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ABSTRACT

Using the theory of FS° modules, we study the asymptotic behavior of the homol-
ogy of M, the Deligne-Mumford compactification of the moduli space of curves, for
n > 0. An FS°P module is a contravariant functor from the category of finite sets and
surjections to vector spaces. Via copies that glue on marked projective lines, we give
the homology of M, the structure of an FS°® module and bound its degree of gen-
eration. As a consequence, we prove that the generating function Y, dim(H;(M,,))t"
is rational, and its denominator has roots in the set {1,1/2,...,1/p(g,4)}, where p(g, 7)
is a polynomial of order O(g?i?). We also obtain restrictions on the decomposition of
the homology of M, into irreducible S,, representations.

1. Introduction

In thispaper we study H;(M,,,Q), the homology of the Deligne-Mumford moduli space of
stable marked curves, from the point of view of representation stability. The space M, is a
natural compactification of the moduli space of smooth curves with n marked points, obtained
by allowing families of smooth curves to degenerate to singular curves with double points. The
symmetric group Sy, acts on M, ,, by relabeling the marked points, so that if we fix i and g we
obtain a sequence of symmetric group representations n — H; (M, g, Q).

Our aim is to understand the asymptotic behavior of these S,, representations for n > 0.
The following theorem gives applications of our main result.

THEOREM 1.1. Let i,g € N, and let C = 8¢%i? + 29¢%i + 16gi% + 219® 4+ 10gi — 6g. Then the

following hold.
(1) The generating function for the dimension of H;(My,, Q) is rational and takes the form
f(t)
dim Hy(Mgn, Q" = ——"~"——1
Z Hjczl(l - Jt)dj
for some polynomial f(t) and d; € N. In particular, there exist polynomials p1(n), ..., pc(n)

such that for n > 0 we have
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P. TOSTESON

(2) Let A be an integer partition of n. If the irreducible S,, representation corresponding to A
occurs in the decomposition of H;(Mg,,Q), then \ has length < C. In other words, the
Young diagram of A has < C' rows.

(3) Let A=\ > Ao > --- > A\¢ be an integer partition of k, and A + n be the partition A\; +n >
Ao > -+ > A¢. The multiplicity of A+ n in H;(Mg ik, Q),

n — dim HOHlanrk (M)\+n, Hi(ﬂg,n—‘rk? Q))a

is bounded by a polynomial of degree C — 1.

1.1 Main result
To establish Theorem 1.1 we use techniques from the area known as representation stability.
Namely, we extend the action of the symmetric groups on H; (ﬂg,n, Q) to the action of a category,
and we prove that the homology groups are finitely generated under this action. Finite generation
then constrains the behavior of H;(M,,,, Q) for n > 0.

Let F'S be the category of finite sets and surjections. The objects of F'S are natural numbers
n € N. A map f:m —ne&FS(m,n) is a surjection f:[m] — [n]. Here [n] :={1,...,n}. An
FS°P module, or an action of FS°P on a sequence of vector spaces V,,, is a functor from FS°P to
the category of vector spaces, denoted n +— V,.

We give {H;(Mgyn)}nen the structure of an FS°P module. Concretely, this means that for
every surjection f : [n] — [m], we define a map

f*H; (Mg n) — Hi(ﬂg,m)a

such that (f o g)* = ¢*f* and idh id Hy(Myom)-
We describe f* in two special cases, which suffice to determine it in general. In these cases,
f* is the map on homology induced by a map of spaces, F* : M, « M .

(1) Let f be a bijection. Then F* is the map that takes a stable marked curve C' and permutes
its marked points by precomposing with f.

(2) Let f:[n+ 1] — [n] is the surjection defined by f(n + 1) = n and f(i) = i otherwise. Given
Ce Mg,n, define F*(C) to be the curve obtained by gluing a copy P! to the nth marked
point of C'. We mark F*(C') by keeping the marked points p1,...,p,—1 € C and marking
two new points py, ppy1 € F*(C) — C. Then F*(C) € My 1 and F* : Mg, — Mg piq is
the corresponding map.

To determine f* for an arbitrary f: [n] — [m], factor f as a composition of permutations and
surjections of the form (2). Proposition 2.7, stated and proved in §2, shows that this action is
well defined. Combinatorially, the choice of such a factorization is related to the construction
of a binary forest with n leaves and m roots. Accordingly, in §2 we define a category of binary
forests, BT°P, which acts on the moduli spaces and induces the FS°P action on homology.

We say that an FS°P module, n +— V,, is finitely generated in degree < C if there is a finite
list of classes {v; € V. } with d; < C, such that every V;, is spanned by classes of the form f*v;.
Our main theorem states that the FS°P module we construct is finitely generated.

THEOREM 1.2. Let g,% € N. Then the FS°? module

n— Hi(Mgn, Q)

is a subquotient of an extension of FS°P modules that are finitely generated in degree < 8¢%i° +
29¢%i + 16gi® + 21g° + 10gi — 6g.
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Theorem 1.1 is a consequence of Theorem 1.2 in combination with results on finitely generated
FS°P modules due to Sam and Snowden [SS17].

Remark 1.3 (Relation to the Tautological Ring). The category FS°P acts on the homology of
./\/lg » through maps that glue on copies of P! with two marked points. These maps are a small
part of the full operadic structure on He(M,,) generated by all gluing maps. The tautological
ring is the subring of H*(M, ) generated by the image of all of the fundamental classes [M,,,]
under gluing maps and cup products. In some sense, Theorem 1.2 says that for i, g fixed, all of
the classes in H; (ﬂg,n) are tautological ‘relative’ to a finite list of classes, using only maps that
glue on copies of P! with 2 marked points.

1.2 Stability

Although the dimensions dim H;(M, ., ) grow exponentially in n, and therefore do not stabilize
in a naive sense, Theorem 1.2 implies that there exists a constant N such that the S,, represen-
tations H;(M,,, Q) are completely determined by the vector spaces {H;(Mgm, Q)}m<n and
the algebraic structure they inherit from surjections [m] — [m/].

For r € N, let FS,°P be the full subcategory of FS°P spanned by sets of size < r. We may
restrict an FS°P module M to an FS,°P module, denoted Res, M. The functor Res, has a left
adjoint Ind,., which takes an FS,°? module to the FS° module freely generated by it modulo
relations in degree < r.

THEOREM 1.4. Let i,g € N. There exists N € N such that the natural map of FS°P modules

Indy Resy Hi(My,—, Q) — Hi(M,,—, Q)
is an isomorphism. In particular, any presentation of the FSx°P module Resy H;(M g,—> Q) gives
a presentation of the FS°P module H;(M, _, Q).

Remark 1.5. Note that F'S, is a finite category and (Ind, M), can be described as a colimit
(Ind,- M), = colim,,,¢(,, /s, )or M,

where n/FS, denotes the over-category. Thus, Theorem 1.4 says that H;(Mg,,) is determined
by a finite amount of algebraic data.

