The impact of deniers on epidemics: A temporal network model
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Abstract— We propose a novel network epidemic model to
elucidate the impact of deniers on the spread of epidemic
diseases. Specifically, we study the spread of a recurrent epi-
demic disease, whose progression is captured by a susceptible—
infected—susceptible model, in a population partitioned into two
groups: cautious and deniers. Cautious individuals may adopt
self-protective behaviors, possibly incentivized by information
campaigns implemented by public authorities; on the contrary,
deniers reject their adoption. Through a mean-field approach,
we analytically derive the epidemic threshold for large-scale
homogeneous networks, shedding light onto the role of deniers
in shaping the course of an epidemic outbreak. Specifically, our
analytical insight suggests that even a small minority of deniers
may jeopardize the effort of public health authorities when the
population is highly polarized. Numerical results extend our
analytical findings to heterogeneous networks.

I. INTRODUCTION

Mathematical models of epidemic spreading on networks
have gained increasing popularity in the last decade. They
have emerged as powerful tools to predict the course of
epidemic outbreaks [1]-[6] and, ultimately, to design and
assess intervention policies [2], [S], [7]. In the last few years,
the COVID-19 global health crisis has provided further mo-
tivation to pursue these studies. Within this collective effort,
the systems and control community has worked toward de-
veloping new models to capture specific features of COVID-
19 [8]. Through the lens of network theory, effective tools to
predict the spread of the disease and assess the effectiveness
of different intervention policies were developed [9]-[11].

However, there are still significant gaps in the application
of network theory to study epidemics, particularly in the
context of modeling human behavior. Human behavior plays
a crucial role in shaping the course of an epidemic outbreak,
as the individuals’ response to the epidemic spreading may
be quite diverse across a population. In fact, while the
majority of the individuals were concerned by the COVID-19
pandemics and were keen to adopt self-protective measures
to avoid the contagion, a nonnegligible minority of indi-
viduals kept denying the severity of the pandemic, or even
its existence [12]. They refused to take any action against

the contagion, even to comply with compulsory measures
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enforced by public authorities, such as social distancing or
the use of face masks [13]. The behavioral response to a
pandemic is indeed a divisive topic, which may lead to
the emergence or the increase of polarization in the pattern
of social interactions, since people might prefer to interact
with like-minded individuals [14]. The extent to which the
presence of deniers and the emergence of polarization impact
the pandemic spreading and the effectiveness of information
campaigns is still unclear, despite its paramount importance.

In this letter, we investigate these questions by proposing a
novel model for the spread of recurrent diseases, accounting
for the presence of deniers. Specifically, we design a tempo-
ral network model in which the population is partitioned into
two groups: cautious individuals and deniers. While cautious
individuals may decide to adopt self-protective behaviors
to prevent contagion, possibly encouraged by information
campaigns, deniers always refuse to adopt these behaviors.
Interactions between and within these groups are regulated
by a parameter, termed homophily, which captures the ten-
dency of individuals to interact with like-minded people.

Formally, we develop our model within the continuous-
time activity-driven network (ADN) paradigm [15], and we
expand such a framework to account for the population
structure. The use of ADNs allows us to formalize a model
that is analytically tractable and amenable to fast numerical
simulations [16], [17]. We model the epidemic spread-
ing using two distinct compartmental models. For deniers,
we adopt the well-known susceptible—infected—susceptible
(SIS) model; whereas, for cautious individuals, we employ
a susceptible—alert—infected—susceptible (SAIS) model. The
latter extends the SIS model by including an additional
state to keep track of individuals who adopt self-protective
behaviors to avoid contagion [17]-[19]. We assume that
self-protective behaviors are always successful in preventing
contagion, but they come with a nonnegligible cost that
may drive people to abandon them. Hence, the adoption
and rejection of self-protective behavior are regulated by two
contrasting mechanisms that account for the implementation
of information campaigns by public health authorities and
the social economic costs associated with their use.

