
The impact of deniers on epidemics: A temporal network model

Lorenzo Zino, Alessandro Rizzo, and Maurizio Porfiri

AbstractÐ We propose a novel network epidemic model to
elucidate the impact of deniers on the spread of epidemic
diseases. Specifically, we study the spread of a recurrent epi-
demic disease, whose progression is captured by a susceptible±
infected±susceptible model, in a population partitioned into two
groups: cautious and deniers. Cautious individuals may adopt
self-protective behaviors, possibly incentivized by information
campaigns implemented by public authorities; on the contrary,
deniers reject their adoption. Through a mean-field approach,
we analytically derive the epidemic threshold for large-scale
homogeneous networks, shedding light onto the role of deniers
in shaping the course of an epidemic outbreak. Specifically, our
analytical insight suggests that even a small minority of deniers
may jeopardize the effort of public health authorities when the
population is highly polarized. Numerical results extend our
analytical findings to heterogeneous networks.

I. INTRODUCTION

Mathematical models of epidemic spreading on networks

have gained increasing popularity in the last decade. They

have emerged as powerful tools to predict the course of

epidemic outbreaks [1]±[6] and, ultimately, to design and

assess intervention policies [2], [5], [7]. In the last few years,

the COVID-19 global health crisis has provided further mo-

tivation to pursue these studies. Within this collective effort,

the systems and control community has worked toward de-

veloping new models to capture specific features of COVID-

19 [8]. Through the lens of network theory, effective tools to

predict the spread of the disease and assess the effectiveness

of different intervention policies were developed [9]±[11].

However, there are still significant gaps in the application

of network theory to study epidemics, particularly in the

context of modeling human behavior. Human behavior plays

a crucial role in shaping the course of an epidemic outbreak,

as the individuals’ response to the epidemic spreading may

be quite diverse across a population. In fact, while the

majority of the individuals were concerned by the COVID-19

pandemics and were keen to adopt self-protective measures

to avoid the contagion, a nonnegligible minority of indi-

viduals kept denying the severity of the pandemic, or even

its existence [12]. They refused to take any action against

the contagion, even to comply with compulsory measures
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enforced by public authorities, such as social distancing or

the use of face masks [13]. The behavioral response to a

pandemic is indeed a divisive topic, which may lead to

the emergence or the increase of polarization in the pattern

of social interactions, since people might prefer to interact

with like-minded individuals [14]. The extent to which the

presence of deniers and the emergence of polarization impact

the pandemic spreading and the effectiveness of information

campaigns is still unclear, despite its paramount importance.

In this letter, we investigate these questions by proposing a

novel model for the spread of recurrent diseases, accounting

for the presence of deniers. Specifically, we design a tempo-

ral network model in which the population is partitioned into

two groups: cautious individuals and deniers. While cautious

individuals may decide to adopt self-protective behaviors

to prevent contagion, possibly encouraged by information

campaigns, deniers always refuse to adopt these behaviors.

Interactions between and within these groups are regulated

by a parameter, termed homophily, which captures the ten-

dency of individuals to interact with like-minded people.

Formally, we develop our model within the continuous-

time activity-driven network (ADN) paradigm [15], and we

expand such a framework to account for the population

structure. The use of ADNs allows us to formalize a model

that is analytically tractable and amenable to fast numerical

simulations [16], [17]. We model the epidemic spread-

ing using two distinct compartmental models. For deniers,

we adopt the well-known susceptible±infected±susceptible

(SIS) model; whereas, for cautious individuals, we employ

a susceptible±alert±infected±susceptible (SAIS) model. The

latter extends the SIS model by including an additional

state to keep track of individuals who adopt self-protective

behaviors to avoid contagion [17]±[19]. We assume that

self-protective behaviors are always successful in preventing

contagion, but they come with a nonnegligible cost that

may drive people to abandon them. Hence, the adoption

and rejection of self-protective behavior are regulated by two

contrasting mechanisms that account for the implementation

of information campaigns by public health authorities and

the social economic costs associated with their use.

We employ a mean-field approach to study the epidemic

model [20]. For large-scale networks, we study the local

exponential stability of the disease-free equilibrium (DFE).

