Proof of Proposition 2.8. Again, to simplify notation, we will write Hi for Hcs,F̂I
i−1

and Ci for Ccs,F̂I
i−1 . Let

I(T ) → I(W ) → I(V ) → M → 0

be an exact sequence, which is the beginning of a resolution of M by induced
modules. Then by Lemma 2.15, and a hyperhomology spectral sequence we have
H0(M) and H1(M) are computed by H1 and H0 of the complex

D := (H0(I(T )) → H0(I(W )) → H0(I(V ))) = (T → W → V ).

Suppose that Vn = 0 for all n > d and Wn ≥ 0 for all n > r. Then H0(M)n = 0
for all n > d and H1(M)n = 0 for all m > r. Thus, the generation degree of M is
at most d and the presentation degree is at most r. This implies the vanishing of
homology.

To prove the converse, we use the notion of a minimal surjection. For any
F̂I-module M we say that a surjection I(V ) " M is minimal if V ⊂ I(V ) →
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M is an inclusion, and for all n we have that Vn = H0(I(V ))n → H0(M)n =

Mn/F̂I(n − 1, n)Mn−1 is a surjection, and if H0(M)n = 0 then Vn = 0.

For any F̂I-module M , we construct a minimal surjection I(V ) → M as fol-
lows. Let Vn ⊂ Mn be an Ŝn subrepresentation that surjects onto H0(M)n =

Mn/F̂I(n, n + 1)Mn−1, such that Vn = 0 for all n such that H0(M)n = 0. Then
the Ŝ representation V gives a map I(V ) → M . This map is surjective by the
graded Nakayama lemma: clearly I(V )0 = V0 → M0 = H0(M)0 is surjective and

inductively I(V )n−1 " Mn−1 implies that F̂I(n−1, n)I(V )n−1 " F̂I(n−1, n)Mn−1

and so Vn " Mn/F̂I(n − 1, n)Mn−1 implies that I(V )n " Mn. By construction it
is minimal.

Let M be a module such that H0(M)n = 0 for n > d and H1(M)n = 0 for
n > r ≥ d. Choose a minimal surjection p : I(V ) " M and a minimal surjection
I(W ) " K := ker p, to obtain a presentation I(W ) → I(V ) → M . By minimality
of I(V ) " M , V is nonzero only in degrees ≤ d. Further, the long exact sequence
in homology induced by 0 → K → I(V ) → M → 0 gives an exact sequence

0 → H1(M) → H0(K) → V → H0(M) → 0

Thus in degrees > r ≥ d we have that H0(K) vanishes. By minimality of I(W ) "
K, we have that Wn = 0 for n > r. Thus the generation degree of M is ≤ d and
the presentation degree is ≤ r. !

2.4. Stable degree and local degree. In this subsection, we describe how the
theory of stable and local degree of FI-modules can be adapted to F̂I-modules.

Definition 2.16. Let M be an F̂I-module. The local degree of M is the smallest
number N ≥ −1 such that ΣN+1M is a semi-induced FI-module.

Following [CMNR18], we denote the local degree of M by hmax(M).

Definition 2.17. Let M be an F̂I-module. Let ∆M be the cokernel of the natural
map M → ΣM . We say that M is torsion if for all n and all x ∈ Mn, there is an
element f ∈ HomF̂I(n, m) with f∗(x) = 0. The stable degree of M is the smallest
number N ≥ −1 such that ∆N+1M is torsion.

Following [CMNR18], we denote the stable degree of M by δ(M). In [CMNR18],
the stable degree of an FI-module was defined using an analogous formula. Note
that the functors Σ and ∆ in the category of FI-modules defined in [CMNR18]

agrees with their F̂I analogs on the subcategory of the category of F̂I-modules with
trivial Z-action. Similarly, an FI-module is torsion if and only if it is torsion when
viewed as an F̂I-module. Thus, for M an F̂I-module which is also an FI-module,
δ(M) as defined in [CMNR18] agrees with δ(M) as defined here. Thus, we will not

distinguish between the FI-module and the F̂I-module versions of these notions.

Proposition 2.18. Let M be an F̂I-module. If ΣNM is an FI-module with gener-
ation degree ≤ d, then δ(M) ≤ d.

Proof. By [CMNR18, Page 2, Equation ((()], δ(ΣNM) ≤ d. To prove the claim,
we just need to show that δ(ΣNM) = δ(M). This is the case because ∆ commutes

with ΣN and the fact that an F̂I-module T is torsion if and only if ΣNT is torsion.
Also see [CMNR18, Proposition 2.9]. !
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The following proposition is immediate from the definition.

Proposition 2.19. Let M be an F̂I-module. Then hmax(M) ≤ N + hmax(ΣNM).

Lemma 2.20. Let M be an F̂I-module with ΣNM generated in degrees ≤ d. Then
M has generation degree ≤ d + N .

Proof. Since ΣNM is generated in degrees ≤ d,

IndŜn

Ŝd
(ΣNMd) → ΣNMn

is surjective for all n ≥ d. This is equivalent to the statement that

IndŜn

Ŝd
Md+N → (ΣNM)n

is surjective for all n ≥ d. This implies that

IndŜn+N

Ŝd+N
Md+N → Mn+N

is surjective for all n ≥ d and so M is generated in degree ≤ d + N . !
The following is an adaptation of [CMNR18, Proposition 3.1] to the case of

F̂I-modules.

Proposition 2.21. Let M be an F̂I-module with local degree N and stable degree
d. Then the generation degree of M is ≤ d + N + 3 and the presentation degree is
≤ 2N + d + 6.

