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Abstract

Using the theory of FSop modules, we study the asymptotic behavior of the homol-
ogy of Mg,n, the Deligne–Mumford compactification of the moduli space of curves, for
n! 0. An FSop module is a contravariant functor from the category of finite sets and
surjections to vector spaces. Via copies that glue on marked projective lines, we give
the homology of Mg,n the structure of an FSop module and bound its degree of gen-
eration. As a consequence, we prove that the generating function

∑
n dim(Hi(Mg,n))tn

is rational, and its denominator has roots in the set {1, 1/2, . . . , 1/p(g, i)}, where p(g, i)
is a polynomial of order O(g2i2). We also obtain restrictions on the decomposition of
the homology of Mg,n into irreducible Sn representations.

1. Introduction

In thispaper we study Hi(Mg,n,Q), the homology of the Deligne–Mumford moduli space of
stable marked curves, from the point of view of representation stability. The space Mg,n is a
natural compactification of the moduli space of smooth curves with n marked points, obtained
by allowing families of smooth curves to degenerate to singular curves with double points. The
symmetric group Sn acts on Mg,n by relabeling the marked points, so that if we fix i and g we
obtain a sequence of symmetric group representations n "→ Hi(Mg,n,Q).

Our aim is to understand the asymptotic behavior of these Sn representations for n! 0.
The following theorem gives applications of our main result.

Theorem 1.1. Let i, g ∈ N, and let C = 8g2i2 + 29g2i + 16gi2 + 21g2 + 10gi− 6g. Then the
following hold.

(1) The generating function for the dimension of Hi(Mg,n,Q) is rational and takes the form
∑

n

dimHi(Mg,n,Q)tn =
f(t)

∏C
j=1(1− jt)dj

for some polynomial f(t) and dj ∈ N. In particular, there exist polynomials p1(n), . . . , pC(n)
such that for n! 0 we have

dimHi(Mg,n,Q) =
C∑

j=1

pj(n)jn.
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(2) Let λ be an integer partition of n. If the irreducible Sn representation corresponding to λ
occurs in the decomposition of Hi(Mg,n,Q), then λ has length ≤ C. In other words, the
Young diagram of λ has ≤ C rows.

(3) Let λ = λ1 ≥ λ2 ≥ · · · ≥ λC be an integer partition of k, and λ + n be the partition λ1 + n ≥
λ2 ≥ · · · ≥ λC . The multiplicity of λ + n in Hi(Mg,n+k,Q),

n "→ dim HomSn+k(Mλ+n, Hi(Mg,n+k,Q)),

is bounded by a polynomial of degree C − 1.

1.1 Main result
To establish Theorem 1.1 we use techniques from the area known as representation stability.
Namely, we extend the action of the symmetric groups on Hi(Mg,n,Q) to the action of a category,
and we prove that the homology groups are finitely generated under this action. Finite generation
then constrains the behavior of Hi(Mg,n,Q) for n! 0.

Let FS be the category of finite sets and surjections. The objects of FS are natural numbers
n ∈ N. A map f : m→ n ∈ FS(m, n) is a surjection f : [m]→ [n]. Here [n] := {1, . . . , n}. An
FSop module, or an action of FSop on a sequence of vector spaces Vn, is a functor from FSop to
the category of vector spaces, denoted n "→ Vn.

We give {Hi(Mg,n)}n∈N the structure of an FSop module. Concretely, this means that for
every surjection f : [n]→ [m], we define a map

f∗ : Hi(Mg,n)← Hi(Mg,m),

such that (f ◦ g)∗ = g∗f∗ and id∗
[n] = idHi(Mg,m).

We describe f∗ in two special cases, which suffice to determine it in general. In these cases,
f∗ is the map on homology induced by a map of spaces, F ∗ : Mg,n ←Mg,m.

(1) Let f be a bijection. Then F ∗ is the map that takes a stable marked curve C and permutes
its marked points by precomposing with f .

(2) Let f : [n + 1]→ [n] is the surjection defined by f(n + 1) = n and f(i) = i otherwise. Given
C ∈Mg,n, define F ∗(C) to be the curve obtained by gluing a copy P1 to the nth marked
point of C. We mark F ∗(C) by keeping the marked points p1, . . . , pn−1 ∈ C and marking
two new points pn, pn+1 ∈ F ∗(C)− C. Then F ∗(C) ∈Mg,n+1 and F ∗ : Mg,n →Mg,n+1 is
the corresponding map.

To determine f∗ for an arbitrary f : [n]→ [m], factor f as a composition of permutations and
surjections of the form (2). Proposition 2.7, stated and proved in §2, shows that this action is
well defined. Combinatorially, the choice of such a factorization is related to the construction
of a binary forest with n leaves and m roots. Accordingly, in § 2 we define a category of binary
forests, BTop, which acts on the moduli spaces and induces the FSop action on homology.

We say that an FSop module, n "→ Vn is finitely generated in degree ≤ C if there is a finite
list of classes {vi ∈ Vdi} with di ≤ C, such that every Vn is spanned by classes of the form f∗vi.
Our main theorem states that the FSop module we construct is finitely generated.

Theorem 1.2. Let g, i ∈ N. Then the FSop module

n "→ Hi(Mg,n,Q)

is a subquotient of an extension of FSop modules that are finitely generated in degree ≤ 8g2i2 +
29g2i + 16gi2 + 21g2 + 10gi− 6g.
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Stability in the homology of Deligne–Mumford compactifications

Theorem 1.1 is a consequence of Theorem 1.2 in combination with results on finitely generated
FSop modules due to Sam and Snowden [SS17].

Remark 1.3 (Relation to the Tautological Ring). The category FSop acts on the homology of
Mg,n through maps that glue on copies of P1 with two marked points. These maps are a small
part of the full operadic structure on H•(Mg,n) generated by all gluing maps. The tautological
ring is the subring of H•(Mg,n) generated by the image of all of the fundamental classes [Mg,n]
under gluing maps and cup products. In some sense, Theorem 1.2 says that for i, g fixed, all of
the classes in Hi(Mg,n) are tautological ‘relative’ to a finite list of classes, using only maps that
glue on copies of P1 with 2 marked points.

1.2 Stability
Although the dimensions dimHi(Mg,n, ) grow exponentially in n, and therefore do not stabilize
in a naive sense, Theorem 1.2 implies that there exists a constant N such that the Sn represen-
tations Hi(Mg,n,Q) are completely determined by the vector spaces {Hi(Mg,m,Q)}m≤N and
the algebraic structure they inherit from surjections [m] ! [m′].

For r ∈ N, let FSr
op be the full subcategory of FSop spanned by sets of size ≤ r. We may

restrict an FSop module M to an FSr
op module, denoted Resr M . The functor Resr has a left

adjoint Indr, which takes an FSr
op module to the FSop module freely generated by it modulo

relations in degree ≤ r.

Theorem 1.4. Let i, g ∈ N. There exists N ∈ N such that the natural map of FSop modules

IndN ResN Hi(Mg,−,Q)→ Hi(Mg,−,Q)

is an isomorphism. In particular, any presentation of the FSN
op module ResN Hi(Mg,−,Q) gives

a presentation of the FSop module Hi(Mg,−,Q).

Remark 1.5. Note that FSr is a finite category and (Indr M)n can be described as a colimit

(Indr M)n = colimm∈(n/FSr)op Mm,

where n/FSr denotes the over-category. Thus, Theorem 1.4 says that Hi(Mg,n) is determined
by a finite amount of algebraic data.