For homogeneous ADNs, in which all the individuals have

the same level of social activity, we analytically establish a

closed-form expression for the epidemic threshold, shedding

light onto the impact of deniers on the success on eradicating

a local epidemic outbreak. Predictably, the presence of

deniers favors the spread of epidemic diseases. Moreover,



our analytical insight exposes the detrimental role played

by polarization: in highly polarized networks, even small

minorities of deniers can jeopardize the efforts of public

health authorities in promoting self-protective behaviors. For

heterogeneous ADNs, we derive a closed-form expression

for the linearization of the system about the DFE, which

allows for the fast numerical evaluation of the epidemic

threshold. Our numerical findings suggest that heterogeneity

may further favor the spread of epidemic diseases.

We gather here the notation used in the letter. We denote

by R, R≥0, R>0, and Z>0 the set of real, real nonnegative,

strictly positive real, and strictly positive integer numbers, re-

spectively. Given a continuous-time function x(t), we define

x(t−) := lims↗t x(s) and x(t+) := lims↘t x(s). A Poisson

clock with rate ρ ∈ R>0 is a continuous-time stochastic

process that clicks once between time t and t + ∆t with

probability ρ∆t+ o(∆t), independent of the past, where the

Landau notation o(∆t) is associated with the limit ∆t ↘ 0.

II. MODEL

A. Population model

We consider a population of n ∈ Z>0 individuals, V =
{1, . . . , n}, partitioned in two sub-populations: the deniers

and the cautious individuals. Deniers are not concerned about

the disease spreading and refuse to adopt any self-protective

measures, even if enforced by public authorities. On the

contrary, cautious individuals are worried about the epidemic

disease, and they may decide to adopt self-protective behav-

iors. Without any loss in generality, we assume that Vd :=
{1, . . . , nd} is the set of deniers, and Vc := {nd +1, . . . , n}
contains the cautious individuals. The fraction of deniers is

quantified by the parameter η := nd/n ∈ [0, 1].
Each individual v ∈ V is associated with a state xv(t)

that evolves in continuous time (t ∈ R≥0) and characterizes

the individual’s health state and behavior. Specifically, all

individuals can be either susceptible to the disease or infected

with the disease. Furthermore, cautious individuals may be

associated with a third state, which accounts for the adoption

of self-protective behaviors. Here, we assume that self-

protective behaviors are ideal, so that their adoption is 100%

effective in preventing contagion. However, as we shall see

in the following, their adoption is associated with social and

economic costs that may push people to stop adopting them.

We use the following notation for each individual’s state:

xv(t) =







S if v is susceptible,
I if v is infected,
P if v adopts self-protective behaviors,

(1)

at time t ∈ R≥0, with the understanding that xi(t) ∈ {S, I}
for i ∈ Vd, and xi(t) ∈ {S, I,P} for i ∈ Vc.

B. Time-varying interaction network

Each individual is identified by a node in an undirected

temporal network (V, E(t)), where the link set E(t) cap-

tures the evolving pattern of human-to-human interactions:

{v, w} ∈ E(t) means that individuals v and w interact

at time t. The temporal network is generated according

to a stochastic mechanism, inspired by continuous-time

ADNs [15], which we extend to account for the population

structure. Specifically, each individual v ∈ V is characterized

by a constant parameter av ∈ R>0, termed activity, which

captures the individual’s propensity to initiate interactions

with others. We further introduce a parameter θ ∈ [0, 1],
which captures the individuals’ preference to interact with

people sharing similar beliefs, termed homophily.

The network temporal is generated according to the fol-

lowing steps: i) at time t = 0, the link set is initialized as

E(t) = ∅. Each node v ∈ V is associated with a Poisson clock

with rate equal to av , each one independent of the others; ii)

time progresses until any of the n Poisson clocks involved in

the process clicks; iii) if the clock associated with node v ∈ V
clicks at time t, individual v is activated and selects a fellow

individual w to interact with. The individual w is selected

according to a probabilistic rule: with probability θ, w is

selected uniformly at random among the individuals with

the same belief of v (that is, among Vd if v ∈ Vd, or among

Vc if v ∈ Vc); otherwise, w is selected uniformly at random

in the entire population V; iv) the undirected link {v, w}
is added to E(t); and v) the link is immediately removed

from the set, the Poisson process associated with node v is

reinitialized, and the process is resumed from item ii).