Proof. As noted in the proof of Proposition 2.18, stable degree is independent
of shifts. Thus, δ(ΣN+1M) = d. Since ΣN+1M is a semi-induced FI-module,
[CMNR18, Proposition 2.9 (1)] implies that ΣN+1M has generation degree equal
to d. By Lemma 2.20, M has generation degree ≤ d + N + 1. This implies

Hcs,F̂I
−1 (M)n

∼= 0 for n > d + N + 1 by Proposition 2.8.
By Proposition 2.13, ≥N+3M is an FI-module. The stable degrees of ≥N+3M

and M agree since they agree after sufficiently many shifts. Since ΣN+3
≥N+3M =

ΣN+3M is a semi-induced FI-module, ≥N+3M has local degree ≤ N + 2. By
[CMNR18, Page 2, Equation (()], ≥N+3M has generation degree ≤ N + d + 3 and
presentation degree ≤ 2N + d + 6 as an FI-module. By Proposition 2.9, we have
that

Hcs,FI
−1 ( ≥N+3M)n

∼= 0 for n > N + d + 3

and
Hcs,FI

0 ( ≥N+3M)n
∼= 0 for n > 2N + d + 6.

By Proposition 2.14, we have that

Hcs,F̂I
−1 ( ≥N+3M)n

∼= 0 for n > N + d + 3

and

Hcs,F̂I
0 ( ≥N+3M)n

∼= 0 for n > 2N + d + 6.

The natural map of F̂I-modules ≥N+3M → M induces an isomorphism on (Ccs,F̂I
p )n

for n ≥ p + N + 4. Thus,

Hcs,F̂I
0 (M)n

∼= 0 for n > 2N + d + 6.

The claim now follows by Proposition 2.8. !
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3. Representation stability

In this section, we will prove that {Hi(Fn)}n assemble to form an F̂I-module
which is generated in finite degree. We adapt the algebraic techniques of [CMNR18]

to the case of F̂I-modules. We use connectivity results of Hatcher–Wahl [HW10].

3.1. Fundamental group of the Milnor fiber and Ŝn. Our first goal is describe
an action up to homotopy of F̂I on the spaces Fn. We begin with a discussion of
braid groups and fundamental groups of Milnor fibers.

3.1.1. Braid Conventions. Let Brn be the braid group on n strands. We will write
{σi,i+1}n−1

i=1 for the Artin generators of Brn. Diagramatically, our convention is
that strands are numbered 1, . . . , n from left to right, and we read the braids from
top to bottom. The element σi,i+1 braids the ith strand over the i + 1st strand.
The element b1b2 denotes the braid b1 followed by the braid b2. Similarly, given
a decomposition of [n] into disjoint subsets [n] = A - B, such that b ≥ a for all
a ∈ A, b ∈ B, we let σA,B ∈ Bn denote the element that braids the strands of A
over the strands of B.

We will write PBrn for the pure braid group. The pure braid group is generated
by elements ai,j ⊂ Brn which braids the ith strand over and around the jth strand.
That is, we have ai,j = σi,i+1 . . .σj,j+1σj,j+1σ

−1
j−1,j . . .σ−1

i,i+1.
The groups Brn and PBrn are the fundamental groups of the unordered and

ordered configuration spaces of C respectively. When we take the fundamental
group of a configuration space, we implicitly choose a base point where all of the
points are on the x-axis, and are in order if the configuration space is ordered.

Throughout, for n ∈ N, we define [n] = {1, . . . , n} to be the distinguished set
with n elements. If we speak of an order on [n] it will be the standard order.

Let qn : Confn(C) → C∗ be the map qn(xi) =
∏

i<j(xi − xj). Then the nth

type A Milnor fiber is Fn = q−1
n (1). We write P̂Brn := π1(Fn) for its fundamental

group. To compute the map π1qn : PBrn → Z, notice that it factors through the
abelianization, so we may compute the map on H1, or its dual on H1. The form
dz/z = d log(z) that generates H1

DR(C∗) pulls back along qn to d log(
∏

i<j(xi −
xj)) =

∑
i<j d log(xi − xj). So the map on H1 is 1 (→

∑
i,j wij , where wij ∈

H1(PBrn, Z) is the cohomology class that gives the winding number between two
points. Thus π1qn is given by ai,j (→ 1 for the generators of the pure braid group
ai,j dual to wij .

Since the map qn is a fibration and PBrn → Z is surjective, we have a short
exact sequence

1 → P̂Brn → PBrn → Z → 1,

where Z is the fundamental group of C∗. From the long exact sequence in homotopy
groups associated to the fiber sequence

Fn → Conf(C) → C∗,

we see that the Milnor fiber is homotopy equivalent to the classifying space of P̂Brn.
We have the following chain of inclusions P̂Brn ⊂ PBrn ⊂ Brn. The next

proposition explains how Ŝn relates to P̂Brn.

Proposition 3.1. Let pn : Brn → Ŝn be the map defined on generators by σi,i+1 (→
((i, i+1), 1), which takes a braid to its associated permutation and winding number.
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The map pn gives a short exact sequence:

1 → P̂Brn → Brn
pn−→ Ŝn → 1.

Proof. The kernel of pn equals the kernel of its restriction to the pure braid group
PBrn → e×2Z. This map takes the generator of the pure braid group ai,j to (e, 2).

Thus the map agrees with π1pn, and the kernel is P̂Brn. !

The category F̂I acts on Fn up to homotopy. We may see this by producing an
action of F̂I on P̂Brn up to inner automorphisms. The most direct way to define
this action is as follows.

For [s] ∈ Ŝm/i2(Ŝn−m) = F̂I(n, m), choose a lift s̃ ∈ Brm such that pm(s̃) = s.
Then [s] : Fn → Fm is given by f (→ s̃i1(f)s̃−1. This map is well defined up to

conjugation by elements of P̂Brm since

(1) any other lift of s differs by an element of P̂Brm,
(2) if [t] = [s], then t = su for u ∈ i2(Ŝn−m) and every lift of u to an element

ũ in i2(Brn−m) commutes with elements of P̂Brn.