Theorem 1.4 follows from Theorem 1.2 and a Noetherianity result due to Sam and Snowden
[SS17].

Notation 1.6. For the remainder of the paper, all homology and cohomology will be implicitly
taken with Q coefficients.

1.3 Relation to other work
Our work is motivated by the approach to representation stability introduced by Church, Ellen-
berg and Farb [CEF15], which uses modules over FI, the category of finite sets and injections.
The theory of FI modules has been used by Jiménez Rolland [JR15] to study the homology of
Mg,n, and by Jiménez Rolland and Maya Duque [JRMD18] to study the real locus of M0,n.
Because the homology of Mg,n grows at an exponential rate, it cannot admit the structure of a
finitely generated FI module, and so a larger category is needed to control the homology of the
full compactification.

Using an explicit presentation of the cohomology ring H•(M0,n) given in [EHKR05], Sam
defined an action of FSop on the cohomology of M0,n, and proved that it was finitely generated.
Our work was motivated by his suggestion that there could exist a finitely generated FSop action
on the cohomology of Mg,n for general g.
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Sam and Snowden [SS17] showed that FSop is Noetherian (submodules of finitely gener-
ated modules are finitely generated), and described the Hilbert series of finitely generated FSop

modules . We use their results to deduce concrete implications from Theorem 1.2.
Proudfoot and Young [PY17] have also used FSop modules to study the intersection coho-

mology of a space closely related to M0,n. The FSop module they construct appears similar
to our construction in the case g = 0. The statement of our Theorem 1.1 parallels their
Theorem 4.3.

In order to produce non-tautological classes, Faber and Pandharipande [FP11] established
restrictions on the Sn representations that appear in the tautological ring, which resemble the
restrictions on Sn representations we obtain in Theorem 1.1. Our restrictions on representations
are weaker, but they hold for all cohomology classes. This bounds the effectiveness of Faber and
Pandharipande’s method for producing non-tautological classes.

Kapranov and Manin [KM01] observed that
⊕

i,n Hi(Mg,n) is a right module over the hyper-
commutative operad. This algebraic structure extends the action of FSop on Hi(Mg,n) for
fixed i.

1.4 Heuristic for Theorem 1.2
The following is a heuristic argument that illustrates the ideas involved in the proof of Theorem
1.2. The argument uses notions that we introduce later, and it is mathematically independent
from the rest of the text. Readers may wish to skip this subsection on a first reading.

We stratify Mg,n by dual graph G. The Borel–Moore homology spectral sequence associated
to this stratification bounds the homology of Mg,n in terms of the homology of the strata,
HBM

i (MG). We wish to show that we only need classes from finitely many strata MG in order
to generate all of the classes. We say that a class in Hi(Mg,n) is pushed forward from lower degree
if it is a linear combination of classes of the form f∗c, where f : [n]→ [n− 1] ∈ FS(n, n− 1).

The stratum MG is a quotient of a product of moduli spaces
∏

v∈G Mg(v),n(v). By fibering
Mg,n over Mg,1 we show that the Borel–Moore homology of Mg,n vanishes for n > i + 3, thus
only strata MG for which

∑
v val(v)− 3 ≤ i contribute to Hi(Mg,n). Thus for G ranging over

all graphs whose strata contribute classes to Hi(Mg,n), the number of vertices of G that have
valence > 3 and genus > 0 is bounded by a function of g and i. So as n→∞ the number of
trivalent genus 0 vertices of G must increase.

We say that a stable graph H has an external Y if it has a genus 0 trivalent vertex v that
is adjacent to two external edges. The action of FSop on curves corresponds to gluing trivalent
vertices on graphs. Thus if H has an external Y, then every class c ∈ Hi(MH) is pushed forward
from lower degrees.

Similarly if G has two adjacent trivalent genus 0 vertices v1, v2 such that each vi has an
external edge, the Witten–Dijkgraaf–Verlinde–Verlinde (WDVV) relation shows that the classes
from MG are homologous to classes from MH , where H has an external Y. Thus classes from
MG are also pushed forward from lower degree.

Therefore, to prove finite generation, it is enough to show that when the number of trivalent
genus 0 vertices of G is large then either: (1) G has an external Y, or; (2) G has two adjacent
trivalent genus 0 vertices v, v′, each with an external edge. Each trivalent vertex with no exter-
nal edges contributes 1/2 to −χ(G). As the number of trivalent vertices increases, the bound
−χ(G) ≤ g − 1 implies that one of these two possibilities must occur.

1.5 Structure of the paper
In § 2 we define the category of binary trees, BTop and prove that FSop acts on Hi(Mg,n).

2638

4  :��  1�5���3 ������� �������
.����
	����!0�5�421��8�582�0#�
/70�5132��85"2��5 #���2��

https://doi.org/10.1112/S0010437X21007582


Stability in the homology of Deligne–Mumford compactifications

In formalizing the heuristic argument of § 1.4, we encounter the problem that FSop does not
act on the Borel–Moore homology spectral sequence for the stable graph stratification. Since
the category of binary trees, BTop, which does act, is not known to be Noetherian, we cannot
deduce finite generation of Hi(Mg,n) using the usual stable graph stratification. Therefore in § 3,
we define a coarsening of the stable graph stratification for such that FSop acts on the associated
Borel–Moore homology spectral sequence.

In § 4, we prove two lemmas that correspond to the combinatorial part of the heuristic
argument. In § 5, we review the WDVV relation, and the fact that HBM

i (Mg,n) vanishes for
n > i + 3. Finally, in § 6, we combine the results from the previous sections to prove Theorem
1.2 and its corollaries.

In the final section, § 7, we ask further questions which are motivated by our results.

2. The Action of FSop

Let Mg,n be the Deligne–Mumford space of stable genus g curves with n distinct marked points.
The space Mg,n parameterizes genus curves C with distinct marked points p1, . . . , pn ∈ C, such
that all of the singularities of C are double points (also called nodal singularities), each marked
point pi is smooth, each genus 0 component of C contains at least three marked or singular
points, and each genus 1 component contains at least one marked or singular point.

Remark 2.1. Since our results concern homology with rational coefficients, we may work with
either the homology of the coarse moduli space or the homology of the Deligne–Mumford stack.
For definiteness, we will work with the moduli space defined over the complex numbers. However
our methods are algebraic, and should also apply to the l-adic cohomology of Mg,n over any
algebraically closed field.

It will also be convenient for us to use the space Mg,X , where X is a finite set and the marked
points of C are labeled by the elements of X. Let [n] := {1, 2, . . . , n}. Then Mg,n = Mg,[n].

Next we introduce the dual graph of a nodal curve C ∈Mg,n, an important combinatorial
invariant associated to C.

Definition 2.2. Let C ∈Mg,n. The dual graph of C, denoted GC , is the following graph.

• The vertices of GC consist of a vertex for each irreducible component of C, together with
n additional vertices labeled 1, . . . , n. The vertices of GC corresponding to the irreducible
components will be called the internal vertices, and the n additional vertices will be called
the external vertices.

• For each singular (double) point of C, there is an edge that connects the internal vertices
corresponding to the components of C that contain the double point. These components
might be the same, in which case the edge is a loop.

• There is an edge connecting the kth external vertex to the internal vertex corresponding to
the irreducible component of C containing the kth marked point.

