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Abstract
1.	 Accurate field data are essential to understanding ecological systems and fore-

casting their responses to global change. Yet, data collection errors are com-
mon, and data analysis often lags far enough behind its collection that many 
errors can no longer be corrected, nor can anomalous observations be revisited. 
Needed is a system in which data quality assurance and control (QA/QC), along 
with the production of basic data summaries, can be automated immediately 
following data collection.

2.	 Here, we implement and test a system to satisfy these needs. For two annual 
tree mortality censuses and a dendrometer band survey at two forest research 
sites, we used GitHub Actions continuous integration (CI) to automate data QA/
QC and run routine data wrangling scripts to produce cleaned datasets ready for 
analysis.

3.	 This system automation had numerous benefits, including (1) the production of 
near real-time information on data collection status and errors requiring correc-
tion, resulting in final datasets free of detectable errors, (2) an apparent learning 
effect among field technicians, wherein original error rates in field data collec-
tion declined significantly following implementation of the system, and (3) an 
assurance of computational reproducibility—that is, robustness of the system to 
changes in code, data and software.

4.	 By implementing CI, researchers can ensure that datasets are free of any errors 
for which a test can be coded. The result is dramatically improved data qual-
ity, increased skill among field technicians, and reduced need for expert over-
sight. Furthermore, we view CI implementation as a first step towards a data 
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1  |  INTRODUC TION

In an era when Earth's ecological systems are increasingly altered 
by pervasive human impacts (Vitousek et al., 2008), including but 
not limited to climate change, ecological systems are changing 
rapidly and at an accelerating pace (Alstad et al., 2016; Masson-
Delmotte et al.,  2021; McDowell et al.,  2020). Long-term data 
are particularly valuable for understanding changing ecological 
dynamics (Anderson-Teixeira et al.,  2015), and their consistency 
through time is critical to accurately assess such changes (e.g. 
Welti et al., 2021). The scientific challenges of documenting and 
understanding these changes, and forecasting future dynamics, 
call for increasingly efficient collection, analysis, and publishing of 
ecological field data (Dietze et al., 2018; Wolkovich et al., 2012). 
It is also critical that data be of high quality, with thorough docu-
mentation and minimal errors, ideally preserved in a stable open-
access environment (Wolkovich et al., 2012).

Challenges to efficient and accurate collection and analysis of 
high-quality ecological field data are abundant. Field researchers, 
regardless of expertise level, are prone to data collection errors and 
equipment malfunctions during collection and often lack the time 
or expertise to conduct thorough quality assurance and quality 
control (QA/QC) checks before the end of the data collection pe-
riod (Ferretti, 2009; Michener, 2018; Yenni et al., 2019). When field 
researchers lack the expertise to thoroughly check the collected 
data, the QA/QC process requires input from more experienced 
researchers who are often over-committed and struggle to provide 
timely data review. Sometimes, it can take years from the time of 
data collection to the time it is analysed for publication (Hampton 
et al., 2013; Marx, 2013). At that point, it is too late to fix errors that 
require field re-visits or reliable memories of the field experience. 
Moreover, a particular long-term research challenge is that field data 
are often collected by field technicians in transitory positions (e.g. 
interns, undergraduate and graduate students, temporary field tech-
nicians, postdoctoral researchers), thus many long-term data records 
are collected by a variety of researchers with differing background 
knowledge, prior experience, and attention to accuracy and de-
tail. Systematic data collection differences among researchers and 
across years are likely to arise, particularly if training or QA/QC are 
inadequate, and data inconsistencies across years can bias scientific 
analyses and conclusions (Didham et al., 2020; Welti et al., 2021). 
A system is needed for rapid, thorough, and objective QA/QC of 
ecological field data, which could ensure that field researchers are 
promptly alerted to their errors and that final data products conform 

to predetermined standards, free of detectable errors (Michael C. 
Dietze et al., 2018; Yenni et al., 2019).

Furthermore, given the increasingly computational nature of 
ecological research, issues of computational irreproducibility are 
increasing in frequency and severity (Alston & Rick,  2021; Milcu 
et al.,  2018; Powers & Hampton,  2019). Data collection, pre-
processing, and analysis pipeline steps are becoming increasingly 
dependent on correct digital data formatting, functioning statis-
tical software code scripts, and ever-updating external software 
packages and extensions (McNutt, 2014; Peng, 2011). Breakdowns 
in this pipeline can easily occur and, if left unchecked, can hamper 
scientific progress. Needed are safeguards to test the reproducibil-
ity of this pipeline that both provide timely notifications of break-
downs and require a minimal number of active human interventions 
(Beaulieu-Jones & Greene,  2017; Stodden et al.,  2016; Stodden & 
Miguez, 2014; Wilson et al., 2014).