These maps compose properly to give a functor from F̂I to the category of groups
modulo inner automorphisms. Composing with the ith homology functor gives a
functor from F̂I to abelian groups. We denote this F̂I-module by Hi(F ). We use the
convention that if we do not specify coefficients for homology, then the statement
we make is true with any choice of untwisted coefficients.

3.2. Construction of a spectral sequence. Our first goal is to construct spectral
sequences, E∗

∗,∗(N)n such that the E2 page is

E2
p,q(N)n

∼= Hcs,F̂I
p (ΣNHq(F ))n

and which converges to zero for p + q ≤ n − 3. We do this by constructing an
augmented semi-simplicial space which is highly connected. The main input that
we use is a connectivity result of Hatcher–Wahl [HW10, Proposition 7.2].

Definition 3.2. Let Brk,N be the preimage of i1(Sk) under the map Brk+N →
Sk+N .

Definition 3.3. Let Z•(N)n be the following semi-simplicial set. We let Zp(N)n =
Brn,N /i1(Brn−(p+1),N ) for n ≤ p − 1, and Zp(N)n = ∅ for p ≥ n. The kth face
map is induced by

− · uk : Brn,N → Brn,N ,

where uk ∈ Brp+1 is as in Definition 2.3, and Brp+1 is included into Brn,N ⊂ Brn+N

by

Brp+1
i2
↪→ Brn

i1
↪→ Brn+N .

We will show that the complex Z•(N)n agrees with a simplicial complex that
Hatcher–Wahl [HW10] proved is highly connected.

Proposition 3.4. Z•(N)n is (n − 2)-connected.

Proof. We will write Zp for Zp(N)n throughout the proof.
Elements of Brk,N are isotopy classes of braids on k + N strands which return

the last N strands to themselves. Therefore, Brk,N is the fundamental group of
Confk+N (C)/ Sk .
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Let

Arcp+1(Confn+N (D2)/ Sn)

be the space of configurations of n+N points, where the first n points are unlabelled,
and p+1 arcs connecting a subset of the n points to an interval on the boundary of
D2, see Kupers–Miller [KM14, Appendix] and Miller–Wilson [MW19, Section 3.2].
This space is homotopy-equivalent to Confn−(p+1)+N (C)/ Sn−(p+1), and so we have

Brn−(p+1),N = π1

(
Arcp+1(Confn+N (D2)/ Sn)

)
.

Further, the map Arcp+1(Confn+N (D2)/ Sn) → Confn+N (D2)/ Sn), given by for-
getting the p + 1 arcs is a fibration, and on fundamental groups it is given by the
inclusion Brn−p+1,N → Brn,N used to defined Z•. By the long exact sequence in
homotopy,

fib(Arcp+1(Confn+N (D2)/ Sn) → Confn+N (D2)/ Sn),

is homotopy discrete and its connected components are identified with

Brn,N / Brn−(p+1),N = Zp.

Simultaneously, the connected components of the fiber are of isotopy classes of p+1
arcs from the boundary, connecting to the first n of N+n points, so that the arcs are
not allowed to cross or pass through the points. Under this identification, the face
maps of Zp correspond to forgetting arcs, and so Z• is isomorphic to the complex
A(D2−[N ]; [n], [n])• appearing in Hatcher–Wahl [HW10, Section 7]. Hatcher–Wahl
[HW10, Proposition 7.2] implies states A(D2 − [N ]; [n], [n]) (n − 2)-connected. !

It is convenient to use the variant of Brk,N for Ŝn, and of the semi simplicial set
Z•(N)n.

Definition 3.5. Let B̂rk,N be the preimage of i1(Ŝk) under the map Brk+N →
Ŝk+N .

The sets Ẑp(N)n := B̂rn,N/B̂rn−(p+1),N form a semi-simplicial set defined by
the same formulas as in Definition 3.3.

Notice that B̂rk,N ⊂ Brk,n. In fact, the two groups are often the same.

Lemma 3.6. We have B̂rk,N
∼= Brk,N for k ≥ 2.

Proof. We need that the preimage of Sk under the projection Ŝk+N → Sk+N is
Ŝk. This follows from the fact that Ŝk+N/Ŝk → Sk+N / Sk is an isomorphism for
k ≥ 2. !

Definition 3.7. Let P̂Brn,N ⊂ B̂rn,N be the kernel of the surjection B̂rn,N " Ŝn.

Then P̂Brn,N acts on the semi-simplicial set Zp(N)n = B̂rn,N/B̂rn−(p+1),N by left

multiplication. Let Xp(N)n := P̂Brn,N\\Zp(N)n, where P̂Brn,N\\− denotes a
functorial homotopy quotient. Then X•(N)n is a semisimplicial space, which is

augmented by the map Xp(N)n → X−1(N)n := P̂Brn,N\\∗.

We will suppress n, N from the notation for Xp(N)n when the context is clear.

Proposition 3.8. For every j, the associated chain complex Hj(X•(N)n) is canon-

ically isomorphic to the central stability chains Ccs,F̂I
• (ΣNHj(F−)).
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Proof. We have that

P̂Brn,N\\B̂rn,N/B̂rn−(p+1),N 4 P̂Brn,N\\B̂rn,N//B̂rn−(p+1),N

4 P̂Brn,N\B̂rn,N//B̂rn−(p+1),N 4 Ŝn//B̂rn−(p+1),N .

Thus Hj(Xp) ∼= Hj(B̂rn−(p+1),N , ZŜn). Under this identification, the ith face op-

erator acts by restricting ZŜn to Brn−p and multiplying by ui, where ui is as in
§2.2.