Theorem 1.4 follows from Theorem 1.2 and a Noetherianity result due to Sam and Snowden
[SS17].

Notation 1.6. For the remainder of the paper, all homology and cohomology will be implicitly
taken with Q coefficients.

1.3 Relation to other work

Our work is motivated by the approach to representation stability introduced by Church, Ellen-
berg and Farb [CEF15], which uses modules over FI, the category of finite sets and injections.
The theory of FI modules has been used by Jiménez Rolland [JR15] to study the homology of
Mg, and by Jiménez Rolland and Maya Duque [JRMD18] to study the real locus of My,,.
Because the homology of ﬂg,n grows at an exponential rate, it cannot admit the structure of a
finitely generated FI module, and so a larger category is needed to control the homology of the
full compactification.

Using an explicit presentation of the cohomology ring H®*(My,,) given in [EHKRO05], Sam
defined an action of FS°P on the cohomology of My ,,, and proved that it was finitely generated.
Our work was motivated by his suggestion that there could exist a finitely generated FS°P action
on the cohomology of M, ,, for general g.
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Sam and Snowden [SS17] showed that FS°P is Noetherian (submodules of finitely gener-
ated modules are finitely generated), and described the Hilbert series of finitely generated FS°P
modules . We use their results to deduce concrete implications from Theorem 1.2.

Proudfoot and Young [PY17] have also used FS° modules to study the intersection coho-
mology of a space closely related to Mo,. The FS°? module they construct appears similar
to our construction in the case g =0. The statement of our Theorem 1.1 parallels their
Theorem 4.3.

In order to produce non-tautological classes, Faber and Pandharipande [FP11] established
restrictions on the S,, representations that appear in the tautological ring, which resemble the
restrictions on S,, representations we obtain in Theorem 1.1. Our restrictions on representations
are weaker, but they hold for all cohomology classes. This bounds the effectiveness of Faber and
Pandharipande’s method for producing non-tautological classes.

Kapranov and Manin [KMO1] observed that P, ,, H; (M) is a right module over the hyper-

commutative operad. This algebraic structure extends the action of FS°P on H;(M,,,) for
fixed 1.

1.4 Heuristic for Theorem 1.2

The following is a heuristic argument that illustrates the ideas involved in the proof of Theorem
1.2. The argument uses notions that we introduce later, and it is mathematically independent
from the rest of the text. Readers may wish to skip this subsection on a first reading.

We stratify ﬂg,n by dual graph G. The Borel-Moore homology spectral sequence associated
to this stratification bounds the homology of My, in terms of the homology of the strata,
HFM (Mg). We wish to show that we only need classes from finitely many strata Mg in order
to generate all of the classes. We say that a class in H;(M, ) is pushed forward from lower degree
if it is a linear combination of classes of the form f*c, where f : [n] — [n — 1] € FS(n,n — 1).

The stratum Mg is a quotient of a product of moduli spaces [[,cq Mg(v)n(v)- By fibering
Mg, over Mgy 1 we show that the Borel-Moore homology of M, , vanishes for n > i+ 3, thus
only strata M for which > val(v) — 3 < i contribute to H;(M,,). Thus for G ranging over
all graphs whose strata contribute classes to H;(M, ), the number of vertices of G that have
valence > 3 and genus > 0 is bounded by a function of g and i. So as n — oo the number of
trivalent genus 0 vertices of G must increase.

We say that a stable graph H has an external Y if it has a genus 0 trivalent vertex v that
is adjacent to two external edges. The action of FS°P on curves corresponds to gluing trivalent
vertices on graphs. Thus if H has an external Y, then every class ¢ € H;(Mp) is pushed forward
from lower degrees.

Similarly if G has two adjacent trivalent genus O vertices vy, v such that each v; has an
external edge, the Witten—Dijkgraaf—Verlinde—Verlinde (WDVV) relation shows that the classes
from M are homologous to classes from My, where H has an external Y. Thus classes from
Mg are also pushed forward from lower degree.

Therefore, to prove finite generation, it is enough to show that when the number of trivalent
genus 0 vertices of G is large then either: (1) G has an external Y, or; (2) G has two adjacent
trivalent genus 0 vertices v, v’, each with an external edge. Each trivalent vertex with no exter-
nal edges contributes 1/2 to —x(G). As the number of trivalent vertices increases, the bound
—x(G) < g — 1 implies that one of these two possibilities must occur.

1.5 Structure of the paper
In §2 we define the category of binary trees, BT and prove that FS°P acts on H;(Mg,).
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In formalizing the heuristic argument of § 1.4, we encounter the problem that FS°P does not
act on the Borel-Moore homology spectral sequence for the stable graph stratification. Since
the category of binary trees, BT°P, which does act, is not known to be Noetherian, we cannot
deduce finite generation of H;(M, ) using the usual stable graph stratification. Therefore in § 3,
we define a coarsening of the stable graph stratification for such that FS°P acts on the associated
Borel-Moore homology spectral sequence.

In §4, we prove two lemmas that correspond to the combinatorial part of the heuristic
argument. In §5, we review the WDVV relation, and the fact that H?M(Mgm) vanishes for
n > i+ 3. Finally, in §6, we combine the results from the previous sections to prove Theorem
1.2 and its corollaries.

In the final section, § 7, we ask further questions which are motivated by our results.

2. The Action of FS°P

Let M, ,, be the Deligne-Mumford space of stable genus g curves with n distinct marked points.
The space ﬂg,n parameterizes genus curves C' with distinct marked points p1,...,p, € C, such
that all of the singularities of C' are double points (also called nodal singularities), each marked
point p; is smooth, each genus 0 component of C contains at least three marked or singular
points, and each genus 1 component contains at least one marked or singular point.

Remark 2.1. Since our results concern homology with rational coefficients, we may work with
either the homology of the coarse moduli space or the homology of the Deligne-Mumford stack.
For definiteness, we will work with the moduli space defined over the complex numbers. However
our methods are algebraic, and should also apply to the l-adic cohomology of M, , over any
algebraically closed field.

It will also be convenient for us to use the space Mg, x, where X is a finite set and the marked
points of C' are labeled by the elements of X. Let [n] := {1,2,...,n}. Then Mg, = M, .

Next we introduce the dual graph of a nodal curve C € Mg, an important combinatorial
invariant associated to C.

DEFINITION 2.2. Let C € M, ,,. The dual graph of C, denoted G¢, is the following graph.

e The vertices of G¢ consist of a vertex for each irreducible component of C, together with
n additional vertices labeled 1,...,n. The vertices of G¢ corresponding to the irreducible
components will be called the internal vertices, and the n additional vertices will be called
the external vertices.

e For each singular (double) point of C, there is an edge that connects the internal vertices
corresponding to the components of C' that contain the double point. These components
might be the same, in which case the edge is a loop.

e There is an edge connecting the kth external vertex to the internal vertex corresponding to
the irreducible component of C' containing the kth marked point.