We employ a mean-field approach to study the epidemic
model [20]. For large-scale networks, we study the local
exponential stability of the disease-free equilibrium (DFE).
For homogeneous ADNs, in which all the individuals have
the same level of social activity, we analytically establish a
closed-form expression for the epidemic threshold, shedding
light onto the impact of deniers on the success on eradicating
a local epidemic outbreak. Predictably, the presence of
deniers favors the spread of epidemic diseases. Moreover,



our analytical insight exposes the detrimental role played
by polarization: in highly polarized networks, even small
minorities of deniers can jeopardize the efforts of public
health authorities in promoting self-protective behaviors. For
heterogeneous ADNs, we derive a closed-form expression
for the linearization of the system about the DFE, which
allows for the fast numerical evaluation of the epidemic
threshold. Our numerical findings suggest that heterogeneity
may further favor the spread of epidemic diseases.

We gather here the notation used in the letter. We denote
by R, R>o, R0, and Z~ the set of real, real nonnegative,
strictly positive real, and strictly positive integer numbers, re-
spectively. Given a continuous-time function z(¢), we define
z(t7) := lim, ~ 2(s) and (t) := lims 4 2(s). A Poisson
clock with rate p € Ry is a continuous-time stochastic
process that clicks once between time ¢ and ¢ + At with
probability pAt + o(At), independent of the past, where the
Landau notation o(At) is associated with the limit At 0.

II. MODEL
A. Population model

We consider a population of n € Z individuals, V =
{1,...,n}, partitioned in two sub-populations: the deniers
and the cautious individuals. Deniers are not concerned about
the disease spreading and refuse to adopt any self-protective
measures, even if enforced by public authorities. On the
contrary, cautious individuals are worried about the epidemic
disease, and they may decide to adopt self-protective behav-
iors. Without any loss in generality, we assume that V; :=
{1,...,nq} is the set of deniers, and V, := {ng+1,...,n}
contains the cautious individuals. The fraction of deniers is
quantified by the parameter 7 := ng/n € [0,1].

Each individual v € V is associated with a state x,(t)
that evolves in continuous time (¢ € R>() and characterizes
the individual’s health state and behavior. Specifically, all
individuals can be either susceptible to the disease or infected
with the disease. Furthermore, cautious individuals may be
associated with a third state, which accounts for the adoption
of self-protective behaviors. Here, we assume that self-
protective behaviors are ideal, so that their adoption is 100%
effective in preventing contagion. However, as we shall see
in the following, their adoption is associated with social and
economic costs that may push people to stop adopting them.

We use the following notation for each individual’s state:

S if v is susceptible,
x,(t) = ¢ 1 if v is infected, (1)
P if v adopts self-protective behaviors,

at time t € R>(, with the understanding that z,(t) € {S,I}
for i € Vg, and z;(t) € {S,I,P} for i € V..

B. Time-varying interaction network

Each individual is identified by a node in an undirected
temporal network (V,£(t)), where the link set £(t) cap-
tures the evolving pattern of human-to-human interactions:
{v,w} € &(t) means that individuals v and w interact
at time t. The temporal network is generated according

to a stochastic mechanism, inspired by continuous-time
ADNSs [15], which we extend to account for the population
structure. Specifically, each individual v € V is characterized
by a constant parameter a, € R.(, termed activity, which
captures the individual’s propensity to initiate interactions
with others. We further introduce a parameter 6 € [0,1],
which captures the individuals’ preference to interact with
people sharing similar beliefs, termed homophily.

The network temporal is generated according to the fol-
lowing steps: i) at time ¢ = 0, the link set is initialized as
E(t) = (. Each node v € V is associated with a Poisson clock
with rate equal to a,, each one independent of the others; ii)
time progresses until any of the n Poisson clocks involved in
the process clicks; iii) if the clock associated with node v € V
clicks at time ¢, individual v is activated and selects a fellow
individual w to interact with. The individual w is selected
according to a probabilistic rule: with probability 6, w is
selected uniformly at random among the individuals with
the same belief of v (that is, among V; if v € Vy, or among
V. if v € V,); otherwise, w is selected uniformly at random
in the entire population V; iv) the undirected link {v,w}
is added to £(t); and v) the link is immediately removed
from the set, the Poisson process associated with node v is
reinitialized, and the process is resumed from item ii).

C. Epidemic model

The state of each individual v € V, z,(t), evolves accord-
ing to two different epidemic progressions for deniers and
cautious individuals. Deniers revise their state according to a
standard SIS model [5], while cautious individuals follow an
SAIS model [18], [19], implemented as in [17]. Both models
involve contagion and recovery, while the SAIS model has
two additional mechanisms: awareness and unprotecting,
described in the following.