Now the map B̂rn−(p+1),N → Ŝn factors as B̂rn−(p+1),N " Ŝn−(p+1) ↪→ Ŝn. By

definition of B̂rn−(p+1),N ⊆ Brn−(p+1)+N , the kernel of this map equals the kernel

of Brn−(p+1)+N → Ŝn−(p+1)+N which is P̂Brn−(p+1)+N .
We have

Ha(Ŝn−(p+1), Hb(P̂Brn−(p+1)+N , ZŜn)) ∼= Ha(Ŝn−(p+1), ZŜn ⊗ Hb(P̂Brn−(p+1)+N ))

since the coefficients are free, this last term vanishes for a 5= 0, and for a = 0

is equal to IndŜn

Ŝn−(p+1)
(Hb(P̂Brn−(p+1)+N )). By the Serre spectral sequence, this

shows that Hj(Xp, Z) ∼= IndŜn

Ŝn−(p+1)
(Hj(P̂Brn−(p+1)+N )), as desired. !

We now show that the augmented semi-simplicial space is connected in a range
growing in n.

Proposition 3.9. Let n ≥ 2. Then the augmentation map |X•| → X−1 induces
an isomorphism on Hi for i ≤ n − 3.

Proof. It suffices to prove that the semi-simplicial set Ẑ• is n − 3 connected since
it has the homotopy type of the homotopy fiber of |X•| → X−1. The inclusion

B̂rk,N ⊂ Brk,N induces a map of simplical sets Ẑ• → Z•. By Lemma 3.6, this map
is an isomorphism on p simplices for p ≤ n − 3. Since we have assumed n ≥ 2, it
is a surjection on n − 2 simplices. Thus Ẑ• is n − 3 connected if Z• is. Finally by
Proposition 3.4, we have that Z• is n − 2 connected (and hence n − 3 connected),
completing the proof. !

From the above two propositions, we obtain a spectral sequence with the desired
properties.

Proposition 3.10. For all n and N , there is a homologically graded spectral se-
quence Er

p,q(N)n with

E2
p,q(N)n

∼=
(
Hcs,F̂I

p (ΣNHq(F ))
)

n
and

E∞
p,q(N)n

∼= 0 for p + q ≤ n − 3.

Here we take p ≥ −1 and q ≥ 0.

3.3. Proof of stability. The following three lemmas will be used in an induction
argument to prove representation stability for Milnor fibers.

Lemma 3.11. We have that δ(H0(F )) ≤ 0 and hmax(H0(F )) = −1.

Proof. Since H0(Fn) ∼= Z and all of the stabilization maps are isomorphisms,
δ(H0(F )) is generated in degree 0 and so δ(H0(F )) ≤ 0. Since Σ0H0(F ) is an
induced FI-module, hmax(H0(F )) = −1. !

Licensed to Univ of Chicago. Prepared on Thu May 18 16:14:49 EDT 2023 for download from IP 205.208.116.24.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



REPRESENTATION STABILITY FOR MILNOR FIBERS 8191

The following lemma is an adaptation of the arguments in [CMNR18, Theorem
5.1, Part 1)].

Lemma 3.12. Let i ≥ 1 and suppose δ(Hq(F )) ≤ 2q + 1 for all q < i and
hmax(Hq(F )) is finite for all q < i. Then δ(Hi(F )) ≤ 2i + 1.

Proof. Let N be a number larger than hmax(Hq(F )) for all q < i and take n > 2i+1.
By Proposition 3.10, we have that

E∞
−1,i(N)n

∼= 0

and
E2

p,q(N)n
∼= Hcs,F̂I

p (ΣNHq(F ))n.

By Proposition 2.18 and Proposition 2.9, it suffices to show Hcs,F̂I
−1 (ΣNHi(F ))n

∼= 0.

Since E2
−1,i(N)n

∼= Hcs,F̂I
−1 (ΣNHi(F ))n and E∞

−1,i(N)n
∼= 0, it suffices to show that

E2
−1,i(N)n

∼= E∞
−1,i(N)n. To do this, we will show that E2

t,i−t(N)n
∼= 0 for all

0 ≤ t ≤ i + 1.
We have E2

p,q(N)n
∼=Hcs,F̂I

p (ΣNHq(F )). Consider q<i. Since N >hmax(Hq(F )),
ΣNHq(F ) is a semi-induced FI-module. Since ΣNHq(F ) has generation degree
≤ 2q + 1 and is semi-induced, Corollary 2.6 implies that

(
Hcs,FI

p (ΣNHq(F ))
)
n
∼= 0 for p ≤ n − 2 − 2q − 1.

By Proposition 2.14,
(
Hcs,F̂I

p (ΣNHq(F ))
)

n

∼=
(
Hcs,FI

p (ΣNHq(F ))
)
n

for p ≤ n − 3.

Consider t ≤ i+1, i > 0. Since n > 2i+1, and i ≥ 1, we have that t ≤ n− 3. Thus
E2

t,i−t(N)n
∼= 0 for all 0 ≤ t ≤ i + 1 and so the claim follows. !

The following lemma is an adaptation of the arguments in [CMNR18, Theorem
5.1, Part 2)].

Lemma 3.13. Let i > 0 and assume δ(Hq(F )) ≤ 2q+1 for q ≤ i and hmax(Hq(F ))
≤ f(q) for q < i for some increasing function f . Then hmax(Hi(F )) ≤ f(i − 1) +
6i + 6.

Proof. Let N = f(i − 1) + 1 and let N ′ ≥ N . As in the proof of Lemma 3.12, we
have that

E2
p,q(N

′)n
∼= 0 for p ≤ n − 2 − 2q − 1 and q < i.

This means there are no nontrivial differentials into or out of Er
−1,i(N

′)n for r ≥ 2
and n > 2i + 1 since E2

i−q,q(N
′)n

∼= 0 for q < i and n > 2i + 1. Thus

Hcs,F̂I
−1 (ΣN ′

Hi(F ))n
∼= E2

−1,i(N
′)n

∼= E∞
p,q(N

′)n
∼= 0 for n > 2i + 1.