The genus, g(v), of an internal vertex, v, is the genus of its irreducible component. The valence,
n(v), of an internal vertex is the number of edges that are adjacent to it.

2.1 Action of binary trees

Before passing to homology, the category FS°P does not naturally act on Mg,n. Instead, we
construct an action of a category of binary trees.
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DEFINITION 2.3. We define the category of binary trees, BT, as follows. The objects of BT are
natural numbers. A morphism F € BT (m,n) from m to n is a forest of binary rooted trees,
with the leaves labeled by [m] and the roots labeled by [n]. The composite of two morphisms
Fy € BT (m,n) and F» € BT(n,l) is the forest obtained by gluing the roots of Fj to the leaves
of F, using the labeling of both by [n], and erasing the resulting bivalent vertices.

Example 2.4. The binary forests
%\T/§ {\r;l 5 1 3 T
1 2 3 1 2
define morphisms from 5 to 3 and 3 to 2 respectively. Their composite is the following forest.

2 3 51 g4

Y

1 2

and

For a forest F' € BT(n,m), the function that takes each leaf to its root is a surjection hp :
[n] — [m]. The assignment F' +— hp defines a functor BT — FS that realizes FS as a quotient
of BT.

We now define an action of BTP on Mg,n by gluing on trees of marked projective lines in
the following way.

DEFINITION 2.5. Consider F' € BT (m,n). We define a variety Lp equipped with marked points
P1,...,pn and qq, ..., g, as follows. The connected components of L correspond to trees in the
forest F'. For such a tree T', the component Ly of Lg is defined as follows.

e If T consists of a single root labeled by r € [m] joined to a single leaf labeled by s € [n] joined
to a single leaf labeled by s € [n], then Ly = * and p, = ¢5 = *.

e Otherwise, Lt is the following stable curve. The irreducible components of Lt are all isomor-
phic to P! and are in bijection with the vertices of 7' that are not roots or leaves. Two of
these components meet in a nodal singularity precisely when the corresponding vertices are
joined by an edge. The points p; and g; in L7 correspond to the roots and leaves of T, respec-
tively, and are chosen to be distinct from one another. For a root (respectively, leaf) labeled
by r € [m] (respectively, s € [n]) the point p, (respectively, ¢s) is a smooth point in the irre-
ducible component of T' corresponding to the vertex of T' adjacent to r (respectively, s).
Since the non-root/leaf vertices have valence 3, this defines these marked points up to
isomorphism.

DEFINITION 2.6 (Action of BTP). Given a stable curve C' € My, and a labeled rooted forest
F € BT(m,n), we define the stable curve F*C € Mg, to be Lr U, C. In other words F*C'is
the curve obtained by gluing L to C' along the marked points {pi}ie[m]. We use the marking of
Lp by [n] to mark F*C. Since this construction may be performed in families, it corresponds to
a map F*: Mg,m — ﬂg,n for each F' € BT (n,m), and these maps define an action of BT°P on
Mg n.

Postcomposing with H;(—, Q), we obtain a functor BT — Vectq, given by n — H;(M,,,).
By convention, we take this functor to have the value 0 in the cases g =0, n < 2and g = 1,n = 0.

The next proposition defines the FS°? module structure on H;(M, ).
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PROPOSITION 2.7. The functor nw— H;(My,,) factors through the quotient BTP — FS°P,
hence defines an FS°P module.

Proof. Let F; and F» be two forests inducing the same surjection h : [n] — [m]. There is a proper
family of gluing maps from Mg ., to My p,

Mg’m X < H M07#h—1(i)+1> — ﬂgm-

The map F; (respectively Fy) is obtained from this family by evaluating at the point in the
second factor defined by the tuple of connected components of L, (respectively Lg,). Since the
second factor is connected, F}" and F3 induce the same map on homology. O

Remark 2.8. The proof of Proposition 2.7 implies that for any surjection h : [n] — [m] we have

that h*: Hy(Mg.,) — Hi(Myy) equals the map induced on homology by the gluing map
associated to any tuple of genus 0 marked curves (C; € ﬂo#h—l(i) 11)-

3. Stable graph stratification

DEFINITION 3.1. A stable graph G of genus h with n external edges consists of the following
data.

e A connected graph G and a labeling of a subset of the univalent vertices of G by 1,...,n. The
labeled vertices are called the ezternal vertices and the unlabeled vertices are called internal
vertices. The edges adjacent to external vertices are called external edges, and the remaining
edges are called internal edges. We will write v € G to denote that v is an internal vertex
of G.

e A function g from the set of internal vertices to N, called the genus function. For an internal
vertex v € G, we say that g(v) is the genus of v.

This data is subject to the following conditions.

e Fach genus 0 internal vertex is at least trivalent, and each genus 1 internal vertex is at least
univalent.

e There is an equality h' (G) + Y, . 9(v) = h, where h! (G) = dim H'(G) denotes the first betti
number of G.

When G is a stable graph of genus h and n marked points, we define g(G) := h and n(G) :=n.
For each internal vertex v € G, we write n(v) for valence of v and e(v) for the number of self
edges of v.

Notation 3.2. Each external vertex is adjacent to a unique external edge. Because of this cor-
respondence between external vertices and external edges, we may make the following abuse
of notation. When we say that v is a vertex of G without specifying whether it is internal or
external, we always mean that v is an internal vertex of GG. Instead of referring to an external
vertex, we will typically refer to its corresponding external edge.

Ezxample 3.3. The following stable graph G has genus 3 and one external edge.

1
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The vertex v marked by 1 has g(v) = 1. The other two vertices have genus 0. We do not decorate
genus 0 vertices in our depiction of stable graphs.

Let G be a stable graph, and suppose that G’ is a quotient graph of G such that none of the
external edges of G are collapsed in the projection 7 : G — G’. Then there is a natural stable
graph structure on G’, defined as follows. The external vertices of G’ are the images of the
external vertices of G under m, together with the induced labeling. The genus of a vertex w of
G is dim H' (77 1(Q)) + > ver—1(w) 9(v). We say that the stable graph G’ is a quotient of G.

We write Stab(g,n) for the set of isomorphism classes of stable graphs of genus g with n
external edges. The set Stab(g,n) is naturally a poset. We say that G < G’ if G’ is a quotient of
G. We say that G < G’ if G’ is a quotient of G by a single internal edge.

DEFINITION 3.4. A stratification of a variety X by a poset P is a collection of closed subvarieties
Z(p) C X indexed by p € P, such that if p < ¢ then Z(p) C Z(q). The subsets Z(p) are called
closed strata. The stratum corresponding to an element p € P is S(p) := Z(p) —U,, Z(q). By
construction we have that Z(p) equals the set-theoretic union (J, ., 5(q).