Contagion. If a susceptible individual v (z,(t~) = S)
contacts an infected one at time ¢ ((v,w) € &(t) with
Ty (t) = 1), then v becomes infected (X,(t7) = I) with
probability A € [0,1] , independent of the others.

Recovery. An infected individual (X,(¢~) = I) sponta-
neously recovers and becomes susceptible according to a
Poisson clock with rate ;1 € R, independent of the others.
If v € V, is cautious, then v adopts self-protective behaviors
after recovery (X, (¢t7) = P); whereas, if v € Vg is a denier,
v becomes susceptible again to the disease (X, (t7) = 9S).

Awareness. We introduce a parameter v € Ry to
quantify the effort exerted by public heath administrations in
information campaigns (a control input). A cautious suscep-
tible individual (X,(¢7) = S, v € V,) starts adopting self-
protective behaviors (X, (t*) = P) according to a Poisson
clock with rate v, independent of the others.

Unprotecting. A cautious individual who is adopting self-
protective behaviors (X, (¢~) = P) spontaneously abandons
them due to the social and economic costs associated with
them (X, (tT) = S) according to a Poisson clock with rate
v € Ry, independent of the others. The rate v captures the
costs associated with the adoption of self protections.
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Fig. 1: Schematic of the state transitions of the model.

III. DYNAMICS
A. Markov process

The formation process of the temporal network and the
four mechanisms described in Section II are all governed
by Poisson processes, each one independent of the oth-
ers. Hence, they induce an n-dimensional continuous-time
Markov process x(t) = [x1(t) ... 2, (t)] over the state space
{S, 1} x {S,P,1}" [21]. Depending on the sub-population
they belong to, individuals may undergo up to four distinct
state transitions, illustrated in Fig. 1, which are triggered by
the processes described in Section II. The three transitions
triggered by recovery (from I to S or P), awareness (from S to
P) and unprotecting (from P to S) involve only spontaneous
mechanisms. Hence, the corresponding transition rates of the
Markov process are given by the rates of the underlying
Poisson process (u, 7, and v, respectively). Contagion,
instead, involves an interaction between two individuals and
is dependent on their health state. In the following, we
explicitly compute the corresponding transition rate.

Proposition 1. Let us define the indicator function

1,(1) :={ b Fal) =1, @

0 otherwise.

A susceptible denier (X, (t7) =S, v € V) becomes infected
(X;(t*) =1) according to a Poisson clock with rate
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a, (x(t)) == )\av[
(3a)

while, for a cautious individual, v € V,, the rate is equal to

Bulx(0)) = Aa, [u_ﬂmn > L)+ )
weVe

+7Zaw wti| (3b)
weyY
Proof. A susceptlble denier v becomes infected if any of
the following four chains of events occur: i) v activates,
decides to restrain the interactions within the denier commu-
nity (which occurs with probability #), contacts an infected
individual (which occurs with robability equal to the fraction
of infected individuals in the community), and becomes
infected (with probability \); ii) v activates, decides not to
restrain the interactions within its community, has a contact
with an infected individual (which occurs with probability
equal to the fraction of infected individuals in the entire

wey

population), and becomes infected; iii) any of the infected
denier individuals activates, decides to interact within the
denier community, has a contact with v, and infects them;
or iv) any of the infected individuals in the network activates,
decides to interact within the whole network, has a contact
with v, and infects them.

Since all the events in each chain are independent, the rate
corresponding to each chain of events is computed by multi-
plying the activity rate of the individual who activates by the
probability of each event in the chain [22]. For instance, for
chain 1), we obtain the product avenln > wev, Lw(t)A, which
yields the first term in (3a). We recall that the transition
occurs as soon as the fastest of the four chains of events
occurs, and the events in the chains are disjoint. Hence, the
transition is triggered by a Poisson clock with rate equal to
the sum of the rates corresponding to the four chains [22].
After some algebraic simplifications, we obtain (3a). A
similar argument yields (3b). L]

We can summarize the transition rates of the Markov
process x(t) using the transition rate matrices

. /Bv (X(t))
) Q’(C) = |V - 0 )
0 w
that is, the probability that v € V, with s € {d, ¢} changes
state from h € {S,P,I} to k € {S,P,1} is equal to Plx,(t +
At) = k|ay(t) = h] = (Q2)re At 4+ o(At), for any h # k,
with the understanding that P can only be reached if v € V..