C. Epidemic model

The state of each individual v ∈ V , xv(t), evolves accord-

ing to two different epidemic progressions for deniers and

cautious individuals. Deniers revise their state according to a

standard SIS model [5], while cautious individuals follow an

SAIS model [18], [19], implemented as in [17]. Both models

involve contagion and recovery, while the SAIS model has

two additional mechanisms: awareness and unprotecting,

described in the following.

Contagion. If a susceptible individual v (xv(t
−) = S)

contacts an infected one at time t ((v, w) ∈ E(t) with

xw(t) = I), then v becomes infected (Xv(t
+) = I) with

probability λ ∈ [0, 1] , independent of the others.

Recovery. An infected individual (Xv(t
−) = I) sponta-

neously recovers and becomes susceptible according to a

Poisson clock with rate µ ∈ R>0, independent of the others.

If v ∈ Vc is cautious, then v adopts self-protective behaviors

after recovery (Xv(t
+) = P); whereas, if v ∈ Vd is a denier,

v becomes susceptible again to the disease (Xv(t
+) = S).

Awareness. We introduce a parameter γ ∈ R≥0 to

quantify the effort exerted by public heath administrations in

information campaigns (a control input). A cautious suscep-

tible individual (Xv(t
−) = S, v ∈ Vc) starts adopting self-

protective behaviors (Xv(t
+) = P) according to a Poisson

clock with rate γ, independent of the others.

Unprotecting. A cautious individual who is adopting self-

protective behaviors (Xv(t
−) = P) spontaneously abandons

them due to the social and economic costs associated with

them (Xv(t
+) = S) according to a Poisson clock with rate

ν ∈ R>0, independent of the others. The rate ν captures the

costs associated with the adoption of self protections.
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Fig. 1: Schematic of the state transitions of the model.

III. DYNAMICS

A. Markov process

The formation process of the temporal network and the

four mechanisms described in Section II are all governed

by Poisson processes, each one independent of the oth-

ers. Hence, they induce an n-dimensional continuous-time

Markov process x(t) = [x1(t) . . . xn(t)] over the state space

{S, I}nd ×{S, P, I}nc [21]. Depending on the sub-population

they belong to, individuals may undergo up to four distinct

state transitions, illustrated in Fig. 1, which are triggered by

the processes described in Section II. The three transitions

triggered by recovery (from I to S or P), awareness (from S to

P) and unprotecting (from P to S) involve only spontaneous

mechanisms. Hence, the corresponding transition rates of the

Markov process are given by the rates of the underlying

Poisson process (µ, γ, and ν, respectively). Contagion,

instead, involves an interaction between two individuals and

is dependent on their health state. In the following, we

explicitly compute the corresponding transition rate.

Proposition 1. Let us define the indicator function

Iv(t) :=

{

1 if xv(t) = I,
0 otherwise.

(2)

A susceptible denier (Xv(t
−) = S, v ∈ Vd) becomes infected

(Xj(t
+) = I) according to a Poisson clock with rate

αv(x(t)) := λav

[ θ

ηn

∑

w∈Vd

Iw(t) +
1− θ

n

∑

w∈V

Iw(t)
]

+ λ
[ θ

ηn

∑

w∈Vd

awIw(t) +
1− θ

n

∑

w∈V

awIw(t)
]

, (3a)

while, for a cautious individual, v ∈ Vc, the rate is equal to

βv(x(t)) := λav

[ θ

(1− η)an

∑

w∈Vc

Iw(t) +
1− θ

n

∑

w∈V

Iw(t)
]

+ λ
[ θ

(1− η)n

∑

w∈Vc

awIw(t) +
1− θ

n

∑

w∈V

awIw(t)
]

(3b)

Proof. A susceptible denier v becomes infected if any of

the following four chains of events occur: i) v activates,

decides to restrain the interactions within the denier commu-

nity (which occurs with probability θ), contacts an infected

individual (which occurs with robability equal to the fraction

of infected individuals in the community), and becomes

infected (with probability λ); ii) v activates, decides not to

restrain the interactions within its community, has a contact

with an infected individual (which occurs with probability

equal to the fraction of infected individuals in the entire

population), and becomes infected; iii) any of the infected

denier individuals activates, decides to interact within the

denier community, has a contact with v, and infects them;

or iv) any of the infected individuals in the network activates,

decides to interact within the whole network, has a contact

with v, and infects them.