Here, we design and test such a system, using a continuous in-
tegration (CI) data pipeline in GitHub using GitHub Actions. GitHub 
is an online, cloud-based service that can help researchers track, 
organize, discuss, share and collaborate on software and other ma-
terials related to research production, including data, code for analy-
ses, and protocols (Crystal-Ornelas et al., 2022). CI is a process used 
by software engineers to automate the integration of code changes 
from multiple contributors working on a single software project; 
GitHub Actions is GitHub's implementation of CI.

At its simplest, whenever a user makes changes to code in a 
repository, a series of tests and checks called ‘jobs’ are automati-
cally triggered to ensure code quality, to detect code compilation 
errors, and to perform unit testing. If a job fails, an alert is promptly 
issued to the user. Our system is modified from Yenni et al.  (2019) 
and White et al. (2019), but adds the dimension of using the system 
for minimizing data collection errors by field technicians. We tested 
this system on three field surveys contributing to long-term data re-
cords at two large forest dynamics plots of the Forest Global Earth 
Observatory network (ForestGEO, Anderson-Teixeira et al.,  2015; 
Davies et al., 2021), evaluating its potential to develop final datasets 
that are free of detectable errors. In addition, we examined tempo-
ral trends in data collection error rates throughout the field season, 
evaluating the hypothesis that by making field technicians aware of 
their earlier errors, implementation of the CI system reduces their 
subsequent data collection error rates.

Other advanced frameworks for developing robust pipelines 
and workflows for automatic data collection, checking, integra-
tion, and ingestion exist, such as OpenRefine (https://openr​efine.

collection and analysis pipeline that is also more responsive to rapidly changing 
ecological dynamics, making it better suited to study ecological systems in the 
current era of rapid environmental change.

K E Y W O R D S
continuous integration, ecological forecasting, field research, forest ecology, Forest Global 
Earth Observatory, GitHub Actions, quality assurance and quality control, reproducibility
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org/), Frictionless Data (https://frict​ionle​ssdata.io/), and the vali-
date r package (Fowler et al., 2018; van der Loo & de Jonge, 2021). 
However, we opted for our system because it dovetailed well with 
existing resources: our data were already stored on GitHub, and 
much of our data wrangling was already done using highly custom-
izable R statistical software language code. Accordingly, we empha-
size that while our implementation is specific to our forest ecology 
data, the overall structure we detail in the next section can be gen-
eralized and transferred to data of any kind.

2  |  MATERIAL S AND METHODS

2.1  |  Continuous integration system

We repurposed the typical software engineering CI framework to 
one that automates data QA/QC. In our system, whenever new 
data are pushed to a GitHub repository, a series of jobs ensuring 
the quality of the data are triggered. If data collection errors exist, a 
report is generated and an alert is issued. A similar report is generated 
for warnings: newly collected observations that should be reviewed, 
but that do not necessarily merit an error alert. Lastly, a dashboard 
of reports on completion status and other relevant information is 
also produced automatically.

Several platforms exist for CI, including Travis CI (https://www.
travi​s-ci.com/), Jenkins (https://www.jenki​ns.io/), GitLab (https://
about.gitlab.com/), and GitHub Actions (https://github.com/featu​
res/actions). We used GitHub Actions since our data and code 
were already stored in GitHub repositories, allowing for their easy 
centralization with CI procedures and outputs. Furthermore, at 
the time of this article's publication, GitHub Actions had a gen-
erous monthly allocation of free compute-time minutes for pub-
licly available open-source projects such as ours. (On the other 
hand, private GitHub repositories had a more restrictive monthly 
allocation of 3000 compute-time minutes.) Furthermore, under 
the free GitHub plan, each GitHub Actions job can run for up to 
6 hours of execution time and can consume up to 14GB of free disk 
space during execution. Lastly, no file in any of our repositories 
exceed the 100 MB maximum file size allowed on GitHub; work-
arounds to this restriction include the arrow, pins, and piggyback 
r packages (Boettiger, 2022; Richardson et al., 2022; Wickham & 
Luraschi, 2021).

The r-lib/actions library of GitHub Actions for the R lan-
guage, available at https://github.com/r-lib/actions, provides 
an interface between GitHub Actions and R (Hester,  2021); it 
is this library that makes it possible to program our system in 
R. Furthermore, we leveraged existing unit testing infrastruc-
ture in the testthat package to issue data collection error alerts 
(Wickham, 2011). While the combination of r-lib/actions and test-
that is typically used to ensure that r packages saved in a GitHub 
repository pass all QA/QC checks for r package submission to 
the Comprehensive R Archive Network (CRAN), we repurposed 
it to run our data QA/QC.