By considering E2
0,i(N

′)n instead of E2
−1,i(N

′)n, we get the inequality

Hcs,F̂I
0 (ΣN ′

Hi(F ))n
∼= 0 for n > 2i + 2.

Let M = ΣN+2i+3Hi(F ). By Proposition 2.13, M is an FI-module. By Proposition
2.14, Hcs,FI

−1 (M) ∼= 0 for n > max(2i + 1, 2) = 2i + 1 and Hcs,FI
0 (M) ∼= 0 for

n > max(2i + 2, 3) = 2i + 2. By Proposition 2.9, we have that M has generation
degree ≤ 2i + 1 and presentation degree ≤ 2i + 2. By [CMNR18, Page 2, Equation
((()], the local degree of M is ≤ 4i + 2. Note that M is an N + 2i + 3-fold shift of
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Hi(F ) and N + 2i + 3 = f(i − 1) + 2i + 4. Proposition 2.19 implies that the local
degree of Hi(F ) is ≤ f(i − 1) + 6i + 6. !

Solving the recurrence and combining Lemma 3.11, Lemma 3.12, Lemma 3.13
gives the following.

Proposition 3.14. The stable degree of Hi(F ) is ≤ 2i + 1 and the local degree is
≤ −1 + 9i + 3i2.

Combining this with Proposition 2.21 gives the following.

Theorem 3.15. The generation degree of Hi(F ) is ≤ 3 + 11i + 3i2 and the pre-
sentation degree is ≤ 5 + 20i + 6i2.

Since Fn is an algebraic variety, Hi(Fn) is finitely generated as an abelian group
for all i and n, Theorem A follows from Theorem 3.15. Theorem B follows from
Theorem 3.15 and Proposition 2.13.

Remark 3.16. It seems very plausible that a linear stable range is in fact optimal.
Gan–Li [GL17] were able to prove linear stable ranges for congruence subgroups of
general linear groups. Can one adapt their techniques to the case of Milnor fibers?
One major obstacle to doing this is the fact that the chains on the Milnor fibers do
not seem to be homotopy equivalent to an F̂I-chain complex.

4. Stable calculations

In this section, we will study Hi(Fn, Z) in the range where the action of µ(n
2)

is

trivial. In particular, we will compare its homology to Hi(Confn(C)/C∗, Z) using
the fact that Confn(C)/C∗ = Fn/µ(n

2)
.

Theorem 4.1. Suppose that µ(n
2)

acts trivially on Hi(Fn, Z) for i ≤ k. Then

Hi(Fn, Z) is torsion free for i ≤ k, and the map Fn → Confn(C)/C∗ induces an Sn

equivariant isomorphism on rational homology in degrees ≤ k.

The main content of the above theorem is that the homology of Fn is torsion free.
The rank of the group was already determined by Settepanella [Set04, Theorem 1.2].

4.1. Comparing Confn(C)/C∗ and Fn. First we note that with Q coefficients,
the homology of Fn is canonically isomorphic to the homology of Confn(C)/C∗ in
the range where µ(n

2)
acts trivially.

Proposition 4.2. If µ(n
2)

acts trivially on Hi(Fn, Q) for i ≤ k, then Hi(Fn, Q) ∼=
Hi(Confn(C)/C∗, Q) for i ≤ k.

Proof. The group µ(n
2)

acts freely on Fn and its quotient is Confn(C)/C∗. Thus the

rational homology of Confn(C)/C∗ is canonically identified with the coinvariants
Hi(Fn, Q)µ(n

2)
under the pushforward map. Since µ(n

2)
acts trivially for i ≤ k, we

obtained the desired isomorphism. !

Proposition 4.3. If µ(n
2)

acts trivially on Hi(Fn, Z) for all i ≤ k, then Hi(Fn, Z)

is torsion free for all i ≤ k − 1.

To prove this proposition, we will need the following lemma.
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Lemma 4.4. Let Z/m be an abelian group, and let C be a chain complex of
Fp[Z/m] = Fp[x]/(xm − 1) modules concentrated in homological degree ≥ 0. As-
sume that Hi(C) is finite dimensional for all i ≤ k, and x − 1 acts nilpotently on
Hi(C). Then there exists a chain complex G∗ of projective Fp[Z/m] modules and a

quasi-isomorphism f : G∗
)−→ C∗ such that:

(1) for all i ≤ k, Gi is isomorphic P⊕r for some r ∈ N, where P is the module

P := Fp[x]/(x − 1)pd

, and pd is the largest power of p dividing m,
(2) for all i ≤ k + 1, the differential di : Gi → Gi−1 is zero mod x − 1.

Proof. First, note that (xpd − 1) = (x − 1)pd

is the largest power of x − 1 dividing
xm − 1. Therefore P is a summand of Fp[x]/(xm − 1) by the Chinese remainder
theorem, and so is projective. Since x− 1 acts invertibly on all of the other factors,
if a power of (x − 1) annihilates an element of a Fp[Z/m]-module, then (x − 1)pd

annihilates it.
We construct the resolution G∗ inductively in the usual way. To determine G0,

choose m1, . . . , mr0 a collection generators of H0(C∗) which is minimal in the sense
that the associated map P⊕r0 → H0(C∗) is an isomorphism mod x − 1. We let
G0 = P⊕r0 , and choose a lift of G0 → H0(C∗) to f0 : G0 → Z0(C∗) ⊂ C0.

To determine G1, we consider H1(cone(G0 → C∗)) = ker(G0⊕C1 → C0)/d(C2),
and again choose a collection of minimal generators which give a map P r1 →
H1(cone(G0 → C∗)), which lifts to a map d1 ⊕ f0 : P r1 → G0 ⊕C1. The map from
the two term complex induces an isomorphism of homology groups in degree 0, and
a surjection on homology in degree 1. The map d1 : G1 → G0 is minimal because
its image is {g ∈ G0 | ∃c ∈ C1, f0(g) = d(c)} and we have that for every such g
the homology class of f0(g) vanishes and so g must be divisible by (x − 1) by the
minimality of f0.