It is well known that the Deligne-Mumford compactification M, ,, admits a stratification by
the poset of stable graphs Stab(g,n), defined as follows. Given C' € M, ,,, the dual graph of C
is naturally a stable graph, whose genus function assigns to each internal vertex v the genus of
the corresponding irreducible component of C. For a stable graph G € Stab(g,n), the stratum
M is the locus of stable curves whose dual graph is isomorphic to G (as a stable graph).

We use a coarsening of the standard stratification by Stab(g,n), which has the property
that F'S°P acts on the associated Borel-Moore homology spectral sequence. This stratification is
defined in terms of the operation constructed in the next proposition

PRrROPOSITION 3.5. Let G be a stable grﬂ)h. Then there is a unique stab]@uotient G > G such
that no two distinct genus 0 vertices of G are connected by an edge, and G <+ G only identifies
edges between genus 0 vertices.

Proof. Consider the subgraph consisting of genus 0 vertices of G and the edges between them.
Choose a minimal spanning tree 7; for each connected component, and define H to be the
quotient of G such that each T; is identified to a point.

Any other quotient of GG satisfying the hypotheses of the proposition must collapse a minimal
spanning forest of the subgraph of genus 0 vertices, and all quotients by minimal spanning forests
are isomorphic. ]

Notice that ﬁ =H.

WARNING 3.6. It is not true that if G < H, then G < H. For instance consider the following
graphs.

w
w
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They are comparable in the partial order, but the stable quotients associated to them by
Proposition 3.5

are incomparable.

Let Q(g,n) be the set of stable graphs G € Stab(g, n) such that no distinct genus 0 vertices
are connected by an edge. The next proposition constructs a poset structure on Q(g,n) and a
stratification of M, ,, by Q(g,n).

PROPOSITION 3.7. There is a relation <g on Q(g,n) such that (Q(g,n), <q) is a poset and the
map H — H is a surjection of posets Stab(g,n) — Q(g,n). This surjection induces a stratification
of Mg n, where the stratum corresponding to G' € Q(g,n) is S(G) = Uy g_c Mmu.

Proof. Let G,H € Q(g,n). We say that G <q H if there is sequence of stable graphs G =
Go, Gy, ...,G, = H such that either G; < G;11 or G; = G471 and Gj is obtained from Gjyg
by collapsing an edge between two genus 0 vertices.

By definition, <q is reflexive and transitive. To prove antisymmetry, suppose G <q H and
H <q G, and let G = Go,G1,...,G, = H be a sequence exhibiting that G <q H.

For a stable graph J, we let s(J) = (s(J);)ien € N> be the vector defined as follows. The
zeroth entry is given by

s(No= Y. nlv).

veJ,g(v)>1

The ith entry for ¢ > 1 is the number of vertices of genus 1.

We totally order N¥°° reverse-lexicographically, as follows. If (n;), (m;) € N®*° then m; =
n; = 0 for ¢ > 0. So let k = max({i|m; # n;}). We declare (n;) < (m;) if and only if n; < my.

Now suppose that .J’ is obtained from .J by collapsing an edge e. If e is an edge between
distinct genus 0 vertices, then s(J) = s(.J').

Next we claim that if e is any of the following:

(1) a self edge of a single genus g vertex;
(2) an edge between two distinct genus > 1 vertices;
(3) an edge from a genus > 1 vertex to a genus 0 vertex,

then s(J) < s(J’). In case (1), the (¢ + 1)th entry is the largest entry such that s(J') differs
from s(J) and we have s(J')g41 = s(J)g+1 + 1. In case (2), suppose the vertices have genus
g1, 92. The largest entry where s(J') differs from s(J) is the (g1 + g2)th entry. Again the value
of this entry increases by 1. In case (3) let n > 3 be the valence of the genus 0 vertex. Then
s(J)o=s(J)o+n—2.

Thus we see that s(G;) < s(Gi41) for all 7, with equality if and only if G; and G;41 are related
by collapsing an edge between distinct genus 0 vertices. Thus s(G) < s(H), and by symmetry
s(H) < s(G).

Since s(H) = s(G), for every i, the graphs G; and G;41 are related by collapsing an edge
between distinct genus 0 vertices. Otherwise, we would have s(G;) < s(Git+1), contradicting
s(G) = s(H). Thus G; = G;;1 for all i, by Proposition 3.5. So G = G = H = H, establishing
antisymmetry.
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To see that H ~ H is a map of posets, notice that if H < G, then H and G are related by a
sequence of edge collapses. By definition the pairs H, H and G, G are related by a sequence of
collapses between distinct genus 0 vertices. Composing these three sequences of edge collapses
proves that H <o G.

Finally, the surjection Stab(g,n) — Q(g,n) shows that

Z(G) := U My

J€Stab(g,n), J<qQG

is a closed subset of M, and

S(G) = Z(G) — < U Z(H)) = [J M. O
J=G

HeQ(g,n), H<G

Remark 3.8. The poset structure on Q(g,n) constructed in the proof of Proposition 3.7 is
uniquely characterized as the minimal poset structure on Q(g, n) such that the map Stab(g,n) —
Q(g,n) is a map of posets.

DEFINITION 3.9. We use Me’n,o to denote the moduli space of stable curves C of genus e and n
marked points, such that all of the irreducible components of C' have genus 0. For G € Q(g,n)
define S(G) to be the variety

S@ = ] Mwuwox [l Mowmnw:

vEG, g(v)=0 veEG, g(v)>1
Recall that e(v) denotes the number of self edges of v.

There is a canonical map glue : S(G) — S(G) given by gluing a tuple of curves {Cy e €
S(G) together according to the combinatorics of the graph G. More precisely, glue({C,}) is the
curve obtained from | |, . C, by quotienting by the relation that identifies pairs of marked points
that correspond to the same edge of G.

DEFINITION 3.10. Let G be a stable graph. An automorphism of G consists of a permutation
of the vertices of G and an oriented permutation of the edges of GG, which preserve the graph
structure and the genus function and fix the external vertices and edges. (See Remark 3.12 below
for an alternate definition.) Let Aut(G) be the group of automorphisms of G.

Let G € Q(g,n). Let G be the stable graph obtained from G by collapsing all of the self
edges of the genus 0 vertices of G. Let T' C G be the image of the genus 0 vertices of G under
the quotient map G — G. Let Ag C Aut(é) be the group of automorphisms f of G such that
f(ry="r.

Ezxample 3.11. Let G1, G2 be the graphs
1

OO O+
respectively. Then we have that Aut(Gh) = Z/2x (Z/2 x Z/2) and Aut(Ga) = Z/2 x Z/2,
whereas Ag, 2 7Z/2 and Ag, = e.
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Let G3 be the following graph.

Then Aut(Gs) 2 Z/2 x (Z/2 x (Z/2 x Z/2)) and Ag, = e.