A general overview of our CI system is visualized as a data pipe-
line in Figure 1; specific details pertaining to each of the example 
three surveys are discussed in Section 2.2.

The system starts with field technicians collecting field data. At 
this stage, data can be collected either on paper or electronically, 
and no internet connection is assumed. After returning from the 
field, data technicians (often the same individuals as the field tech-
nicians) create a spreadsheet containing new measurements, which 
we call data.csv. This step may require some consolidation of the 
individual field technicians' measurements into a single spreadsheet 
and/or entering the values recorded on paper into a computer.

The data technicians then push the data.csv spreadsheet to 
the GitHub repository, at which point GitHub Actions CI is auto-
matically triggered. We make a distinction between files saved in 
the repository (enclosed in darker blue shade; Figure  1) and the 
sequence of automated tasks performed by GitHub Actions (en-
closed in lighter orange shade; Figure 1). The sequence of tasks are 
specified in a .yaml file included in the .github/workflows/ folder of 
the repository; .yaml (Yet Another Markup Language) is a human-
readable data-serialization language and is commonly used for con-
figuration files and in applications where data are being stored or 
transmitted.

In our data-tests.yaml file we

1.	 Specify the branches, folders, and/or files that, when modified, 
will trigger GitHub Actions;

2.	 Specify the operating system(s) used for testing (Windows, 
macOS, or linux);

3.	 Import the appropriate r-lib/actions GitHub Actions for the R lan-
guage, specifically, the r-lib/actions/setup-r action to set up an R 
environment on GitHub servers;

4.	 Install all r package dependencies listed in DESCRIPTION using 
the REMOTES package (Hester et al., 2021);

5.	 Run all relevant R scripts to
a.	 detect any data collection errors via generate_reports.R,
b.	 (optionally) produce data collection warnings via generate_

warnings.R and
c.	 produce a dashboard via generate_dashboard.R;

6.	 Commit and push any new or modified files to the repository; and
7.	 Issue any data collection alerts/notifications specified in testthat.R 

via the testthat package.

In Appendix S2, we detail an example data-tests.yaml file (which 
can be found at https://github.com/SCBI-Fores​tGEO/SCBIm​ortal​
ity/blob/main/.githu​b/workf​lows/data-tests.yaml) and describe a 
YouTube screencast tutorial describing all the elements of this file 
available at https://youtu.be/JKF6a​XtdLHs.

2.1.1  |  Step 1: Instal all necessary r packages

In order for GitHub Actions to run all the relevant R scripts re-
motely on GitHub servers, all packages used must be specified in the 
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Imports section of the DESCRIPTION file included in the root direc-
tory of the repository. This DESCRIPTION file is identical in struc-
ture and function to the DESCRIPTION file included in all CRAN 
r packages. For example, it is where developers specify R version 
and r package requirements. The r-lib/actions library will in turn call 
the remotes package to automatically install all specified r packages 
from scratch, thus testing whether the data pipeline breaks down 
due to differences in package versions; this default behaviour can be 
overridden by having packages cached so that they aren't reinstalled 
at each GitHub Actions run.

In our case, while we specified all packages used in 
DESCRIPTION, we did not specify any package version numbers, 
nor perform any software dependency management. It is import-
ant to note that neglecting these tasks could lead to issues caused 

by changes in software versions, especially as system complexity 
increases. Solutions to safeguard against such issues range from 
simpler solutions like using the renv package or its packrat prede-
cessor for dependency management, to more involved but more 
robust solutions such as using Docker containers with R via the 
rocker package (Boettiger & Eddelbuettel,  2017; Merkel,  2014; 
Ushey, 2022; Ushey et al., 2021).

2.1.2  |  Step 2: Detect any data collection errors

A script named generate_reports.R is then run on data.csv to check 
for data collection errors. In theory, this system can run any test 
that can be programmed in R. In practice, tests should be carefully 

F I G U R E  1  Continuous integration data pipeline used in this study to automate data quality assurance and control of field collected forest 
data. The process begins with field technicians collecting data, continues with data technicians committing and pushing a data spreadsheet 
to GitHub, which will trigger GitHub Actions, and ends with email alerts being sent automatically to the user if any steps in the process fail 
or if any programmed ‘field fix’ or ‘auto fix’ data collection errors exist. Upon receiving data collection error alerts, either field technicians 
recollect data to resolve field fix errors, or data technicians update the spreadsheet to resolve auto fix errors. Similarly, warnings that do not 
require field revisits are also generated.
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defined based on the properties of the data being collected. Here, 
we define ‘detectable errors’ as those potential errors for which 
tests can and have been programmed in this script.