To determine G3, we choose minimal generators of the second homology of the
cone, ker(G1 ⊕ C2 → G0 ⊕ C1)/d(C3), and so on. We continue in this way until
determining Gk+1, where we replace the role of the module P by the free module
Fp[x]/(xm − 1), and no longer require minimality of generators. !

Proof of Proposition 4.3. Fix i ≤ k − 1 and let µ = µ(n
2)

. We have that Hj(Fn, Z)

is a finitely generated abelian group, with rank equal to the rank of the group
Hj(Confn(C)/C∗, Z) for all j≤k by Proposition 4.2. The group Hj(Confn(C)/C∗, Z)
is torsion free, see §5.3. Thus by the universal coefficient theorem, to show that
Hi(Fn, Z) is torsion free, it suffices to show that the dimension of Hi+1(Fn, Fp)
equals the dimension of Hi+1(Confn(C)/C∗, Fp) for all primes p and all i ≤ k − 1.

Since Confn(C)/C∗ is a quotient of Fn by a free µ action, we have that
C∗(Confn(C)/C∗, Fp) is quasi-isomorphic to G∗ ⊗Fp[µ] Fp with G∗ any chain com-
plex of projective Fp[µ]-modules quasi-isomorphic to C∗(Fn; Fp). We will choose
G∗ so it satisfies the conditions of Lemma 4.4.

For j ≤ k, we have Gj = P⊕rj . By Condition 2 of Lemma 4.4, we have
G∗ ⊗Fp[µ] Fp has zero differential in degrees ≤ k. Thus rj is the dimension of
Hj(Confn(C)/C∗, Fp).

The dimension of Hj(Fn, Fp) is the dimension of Hj(G∗). Call this number cj .
We want to show that rj = cj . We have that rj ≤ cj because Hj(Confn(C)/C∗, Z)
is torsion free and agrees with Hj(Fn, Z) rationally and because the dimension of
Hj(Fn, Fp) is at least as large as the dimension of Hj(Fn, Q).
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To show that cj ≤ rj , we show that any subquotient of P⊕rj (in particular
Hj(G∗)) can be generated by less than or equal to rj elements. It suffices to show
this for submodules, and the preimage every submodule of M ⊆ P⊕rj under the
projection Fp[x]⊕rj → P⊕rj is an Fp[x] submodule M̃ ⊆ Fp[x]⊕rj . Since Fp[x] is
a PID, the submodule M̃ is free and thus generated by at most rj elements. The
images of these elements in P⊕rj generate M and so the claim is proved, rj = cj ,
and we are done. !

From Proposition 4.3 and Proposition 4.2, we immediately obtain Theorem 4.1.
Theorem B and Theorem 4.1 imply Theorem C.

5. Appendix

5.1. Central Stability Homology of Braided Monoidal Groupoids. Let
Kn ⊂ Brn be a sequence of normal subgroups such that the image of Ka × Kb

under the map ma,b : Bra ×Brb → Bra+b is contained in Ka+b. Denote the quo-
tient by Gn. Then {Gn}n∈N forms a braided monoidal groupoid. We have maps
ma,b : Ga × Gb → Ga+b. The braiding is the natural transformation ma,b → mb,a

induced by multiplication by σa,b ∈ Bra+b.
Write A = Rep -n Gn for the category of sequences of abelian groups An with

a Gn action. The induction product makes A into a braided monoidal category as
follows (see e.g. Joyal–Street [JS93]).

(1) We define

Mm ∗ Nn = IndGm+n

Gm×Gn
Mm ⊗ Nn = ZGm+n ⊗ZGn×Gm Mm ⊗ Nn.

(2) We define the map tm,n : Mm ∗Nn → Nn ∗Mm from the action of σn,m on
ZGm+n by right multiplication.

As usual, in a monoidal category associative algebras and modules can be de-
fined diagramatically. From the braided monoidal structure on A = Rep -n Gn,
we can define a commutative algebra to be a unital associative algebra A, with a
multiplication µ : A ∗ A → A such that µ ◦ t = m. 1

Let V be an object of A, and let Symq(V ) =
⊕

n V ∗n/ Brn be the free com-
mutative algebra. A right module over Symq(V ) consists of M ∈ A and a map
a : M ∗V → M , such that a◦(a∗ idV ) : M ∗V ∗V → M equals a◦(a∗ idV )◦(idM ∗t).

Then for any Symq(V )-module M , there is a chain complex of Symq(V )-modules
Ccs

∗ (M):

M ←d0 M ∗ V ←d1 M ∗ V ∗ V ←d2 M ∗ V ∗ V ∗ V ← . . . ,

defined as follows. We have Ccs
p (M) = M ∗ V ∗p+1 for p ≥ −1. The differential

dp =
∑p+1

i=1 (−1)ifi is defined from an augmented semisimplicial set where the face
operator fi : M ∗ V ∗p+1 → M ∗ V ∗p acts by using the braiding to move the ith
factor of V over the other factors to M and then applying the multiplication a :
M ∗ V → M .

More formally, write ui ∈ Brp+1 for the element σ−1
i−1,iσ

−1
i−2,i−1 . . .σ−1

1,2 that braids
the ith strand over all the others to the left. Then fi acts by (a ∗ id∗p

V ) ◦ (idM ∗ ui).
The semisimplicial identities hold because the multiplication map M ∗ V ∗ V → M
factors through M ∗ (V ∗ V )/ Br2 → M . For similar reasons Ccs

∗ (M) has the

1More properly, we could call A a braided commutative algebra, or an E2-algebra.
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structure of a chain complex of right Symq(V ) modules, where Symq(V ) acts on
M ∗ V ∗i by using the braiding to move over the factors of V .