The genus, g(v), of an internal vertex, v, is the genus of its irreducible component. The valence,
n(v), of an internal vertex is the number of edges that are adjacent to it.

2.1 Action of binary trees
Before passing to homology, the category FSop does not naturally act on Mg,n. Instead, we
construct an action of a category of binary trees.
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Definition 2.3. We define the category of binary trees, BT, as follows. The objects of BT are
natural numbers. A morphism F ∈ BT(m, n) from m to n is a forest of binary rooted trees,
with the leaves labeled by [m] and the roots labeled by [n]. The composite of two morphisms
F1 ∈ BT(m, n) and F2 ∈ BT(n, l) is the forest obtained by gluing the roots of F1 to the leaves
of F2 using the labeling of both by [n], and erasing the resulting bivalent vertices.

Example 2.4. The binary forests

and

define morphisms from 5 to 3 and 3 to 2 respectively. Their composite is the following forest.

For a forest F ∈ BT(n, m), the function that takes each leaf to its root is a surjection hF :
[n]→ [m]. The assignment F "→ hF defines a functor BT→ FS that realizes FS as a quotient
of BT.

We now define an action of BTop on Mg,n by gluing on trees of marked projective lines in
the following way.

Definition 2.5. Consider F ∈ BT(m, n). We define a variety LF equipped with marked points
p1, . . . , pn and q1, . . . , qn as follows. The connected components of LF correspond to trees in the
forest F . For such a tree T , the component LT of LF is defined as follows.

• If T consists of a single root labeled by r ∈ [m] joined to a single leaf labeled by s ∈ [n] joined
to a single leaf labeled by s ∈ [n], then LT = ∗ and pr = qs = ∗.

• Otherwise, LT is the following stable curve. The irreducible components of LT are all isomor-
phic to P1 and are in bijection with the vertices of T that are not roots or leaves. Two of
these components meet in a nodal singularity precisely when the corresponding vertices are
joined by an edge. The points pi and qj in LT correspond to the roots and leaves of T , respec-
tively, and are chosen to be distinct from one another. For a root (respectively, leaf) labeled
by r ∈ [m] (respectively, s ∈ [n]) the point pr (respectively, qs) is a smooth point in the irre-
ducible component of T corresponding to the vertex of T adjacent to r (respectively, s).
Since the non-root/leaf vertices have valence 3, this defines these marked points up to
isomorphism.

Definition 2.6 (Action of BTop). Given a stable curve C ∈Mg,n and a labeled rooted forest
F ∈ BT(m, n), we define the stable curve F ∗C ∈Mg,m to be LF ,[m] C. In other words F ∗C is
the curve obtained by gluing LF to C along the marked points {pi}i∈[m]. We use the marking of
LF by [n] to mark F ∗C. Since this construction may be performed in families, it corresponds to
a map F ∗ : Mg,m →Mg,n for each F ∈ BT(n, m), and these maps define an action of BTop on
Mg,n.

Postcomposing with Hi(−,Q), we obtain a functor BTop → VectQ, given by n "→ Hi(Mg,n).
By convention, we take this functor to have the value 0 in the cases g = 0, n ≤ 2 and g = 1, n = 0.

The next proposition defines the FSop module structure on Hi(Mg,n).

2640

4  :��  1�5���3 ������� �������
.����
	����!0�5�421��8�582�0#�
/70�5132��85"2��5 #���2��

https://doi.org/10.1112/S0010437X21007582
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Proposition 2.7. The functor n "→ Hi(Mg,n) factors through the quotient BTop → FSop,
hence defines an FSop module.

Proof. Let F1 and F2 be two forests inducing the same surjection h : [n]→ [m]. There is a proper
family of gluing maps from Mg,m to Mg,n,

Mg,m ×
( ∏

i∈[m], #h−1(i)>1

M0,#h−1(i)+1

)
→Mg,n.

The map F ∗
1 (respectively F ∗

2 ) is obtained from this family by evaluating at the point in the
second factor defined by the tuple of connected components of LF1 (respectively LF2). Since the
second factor is connected, F ∗

1 and F ∗
2 induce the same map on homology. "

Remark 2.8. The proof of Proposition 2.7 implies that for any surjection h : [n]→ [m] we have
that h∗ : Hi(Mg,m)→ Hi(Mg,n) equals the map induced on homology by the gluing map
associated to any tuple of genus 0 marked curves (Ci ∈M0,#h−1(i)+1).

3. Stable graph stratification

Definition 3.1. A stable graph G of genus h with n external edges consists of the following
data.

• A connected graph G and a labeling of a subset of the univalent vertices of G by 1, . . . , n. The
labeled vertices are called the external vertices and the unlabeled vertices are called internal
vertices. The edges adjacent to external vertices are called external edges, and the remaining
edges are called internal edges. We will write v ∈ G to denote that v is an internal vertex
of G.

• A function g from the set of internal vertices to N, called the genus function. For an internal
vertex v ∈ G, we say that g(v) is the genus of v.

This data is subject to the following conditions.

• Each genus 0 internal vertex is at least trivalent, and each genus 1 internal vertex is at least
univalent.

• There is an equality h1(G) +
∑

v∈G g(v) = h, where h1(G) = dimH1(G) denotes the first betti
number of G.

When G is a stable graph of genus h and n marked points, we define g(G) := h and n(G) := n.
For each internal vertex v ∈ G, we write n(v) for valence of v and e(v) for the number of self
edges of v.

Notation 3.2. Each external vertex is adjacent to a unique external edge. Because of this cor-
respondence between external vertices and external edges, we may make the following abuse
of notation. When we say that v is a vertex of G without specifying whether it is internal or
external, we always mean that v is an internal vertex of G. Instead of referring to an external
vertex, we will typically refer to its corresponding external edge.

Example 3.3. The following stable graph G has genus 3 and one external edge.
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The vertex v marked by 1 has g(v) = 1. The other two vertices have genus 0. We do not decorate
genus 0 vertices in our depiction of stable graphs.

Let G be a stable graph, and suppose that G′ is a quotient graph of G such that none of the
external edges of G are collapsed in the projection π : G→ G′. Then there is a natural stable
graph structure on G′, defined as follows. The external vertices of G′ are the images of the
external vertices of G under π, together with the induced labeling. The genus of a vertex w of
G′ is dimH1(π−1(G)) +

∑
v∈π−1(w) g(v). We say that the stable graph G′ is a quotient of G.

We write Stab(g, n) for the set of isomorphism classes of stable graphs of genus g with n
external edges. The set Stab(g, n) is naturally a poset. We say that G ≤ G′ if G′ is a quotient of
G. We say that G ≺ G′ if G′ is a quotient of G by a single internal edge.

Definition 3.4. A stratification of a variety X by a poset P is a collection of closed subvarieties
Z(p) ⊆ X indexed by p ∈ P , such that if p ≤ q then Z(p) ⊂ Z(q). The subsets Z(p) are called
closed strata. The stratum corresponding to an element p ∈ P is S(p) := Z(p)−

⋃
q<p Z(q). By

construction we have that Z(p) equals the set-theoretic union
⋃

q≤p S(q).

It is well known that the Deligne–Mumford compactification Mg,n admits a stratification by
the poset of stable graphs Stab(g, n), defined as follows. Given C ∈Mg,n, the dual graph of C
is naturally a stable graph, whose genus function assigns to each internal vertex v the genus of
the corresponding irreducible component of C. For a stable graph G ∈ Stab(g, n), the stratum
MG is the locus of stable curves whose dual graph is isomorphic to G (as a stable graph).