We divided errors into ‘field fix’ and ‘auto fix’ errors. ‘Field fix’ 
errors require field technicians to return to the field and recollect 
measurements. If a field fix error is detected, a field_fix_errors.csv 
error report is automatically generated and saved to the repos-
itory. Equipped with this error report, a field technician (usually 
the one who recorded the original error) returns to the field and 
retakes the appropriate measurement. The new data are then con-
solidated and used to update the data.csv spreadsheet. Example 
field fix errors include when tree information was not recorded, 
such as missing crown position values, or a stem being marked 
as unhealthy or dead but no factor associated with decline was 
recorded.

Alternatively, ‘auto fix’ errors do not require field technicians re-
turning to the field to retake measurements. If an auto fix error is 
detected, an auto_fix_errors.csv error report is similarly generated 
and saved to the repository, at which point the data technician can 
correct these errors by merely updating the data.csv spreadsheet. 
Example auto fix errors include when a tree is marked as having a 
wound but is not marked unhealthy.

We detail more examples of both field fix and auto fix er-
rors for the mortality census and dendroband surveys in 
Sections 2.2.1 and 2.2.2, as well as in the complete list of errors 
in Tables S1 and S2.

In the presence of either type of error, an error alert is emailed to 
the data technician, directing them to the Actions tab of the GitHub 
repository homepage for error identification and handling; this is 
represented by the lowest block in Figure 1. We detail this further in 
the forthcoming Section 2.1.5.

2.1.3  |  (Optional) Step 3: Run other scripts

Other optional scripts are run at this point; for example, further data 
wrangling and analysis scripts. In our case, a generate_warnings.R 
script is run to produce warnings. As opposed to data collection er-
rors which necessitate some form of action, warnings do not neces-
sarily merit error alerts, but identify observations that may still be 
of interest for further investigation. An example warning would be 
if a tree previously marked as dead was later recorded as alive. If 
such warnings exist, a warnings.csv file is automatically generated 
and saved to the repository.

2.1.4  |  Step 4: Produce dashboard

Next, a generate_dashboard.R script is run to automatically produce 
a dashboard whose elements quickly provide reports, such as im-
ages and data relating to progress and results, completion maps, 
error rate tracking, and other summaries. In our case, dashboard 
elements such as images and tables are saved to the GitHub re-
pository and then displayed on the repository README.md cover 
page. We present example dashboard elements for the three sur-
veys in Section 2.2 an in Figures 2 and 3. More sophisticated dash-
boards could include external websites, automatically published 
using GitHub Pages (https://pages.github.com/) for example (White 
et al., 2019; Yenni et al., 2019).

Another step that could be performed at this point is data ar-
chiving, whereby a timestamped permanent archive of the data is 
stored. For example, in their continuous integration pipeline White 
et al. (2019) included an R script that, every time data are pushed to 
the repository, automatically publishes a repository version on the 

F I G U R E  2  Snapshots of SCBI and Harvard Forest mortality census repository dashboards: Quadrat maps illustrating census completion 
status. For each 20 × 20 m quadrat at both sites, the dashboard reports whether the quadrat (1) has been fully and successfully censused; 
(2) has warnings of note but do not require action; (3) has data collection errors that require either field or data technician intervention; (4) 
has both warnings and data collection errors; or (5) has not been censused yet. The images represent mortality census quadrat completion 
statuses as of July 26, 2021.
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general-purpose open repository site, Zenodo (https://zenodo.org/), 
and obtains a corresponding Digital Object Identifier (DOI) number. 
In our case however, we only periodically manually update our data 
repositories' versions on Zenodo and include a Zenodo badge on the 
repository README.md cover page.

2.1.5  |  Step 5: Issue any alerts or notifications

Finally, our CI system can issue alerts or notifications, typically of 
one of two types: a ‘red’ alert indicating a failed process or a ‘green’ 
alert indicating a successful one. In the event of a failed process, 
GitHub Actions will email a notification to the data technician who 
triggered GitHub Actions. In our implementation, a failed process 
email notification alert is issued to the data technician who originally 
pushed data to GitHub in one of two cases.

First, failed process alerts are generated if any step in the 
data pipeline, visualized in Figure 1, fails due to errors in the code. 
Examples include errors caused by changes to the code, as well as 
errors arising from differences between different versions of the 
same software. Any such failed processes require prompt fixing of 
all coding errors so that the entire process in Figure 1 can be com-
pleted. Such failed process alerts act as safeguards, ensuring code 
reproducibility and the robustness of the pipeline against all code 
and software changes.

Second, failed process alerts are also programmed to be gen-
erated when any of the data collection errors from Section 2.1.2 
are detected. As opposed to failed process alerts due to errors in 
the code, failed process alerts due to data collection errors must 
be explicitly programmed by the data technician as described in 
Section 2.1.2 and then operationalized using the testthat package 
(Wickham, 2011). The typical use of the testthat package is for r 
package validation, whereby the parameters that define r package 
compilation error alerts are defined in a testthat.R file. In our case, 
however, the testthat.R file in Figure 1 defines when a data collec-
tion error alert should be triggered—specifically, when a field_fix_
errors.csv error report gets created in Step 2.