Remark 5.1. The construction generalizes to produce a semisimplicial object for
any object with an action of a free commutative monoid in a braided monoidal
category.

In the cases we consider, V is Z, the trivial representation of G1 concentrated in
degree 1. That is, we have

V = {Vn}n∈N =

{
V1 = Z
Vi = 0 i 5= 1

.

Further, we will only be concerned with cases corresponding to F̂I and FI.

Example 5.2. Let Gn = Ŝn, and V = Z as above. Then right Symq(V )-module

are canonically equivalent to F̂I-modules: the data of a right Symq(V )-module is

given by maps Mn ∗ Symi
q(V ) → Mn+i, which correspond to

IndŜn+i

Ŝn×Ŝi
Mn ⊗ Z ∼= ZŜn+i/i2(Ŝi) ⊗Ŝn

Mn → Mn+i.

Further, we have that (M ∗ V ∗p)n = IndŜn

i1(Ŝn−p)
Mn−p, and Ccs

∗ (M) agrees with

Ccs,F̂I
∗ (M) as defined in Definition 2.3.

Example 5.3. For Gn = Sn, Symq(V )-modules are the same as FI-modules, and
we obtain the FI central stability complex in the same way.

For any inclusion of subgroups Jn ⊂ Kn with quotient p : Hn " Gn, there is a
pullback p∗ : Rep -n Gn → Rep -n Hn. The pullback is braided lax monoidal in
the sense that there is a canonical map p∗M ∗ p∗N → p∗(M ∗ N), and this map is
compatible with the braiding.

Using this structure, Symq(V )-modules pull back to Symq(V )-modules. Because
central stability complexes are defined in terms of tensor powers of V , the braiding,
and the action of V on M , there is an induced map of semisimplicial complexes of
Symq(V )-modules Ccs

∗ (p∗M) → p∗Ccs
∗ (M).

Example 5.4. In the case of p : Ŝn → Sn, the map of central stability complexes
agrees with the map of Proposition 2.14.

5.2. Comparison with the central stability complex of Patzt. Let C,⊕, be
a monoidal category such that the unit object 0 ∈ C is initial. Let Ix : Mod C →
Mod C denote the left adjoint to Sx, defined to be restriction along the functor
− ⊕ x : C → C. Let M be a C-module. Let ∆inj denote the category governing
augmented semi-simplicial objects. That is, ∆inj is the category with objects finite
ordered sets and morphisms given by order preserving injections. Patzt defines the
central stability chains of M with respect to x, to be the chain complex associated
to the augmented semi-simplicial abelian group

∆op
inj → Mod C, [n] (→ Ix⊕nM.

For an ordered injection f : [n] → [m] ∈ ∆inj([n], [m]), the associated map
Ix⊕n ← Ix⊕m is adjoint to the natural transformation Sx⊕n → Sx⊕m induced by
the morphism f : x⊕n → x⊕m.

Licensed to Univ of Chicago. Prepared on Thu May 18 16:14:49 EDT 2023 for download from IP 205.208.116.24.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



8196 JEREMY MILLER AND PHILIP TOSTESON

In our setting C is the category F̂I, and x is the object 1. To compute the functor

IŜ
1 in this case, we note that there are restriction and induction functors SŜ

1 and IŜ
1

defined on the category ModŜ.

In fact, when M is an F̂I-module IŜ
1M carries a canonical F̂I-module structure.

To see this, we identify F̂I-modules with Symq(V )-modules, where V is the Ŝ rep-

resentation consisting of V concentrated in degree 1. Observe that IŜ
1M = M ∗ V ,

where ∗ denotes the induction tensor product of Ŝ-modules. Then M ∗ V becomes
a right Symq(V )-module through the map

M ∗ V ∗ Symq(V ) →idM∗t M ∗ Symq(V ) ∗ V →a∗idV M ∗ V,

where t denotes the braiding, and a denotes the action map for the F̂I-modules
structure on M .

This lifts IŜ
1 to a functor Mod F̂I → Mod F̂I, and we have that IŜ

1 4 IF̂I
1 is

adjoint to SF̂I
1 . In other words, let M, N be F̂I-modules. Then a map of Ŝ-modules

IŜ
1M → N is a map of FI-modules if and only if M → SŜ

1N = SF̂I
1 M is a map of

F̂I-modules.
Under this identification, the central stability complex of Patzt corresponds to

the central stability complex of §2.2. The presence of a braiding in the differentials
of our central stability complex corresponds to the braiding used to define the

F̂I-module structure of IŜ
1M , and thus the corresponding adjoint maps IŜ

1⊕rM →
IŜ
1⊕sM .

5.3. Combinatorial description of the homology of Confn(C)/C∗. There
is a well known homeomorphism Confn(C)/(C∗ ! C) ∼= Confn+1(P1)/PGL2 =
M0,n+1 for all n ≥ 2. Because C is contractible, this gives an isomorphism
Hi(Confn(C)/C∗, Z) = Hi(M0,n+1, Z). These homology groups were first com-
puted by Getzler [Get95]. These groups have also appeared in the representation
stability literature in the work of Hyde–Lagarias [HL17].

In this section, we describe Hd(Confn(C)/C∗, Z) combinatorially, following Get-
zler [Get96, Sec 1.17]. We write Ck for the kth graded piece of the Arnold ring,
also known as the Orlik–Solomon algebra associated to the braid arrangement. C∗
is the free graded commutative algebra generated by classes {ωij}i +=j∈{1,...,n} in
degree 1, subject to the relations ωij = ωji and ωijωjk + ωjkωki + ωkiωij = 0
for all i, j, k ∈ {1, . . . , n}. The group Ck was computed to be the homology of
Hk(Confn(C)) by Arnold [Arn69], it is a free abelian group of rank (−1)ks(n, n−k)
where s(n, k) denotes the signed Stirling number of the first kind.