Remark 3.12. We can describe Aut(G) more formally as follows. The data of the graph G can be
encoded as a set of half-edges, Half(G), a partition p that records which half-edges are adjacent
to the same vertex, and an involution o : Half(G) — Half(G) that records which half-edges are
glued together. The half-edges fixed by o correspond to the edges that are adjacent to external
vertices in our original encoding of G. Then Aut(G) is the subgroup of the permutation group
of Half(G) consisting of permutations that preserve p and o, and which fix pointwise the set of
half-edges fixed by o.

The group Ag acts on S (G), by permuting the factors according to the action of Ag on the
vertices of G, and relabeling the marked points according the action of Ag on the edges of G.

PROPOSITION 3.13. For G € Q(g,n), the map S(G) — S(G) induces an isomorphism
S(Q)/Aq = 5(G).

Proof. We first check the map is an isomorphism on C points, then show it is an isomorphism in
formal neighborhoods by deformation theory. Since S(G) is a locally closed subvariety of Mg,
this suffices to show that the map is an isomorphism.

On C points, S(G)(C) is the set of isomorphism classes of collections of marked curves
{Cy}veq, such that if g(v) > 1, then C, is smooth of genus g(v) and if g(v) = 0, then C, is has
genus e(v) and each irreducible component of C,, has genus 0. Similarly, S(G)(Spec C) is the set
of isomorphism classes of stable marked curves C' whose dual graph H has H = G.

An element 7 € Ag acts on S(GQ)(C), 7({Cy}) = {Cry}, where the marked points are rela-
beled according to the action of 7 on the edges of GG. There are canonical isomorphisms between
glue({C,}) and glue({Cry}); any curve in S(G)(C) is glued from a curve in S(G)(C); and any
isomorphism glue({C,}) — glue({C}) factors uniquely as a relabeling of the components of C,
by 7 € Ag, and isomorphisms between the components f, : Cr, — CL,. Thus S(G)(C) is the
quotient of S(G)(C) by Ag.

Next we check that the map is an isomorphism in formal neighborhoods. Let {Cy}yeq €
S(G)(C), and let C := glue({C,}) have dual graph H. We show that

S(G)/Ac — S(G)

induces an isomorphism between the formal neighborhood of {C}},c¢ and the formal neighbor-
hood of C.

Let {p;}?_; be the marked points of C. From the deformation theory of marked stable curves,
the formal neighborhood of C' is isomorphic to the completion at 0 of X, where

X C Ext! (Qc ( ;pz) : Oc)

is the following union of linear subspaces. There is a subspace for each spanning forest of
the subgraph Hy C H consisting of genus 0 vertices and edges between them. The subspace

2645

https://doi.org/10.1112/50010437X21007582 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X21007582

P. TOSTESON

corresponding to the spanning forest F' is

ker(Extl <QC<;pi),(’)o>—> 11 Eth(QOe;Oée))7

ecEdges(H-F)

where ée is the formal neighborhood of the double point e € C corresponding to e. B
Similarly, the formal neighborhood of {Cy},eq is isomorphic to the completion of X at 0

where
X c I Ext! (QCU (qu,),00v>

veG

is a union of linear subspaces (the sum is over edges u, adjacent to v). Again, X is a union of
subspaces, one for each spanning forest of Hy. The subspace corresponding to F' is

ker ( I Ext! <ch (un) : ocv> - 11 Ext'(Q , Oée)>.
veEG Uy ecEdges(Ho—F)
From these identifications, and the fact that
H Ext! (ch (Z quv> , OCU> = ker (Extl <QC ( Zpl> , Oc> — H Eth(Qéc’ Oéc))
veG Uy B ecEdges(H—Hg)
it follows that the map is an isomorphism on formal neighborhoods. ]

Next, we describe how BT acts on the poset Q(g,n) and on the topological spaces
Uceqgn S(G) and [geqgn) S(G)- These actions induce an action on Borel-Moore homology
spectral sequences.

DEFINITION 3.14. The category BT°P acts on the poset Stab(g,n) by gluing on trees. More
precisely given F' € BT (n, m) there is a map Stab(g, m) — Stab(g,n), denoted G — F*G, where
F*@ is the stable graph obtained from G by gluing F' to G using the identification of the external
vertices of G with [m], and erasing bivalent vertices. The action of BT°P on Stab(g,n) induces
an action of BT°P on Q(g,n) in the sense that there is a unique map F* : Q(g,n) — Q(g,n)
such that the diagram

Stab(g,n) ——s Stab(g, m)

l l

Q(g7n) L Q<97m>

commutes. Here the two vertical maps are given by G — G.

Ezample 3.15. Consider the following forest F' € BT(6,3) and stable graph G.
1 2

2 3 56 4
Y 3

1 2 3 1
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We may consider G as either an element of Stab(2,3) or Q(2,3). In these two cases, F*G is given
respectively by the following two graphs.

6 6

2

DEFINITION 3.16. The category BTP acts on | geqgn) S(G) and [geqgn S(Q), as follows.
For every F' € BT(m,n), the gluing map F*: My, — Mg, induces a map S(G) — S(F*G)
and a map g(G) — §(F*G) for every G € Q(g,n). Taking the disjoint union of these maps we
obtain the desired action.

We let HPM(—) denote Borel-Moore homology, and H:(—) denote compactly supported
cohomology. For any finite type variety X, we have that HBEM(X) = H{(X)*. The variety M,
is compact, and hence H;(Mg,,) = HlBM(A/lg,n).

There is an increasing filtration of Mg, by closed subsets, Z; := UG,dimS(G)giS(G) for

i € N. These closed subsets define a filtration on the Borel-Moore chains of M, ,, inducing a
Borel-Moore homology spectral sequence

Epy = D H%(S(G) = H (M)
GeQ(g,n), dim S(G)=p
This spectral sequence is dual to a spectral sequence for compactly supported cohomology,
which is used more frequently; see for instance [Pet17, (3)]. The next proposition states that the
isomorphism of Proposition 3.13 is compatible with the action of FS°P and the spectral sequence
of this stratification.

PROPOSITION 3.17. The actions of BT on | |geqign) S(G) and [Ugeq(gn) S(@) induce an
FS°P module structure on Borel-Moore homology such that

D HMESG)~ D HIMSG)
GeQ(g,-) GeQ(g,-)
is a surjection of FS°P modules, and the Bore[-Moore homology spectral sequence
P HMS(G) = Ha(M,-)
GeQ(g,-)

is a spectral sequence of FS°P modules.
Proof. By construction, the action of BT°P preserves the stratification and acts via proper maps.
Thus it induces maps of spectral sequences. We show that on Borel-Moore homology, the action
factors through FS°P. Given a forest F' € BT(n,m) the map Q(g, m) — Q(g,n) only depends
on hr € FS(n,m). Given a surjection h : [n] — [m], there is a family of gluing maps S(G) x
[Lin-15y>1 Mogn-1@)+1 — S(R*G). Each forest F' with hp = h corresponds to an element of
Mo un-1(i)+1, such that the gluing map F™ is obtained by evaluating at that element. Since
My, is connected, every forest induces the same map on Borel-Moore homology.