We use a coarsening of the standard stratification by Stab(g, n), which has the property
that FSop acts on the associated Borel–Moore homology spectral sequence. This stratification is
defined in terms of the operation constructed in the next proposition

Proposition 3.5. Let G be a stable graph. Then there is a unique stable quotient G ≥ G such
that no two distinct genus 0 vertices of G are connected by an edge, and G← G only identifies
edges between genus 0 vertices.

Proof. Consider the subgraph consisting of genus 0 vertices of G and the edges between them.
Choose a minimal spanning tree Ti for each connected component, and define H to be the
quotient of G such that each Ti is identified to a point.

Any other quotient of G satisfying the hypotheses of the proposition must collapse a minimal
spanning forest of the subgraph of genus 0 vertices, and all quotients by minimal spanning forests
are isomorphic. "

Notice that H = H.

Warning 3.6. It is not true that if G ≤ H, then G ≤ H. For instance consider the following
graphs.
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Stability in the homology of Deligne–Mumford compactifications

They are comparable in the partial order, but the stable quotients associated to them by
Proposition 3.5

are incomparable.

Let Q(g, n) be the set of stable graphs G ∈ Stab(g, n) such that no distinct genus 0 vertices
are connected by an edge. The next proposition constructs a poset structure on Q(g, n) and a
stratification of Mg,n by Q(g, n).

Proposition 3.7. There is a relation ≤Q on Q(g, n) such that (Q(g, n),≤Q) is a poset and the
map H "→ H is a surjection of posets Stab(g, n)→ Q(g, n). This surjection induces a stratification
of Mg,n, where the stratum corresponding to G ∈ Q(g, n) is S(G) =

⋃
H,H=G MH .

Proof. Let G, H ∈ Q(g, n). We say that G ≤Q H if there is sequence of stable graphs G =
G0, G1, . . . , Gn = H such that either Gi ≺ Gi+1 or Gi 1 Gi+1 and Gi is obtained from Gi+1

by collapsing an edge between two genus 0 vertices.
By definition, ≤Q is reflexive and transitive. To prove antisymmetry, suppose G ≤Q H and

H ≤Q G, and let G = G0, G1, . . . , Gn = H be a sequence exhibiting that G ≤Q H.
For a stable graph J , we let s(J) = (s(J)i)i∈N ∈ N⊕∞ be the vector defined as follows. The

zeroth entry is given by

s(J)0 :=
∑

v∈J,g(v)≥1

n(v).

The ith entry for i ≥ 1 is the number of vertices of genus i.
We totally order N⊕∞ reverse-lexicographically, as follows. If (ni), (mi) ∈ N⊕∞, then mi =

ni = 0 for i! 0. So let k = max({i |mi 2= ni}). We declare (ni) ≤ (mi) if and only if nk ≤ mk.
Now suppose that J ′ is obtained from J by collapsing an edge e. If e is an edge between

distinct genus 0 vertices, then s(J) = s(J ′).
Next we claim that if e is any of the following:

(1) a self edge of a single genus g vertex;
(2) an edge between two distinct genus ≥ 1 vertices;
(3) an edge from a genus ≥ 1 vertex to a genus 0 vertex,

then s(J) < s(J ′). In case (1), the (g + 1)th entry is the largest entry such that s(J ′) differs
from s(J) and we have s(J ′)g+1 = s(J)g+1 + 1. In case (2), suppose the vertices have genus
g1, g2. The largest entry where s(J ′) differs from s(J) is the (g1 + g2)th entry. Again the value
of this entry increases by 1. In case (3) let n ≥ 3 be the valence of the genus 0 vertex. Then
s(J ′)0 = s(J)0 + n− 2.

Thus we see that s(Gi) ≤ s(Gi+1) for all i, with equality if and only if Gi and Gi+1 are related
by collapsing an edge between distinct genus 0 vertices. Thus s(G) ≤ s(H), and by symmetry
s(H) ≤ s(G).

Since s(H) = s(G), for every i, the graphs Gi and Gi+1 are related by collapsing an edge
between distinct genus 0 vertices. Otherwise, we would have s(Gi) < s(Gi+1), contradicting
s(G) = s(H). Thus Gi = Gi+1 for all i, by Proposition 3.5. So G = G = H = H, establishing
antisymmetry.
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To see that H "→ H is a map of posets, notice that if H ≤ G, then H and G are related by a
sequence of edge collapses. By definition the pairs H, H and G, G are related by a sequence of
collapses between distinct genus 0 vertices. Composing these three sequences of edge collapses
proves that H ≤Q G.

Finally, the surjection Stab(g, n)→ Q(g, n) shows that

Z(G) :=
⋃

J∈Stab(g,n), J≤QG

MJ

is a closed subset of Mg,n and

S(G) = Z(G)−
( ⋃

H∈Q(g,n), H<G

Z(H)
)

=
⋃

J=G

MJ . "

Remark 3.8. The poset structure on Q(g, n) constructed in the proof of Proposition 3.7 is
uniquely characterized as the minimal poset structure on Q(g, n) such that the map Stab(g, n)→
Q(g, n) is a map of posets.

Definition 3.9. We use Me,n,0 to denote the moduli space of stable curves C of genus e and n
marked points, such that all of the irreducible components of C have genus 0. For G ∈ Q(g, n)
define S̃(G) to be the variety

S̃(G) :=
∏

v∈G, g(v)=0

Me(v),n(v),0 ×
∏

v∈G, g(v)≥1

Mg(v),n(v).

Recall that e(v) denotes the number of self edges of v.

There is a canonical map glue : S̃(G)→ S(G) given by gluing a tuple of curves {Cv}v∈G ∈
S̃(G) together according to the combinatorics of the graph G. More precisely, glue({Cv}) is the
curve obtained from

⊔
v∈G Cv by quotienting by the relation that identifies pairs of marked points

that correspond to the same edge of G.

Definition 3.10. Let G be a stable graph. An automorphism of G consists of a permutation
of the vertices of G and an oriented permutation of the edges of G, which preserve the graph
structure and the genus function and fix the external vertices and edges. (See Remark 3.12 below
for an alternate definition.) Let Aut(G) be the group of automorphisms of G.

Let G ∈ Q(g, n). Let G̃ be the stable graph obtained from G by collapsing all of the self
edges of the genus 0 vertices of G. Let T ⊂ G̃ be the image of the genus 0 vertices of G under
the quotient map G→ G̃. Let AG ⊂ Aut(G̃) be the group of automorphisms f of G̃ such that
f(T ) = T .

Example 3.11. Let G1, G2 be the graphs

respectively. Then we have that Aut(G1) ∼= Z/2 ! (Z/2× Z/2) and Aut(G2) ∼= Z/2× Z/2,
whereas AG1

∼= Z/2 and AG2 = e.
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Let G3 be the following graph.

Then Aut(G3) ∼= Z/2× (Z/2 ! (Z/2× Z/2)) and AG3 = e.