2.2  |  Deployment of the continuous 
integration system

The CI system described above was implemented for three 
ecological surveys at two ForestGEO large forest dynamics research 
sites: the Smithsonian Conservation Biology Institute (SCBI; near 
Front Royal, VA, USA, 113 km [70 miles] west of Washington, DC, 
USA; latitude 38.8935, longitude −78.1454) and Harvard Forest 
(HF; near Petersham, MA, USA, 113 km [70 miles] west of Boston, 
MA, USA; latitude 42.5388, longitude −72.1755). SCBI is a 25.6 ha 
(400 × 640 m) plot dominated by broadleaf deciduous tree species 
including Liriodendron tulipifera L. and several species of Quercus. 
Harvard Forest is a 35 ha (700 × 500 m) plot dominated by Tsuga 
canadensis (L.) Carrière, Acer rubrum L., and Quercus rubra L. The 

three surveys included two annual tree mortality censuses, one at 
each site, and a dendrometer band survey at SCBI, as detailed below.

2.2.1  |  SCBI and Harvard Forest mortality censuses

Beginning in 2014, annual tree mortality censuses were established 
at SCBI (Gonzalez-Akre et al., 2016). In 2021, the annual tree mortal-
ity census protocols of SCBI and other ForestGEO sites (Arellano 
et al.,  2021) were standardized and applied across five temperate 
ForestGEO sites, including SCBI and HF. This was the eighth an-
nual tree mortality census at SCBI, and the first at HF. Each cen-
sus included all stems ≥10  cm diameter at breast height (DBH; 
1.3 m above the ground) in the most recent ForestGEO core census 
(2013 or 2018 at SCBI, 2019 at HF) where every stem ≥1 cm DBH 
was mapped, tagged, identified to species, and measured at DBH 
(Anderson-Teixeira et al., 2015; Condit, 1998). Data collected as part 
of the tree mortality census included status (alive, alive unhealthy, 
dead standing or dead fallen), crown position, crown condition and 
signs of damage, disease or decay (full protocol available in the 
SCBImortality GitHub repository at https://github.com/SCBI-Fores​
tGEO/SCBIm​ortality). The SCBI census included add-ons to capture 
the impacts of emerald ash borer (EAB, Agrilus planipennis Fairmaire) 
invasion, wherein all stems ≥1 cm DBH of host tree species (Fraxinus 
americana, F. nigra, F. pennsylvanica, and Chionanthus virginicus) were 
censused, and EAB-specific symptoms of tree decline assessed.

At SCBI, the 2021 mortality census was conducted from June 2 to 
August 18 by a full-time intern, two other part-time interns who pro-
vided assistance (all with minimal prior experience in forest field work), 
and a graduate student with prior experience including conducting 
the same mortality census earlier in the year at other ForestGEO sites 
(Smithsonian Environmental Research Center and the Ordway Swisher 
Forest Dynamics Plot). Training and occasional help was provided by 
an experienced field technician and a principal investigator. At HF, the 
2021 mortality census was conducted from July 8 to July 29 by three 
field technicians who had previously conducted the census at other 
sites, three forest technicians, and a guest surveyor.

We activated the CI system to check for errors on July 6 at SCBI, 
which was approximately mid-way through the mortality census 
there, and on July 8 at HF, which was immediately after the first 
day of data collection. Thus, the first time field technicians were 
equipped with feedback on their previous data collection was the 
next field collection date: July 7 at SCBI and July 9 at HF.

At both sites, measurements were digitally recorded using the 
FastField app loaded on iPads. FastField forms (https://www.fastf​
ieldf​orms.com/) are customizable, version-controlled forms that fa-
cilitate mobile but internet connection-free data collection. A data 
technician first built the FastField form using a template Excel file to 
populate the necessary fields. They then programmed the form with 
first-stage data QA/QC (e.g. making certain data fields be required, 
limiting valid numerical ranges, presenting categorical choices for 
categorical variables, and other metadata considerations) and con-
ditional statements to make certain fields appear when specific 
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conditions were met (e.g. only display fields required for dead trees 
if the tree was recorded dead). Other fields were programmed to 
auto-populate (e.g. date and time). We note that FastField Forms 
are one of multiple potential data collection interfaces and were not 
specifically required for our CI system. For example, Google Sheets 
(https://www.google.com/sheet​s/about/) allows for offline access, 
whereby synchronizing with the cloud occurs as soon as an inter-
net connection is reestablished. Furthermore, while a few first-stage 
data QA/QC checks can be programmed into FastField forms, users 
are limited to a set of generic form input validations; the more so-
phisticated data QA/QC checks required by our projects necessi-
tated custom R code, which in turn was automated by our CI system.