The map HZBM(g(G)) — HPM(S(@)) is a surjection, because by Proposition 3.13 we have
that HPM(S(G)) = HPM(S(G))/Ac. O

2647

https://doi.org/10.1112/50010437X21007582 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X21007582

P. TOSTESON

4. Bounding graphs

The two lemmas in this subsection are combinatorial. The first says that as n — oo any stable
graph G € Q(g,n) must either contain a genus > 1 vertex of high valence, or a genus 0 vertex
with many external edges.

LEMMA 4.1. Let f(i,e,a) be a linear function f(i,e,a) = ri+ se +ta + u with r,s,t > 0. If G
is a stable genus g graph such that:

(1) there are no edges between distinct genus 0 vertices;

(2) every genus > 1 vertex has valence < i+ 1;

(3) every genus 0 vertex with < e self edges and < a edges to other vertices, has < f(i,e,a)
external edges,

then the total number of external edges of G is bounded by
n(G) < (i +1)g+ (i+1)gf(i g, (i +1)g).

Proof. For a vertex v, let e(v) be the number of self edges and a(v) be the number of edges to
a distinct vertex.

Since every external edge must be adjacent to at least one vertex that is either genus 0 or
genus > 1, by the hypotheses (2) and (3) we have

n(@ < > (+D+ D fe(v),av)).

veG,g(v)>1 veG, g(v)=0

The first term of the sum is < (i 4+ 1)g, because there are at most g vertices of genus > 1.

Next we bound the second term. Note that for every genus 0 vertex v, we have e(v) < g,
because the genus of G is g. We also have a(v) < (i + 1)g, because any genus 0 vertex is adjacent
to a vertex of genus > 1. Thus f(i,e(v),a(v)) < f(i,9,(i+ 1)g).

Now either G has only one genus 0 vertex, or every genus 0 vertex must be adjacent to genus
> 1 vertex. In the first case n(G) < f(i,g,0), and in the second case we have

#{genus 0 vertices} < (i + 1)g.
So either n(G) < f(i,e,0), or
n(G) < (i+1)g+ (i+1)gf(i,g,(i+1)g),
which proves the claim. U

The next lemma concerns stable graphs H containing only genus 0 vertices. Roughly, it says
that as n(H) — oo, either dim S(H) becomes large, or the number of trivalent vertices of H
grows and consequently H is forced to contain certain subgraphs.

LEMMA 4.2. Let J be the stable graph consisting of a single genus 0 vertex, e self edges, and
n — e labeled external edges. Assume we are given a partition of [n — e| into sets A and B of size
a and b respectively. If b > 13a + 16i + 8¢ — 7, then every stable graph H with H = J satisfies
at least one of the following.

(i) The sum ) py(n(v) —3) is > .
(ii) There is a trivalent vertex v adjacent to two external edges in B.
(iii) There are two adjacent trivalent vertices v,v’ such that both v and v’ are adjacent to
external edges in B.
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Proof. Let H be a stable graph with H = .J. For a vertex v € H, let a(v), b(v), and e(v) denote
the number of edges adjacent to v that are respectively external in A, external in B, and self
edges. To prove the contrapositive, we assume that H satisfies the following conditions:

(1) Xper(n(v) =3) <4;

(2) every trivalent vertex v € H has b(v) < 1;

(3) there are no two adjacent trivalent vertices v,v’ € H with b(v),b(v') > 1.

With these assumptions, we show that b < 13a 4+ 167 + 8¢ — 7.

First, by (1), H has < i vertices of valence > 3.

Next by retracting external edges and computing the Euler characteristic of H in two different
ways, we have

e—1=—x(H)= 2(1/2 #{non external edges of v} — 1).
veEH

The first equality follows because J is obtained from H by contracting a tree. The second equality
is obtained by counting the number of edges minus the number of vertices.

Next, we have that the number of non external edges of v is n(v) — a(v) — b(v). Breaking up
the sum by n(v) and a(v), and b(v) we obtain

e—1= Y (1/2(n() —a®)—b@) -1+ > (1/2(n(v) - a(v) — b)) — 1)

v,n(v)>3 v,n(v)=3,a(v)>1
+ > 0+ > 1/2.
v,n(v)=3,a(v)=0,b(v)=1 v,n(v)=3,a(v)=0,b(v)=0
Here we used (2) to restrict the sum to the cases shown. From the bound on vertices of valence
> 3, and the fact that 1/2(n(v) — a(v) — b(v) — 1) > —1, we have
e—1>—1—a+0+ Z 1/2.
v,n(v)=3,a(v)=0,b(v)=0
Rearranging this inequality we see
#{trivalent vertices v, such that a(v) = b(v) =0} <2(i+a+e—1).

Since there are at most a trivalent vertices with a(v) > 0, there are at most 2(i+a+e—1)+a
trivalent vertices with b(v) = 0.
By (3), every trivalent vertex with b(v) = 1 satisfies at least one of the following:

(I) v has an edge in A4;

(IT) v is adjacent to a trivalent vertex with b(v) = 0;
(III) v is adjacent to a vertex of valence > 3;
(IV) v has a self edge and is the only vertex of H.

We have the following bounds on the number of trivalent vertices satisfying each condition:

0 <a
(IT) < 3#{genus 0 trivalent vertices with b(v) =0} <3(2(i+a+e— 1)+ a);
(I11)
< Z n(v) < i+ 3#{> 3-valent vertices} < i+ 3i;
v,n(v)>3
Iv) <1,
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where for case (III) we have rearranged (1) and used the bound on vertices of valence > 3.
Combining these bounds, we have
#{trivalent vertices with b(v) =1} <a+3(2(t+a+e—1)+a)+4i+ 1= 10a + 10i + 6e — 5.
Thus, in total, the trivalent vertices contribute at most 13a + 12i + 8e — 7 to b.

Lastly we have
doobw)< D n(v) <i+3i
v,n(v)>3 v,n(v)>3
as we reasoned in case (III) above. So the vertices of valence > 3 contribute at most 4i to b. In
total we see that b < 13a 4 167 4+ 8e — 7, completing the proof. ]

5. Preliminaries on homology

Recall that M., is the moduli space parameterizing stable curves of genus e with n marked
points such that every irreducible component has genus 0. Given a stable graph J € Stab(e, n)
such that J € Q(e, n) is a wedge of circles, we write M for the corresponding stratum of M. ¢
and M for its closure.

DEFINITION 5.1. Let Ji,Jy € Stab(e,n) be two stable graphs with no vertices of genus > 1.
We say that J; and Jo differ by a WDVV exchange if there is a subgraph H C Ji, and an
identification of H with the graph

1 3

2 4

such that Jo may be obtained from J; by replacing H by the following subgraph.