Remark 3.12. We can describe Aut(G) more formally as follows. The data of the graph G can be
encoded as a set of half-edges, Half(G), a partition p that records which half-edges are adjacent
to the same vertex, and an involution σ : Half(G)→ Half(G) that records which half-edges are
glued together. The half-edges fixed by σ correspond to the edges that are adjacent to external
vertices in our original encoding of G. Then Aut(G) is the subgroup of the permutation group
of Half(G) consisting of permutations that preserve p and σ, and which fix pointwise the set of
half-edges fixed by σ.

The group AG acts on S̃(G), by permuting the factors according to the action of AG on the
vertices of G̃, and relabeling the marked points according the action of AG on the edges of G̃.

Proposition 3.13. For G ∈ Q(g, n), the map S̃(G)→ S(G) induces an isomorphism

S̃(G)/AG
∼= S(G).

Proof. We first check the map is an isomorphism on C points, then show it is an isomorphism in
formal neighborhoods by deformation theory. Since S(G) is a locally closed subvariety of Mg,n,
this suffices to show that the map is an isomorphism.

On C points, S̃(G)(C) is the set of isomorphism classes of collections of marked curves
{Cv}v∈G, such that if g(v) ≥ 1, then Cv is smooth of genus g(v) and if g(v) = 0, then Cv is has
genus e(v) and each irreducible component of Cv has genus 0. Similarly, S(G)(SpecC) is the set
of isomorphism classes of stable marked curves C whose dual graph H has H = G.

An element τ ∈ AG acts on S̃(G)(C), τ({Cv}) = {Cτv}, where the marked points are rela-
beled according to the action of τ on the edges of G. There are canonical isomorphisms between
glue({Cv}) and glue({Cτv}); any curve in S(G)(C) is glued from a curve in S̃(G)(C); and any
isomorphism glue({Cv})→ glue({C ′

v}) factors uniquely as a relabeling of the components of Cv

by τ ∈ AG, and isomorphisms between the components fv : Cτv → C ′
τv. Thus S(G)(C) is the

quotient of S̃(G)(C) by AG.
Next we check that the map is an isomorphism in formal neighborhoods. Let {Cv}v∈G ∈

S̃(G)(C), and let C := glue({Cv}) have dual graph H. We show that

S̃(G)/AG → S(G)

induces an isomorphism between the formal neighborhood of {Cv}v∈G and the formal neighbor-
hood of C.

Let {pi}n
i=1 be the marked points of C. From the deformation theory of marked stable curves,

the formal neighborhood of C is isomorphic to the completion at 0 of X, where

X ⊂ Ext1
(

ΩC

( ∑

i

pi

)
,OC

)

is the following union of linear subspaces. There is a subspace for each spanning forest of
the subgraph H0 ⊂ H consisting of genus 0 vertices and edges between them. The subspace
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corresponding to the spanning forest F is

ker
(

Ext1
(

ΩC

( ∑

i

pi

)
,OC

)
→

∏

e∈Edges(H−F)

Ext1(ΩĈe
,OĈe

)
)

,

where Ĉe is the formal neighborhood of the double point e ∈ C corresponding to e.
Similarly, the formal neighborhood of {Cv}v∈G is isomorphic to the completion of X̃ at 0

where

X̃ ⊂
∏

v∈G

Ext1
(

ΩCv

( ∑

uv

quv

)
,OCv

)

is a union of linear subspaces (the sum is over edges uv adjacent to v). Again, X̃ is a union of
subspaces, one for each spanning forest of H0. The subspace corresponding to F is

ker
( ∏

v∈G

Ext1
(

ΩCv

( ∑

uv

quv

)
,OCv

)
→

∏

e∈Edges(H0−F )

Ext1(ΩĈe
,OĈe

)
)

.

From these identifications, and the fact that

∏

v∈G

Ext1
(

ΩCv

(∑

uv

quv

)
,OCv

)
= ker

(
Ext1

(
ΩC

(∑

i

pi

)
,OC

)
→

∏

e∈Edges(H−H0)

Ext1(ΩĈe
,OĈe

)
)

it follows that the map is an isomorphism on formal neighborhoods. "
Next, we describe how BTop acts on the poset Q(g, n) and on the topological spaces⊔

G∈Q(g,n) S(G) and
⊔

G∈Q(g,n) S̃(G). These actions induce an action on Borel–Moore homology
spectral sequences.

Definition 3.14. The category BTop acts on the poset Stab(g, n) by gluing on trees. More
precisely given F ∈ BT(n, m) there is a map Stab(g, m)→ Stab(g, n), denoted G "→ F ∗G, where
F ∗G is the stable graph obtained from G by gluing F to G using the identification of the external
vertices of G with [m], and erasing bivalent vertices. The action of BTop on Stab(g, n) induces
an action of BTop on Q(g, n) in the sense that there is a unique map F ∗ : Q(g, n)→ Q(g, n)
such that the diagram

commutes. Here the two vertical maps are given by G "→ G.

Example 3.15. Consider the following forest F ∈ BT(6, 3) and stable graph G.
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We may consider G as either an element of Stab(2, 3) or Q(2, 3). In these two cases, F ∗G is given
respectively by the following two graphs.

Definition 3.16. The category BTop acts on
⊔

G∈Q(g,n) S(G) and
⊔

G∈Q(g,n) S̃(G), as follows.
For every F ∈ BT(m, n), the gluing map F ∗ : Mg,n →Mg,m induces a map S(G)→ S(F ∗G)
and a map S̃(G)→ S̃(F ∗G) for every G ∈ Q(g, n). Taking the disjoint union of these maps we
obtain the desired action.

We let HBM
i (−) denote Borel–Moore homology, and H i

c(−) denote compactly supported
cohomology. For any finite type variety X, we have that HBM

i (X) = H i
c(X)∗. The variety Mg,n

is compact, and hence Hi(Mg,n) = HBM
i (Mg,n).

There is an increasing filtration of Mg,n by closed subsets, Zi :=
⋃

G,dim S(G)≤i S(G) for
i ∈ N. These closed subsets define a filtration on the Borel–Moore chains of Mg,n, inducing a
Borel-Moore homology spectral sequence

E1
p,q =

⊕

G∈Q(g,n), dim S(G)=p

HBM
p+q(S(G)) =⇒ HBM

p+q(Mg,n).

This spectral sequence is dual to a spectral sequence for compactly supported cohomology,
which is used more frequently; see for instance [Pet17, (3)]. The next proposition states that the
isomorphism of Proposition 3.13 is compatible with the action of FSop and the spectral sequence
of this stratification.

Proposition 3.17. The actions of BTop on
⊔

G∈Q(g,n) S(G) and
⊔

G∈Q(g,n) S̃(G) induce an
FSop module structure on Borel–Moore homology such that

⊕

G∈Q(g,−)

HBM
• (S̃(G))→

⊕

G∈Q(g,−)

HBM
• (S(G))

is a surjection of FSop modules, and the Borel–Moore homology spectral sequence
⊕

G∈Q(g,−)

HBM
• (S(G)) =⇒ H•(Mg,−)

is a spectral sequence of FSop modules.

Proof. By construction, the action of BTop preserves the stratification and acts via proper maps.
Thus it induces maps of spectral sequences. We show that on Borel–Moore homology, the action
factors through FSop. Given a forest F ∈ BT(n, m) the map Q(g, m)→ Q(g, n) only depends
on hF ∈ FS(n, m). Given a surjection h : [n]→ [m], there is a family of gluing maps S(G)×∏

i,h−1(i)>1 M0,#h−1(i)+1 → S(h∗G). Each forest F with hF = h corresponds to an element of
M0,#h−1(i)+1, such that the gluing map F ∗ is obtained by evaluating at that element. Since
M0,n is connected, every forest induces the same map on Borel-Moore homology.