B. Mean-field dynamics

Following [20], we consider a continuous-state determin-
istic mean-field relaxation of the dynamics in which, instead
of the evolution of the individuals’ state, we study its mean
dynamics, in terms of the probability for each individual to
be in each state. That is, for all v € V, we define

“4)

Sy (t) =Pz, (t) =8],  iy(t) :=Plz,(t) =1], (52)
while, for v € V., we further define
po(t) := Pla,(t) = P]. (5b)

Briefly, in the mean-field approach [20], the system dy-
namics is obtained by approximating the expected value of
the transition rate matrices in (4) with the transition rate
matrices for the expected state of the system (E[QZ(x(t))] ~
Q?[E[x(t)]]). Using this approach, the temporal evolution
of the probabilities in (5) is approximated by a system of
2n + n. ordinary differential equations (ODEs), obtained
as [$yiy] = [5075]QIEX()]], Vv € Vy and [$, Py iy] =
[$v Du 1| QS[EX(E)]], Yv € V,, recalling that E[I,,(t)] =
iy (t). For v € V4, we obtain

Sy = /~L7fv — Sy Qly, (63)
7.;'0 = —Wiy + SpQly, (6b)
with
5 e— [ - 1-6 :
Qv 1= Al [Tn 2owev, o T 5 ey Zw} o

+A { n Zwevd Qwlw + 1%9 Zwev awiw} ’
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Fig. 2: Comparison between the Markov process and its
deterministic approximation at the population level. Blue
dashed curves are the epidemic prevalence computed inte-
grating numerically (6) and (8); red solid curves are the
epidemic prevalence in three runs of the Markov process.
Common parameters are n = 20,000, n = 0.1, A = 0.06,
w=1/7,v=0.5,60=0.2, and a, = 1, for all v € V.

and, for v € V., we obtain

5'11 = —VSv + Vpy — Bv; (83)
Dy = VSy — VDy + iy, (8b)
iv - *,uzlv + Svaa (8C)
with
Q. 0 . 1-6 .
Bo = Aay [(1—7])71, Zwevc tw + 5 ZwEV ’Lw] 9)

% . 1—6 .
+A {W Zwevc Qwlw + n Zwev aw’ij| .
The following result proves that (6) and (8) are well defined.

Lemma 1. The domain S := {(sy,1y) @ Sp, iy > 0,8, +iy =
1}nd X {(51)ai1)) : 51;,p1;,i1; 2 07511 +pv + iv = 1}nc is
positive invariant under (6) and (8).

Proof. We immediately verify that, if one of the variables is
equal to 0, then its derivative is always nonnegative. Hence,
the nonnegative orthant is a positive invariant set. We further
observe that, under (6), $, + iv = 0, while under (8), s, +
Py + 1, = 0, preserving the sum of the variables for each
node v, which proves our claim. O

Remark 1. As a consequence of Lemma I, only n + n. of
the ODEs from (6) and (8) are linearly independent.

From the set of n 4+ n. independent ODEs that govern
the mean-field evolution of the process, it is straightforward
to conclude that the system has a unique DFE, that is, an
equilibrium of (6) and (8) with ¢,, = 0 for all v € V. The DFE
is characterized in the following lemma, proved by checking
the equilibrium conditions for (6).

Lemma 2. The unique DFE of the system has i, = 0 for

all v eV and p, = ﬁ for all v € V,.
Before our main results, we introduce some more notation.

Specifically, we define three macroscopic variables:

Yd = % Z ly, Yo i= % Z Ty, Yp ‘= % Z Dv, (10)

vEVy vEV, vEV,

that is, the average probability for a randomly selected node
to be an infected denier, an infected cautious individual, and
to adopt self-protective behaviors, respectively.

In the thermodynamic limit, n — oo, the temporal evolu-
tion of the stochastic process at the population level can be
approximated by the macroscopic variables in (10) for any
finite time-horizon within an arbitrary accuracy [20], [23].
In particular, we can approximate the epidemic prevalence
I(t) = 2|{j € V:z;(t) = I}| = ya(t) +yc(t), as illustrated
in Fig. 2, which shows the high quality of the approximation
even for medium-size networks.