Ezxample 5.2. The following two graphs differ by a WDVV exchange, applied to the subgraph
H, indicated by the labelings.

2 2

The variety HOA is isomorphic to P! via the map that takes 4 points to their cross ratio.
Therefore the three boundary strata of MOA all have the same class in Ho(MOA). This fact
is called the WDVV relation. It is well known that the WDVV relation, combined with gluing
morphisms, yields relations between other classes in mg,n- The next proposition records the
WDVYV relations that we use.

PROPOSITION 5.3 (WDVYV relations). Let Ji, Jo € Stab(e,n) be stable graphs with no vertices
of genus > 1. Suppose that J, and Jo differ by a WDV'V exchange. Then the fundamental classes
(M, ], [My,] € Ho(Me o) are proportional by a non-zero constant A € Q*.

Proof. Let J1 — H be the graph obtained by removing the 2 vertices of H and the edge connecting
them. Write J; — H as a disjoint union of connected stable graphs {K;};c; of genus g; with n;
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external edges. Then there is a gluing map

g: MO,4 X |_|Mgi,ni - Me,n,O;
1

such that when restricted to the strata of Mg 4 corresponding to the graphs

2 4 and

we obtain maps that are finite onto M, and M, respectively. Since MOA is connected, the
image of the fundamental class of | |; Mg, n, is a non-zero multiple of both [M ] and [M;,]. O

We recall Deligne’s theory of weights [Del74, Del71], using the canonical isomorphism
HBM(Y) = H)(Y)* to state them in terms of Borel-Moore homology. For any algebraic variety
J
Y, the Borel-Moore homology HJBM(Y) carries a filtration

W HPM(Y) C - C WoHPM(Y),
which is compatible with proper pushforwards and the Kiinneth formula.
DEFINITION 5.4. The pure Borel-Moore homology of Y is the subgroup
PHPM(Y) := W HPM(Y) € HPM(Y).
Jj=0
Note that the pure Borel-Moore homology equals the pure homology when Y is compact.
The Kiinneth formula for the weight filtration implies that

PH,(X xY) = @ PH;(X) @ PHy(Y).
Jt+k=i

PROPOSITION 5.5. The pure homology of M. ¢ is spanned by the fundamental classes of strata
[(M].

Proof. Given a curve C' € My n19c, define f(C) be the curve obtained by quotienting by the
relation that identifies the (n 4 ¢)th marked point of C' with the (n 4 e + i)th marked point of C'
for every i € {1,...,e}. For every j € {1,...,n}, we define the jth marked point of f(C) to be
the image of the jth marked point of C' under the quotient map C' — f(C). Because f(C) has
genus e and every irreducible component has genus 0, we have defined a point f(C) € Me nteo-
Since the construction C' +— f(C') may be carried out in families of curves over an arbitrary base,
it corresponds to a gluing map f : ﬂ0,n+26 — He,n,o-

The map f is surjective between projective varieties. Therefore, by [LG16, Lemma A.4], the
induced map on pure homology is surjective.

Now, W,giHQi(ﬂo,nHe) is generated by the fundamental classes of i-dimensional stratum
closures, M, as can be shown using Hodge theory; see Getzler [Gel95]. The homology in odd
degree vanishes. For a stable graph J € Stab(0,n + 2e), let f(J) € Stab(e,n) denote the graph
obtained by gluing the external vertices of J as in the definition of f. Let My s be the cor-
responding stratum of M., 0 and let ﬂf( 7) be its closure. Then My is the image of My,
so f([M,]) is a multiple of [M ;)] and so the fundamental classes of strata generate the pure
homology of M, 0. O

Before proving finite generation, we record the following vanishing statement.
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PROPOSITION 5.6. Let g,n > 1. Then HPM(M,,) =0 fori <n —1.

Proof. We show H!(M,,) =0 for i < n — 1. Consider the map f : M, — M, which forgets
the last n — 1 points. By the Leray spectral sequence for compact support and base change, it
suffices to show that H(f~!(x)) vanishes for i < n — 1. The fibers are topologically isomorphic
to Conf,_1(X4 — p)/B where ¥, — p is the genus g surface with one point removed, and B
is a finite group. By transfer, we have that H:(Conf, (X, —p)/B) C H(Conf,_1(Z, — p)).
Then vanishing of H:(f~1(z)) follows from Getzler’s [Get99] spectral sequence converging to the
compactly supported cohomology of Conf,,_1(¥, — p), or its generalization by Petersen [Pet17].
As a graded vector space, the Fy page is

D (Ql-1)®Q¥¥[-2))=" 'k © QFni[—k],

0<k<n—2

where ¢, i, is a certain unsigned Stirling number. Since the lowest-degree term is in degree n — 1,
the result follows. 0

Proposition 5.6 may also be obtained from the virtual cohomological dimension of Mg,
determined by Harer [Har86].

6. Proof of finite generation

Throughout this section, we let f(i,e,a) =13a+ 16i+8e —7 and p(i,g) = (i+1)g+ (i +
1)gf(i,g, (i +1)g). Expanding, we have p(i, g) = 8¢%i? + 29¢%i + 16gi% + 21¢° + 10gi — 6g.

We now show that the FS°° module n — H;(M,,, Q) is a subquotient of one that is finitely
generated in degrees < p(i,g). In particular, since Sam and Snowden [SS17] proved that sub-
modules of finitely generated FS°P modules are finitely generated, we see that the homology is

finitely generated.

Proof of Theorem 1.2. We use the Borel-Moore homology spectral sequence for the stratification
of My, by Q(g,n) defined in §3. By [Ara05 , Lemma 3.8], this spectral sequence is compatible
with the weight filtration. By Proposition 3.17, this is a spectral sequence of FS°P modules and
there is a surjection of FS°P modules

@ sMGSEG)—- P HMS@G).

GeQ(gn) GeQ(g,n)

The homology of M, is pure, since it is the quotient of a smooth proper variety by a
finite group action [BPO00] (it is the coarse moduli space underlying a smooth and proper
Deligne-Mumford stack). Thus it suffices to show that the pure Borel-Moore homology of
LeS(G) is generated in degree < p(i, g).

Let G € Q(g,n) for n > p(i,g), and let ¢ € PHy(S(G)). It suffices to show that the class ¢ is
pushed forward from lower degrees, in the sense that c is a linear combination of classes of the
form f*(d) for some surjection f : [n] — [n —1].