Since all the events in each chain are independent, the rate

corresponding to each chain of events is computed by multi-

plying the activity rate of the individual who activates by the

probability of each event in the chain [22]. For instance, for

chain i), we obtain the product avθ
1
ηn

∑

w∈Vd
Iw(t)λ, which

yields the first term in (3a). We recall that the transition

occurs as soon as the fastest of the four chains of events

occurs, and the events in the chains are disjoint. Hence, the

transition is triggered by a Poisson clock with rate equal to

the sum of the rates corresponding to the four chains [22].

After some algebraic simplifications, we obtain (3a). A

similar argument yields (3b).

We can summarize the transition rates of the Markov

process x(t) using the transition rate matrices

Qd
v =

[

· αv(x(t))
µ ·

]

, Qc
v =





· γ βv(x(t))
ν · 0
0 µ ·



 , (4)

that is, the probability that v ∈ Vs with s ∈ {d, c} changes

state from h ∈ {S, P, I} to k ∈ {S, P, I} is equal to P[xv(t+
∆t) = k |xv(t) = h] = (Qs

v)hk∆t + o(∆t), for any h ̸= k,

with the understanding that P can only be reached if v ∈ Vc.

B. Mean-field dynamics

Following [20], we consider a continuous-state determin-

istic mean-field relaxation of the dynamics in which, instead

of the evolution of the individuals’ state, we study its mean

dynamics, in terms of the probability for each individual to

be in each state. That is, for all v ∈ V , we define

sv(t) := P[xv(t) = S], iv(t) := P[xv(t) = I], (5a)

while, for v ∈ Vc, we further define

pv(t) := P[xv(t) = P]. (5b)

Briefly, in the mean-field approach [20], the system dy-

namics is obtained by approximating the expected value of

the transition rate matrices in (4) with the transition rate

matrices for the expected state of the system (E[Qd
v(x(t))] ≈

Qd
v[E[x(t)]]). Using this approach, the temporal evolution

of the probabilities in (5) is approximated by a system of

2n + nc ordinary differential equations (ODEs), obtained

as [ṡv i̇v] = [sv iv]Q
d
v[E[x(t)]], ∀ v ∈ Vd and [ṡv ṗv i̇v] =

[sv pv iv]Q
c
v[E[x(t)]], ∀ v ∈ Vp, recalling that E[Iw(t)] =

iw(t). For v ∈ Vd, we obtain

ṡv = µiv − svᾱv, (6a)

i̇v = −µiv + svᾱv, (6b)

with

ᾱv := λav

[

θ
ηn

∑

w∈Vd
iw + 1−θ

n

∑

w∈V iw

]

+λ
[

θ
ηn

∑

w∈Vd
awiw + 1−θ

n

∑

w∈V awiw

]

,
(7)



0 50 100 150
0

0.005

0.01

0.015

0
0

time, t

P
re

va
le

n
c
e

yd(t) + yc(t)

I(t)

(a) γ = 0.5

0 100 200 300
0

0.1
0.2
0.3

0
0

time, t

yd(t) + yc(t)

I(t)

(b) γ = 0.2

Fig. 2: Comparison between the Markov process and its

deterministic approximation at the population level. Blue

dashed curves are the epidemic prevalence computed inte-

grating numerically (6) and (8); red solid curves are the

epidemic prevalence in three runs of the Markov process.