FastField survey forms were populated with a list of trees to be 
included in the survey, sorted into established 20 × 20 m quadrats, and 
with existing data including stem coordinates, species, prior DBH and 
prior status (e.g. ‘dead standing’). Field technicians were assigned in-
dividual 20 × 20 m quadrats (out of 640 at SCBI and out of 875 at HF) 

where they censused each tree ≥10 cm DBH. After completing each 
quadrat, field technicians submitted data within the FastField Forms 
app. Individual submissions were assigned a field technician ID indicat-
ing who collected the data, a timestamp, and a unique submission ID 
number. Upon return from the field, field technicians connected iPads 
to the internet and synchronized their individual FastField submissions 
to the cloud via the FastField website. A data technician then down-
loaded a single Excel file containing all the individual submissions; this 
Excel file corresponds to data.csv in Figure 1 and contains a collated 
and  cumulative record of all submissions.

Data files were then pushed to GitHub repositories correspond-
ing to each site: SCBImortality for SCBI and HarvardMortality for HF 
(see Data Availability Statement). The CI systems for the two mor-
tality censuses are very similar since the HarvardMortality repository 
started as a clone of the pre-existing SCBImortality repository, with 
slight modifications to adjust for census add-ons and minor differ-
ences in plot setup.

F I G U R E  3  Snapshot of SCBI dendroband survey repository dashboard: Time series plots displaying anomalous dendroband 
measurements identified using continuous integration for six trees. Examples include (a, b) two cases where measurements >10 mm different 
from the previous measurement were detected and corrected the next day, (c) a case where an anomaly was detected but could not be re-
measured quickly enough, and so simply removed from the data record, (d) a false alert where a tree's circumference increased by >10 mm 
between the spring survey and the next measurement in early June (a nontypical time gap between measurements caused by COVID-19), 
(e) an alert issued when measurements were accidentally transposed between two stems of a multistem tree, and (f) an instance where an 
anomalous measurement passed the screening immediately after it was taken, but was identified and retroactively deleted when an alert 
was issued for the subsequent measurement. Similarly to the example in (d), this record also contains a false alert that occurred in early June.
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For each site, a series of automated tests for data collection 
errors and warnings were applied (n  =  31 at SCBI and 23 at HF). 
Automated tests included an assessment of census progress, com-
pletion checks testing whether all stems in censused quadrats had 
been visited and whether all required data were present, consistency 
checks testing for internal consistency within each new data record, 
and consistency checks comparing new records with prior data (e.g. 
new DBH measurements were consistent with the previous census 
measurements; see Table S1 for a complete list of automated tests). 
As described in Section 2.1.2, all data collection errors were classi-
fied as either ‘field fix’ or ‘auto fix’ errors.

The CI system reported field fix errors in field_fix_errors.csv. 
Example field fix errors include (1) stem not censused, (2) missing crown 
position, and (3) status recorded as unhealthy or dead, but no factors 
associated with decline recorded. The CI system similarly reported 
auto fix errors in auto_fix_errors.csv. Example auto fix errors included 
(1) a wound was recorded, but the tree was classified as healthy (classi-
fication changed to unhealthy, by definition), and (2) a wound severity 
level was recorded, but wound was not selected from a list of factors 
associated with decline. Finally, the system produced warning alerts in 
warnings.csv. Example warnings included (1) a tree was marked as alive 
but was recorded as dead in a previous census and (2) a newly dead 
tree DBH measurement was >2 cm different from the previous census 
measurement. We note that the errors in this final category could have 
arisen from a previous census error and did not necessarily indicate a 
new data collection error.

After producing all necessary error alerts and warnings, the re-
pository README.md dashboards were populated with an overall 
completion percentage and a map of all quadrats illustrating the cor-
responding error, warning, and completion statuses (Figure 2). Using 
the map and error reports as a guide, field technicians returned 
to the field to correct problems until all errors had been resolved, 
resulting in a highly efficient method to obtain a final dataset that 
passed all programmed data QA/QC checks.

2.2.2  |  SCBI dendrometer band surveys

Dendrometer bands have been used for fine-scale measurement of 
tree diameter growth at SCBI beginning in 2010. Metal dendrometer 
bands were constructed following the protocol of Muller-Landau 
and Dong  (2010) and installed within 20 cm of breast height (full 
protocol available in the SCBI Dendrobands GitHub repository at 
https://github.com/SCBI-Fores​tGEO/Dendr​obands). Bands were 
initially installed following this schedule: 243 in 2010, 505 in 2011, 
515 in 2012, and 566 in 2013. The number of bands has since fluc-
tuated slightly as trees have died or bands were otherwise lost and 
new bands were eventually added to compensate for these losses. 
Once bands were installed, precise measurements of the band gap 
or window were taken to a hundredth of a mm using digital callipers. 
All bands are measured biannually (n  =  549 in 2021): once at the 
beginning of the growing season (in the spring, around March) and 
once at the end (in the fall, around November). A subset of these 

bands are further measured biweekly throughout the growing sea-
son starting (n = 146 in 2021; Dow et al., 2022).