By Lemma 4.1, since n(G) > p(i,g) and G has no edges between distinct genus 0 vertices,
one of the following must hold:

(1) G has no genus > 1 vertices of valence > i+ 1;
(2) G has no genus 0 vertices with e self edges, a edges to adjacent vertices and > f(i, e, a)
external edges.
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Assume (1) holds. Then by the Kiinneth formula we have that

BM, & BM 7 BM
PH; " (S(G)) = @ ( ® PHj('u) (Mn(v),e(v),O) ® ® PHj(v) (Mn(v),g(v))) :
j:G—=N, > j(v)=i “veG, g(v)=0 veEG, g(v)>1
Since G has a genus > 1 vertex with valence > ¢+ 1, then by Proposition 5.6 we have that

Hj(Mgy)n()) = 0 for all j <i. Thus PHPM(S(G)) = 0 and so ¢ = 0. Hence ¢ is pushed forward
from lower degrees.

Now assume (2) holds. Let w be a genus 0 vertex of G with e self edges, a edges to distinct
vertices, and b > f(i, e, a) external edges. We define

X = H Me(v),n(v),o X H Mg(v),n(v)'

v#w, g(v)=0 v, g(v)>1

By taking linear combinations, we may reduce to the case where c is of the form ¢ = ¢, ® ¢/, for

cw € PHj()(Meaybpo) and j(w) <iand ¢ € PH;_ () (X).
Let J be the subgraph consisting of w and edges adjacent to w. By Proposition 5.5,

PHj(y)(Meatbo) is spanned by fundamental classes of strata [Mpy] for stable graphs H €
Stab(g,n) with H = J and dim My = j(w) < 4. It suffices to show that [My] ® ¢ = f*(d) for
some surjection f : [n] — [n — 1]. By Lemma 4.2, applied to the partition of the edges of J into
internal and external edges, at least one of the following holds for H.

(I) The sum ) g (n(v) —3)is > i. Since this sum is dim My, this contradicts the assumption
that dim Mgy <.

(IT) There is a trivalent vertex v € H adjacent to two external edges, with labels s,¢ € [n]. Let f
be a surjection [n] — [n — 1] such that f(s) = f(¢). Note that BT (n,n — 1) — FS(n,n — 1)
is a bijection, and let F' be the forest corresponding to f. There is a unique K € Stab(e,n —
1) such that F*K = H. The graph K is obtained by removing the edges s,¢ from H and
relabeling according to f. Similarly, there is a unique L € Q(g,n — 1) such that f*L = G.
The graph L obtained by removing one of the external edges adjacent to w, and relabeling
according to f. _

Since L only differs from G at the vertex w, there is an identification S(L) =

Me(w)n(w)-1,0 X X. Thus we may consider [Mx]® ¢’ to be a class on S(L). Restricting

to the subvariety Mg x X, the gluing map F* : (L) — S(G) induces an isomorphism
Mg x X — My x X.

Thus we have that f*([Mg]® ) =[Mg]®c.
(ITIT) There are two adjacent trivalent vertices vy,vy in H, such that vi, vy both have external
edges. Identify the subgraph spanned by edges adjacent to vy, ve with the following.

1 3

2 4

Then, applying a WDVV exchange to H using this identification, we obtain a graph H’
which has a trivalent vertex with two external edges. Proposition 5.3 implies that [Myg] =

A[Mp]. Then by case (II) applied to H’, we have that [My] is pushed forward from lower
degrees.

Therefore, we have [Mpy| ® ¢ = f*(d) for some surjection f : [n] — [n — 1], completing the proof.
U
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Proof of Theorem 1.1. The result follows from Theorem 1.2 and the extension of the results of
Sam and Snowden recorded in [PY17, Theorem 4.3]. O

Proof of Theorem 1.4. By [SS17, Corollary 8.1.3], FS°P is Noetherian. Hence, by Theorem 1.2,
the FS°P module H;(M, ) is finitely presented, with presentation

P QFs(—,di) — P QFS(—, d)),

i€l j€lo
where QFS(—,d) is the representable FS°P? module in degree d, defined by n +— QFS(n,d),
the free vector space with basis the set of surjections [n] — [d]. Let N = max;cy, (d;). Then we
have that

Indy Resy Hi(M, ) = coker <€B Resy Indy QFS(—, d;) — € Resy Indy QFS(—, dj)> .
ieh j€lo
Since the counit Indy Resy QFS(—,d) — QFS(—,d) is an isomorphism for d < N, the result
follows. O

7. Further questions

7.1 Extensions of Theorem 1.2
From Theorem 1.1, we see that there exists M(g,i) € N such that the function n+—
dim H;(M,,,) agrees with a sum of polynomials times exponentials for n > M(g,i). What is
an effective bound on M (g,4)? Equivalently, what is a bound on the degree of the numerator of
the generating function ), dim H;(M,g,)t" in terms of g and 7?7

We show that H;(M,.,) is a subquotient of a module generated in degree O(g%i?). We expect
that this bound can be a linear bound in g and ¢. What is the optimal bound?

What is an effective bound on the constant N of Theorem 1.47

7.2 Representation theory of FS°P
Finitely generated FS°P modules are not yet as well understood as finitely generated FI modules.
By Theorem 1.2, any new results on finitely generated FS°? modules will apply to H;(M,,,).

Let M) be an irreducible representation of S,,. What is the decomposition of the projective
FS°P representation M)y ®s, QFS(—,n) in degree m? Equivalently, what is the degree m term
in the plethysm of symmetric functions s[>~ he]?

The dimension functions of FI modules are eventually polynomial, and there has been much
work towards constructing and studying invariants of FI modules that govern when this occurs.
(For recent applications see [CMNR18].) Which invariants of FS°? modules govern when the
dimension function of a finitely generated FS°P module agrees with a sum of polynomials times
exponential? Which invariants control its presentation degree?

7.3 Other operadic actions on He(Myg )

Operads give a conceptual interpretation of the FS°P action on H;(M,,). The homology of
moduli space B, ,, He (My,,) forms a (modular) operad, and D, H;(M,,) is a right module
over the suboperad generated by [Mj 3]. This operad is isomorphic to the commutative operad.
Thus we obtain an right action of the commutative operad. This action corresponds to a rep-
resentation of its associated PROP, which is the category FS°P. Using this approach, we can
define other right actions of wiring categories on the homology of moduli space. For example, for
any j, the operad generated by [M, ] acts on D, gn, 3g-3+n—j—i 1 (M) Is this right module
finitely generated?
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Similarly, as first observed by Kapranov and Manin [KMO01], for g fixed, the vector space

®i,n H; (ﬂg,n) is a right module over the hypercommutative operad, the operad spanned by the
fundamental classes of Mg . Is this right module finitely generated?

For the answers to these questions to have concrete implications, we need to understand
the structure of right modules over these operads (equivalently representation theory of their
opposite wiring categories). If a sequence of graded vector spaces is a finitely generated module
over the hypercommutative operad, is its Hilbert series constrained to have a particular form?

Is the category BT°P, the opposite of the wiring category of the free operad on a binary
commutative operation, Noetherian? If so, it would be possible to simplify the proof of Theorem
1.2. In [Barl5], Barter established the Noetherianity of a category of trees, but we do not know
of a relationship between this category and BT°P.
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