Common parameters are n = 20, 000, η = 0.1, λ = 0.06,

µ = 1/7, ν = 0.5, θ = 0.2, and av = 1, for all v ∈ V .

and, for v ∈ Vc, we obtain

ṡv = −γsv + νpv − β̄v, (8a)

ṗv = γsv − νpv + µiv, (8b)

i̇v = −µiv + svβ̄v, (8c)

with

β̄v := λav

[

θ
(1−η)n

∑

w∈Vc
iw + 1−θ

n

∑

w∈V iw

]

+λ
[

θ
(1−η)n

∑

w∈Vc
awiw + 1−θ

n

∑

w∈V awiw

]

.
(9)

The following result proves that (6) and (8) are well defined.

Lemma 1. The domain S := {(sv, iv) : sv, iv ≥ 0, sv+iv =
1}nd × {(sv, iv) : sv, pv, iv ≥ 0, sv + pv + iv = 1}nc is

positive invariant under (6) and (8).

Proof. We immediately verify that, if one of the variables is

equal to 0, then its derivative is always nonnegative. Hence,

the nonnegative orthant is a positive invariant set. We further

observe that, under (6), ṡv + i̇v = 0, while under (8), ṡv +
ṗv + i̇v = 0, preserving the sum of the variables for each

node v, which proves our claim.

Remark 1. As a consequence of Lemma 1, only n + nc of

the ODEs from (6) and (8) are linearly independent.

From the set of n + nc independent ODEs that govern

the mean-field evolution of the process, it is straightforward

to conclude that the system has a unique DFE, that is, an

equilibrium of (6) and (8) with iv = 0 for all v ∈ V . The DFE

is characterized in the following lemma, proved by checking

the equilibrium conditions for (6).

Lemma 2. The unique DFE of the system has iv = 0 for

all v ∈ V and pv = γ
γ+ν

, for all v ∈ Vc.

Before our main results, we introduce some more notation.

Specifically, we define three macroscopic variables:

yd :=
1

n

∑

v∈Vd

iv, yc :=
1

n

∑

v∈Vc

iv, yp :=
1

n

∑

v∈Vc

pv, (10)

that is, the average probability for a randomly selected node

to be an infected denier, an infected cautious individual, and

to adopt self-protective behaviors, respectively.

In the thermodynamic limit, n → ∞, the temporal evolu-

tion of the stochastic process at the population level can be

approximated by the macroscopic variables in (10) for any

finite time-horizon within an arbitrary accuracy [20], [23].

In particular, we can approximate the epidemic prevalence

I(t) := 1
n
|{j ∈ V : xj(t) = I}| ≈ yd(t)+yc(t), as illustrated

in Fig. 2, which shows the high quality of the approximation

even for medium-size networks.

IV. RESULTS

A. Analytical results for the homogeneous ADNs

In general, it is not possible to derive closed-form ex-

pressions for the three ODEs that govern the macroscopic

variables in (10). In fact, the temporal evolution of the aver-

age probabilities in (10) depends recursively on higher-order

moments. However, closed-form expressions can be derived

for specific, yet interesting cases. We make the assumption

of homogeneous ADNs, in which all the individuals have the

same activity. In this scenario, we can derive a closed-form

expression for the ODEs for (10).

Proposition 2. In the thermodynamic limit, n → ∞, and if

av = a, for all v ∈ V , the mean-field evolution of the system

of macroscopic equations in (10) is governed by

ẏd =− µyd + 2λa(η − yd)·

·
[

(

1 + θ 1−η
η

)

yd + (1− θ)yc

]

(11a)

ẏc =− µyc + 2λa(1− η − yc − yp)·

·
[

(

1 + θ η
1−η

)

yc + (1− θ)yd

]

(11b)

ẏp =γ(1− η − yc − yp)− νyp + µyc. (11c)

Proof. First, we compute the derivative of (10) and we

substitute (6b), obtaining

ẏd = 1
n

∑

v∈Vd

i̇v = −µyd +
1
n

∑

v∈Vd

(1− iv)ᾱv. (12)

Then, (11a) is obtained by observing that, if av = a, for all

v ∈ V , (7) reduces to ᾱv = 2λa[(1 + θ 1−η
η

)yd + (1− θ)yc],
which can be substituted into (12), leading to (11a). The

other two equations come from similar arguments.