The map HBM
i (S̃(G))→ HBM

i (S(G)) is a surjection, because by Proposition 3.13 we have
that HBM

i (S(G)) = HBM
i (S̃(G))/AG. "
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4. Bounding graphs

The two lemmas in this subsection are combinatorial. The first says that as n→∞ any stable
graph G ∈ Q(g, n) must either contain a genus ≥ 1 vertex of high valence, or a genus 0 vertex
with many external edges.

Lemma 4.1. Let f(i, e, a) be a linear function f(i, e, a) = ri + se + ta + u with r, s, t ≥ 0. If G
is a stable genus g graph such that:

(1) there are no edges between distinct genus 0 vertices;
(2) every genus ≥ 1 vertex has valence ≤ i + 1;
(3) every genus 0 vertex with ≤ e self edges and ≤ a edges to other vertices, has ≤ f(i, e, a)

external edges,

then the total number of external edges of G is bounded by

n(G) ≤ (i + 1)g + (i + 1)gf(i, g, (i + 1)g).

Proof. For a vertex v, let e(v) be the number of self edges and a(v) be the number of edges to
a distinct vertex.

Since every external edge must be adjacent to at least one vertex that is either genus 0 or
genus ≥ 1, by the hypotheses (2) and (3) we have

n(G) ≤
∑

v∈G,g(v)≥1

(i + 1) +
∑

v∈G, g(v)=0

f(i, e(v), a(v)).

The first term of the sum is ≤ (i + 1)g, because there are at most g vertices of genus ≥ 1.
Next we bound the second term. Note that for every genus 0 vertex v, we have e(v) ≤ g,

because the genus of G is g. We also have a(v) ≤ (i + 1)g, because any genus 0 vertex is adjacent
to a vertex of genus ≥ 1. Thus f(i, e(v), a(v)) ≤ f(i, g, (i + 1)g).

Now either G has only one genus 0 vertex, or every genus 0 vertex must be adjacent to genus
≥ 1 vertex. In the first case n(G) ≤ f(i, g, 0), and in the second case we have

#{genus 0 vertices} ≤ (i + 1)g.

So either n(G) ≤ f(i, e, 0), or

n(G) ≤ (i + 1)g + (i + 1)gf(i, g, (i + 1)g),

which proves the claim. "
The next lemma concerns stable graphs H containing only genus 0 vertices. Roughly, it says

that as n(H)→∞, either dim S(H) becomes large, or the number of trivalent vertices of H
grows and consequently H is forced to contain certain subgraphs.

Lemma 4.2. Let J be the stable graph consisting of a single genus 0 vertex, e self edges, and
n− e labeled external edges. Assume we are given a partition of [n− e] into sets A and B of size
a and b respectively. If b > 13a + 16i + 8e− 7, then every stable graph H with H = J satisfies
at least one of the following.

(i) The sum
∑

v∈H(n(v)− 3) is > i.
(ii) There is a trivalent vertex v adjacent to two external edges in B.
(iii) There are two adjacent trivalent vertices v, v′ such that both v and v′ are adjacent to

external edges in B.
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Proof. Let H be a stable graph with H = J . For a vertex v ∈ H, let a(v), b(v), and e(v) denote
the number of edges adjacent to v that are respectively external in A, external in B, and self
edges. To prove the contrapositive, we assume that H satisfies the following conditions:

(1)
∑

v∈H(n(v)− 3) ≤ i;
(2) every trivalent vertex v ∈ H has b(v) ≤ 1;
(3) there are no two adjacent trivalent vertices v, v′ ∈ H with b(v), b(v′) ≥ 1.

With these assumptions, we show that b ≤ 13a + 16i + 8e− 7.
First, by (1), H has ≤ i vertices of valence > 3.
Next by retracting external edges and computing the Euler characteristic of H in two different

ways, we have

e− 1 = −χ(H) =
∑

v∈H

(1/2 #{non external edges of v}− 1).

The first equality follows because J is obtained from H by contracting a tree. The second equality
is obtained by counting the number of edges minus the number of vertices.

Next, we have that the number of non external edges of v is n(v)− a(v)− b(v). Breaking up
the sum by n(v) and a(v), and b(v) we obtain

e− 1 =
∑

v,n(v)>3

(1/2(n(v)− a(v)− b(v))− 1) +
∑

v,n(v)=3,a(v)≥1

(1/2(n(v)− a(v)− b(v))− 1)

+
∑

v,n(v)=3,a(v)=0,b(v)=1

0 +
∑

v,n(v)=3,a(v)=0,b(v)=0

1/2.

Here we used (2) to restrict the sum to the cases shown. From the bound on vertices of valence
> 3, and the fact that 1/2(n(v)− a(v)− b(v)− 1) ≥ −1, we have

e− 1 ≥ −i− a + 0 +
∑

v,n(v)=3,a(v)=0,b(v)=0

1/2.

Rearranging this inequality we see

#{trivalent vertices v, such that a(v) = b(v) = 0} ≤ 2(i + a + e− 1).

Since there are at most a trivalent vertices with a(v) > 0, there are at most 2(i + a + e− 1) + a
trivalent vertices with b(v) = 0.

By (3), every trivalent vertex with b(v) = 1 satisfies at least one of the following:

(I) v has an edge in A;
(II) v is adjacent to a trivalent vertex with b(v) = 0;

(III) v is adjacent to a vertex of valence > 3;
(IV) v has a self edge and is the only vertex of H.

We have the following bounds on the number of trivalent vertices satisfying each condition:

(I) ≤ a;
(II) ≤ 3#{genus 0 trivalent vertices with b(v) = 0} ≤ 3(2(i + a + e− 1) + a);

(III)

≤
∑

v,n(v)>3

n(v) ≤ i + 3#{> 3-valent vertices} ≤ i + 3i;

(IV) ≤ 1,
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where for case (III) we have rearranged (1) and used the bound on vertices of valence > 3.
Combining these bounds, we have

#{trivalent vertices with b(v) = 1} ≤ a + 3(2(i + a + e− 1) + a) + 4i + 1 = 10a + 10i + 6e− 5.

Thus, in total, the trivalent vertices contribute at most 13a + 12i + 8e− 7 to b.
Lastly we have ∑

v,n(v)>3

b(v) ≤
∑

v,n(v)>3

n(v) ≤ i + 3i,

as we reasoned in case (III) above. So the vertices of valence > 3 contribute at most 4i to b. In
total we see that b ≤ 13a + 16i + 8e− 7, completing the proof. "

5. Preliminaries on homology

Recall that Me,n,0 is the moduli space parameterizing stable curves of genus e with n marked
points such that every irreducible component has genus 0. Given a stable graph J ∈ Stab(e, n)
such that J ∈ Q(e, n) is a wedge of circles, we write MJ for the corresponding stratum of Me,n,0

and MJ for its closure.

Definition 5.1. Let J1, J2 ∈ Stab(e, n) be two stable graphs with no vertices of genus > 1.
We say that J1 and J2 differ by a WDVV exchange if there is a subgraph H ⊂ J1, and an
identification of H with the graph

such that J2 may be obtained from J1 by replacing H by the following subgraph.

Example 5.2. The following two graphs differ by a WDVV exchange, applied to the subgraph
H, indicated by the labelings.