In 2021, the spring biannual census was conducted on March 
23 and 24 by an experienced field technician, 10 biweekly censuses 
were conducted between June 8 and October 26 by interns trained 
by an experienced field technician, and the fall biannual census was 
conducted on October 26 and 27 by an experienced field technician, 
a principal investigator, and an intern. We activated the CI system 
for the SCBI dendrometer band survey mid-way through the 2021 
growing season on July 21, 2021, which was after the spring bian-
nual survey and three biweekly surveys.

As opposed to both tree mortality censuses, where field data 
were collected using the FastField app, dendrometer band data were 
entered into .csv files either directly on iPads or on paper forms first 
and then later transcribed to a computer. Spreadsheets were then as-
signed a unique survey identification value of form YEAR-SURVEYID 
(e.g. 2021-03 indicates the third survey for the 2021 growing sea-
son). This spreadsheet corresponds to data.csv in Figure 1.

Data files were then pushed to the GitHub repository for den-
drometer band data (see Data Availability Statement). Before run-
ning any data collection error tests, the Dendrobands CI system was 
programmed to collate independent spreadsheets for each census 
into an annual summary spreadsheet, which required checking that 
individual file column structure, number, and types matched.

Examples of data collection error tests for the two biannual and 
10 biweekly surveys included (1) incorrect census number, (2) mea-
surement not recorded and, of most interest to us, (3) measurements 
that were ‘anomalous’ as compared to previous data. For the biweekly 
surveys, these were measurements that differed from the previous 
ones by ≥10 mm. For the stems that were only measured at the spring 
and fall biannual surveys but not biweekly, we tested whether their 
overall 2021 growth was within ±3 standard deviations of the previ-
ous year's species-specific distribution of growth; for example com-
paring the 2021 growth of all biannual Liriodendron tulipifera stems to 
the distribution of 2020 growth for all conspecific stems. If a partic-
ular stem's overall 2021 growth fell outside ±3 standard deviations, 
its fall measurement was flagged as anomalous. All anomalous mea-
surements were displayed in time series plots posted to the reposi-
tory README.md dashboard (Figure 3, which we discuss further in 
Section 3.2). All our data collection tests are listed in Table S2.

The CI system also produced warning alerts in warnings.csv. 
In particular, a warning was generated when a dendrometer band 
needed repair or replacement because the calliper measurement 
window on the dendrometer band was too close to the minimum or 
maximum measurable length, or if a field technician coded the need 
for replacement.

2.3  |  Evaluation of the continuous 
integration system

We present the methods used to evaluate the CI system's effective-
ness at ensuring data QA/QC and reducing original error rates.
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2.3.1  |  SCBI and Harvard Forest mortality censuses

For both tree mortality censuses, we evaluated (1) the numbers and 
types of errors detected and fixed, and (2) changes in the original 
error rates over time (i.e. before and after implementing CI at SCBI, 
and throughout the HF census).

To support both analyses, we programmed the CI system to 
create cumulative trace reports that logged the date all stems 
were censused and information on all data collection errors and 
warnings. We then analysed these logs to compute, for given time 
intervals, (1) the number of stems censused and (2) the error rate 
(defined as the number of errors divided by the number of stems 
censused). Given the different number of field technicians and 
survey completion times between SCBI and Harvard Forest, we 
report the number of stems censused and error rates at different 
time scales: weekly values for SCBI and daily values for Harvard 
Forest.

For the SCBI mortality census, where the CI system started 
mid-way through the census, we define the ‘pre-CI’ initial error rate 
as the error rate for the time period from the start of the survey 
to the day prior to CI activation. Correspondingly, we define the 
‘post-CI’ final error rate as the error rate over the time period from 
CI activation to the last day of the census. We assessed the effect 
of the CI system on data QA/QC and field technician learning by 
comparing the two separate error rates. To test the significance of 
any change in error rate between the pre-CI to the post-CI period, 
we conducted a nonparametric two-sample hypothesis test using 
a two-sample permutation test based on 10,000 permutations 
under a null hypothesis of no true difference in error rates; the 
two samples consisted of the stems censused pre-CI and post-CI 
respectively. We performed this test for field fix errors and auto 
fix errors separately.