Proposition 2 establishes that, for homogeneous ADNs,

the epidemic spreading process can be studied with a three-

dimensional nonlinear system of ODEs in (11), instead of

the higher dimensional system in (6) and (8). The analysis of

such a system allows us to compute the epidemic threshold,

that is, to determine whether a local outbreak is eradicated,

or if it becomes endemic. Formally, the epidemic threshold

determines the region of the parameter space in which the

DFE is (locally) exponentially stable.

Theorem 1. The system in Proposition 2 admits a locally

exponentially stable DFE if and only if (iff)

λ

µ
< σ :=

1

a

[

η(1− θ) + θ + ν(1−η(1−θ))
γ+ν

+

+
√

(

η(1− θ) + θ + ν(1−η(1−θ))
γ+ν

)2
− 4 ν

γ+ν
θ
]−1 (13)
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Fig. 3: Threshold σ computed via (13) for different values of homophily, θ, fraction of deniers, η, and effort placed by

public heath authorities in information campaigns, γ. Common parameters are ν = 0.5 and av = 1, for all v ∈ V .

Proof. First, we perform the change of variable z = yp −
(1−η)γ
γ+ν

, and we observe that the DFE of (10) coincides with

the origin of the new system made by variables yd, yc, and

z. We linearize this system about the origin, obtaining:

ẏd = −µyd + 2λaη
[

(1 + θ 1−η
η

)yd + (1− θ)yc
]

(14a)

ẏc = −µyc + 2λa ν(1−η)
γ+ν

[

(1 + ηθ
1−η

)yc + (1− θ)yd
]

(14b)

ż = γ(1− η − yc − z − (1−η)γ
γ+ν

)− ν(z + (1−η)γ
γ+ν

) + µyc.

(14c)

The Jacobian matrix of (14) has a block-diagonal structure,

which allows us to compute its three eigenvalues Λ1,2,3.

From the block associated with the third row of (14), we

obtain the Λ1 = −γ − ν < 0. The other two eigenvalues

are equal to Λ2,3 = −µ+ λa[η(1− θ) + θ + ν(1−η(1−θ))
γ+ν

±
√

(η(1− θ) + θ + ν(1−η(1−θ))
γ+ν

)2 − 4 ν
γ+ν

θ] and are always

real, since the square root can be cast as the sum of two

nonnegative quantities. Hence, the DFE is locally exponen-

tially stable if all the eigenvalues of the Jacobian matrix of

(14) evaluated in the origin are negative [24], which occurs

iff (13) holds true, which concludes the proof.

Remark 2. For θ = 0, (13) reduces to λ/µ < [2a(η +
ν(1−η)
ν+γ

)]−1. In the absence of deniers, η = 0, it further

reduces to the threshold for a SAIS on a homogeneous

ADN [17].

Our theoretical result in Theorem 1 allows us to shed

light on the impact of deniers on the spread of epidemics.

In Fig. 3, we report a parametric study for the epidemic

threshold computed using (13). Figure 3a shows that, while

increasing the fraction of deniers predictably favors the

epidemic spreading, also homophily has a strong impact: as θ
increases, the threshold quickly decreases. This suggests that

even a small minority of deniers could hinder the eradication

of a disease in highly polarized scenarios. Figures 3b and 3c

investigate the effectiveness of information campaigns in

increasing the epidemic threshold, confirming that a small

minority of deniers is able to jeopardize even large control

efforts. For instance, in Fig. 3b, we observe that with only

20% of deniers, increasing the control effort has a marginal

effect if the homophily is higher than θ = 0.5.

B. Numerical results for heterogeneous ADNs

Despite the impossibility to derive closed-form expres-

sions for heterogeneous ADNs, we can follow [15], [17] to

establish a closed-form expression for the linearization of the

system about the DFE, through some ancillary variables.