Define a differential d : C• → C•−1 by setting d(ωij) = 1 for all i, j and extending
to all of C• by linearity and the Leibniz rule. We write dk : Ck → Ck−1 for the
degree k component of the differential.

Theorem 5.5 (Getzler). The map dk : Ck → Ck−1 makes C• into an exact chain
complex of Sn representations. Further, coker(d∨k ) ∼= Hk(Confn(C)/C∗, Z) as Sn

representations.

Proof. Getzler [Get96, Sec 1.17] shows that (C•, d•) is exact, and identifies dk

with the action of the fundamental class, ε, of C∗ 4 S1 on H•(Confn(C)). This
suffices to determine the integral cohomology of the quotient Sn equivariantly. One
method of computation is as follows. The E2 page of the Moore spectral sequence
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TorH•(C∗)
• (Z, H•(Confn(C))) (see e.g. McCleary [McC01, Theorem 7.28]) can be

computed using H•(C∗) ∼= Z[ε]/ε2 and the minimal resolution of Z over this ring,
to be a direct sum of shifts of truncations of the complex C∨. This, together with
Getzler’s exactness, shows that the spectral sequence degenerates at E2 and Hk is
isomorphic to coker dk. !

As a consequence of the exactness of Ck, we can compute the rank of coker(d∨k ),
as well as the Sn character as an alternating sum.

Corollary 5.6. The group Hd(Confn(C)/C∗, Z) is free abelian of rank

rd = (−1)d
∑

i≤d

s(n, n − i).

As Sn representations we have

ch(Hd(Confn(C)/C∗, Q)) = (−1)d
∑

k≤d

(−1)kch(Ck),

where ch denotes the Frobenius character.

The character ch(Ck) may also be described in terms of Lie characters as follows.
For any set S, we define Lie(S) to be the free abelian group on all bracketings of the
elements of S modulo insertions of the anticommutativity and the Jacobi relations.

Example 5.7. As an S3 representation, may write a presentation of Lie({1, 2, 3})
as

Lie({1, 2, 3}) =
ZS3{[[12]3], [1[23]]}

[[12]3] = −[[21]3], [[12]3] = −[3[12]], [1[23]] + [3[12]] + [2[31]] = 0

Define lie∨n := ch(sgn ⊗ Lie({1, . . . , n})). Then Sundaram–Welker proved the
following theorem [SW97], stated in this form in [HR17, Sec 2.3].

Proposition 5.8. The Frobenius character of Ck is given by the symmetric func-
tion

ch(Ck) =
∑

(m1,m2,... ) |
∑

i imi=n,
∑

i(i−1)mi=k

∏

i even

hmi [lie
∨
i ]

∏

i odd

emi [lie
∨
i ]

where hm is the homogeneous symmetric function, and f [g] denotes plethysm of
symmetric functions.

There are formulas that express the symmetric functions lie∨ in terms of power
sums and mobius numbers (of N), which can be used to make the above formula
more explicit.

Theorem 5.9 (Stanley, [Sta82]). We have lie∨n = (−1)n

n

∑
d|n µ(d)(−1)n/dpn/d

d .

Remark 5.10. Because s(n, n− i) is a degree 2i polynomial in n, it follows from the
arguments of this section that the ranks of Hi(Fn, Z) eventually agree with a degree
2i polynomial in n. This can be used to show that the stable degree of Hi(F, Z) is
exactly 2i. One can use this improved bound on stable degree to slightly improve
the bounds for local degree, generation degree, and presentation degree of Hi(F, Z).
Plausibly, these improved ranges are also suboptimal. In fact, we conjecture that
these quantities grow linearly with i.

Licensed to Univ of Chicago. Prepared on Thu May 18 16:14:49 EDT 2023 for download from IP 205.208.116.24.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



8198 JEREMY MILLER AND PHILIP TOSTESON

Acknowledgments

We would like to thank Christin Bibby, Graham Denham, and Dan Petersen for
helpful conversations. We thank Nir Gadish for allowing us to include his descrip-
tion of the stabilization map in this paper. We thank Graham Denham, Giovanni
Gaiffi, Rita Jiménez Rolland, and Alexander Suciu for organizing the MFO Ober-
wolfach program “Topology of Arrangements and Representation Stability” and
MFO Oberwolfach for hosting. In particular, we thank Graham Denham for posing
this question in the problem session.

References

[Arn69] V. I. Arnol′d, The cohomology ring of the group of dyed braids (Russian), Mat. Za-
metki 5 (1969), 227–231. MR242196

[CE17] Thomas Church and Jordan S. Ellenberg, Homology of FI-modules, Geom. Topol. 21
(2017), no. 4, 2373–2418, DOI 10.2140/gt.2017.21.2373. MR3654111

[CEF15] Thomas Church, Jordan S. Ellenberg, and Benson Farb, FI-modules and stability for
representations of symmetric groups, Duke Math. J. 164 (2015), no. 9, 1833–1910,
DOI 10.1215/00127094-3120274. MR3357185

[CF13] Thomas Church and Benson Farb, Representation theory and homological stability,
Adv. Math. 245 (2013), 250–314, DOI 10.1016/j.aim.2013.06.016. MR3084430

[CMNR18] Thomas Church, Jeremy Miller, Rohit Nagpal, and Jens Reinhold, Linear and
quadratic ranges in representation stability, Adv. Math. 333 (2018), 1–40, DOI
10.1016/j.aim.2018.05.025. MR3818071

[Den18] Graham Denham, Problem 10, Mathematisches Forschungsinstitut, Oberwolfach Re-
port No. 2 (2018), 74–75, https://www.mfo.de/occasion/1803/www_view.

[Get95] E. Getzler, Operads and moduli spaces of genus 0 Riemann surfaces, The moduli space
of curves (Texel Island, 1994), Progr. Math., vol. 129, Birkhäuser Boston, Boston, MA,
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