The variety M0,4 is isomorphic to P1 via the map that takes 4 points to their cross ratio.
Therefore the three boundary strata of M0,4 all have the same class in H0(M0,4). This fact
is called the WDVV relation. It is well known that the WDVV relation, combined with gluing
morphisms, yields relations between other classes in Mg,n. The next proposition records the
WDVV relations that we use.

Proposition 5.3 (WDVV relations). Let J1, J2 ∈ Stab(e, n) be stable graphs with no vertices
of genus > 1. Suppose that J1 and J2 differ by a WDVV exchange. Then the fundamental classes
[MJ1 ], [MJ2 ] ∈ H∗(Me,n,0) are proportional by a non-zero constant λ ∈ Q∗.

Proof. Let J1 −H be the graph obtained by removing the 2 vertices of H and the edge connecting
them. Write J1 −H as a disjoint union of connected stable graphs {Ki}i∈I of genus gi with ni
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external edges. Then there is a gluing map

g : M0,4 ×
⊔

i

Mgi,ni →Me,n,0,

such that when restricted to the strata of M0,4 corresponding to the graphs

and ,

we obtain maps that are finite onto MJ1 and MJ2 respectively. Since M0,4 is connected, the
image of the fundamental class of

⊔
i Mgi,ni is a non-zero multiple of both [MJ1 ] and [MJ2 ]. "

We recall Deligne’s theory of weights [Del74, Del71], using the canonical isomorphism
HBM

j (Y ) = Hj
c (Y )∗ to state them in terms of Borel–Moore homology. For any algebraic variety

Y , the Borel–Moore homology HBM
j (Y ) carries a filtration

W−jH
BM
j (Y ) ⊆ · · · ⊆W0H

BM
j (Y ),

which is compatible with proper pushforwards and the Künneth formula.

Definition 5.4. The pure Borel–Moore homology of Y is the subgroup

PHBM
∗ (Y ) :=

⊕

j≥0

W−jH
BM
j (Y ) ⊆ HBM

∗ (Y ).

Note that the pure Borel–Moore homology equals the pure homology when Y is compact.
The Künneth formula for the weight filtration implies that

PHi(X × Y ) =
⊕

j+k=i

PHj(X)⊗ PHk(Y ).

Proposition 5.5. The pure homology of Me,n,0 is spanned by the fundamental classes of strata
[MJ ].

Proof. Given a curve C ∈M0,n+2e, define f(C) be the curve obtained by quotienting by the
relation that identifies the (n + i)th marked point of C with the (n + e + i)th marked point of C
for every i ∈ {1, . . . , e}. For every j ∈ {1, . . . , n}, we define the jth marked point of f(C) to be
the image of the jth marked point of C under the quotient map C → f(C). Because f(C) has
genus e and every irreducible component has genus 0, we have defined a point f(C) ∈Me,n+e,0.
Since the construction C "→ f(C) may be carried out in families of curves over an arbitrary base,
it corresponds to a gluing map f : M0,n+2e →Me,n,0.

The map f is surjective between projective varieties. Therefore, by [LG16, Lemma A.4], the
induced map on pure homology is surjective.

Now, W−2iH2i(M0,n+2e) is generated by the fundamental classes of i-dimensional stratum
closures, MJ , as can be shown using Hodge theory; see Getzler [Gel95]. The homology in odd
degree vanishes. For a stable graph J ∈ Stab(0, n + 2e), let f(J) ∈ Stab(e, n) denote the graph
obtained by gluing the external vertices of J as in the definition of f . Let Mf(J) be the cor-
responding stratum of Me,n,0 and let Mf(J) be its closure. Then Mf(J) is the image of MJ ,
so f([MJ ]) is a multiple of [Mf(J)] and so the fundamental classes of strata generate the pure
homology of Me,n,0. "

Before proving finite generation, we record the following vanishing statement.

2651

4  :��  1�5���3 ������� �������
.����
	����!0�5�421��8�582�0#�
/70�5132��85"2��5 #���2��

https://doi.org/10.1112/S0010437X21007582


P. Tosteson

Proposition 5.6. Let g, n ≥ 1. Then HBM
i (Mg,n) = 0 for i < n− 1.

Proof. We show H i
c(Mg,n) = 0 for i < n− 1. Consider the map f : Mg,n →Mg,1 which forgets

the last n− 1 points. By the Leray spectral sequence for compact support and base change, it
suffices to show that H i

c(f−1(x)) vanishes for i < n− 1. The fibers are topologically isomorphic
to Confn−1(Σg − p)/B where Σg − p is the genus g surface with one point removed, and B
is a finite group. By transfer, we have that H i

c(Confn−1(Σg − p)/B) ⊂ H i
c(Confn−1(Σg − p)).

Then vanishing of H i
c(f−1(x)) follows from Getzler’s [Get99] spectral sequence converging to the

compactly supported cohomology of Confn−1(Σg − p), or its generalization by Petersen [Pet17].
As a graded vector space, the E2 page is

⊕

0≤k≤n−2

(Q[−1]⊕Q⊕2g[−2])⊗n−1−k ⊗Q⊕cn,k [−k],

where cn,k is a certain unsigned Stirling number. Since the lowest-degree term is in degree n− 1,
the result follows. "

Proposition 5.6 may also be obtained from the virtual cohomological dimension of Mg,n,
determined by Harer [Har86].

6. Proof of finite generation

Throughout this section, we let f(i, e, a) = 13a + 16i + 8e− 7 and p(i, g) = (i + 1)g + (i +
1)gf(i, g, (i + 1)g). Expanding, we have p(i, g) = 8g2i2 + 29g2i + 16gi2 + 21g2 + 10gi− 6g.

We now show that the FSop module n "→ Hi(Mg,n,Q) is a subquotient of one that is finitely
generated in degrees ≤ p(i, g). In particular, since Sam and Snowden [SS17] proved that sub-
modules of finitely generated FSop modules are finitely generated, we see that the homology is
finitely generated.

Proof of Theorem 1.2. We use the Borel–Moore homology spectral sequence for the stratification
of Mg,n by Q(g, n) defined in § 3. By [Ara05 , Lemma 3.8], this spectral sequence is compatible
with the weight filtration. By Proposition 3.17, this is a spectral sequence of FSop modules and
there is a surjection of FSop modules

⊕

G∈Q(g,n)

HBM
• (S̃(G))→

⊕

G∈Q(g,n)

HBM
• (S(G)).

The homology of Mg,n is pure, since it is the quotient of a smooth proper variety by a
finite group action [BP00] (it is the coarse moduli space underlying a smooth and proper
Deligne–Mumford stack). Thus it suffices to show that the pure Borel–Moore homology of
,GS̃(G) is generated in degree ≤ p(i, g).

Let G ∈ Q(g, n) for n > p(i, g), and let c ∈ PHi(S̃(G)). It suffices to show that the class c is
pushed forward from lower degrees, in the sense that c is a linear combination of classes of the
form f∗(d) for some surjection f : [n]→ [n− 1].