Proposition 3. Let us define

zd :=
1

n

∑

v∈Vd

ivav, zc :=
1

n

∑

v∈Vc

ivav. (15)

In the thermodynamic limit, n → ∞, the linearization of the

mean-field evolution of the macroscopic variables in (10)

and ancillary variables in (15) about the DFE is given by

ẏd =− µyd + λ⟨a⟩dη[(1 + θ 1−η
η

)yd + (1− θ)yc]

+ λη[(1 + θ 1−η
η

)zd + (1− θ)zc] (16a)

ẏc =− µyc + λ⟨a⟩c
(1−η)ν
γ+nu

[(1 + θη
1−η

)yc + (1− θ)yd]

+ λ (1−η)ν
γ+ν

[(1 + θη
1−η

)zc + (1− θ)zd] (16b)

żd =− µzd + λ⟨a2⟩dη[(1 + θ 1−η
η

)yd + (1− θ)yc]

+ λ⟨a⟩dη[(1 + θ 1−η
η

)zd + (1− θ)zp] (16c)

żc =− µzc + λ⟨a2⟩d
(1−η)ν
γ+nu

[(1 + θη
1−η

)yc + (1− θ)yd]

+ λ⟨a⟩c
(1−η)ν
γ+ν

[(1 + θη
1−η

)zp + (1− θ)zd] (16d)

ẏp =γ(1− η − yc − yp)− νyp + µyc. (16e)

where

⟨am⟩d =
1

nd

∑

c∈Vd

amv , ⟨am⟩c =
1

nc

∑

c∈Vc

amv , (17)

with m ∈ Z>0 being the m-order moments of the activity of

deniers and cautious individuals, respectively.

From Proposition 3, we conclude that stability of the

DFE for a heterogeneous ADN is determined by the four-

dimensional block of the Jacobian matrix of (16) associated

with the first four rows. In Fig. 4, we perform a parametric

study to investigate how heterogeneity affects the epidemic

threshold. We compare the epidemic threshold computed

numerically for a heterogeneous ADN with the one com-

puted analytically for a homogeneous ADN with the same

average activity. Our results suggest that heterogeneity in the

population tends to favor the spread of epidemic diseases. On

the one hand, a strong decrease in the threshold is always
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Fig. 4: Relative change in the epidemic threshold σ computed

numerically using (16) with respect to the one of homoge-

neous ADNs (from (13)), as a function of the average activity

of deniers and activity variance. Common parameters are

θ = η = γ = 0.2, ν = 0.5, and average activity ⟨a⟩ = 1.

We set the activity variance of deniers equal to the one of

cautious individuals (⟨a2⟩d − ⟨a⟩2d = ⟨a2⟩c − ⟨a⟩2c).

recorded when deniers are more socially active than cautious

individuals. On the other hand, if deniers are less active, we

do not register the opposite, beneficial phenomenon.

V. CONCLUSION

We proposed a novel epidemic model on temporal net-

works that accounts for different behavioral responses of

the population to the epidemic spreading. By implementing

our model using the ADN paradigm, we developed an

analytically tractable framework to evaluate the impact of

deniers on the spread of an epidemic disease. Employing

a mean-field approach, we derived a closed-form expression

for the epidemic threshold. Through its analysis, we exposed

how deniers might have a strong impact on the epidemic

spreading, especially in highly-polarized population. In such

a scenario, a small minority of deniers is able to jeopardize

massive efforts by public health authorities placed in aware-

ness campaigns to curb the epidemic spreading.

Our results pave the way for several directions of future

research. The theoretical results established in this letter are

limited to the epidemic threshold for homogeneous ADNs.

Further theoretical extensions may be pursued. First, a com-

plete analysis of the three-dimensional nonlinear system of

ODEs in Proposition 2 beyond the stability of the DFE

may shed light on the role of deniers in endemic diseases.

Second, studying linear stability conditions for the five-

dimensional system in Proposition 3 may generate new

theoretical insight to corroborate our numerical findings on

the detrimental role of heterogeneity toward curbing an

epidemic outbreak. Besides these theoretical developments,

several modeling extensions are envisaged of our future

research. For instance, non-ideal efficacy of self-protective

behaviors and more detailed epidemic progression [8], [11]

should be incorporated. Likewise, more complex and realis-

tic decision-making mechanisms can be incorporated, such

as those based on game theory [25], [26] or on opinion

dynamics [27]. Finally, besides awareness campaigns, we

could study isolation of infected individuals [17] and the

implementation of vaccination campaigns [7].
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