IV. RESULTS
A. Analytical results for the homogeneous ADNs

In general, it is not possible to derive closed-form ex-
pressions for the three ODEs that govern the macroscopic
variables in (10). In fact, the temporal evolution of the aver-
age probabilities in (10) depends recursively on higher-order
moments. However, closed-form expressions can be derived
for specific, yet interesting cases. We make the assumption
of homogeneous ADNs, in which all the individuals have the
same activity. In this scenario, we can derive a closed-form
expression for the ODEs for (10).

Proposition 2. In the thermodynamic limit, n — oo, and if
a, = a, for all v € V, the mean-field evolution of the system
of macroscopic equations in (10) is governed by

Vg = — uyq + 2 a(n — yq)-

-[(1+01‘T’7)yd+(1 —G)yc} (11a)
Ve = — 1ye + 2Ma(l — 1 — ye — yp)-

~{(1+0%)y0+(1—0)yd} (11b)
Up =71 =1 = Ye = Yp) — VYp + [1Ye- (11c)

Proof. First, we compute the derivative of (10) and we
substitute (6b), obtaining

Ya = 4 Zvevd Ty HYd + n Zvevd(l Zv)av- (12)

Then, (11a) is obtained by observing that, if a,, = a, for all
v €V, (7) reduces to a, = 2Aa[(1 + Glgn)yd + (1 =0)y.),
which can be substituted into (12), leading to (11a). The

other two equations come from similar arguments. O

Proposition 2 establishes that, for homogeneous ADNs,
the epidemic spreading process can be studied with a three-
dimensional nonlinear system of ODEs in (11), instead of
the higher dimensional system in (6) and (8). The analysis of
such a system allows us to compute the epidemic threshold,
that is, to determine whether a local outbreak is eradicated,
or if it becomes endemic. Formally, the epidemic threshold
determines the region of the parameter space in which the
DFE is (locally) exponentially stable.

Theorem 1. The system in Proposition 2 admits a locally
exponentially stable DFE if and only if (iff)
A

1 v(1-n(1-6))

-1
/(11— ) + 0+ LUIE)T gy g

13)
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Fig. 3: Threshold ¢ computed via (13) for different values of homophily, 6, fraction of deniers, 7, and effort placed by
public heath authorities in information campaigns, v. Common parameters are ¥ = 0.5 and a, = 1, for all v € V.

Proof. First, we perform the change of variable 2 = y,, —
(IJT"”)V, and we observe that the DFE of (10) coincides with
the origin of the new system made by variables y4, y., and

z. We linearize this system about the origin, obtaining:

Ja = —pya+ 22an[(1+ 05 )ya+ (1 - 0)y.]  (14)

Ye = —1Ye + g =) [(1 + %)yc +(1- e)yd] (14b)

y+v
E=q(l—n—ye—z— T —p(z 4+ L20Y) 4y,

(14c)

The Jacobian matrix of (14) has a block-diagonal structure,
which allows us to compute its three eigenvalues Aj o 3.
From the block associated with the third row of (14), we

obtain the Ay = —y — v < 0. The other two eigenvalues
are equal to Aoz = —p+ Aan(l —0)+ 0+ w +
\/(n(l —0)+60+ WP —4:%.0] and are always

real, since the square root can be cast as the sum of two
nonnegative quantities. Hence, the DFE is locally exponen-
tially stable if all the eigenvalues of the Jacobian matrix of
(14) evaluated in the origin are negative [24], which occurs
iff (13) holds true, which concludes the proof. O

Remark 2. For 0 = 0, (13) reduces to \/u < [2a(n +
”E}T_Vn))]_l. In the absence of deniers, 1 = 0, it further
reduces to the threshold for a SAIS on a homogeneous

ADN [17].

Our theoretical result in Theorem 1 allows us to shed
light on the impact of deniers on the spread of epidemics.
In Fig. 3, we report a parametric study for the epidemic
threshold computed using (13). Figure 3a shows that, while
increasing the fraction of deniers predictably favors the
epidemic spreading, also homophily has a strong impact: as
increases, the threshold quickly decreases. This suggests that
even a small minority of deniers could hinder the eradication
of a disease in highly polarized scenarios. Figures 3b and 3c
investigate the effectiveness of information campaigns in
increasing the epidemic threshold, confirming that a small
minority of deniers is able to jeopardize even large control
efforts. For instance, in Fig. 3b, we observe that with only
20% of deniers, increasing the control effort has a marginal
effect if the homophily is higher than 6 = 0.5.