By Lemma 4.1, since n(G) > p(i, g) and G has no edges between distinct genus 0 vertices,
one of the following must hold:

(1) G has no genus > 1 vertices of valence > i + 1;
(2) G has no genus 0 vertices with e self edges, a edges to adjacent vertices and > f(i, e, a)

external edges.
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Assume (1) holds. Then by the Künneth formula we have that

PHBM
i (S̃(G)) =

⊕

j:G→N,
∑

v j(v)=i

( ⊗

v∈G, g(v)=0

PHBM
j(v)(Mn(v),e(v),0) ⊗

⊗

v∈G, g(v)≥1

PHBM
j(v)(Mn(v),g(v))

)
.

Since G has a genus ≥ 1 vertex with valence > i + 1, then by Proposition 5.6 we have that
Hj(Mg(v),n(v)) = 0 for all j ≤ i. Thus PHBM

i (S̃(G)) = 0 and so c = 0. Hence c is pushed forward
from lower degrees.

Now assume (2) holds. Let w be a genus 0 vertex of G with e self edges, a edges to distinct
vertices, and b > f(i, e, a) external edges. We define

X :=
∏

v *=w, g(v)=0

Me(v),n(v),0 ×
∏

v, g(v)≥1

Mg(v),n(v).

By taking linear combinations, we may reduce to the case where c is of the form c = cw ⊗ c′, for
cw ∈ PHj(w)(Me,a+b,0) and j(w) ≤ i and c′ ∈ PHi−j(w)(X).

Let J be the subgraph consisting of w and edges adjacent to w. By Proposition 5.5,
PHj(w)(Me,a+b,0) is spanned by fundamental classes of strata [MH ] for stable graphs H ∈
Stab(g, n) with H = J and dimMH = j(w) ≤ i. It suffices to show that [MH ]⊗ c′ = f∗(d) for
some surjection f : [n]→ [n− 1]. By Lemma 4.2, applied to the partition of the edges of J into
internal and external edges, at least one of the following holds for H.

(I) The sum
∑

v∈H(n(v)− 3) is > i. Since this sum is dimMH , this contradicts the assumption
that dimMH ≤ i.

(II) There is a trivalent vertex v ∈ H adjacent to two external edges, with labels s, t ∈ [n]. Let f
be a surjection [n]→ [n− 1] such that f(s) = f(t). Note that BT(n, n− 1)→ FS(n, n− 1)
is a bijection, and let F be the forest corresponding to f . There is a unique K ∈ Stab(e, n−
1) such that F ∗K = H. The graph K is obtained by removing the edges s, t from H and
relabeling according to f . Similarly, there is a unique L ∈ Q(g, n− 1) such that f∗L = G.
The graph L obtained by removing one of the external edges adjacent to w, and relabeling
according to f .

Since L only differs from G at the vertex w, there is an identification S̃(L) =
Me(w),n(w)−1,0 ×X. Thus we may consider [MK ]⊗ c′ to be a class on S̃(L). Restricting
to the subvariety MK ×X, the gluing map F ∗ : S̃(L)→ S̃(G) induces an isomorphism

MK ×X →MH ×X.

Thus we have that f∗([MK ]⊗ c′) = [MH ]⊗ c′.
(III) There are two adjacent trivalent vertices v1, v2 in H, such that v1, v2 both have external

edges. Identify the subgraph spanned by edges adjacent to v1, v2 with the following.

Then, applying a WDVV exchange to H using this identification, we obtain a graph H ′

which has a trivalent vertex with two external edges. Proposition 5.3 implies that [MH ] =
λ[MH′ ]. Then by case (II) applied to H ′, we have that [MH ] is pushed forward from lower
degrees.

Therefore, we have [MH ]⊗ c′ = f∗(d) for some surjection f : [n]→ [n− 1], completing the proof.
"
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Proof of Theorem 1.1. The result follows from Theorem 1.2 and the extension of the results of
Sam and Snowden recorded in [PY17, Theorem 4.3]. "
Proof of Theorem 1.4. By [SS17, Corollary 8.1.3], FSop is Noetherian. Hence, by Theorem 1.2,
the FSop module Hi(Mg,−) is finitely presented, with presentation

⊕

i∈I1

QFS(−, di)→
⊕

j∈I0

QFS(−, dj),

where QFS(−, d) is the representable FSop module in degree d, defined by n "→ QFS(n, d),
the free vector space with basis the set of surjections [n]→ [d]. Let N = maxi∈I1(di). Then we
have that

IndN ResN Hi(Mg,−) = coker
( ⊕

i∈I1

ResN IndN QFS(−, di)→
⊕

j∈I0

ResN IndN QFS(−, dj)
)

.

Since the counit IndN ResN QFS(−, d)→ QFS(−, d) is an isomorphism for d < N , the result
follows. "

7. Further questions

7.1 Extensions of Theorem 1.2
From Theorem 1.1, we see that there exists M(g, i) ∈ N such that the function n "→
dimHi(Mg,n) agrees with a sum of polynomials times exponentials for n ≥M(g, i). What is
an effective bound on M(g, i)? Equivalently, what is a bound on the degree of the numerator of
the generating function

∑
n dimHi(Mg,n)tn in terms of g and i?

We show that Hi(Mg,n) is a subquotient of a module generated in degree O(g2i2). We expect
that this bound can be a linear bound in g and i. What is the optimal bound?

What is an effective bound on the constant N of Theorem 1.4?

7.2 Representation theory of FSop

Finitely generated FSop modules are not yet as well understood as finitely generated FI modules.
By Theorem 1.2, any new results on finitely generated FSop modules will apply to Hi(Mg,n).

Let Mλ be an irreducible representation of Sn. What is the decomposition of the projective
FSop representation Mλ ⊗Sn QFS(−, n) in degree m? Equivalently, what is the degree m term
in the plethysm of symmetric functions sλ[

∑
k≥1 hk]?

The dimension functions of FI modules are eventually polynomial, and there has been much
work towards constructing and studying invariants of FI modules that govern when this occurs.
(For recent applications see [CMNR18].) Which invariants of FSop modules govern when the
dimension function of a finitely generated FSop module agrees with a sum of polynomials times
exponential? Which invariants control its presentation degree?

7.3 Other operadic actions on H•(Mg,n)
Operads give a conceptual interpretation of the FSop action on Hi(Mg,n). The homology of
moduli space

⊕
g,n H•(Mg,n) forms a (modular) operad, and

⊕
g,n Hi(Mg,n) is a right module

over the suboperad generated by [M0,3]. This operad is isomorphic to the commutative operad.
Thus we obtain an right action of the commutative operad. This action corresponds to a rep-
resentation of its associated PROP , which is the category FSop. Using this approach, we can
define other right actions of wiring categories on the homology of moduli space. For example, for
any j, the operad generated by [Mg,n] acts on

⊕
j,g,n, 3g−3+n−j=i Hj(Mg,n). Is this right module

finitely generated?
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Similarly, as first observed by Kapranov and Manin [KM01], for g fixed, the vector space⊕
i,n Hi(Mg,n) is a right module over the hypercommutative operad, the operad spanned by the

fundamental classes of M0,n. Is this right module finitely generated?
For the answers to these questions to have concrete implications, we need to understand

the structure of right modules over these operads (equivalently representation theory of their
opposite wiring categories). If a sequence of graded vector spaces is a finitely generated module
over the hypercommutative operad, is its Hilbert series constrained to have a particular form?

Is the category BTop, the opposite of the wiring category of the free operad on a binary
commutative operation, Noetherian? If so, it would be possible to simplify the proof of Theorem
1.2. In [Bar15], Barter established the Noetherianity of a category of trees, but we do not know
of a relationship between this category and BTop.
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