B. Numerical results for heterogeneous ADNs

Despite the impossibility to derive closed-form expres-
sions for heterogeneous ADNs, we can follow [15], [17] to
establish a closed-form expression for the linearization of the
system about the DFE, through some ancillary variables.

Proposition 3. Let us define

1 . 1 .
zdzz—g 1y z::—g Ty sy
n ’UEVd VYU (& n ’UEVC vYv

In the thermodynamic limit, n — oo, the linearization of the
mean-field evolution of the macroscopic variables in (10)
and ancillary variables in (15) about the DFE is given by

15)

Ja = — pya + Mayan[(1 + 05)ya + (1 — 0)y]
+ (1 +6452) 20 + (1 - 6)z] (16a)
Yo = — e + Ma) BF22 (1 + 2L )ye + (1 — 0)ya)

+ /\(1;%3"[(1 - f_—"ﬁ)zc + (1 = 0)z4 (16b)
+ Ma)an[(1+0552)zq + (1 — 6)2) (16¢)

fo=— prze + Ma?)a S22 (1 + 2L )ye + (1 — 0)yd]

Y+nu
+Ma)e (14 )z + (11— 0)zg)  (16d)
Up =71 =0 = Ye — Yp) — VYp + 1Ye- (16e)

where

m m m _ 1 m
(a >d*;dzcevdav’ (a >c*njzcevc%’ (17)

with m € Z~q being the m-order moments of the activity of
deniers and cautious individuals, respectively.

From Proposition 3, we conclude that stability of the
DFE for a heterogeneous ADN is determined by the four-
dimensional block of the Jacobian matrix of (16) associated
with the first four rows. In Fig. 4, we perform a parametric
study to investigate how heterogeneity affects the epidemic
threshold. We compare the epidemic threshold computed
numerically for a heterogeneous ADN with the one com-
puted analytically for a homogeneous ADN with the same
average activity. Our results suggest that heterogeneity in the
population tends to favor the spread of epidemic diseases. On
the one hand, a strong decrease in the threshold is always
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Fig. 4: Relative change in the epidemic threshold o computed
numerically using (16) with respect to the one of homoge-
neous ADNs (from (13)), as a function of the average activity
of deniers and activity variance. Common parameters are
0 =n=~=0.2 v=0.5, and average activity (a) = 1.
We set the activity variance of deniers equal to the one of
cautious individuals ((a?)q — (a)% = (a?). — (a)?).
recorded when deniers are more socially active than cautious
individuals. On the other hand, if deniers are less active, we
do not register the opposite, beneficial phenomenon.

V. CONCLUSION

We proposed a novel epidemic model on temporal net-
works that accounts for different behavioral responses of
the population to the epidemic spreading. By implementing
our model using the ADN paradigm, we developed an
analytically tractable framework to evaluate the impact of
deniers on the spread of an epidemic disease. Employing
a mean-field approach, we derived a closed-form expression
for the epidemic threshold. Through its analysis, we exposed
how deniers might have a strong impact on the epidemic
spreading, especially in highly-polarized population. In such
a scenario, a small minority of deniers is able to jeopardize
massive efforts by public health authorities placed in aware-
ness campaigns to curb the epidemic spreading.

Our results pave the way for several directions of future
research. The theoretical results established in this letter are
limited to the epidemic threshold for homogeneous ADNS.
Further theoretical extensions may be pursued. First, a com-
plete analysis of the three-dimensional nonlinear system of
ODEs in Proposition 2 beyond the stability of the DFE
may shed light on the role of deniers in endemic diseases.
Second, studying linear stability conditions for the five-
dimensional system in Proposition 3 may generate new
theoretical insight to corroborate our numerical findings on
the detrimental role of heterogeneity toward curbing an
epidemic outbreak. Besides these theoretical developments,
several modeling extensions are envisaged of our future
research. For instance, non-ideal efficacy of self-protective
behaviors and more detailed epidemic progression [8], [11]
should be incorporated. Likewise, more complex and realis-
tic decision-making mechanisms can be incorporated, such
as those based on game theory [25], [26] or on opinion
dynamics [27]. Finally, besides awareness campaigns, we
could study isolation of infected individuals [17] and the
implementation of vaccination campaigns [7].
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