2.3.2  |  SCBI dendrometer band surveys

For the dendrometer band survey, we evaluated the number and 
types of errors detected and fixed. As with the tree mortality census, 
we programmed the CI system to create cumulative trace reports 
that logged information on all data collection errors and warnings. 
We did not test for whether implementation of the system reduced 
original error rates because we had a lower field measurement 
sample size, and because dendrometer band measurements were 
conceptually more straightforward than the tree mortality census 
measurements.

3  |  RESULTS

For all three surveys, the CI system implementation resulted in final 
data that were error-free for the checks we programmed. Below, we 
describe error detections and, for the mortality censuses, temporal 
trends in original error rates over the course of the surveys.

3.1  |  SCBI and Harvard Forest tree 
mortality censuses

The SCBI tree mortality census included 8393 stems, censused 
between June 2 and August 18. The CI activation date of July 6 
divides this period into pre-CI and post-CI periods, with 4814 and 
3579 censused stems, respectively (Figure  4a). During the pre-CI 
period, a total of 461 field fix errors and 452 auto fix errors were 
detected, yielding original error rates of 0.096 and 0.094 errors 
stem−1, respectively. During the post-CI period, a total of 73 field fix 
errors and 140 auto fix errors were detected, yielding original error 
rates of 0.02 and 0.039 errors stem−1, respectively (Figure 4c). This 
corresponded to declines from the pre-CI to the post-CI period in 
field fix error rates of 0.075 errors stem−1 and in auto fix error rates 
of 0.055 errors stem−1 (both statistically significant at p < 0.001).

To put the declining trend of the error rate for the 2021 SCBI 
mortality censuses into perspective, we attempted to conduct a 
similar, retroactive analysis for the previous 2014–2020 mortality 
censuses at SCBI. However, this could not be achieved in a manner 
that would be scientifically robust or that would yield meaningful 
comparisons because the 2021 protocol was a lot more strict and 
thorough than previous years (regardless of CI), including changes in 
the criteria determining which variables would be measured on each 
tree. Additionally, starting in 2021 electronic FastField forms were 
used instead of paper forms. Lastly, many post-hoc checks for errors 
and fixes did occur on previous years' data, albeit in a nonsystem-
atic and less immediate fashion. Thus reverting the previous years' 
data to an appropriate state for comparison with the 2021 data was 
impossible.

The Harvard Forest mortality census included 30,946 stems, 
censused between July 8 and July 29 (Figure 4b). During this period 
a total of 628 field fix errors and 355 auto fix errors were detected, 
yielding original error rates of 0.02 and 0.011 errors stem−1, respec-
tively (Figure 4d). A large spike of field fix errors occurred on July 
8, 2021, which was the first day of data collection. After the field 
technicians started receiving feedback from the CI system, the error 
rate declined steeply and subsequently remained low.

3.2  |  SCBI dendrometer band surveys

The 2021 dendrometer band survey at SCBI included a total of 2412 
measurements on 549 bands between March 23 and November 15. 
(Note that while the final biannual survey took place on October 26 
and 27, eight measurements that were originally identified as anom-
alies were re-measured on November 15).

The system detected a total of 89 data collection errors, where 
44 measurements were alerted to be anomalies, the incorrect survey 
identification value was entered four times, an incorrect status code 
was entered nine times, and no measurement was recorded 11 times. 
The field fix errors relating to measurements necessitated a field tech-
nician returning to the field and verifying the measurement (if this 
could be done reasonably soon after the alert); otherwise the alerted 
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value was deleted. Auto fix errors relating to the survey identification 
value and code were fixed in the database by a data technician.

The majority of the 89 dendrometer band measurements flagged 
as anomalous were incorrect and either re-measured within a few 
days or removed from the database (e.g. Figure 3a–c,e). However, our 
coarse anomaly detection algorithm for the biweekly survey (>10 mm 
difference from previous measurement) had two shortcomings.

First, false alarms of anomalies occurred for four trees whose 
growth exceeded 10 mm between pre-growing season biannual 
measurements in late March and the start of biweekly measure-
ments in early June (Figure 3d,f). This measurement gap of nearly 
two and a half months during the peak survey season was caused 
by COVID-19 induced staffing problems, and thus would not have 
occurred under normal operations.

Second, a more nuanced shortcoming occurred where an anom-
aly was not detected in real time at the time of measurement, but 
rather only during a subsequent survey. This initially undetected 
anomaly (Figure  3f) occurred for tag 12,025 at the August 18th 

measurement. This measurement was only identified as an anomaly 
after collecting the subsequent September 8th measurement and 
performing a visual trend analysis. The original August 18th mea-
surement was thus retroactively removed from the database.

4  |  DISCUSSION

The implementation of our CI system led to reductions in data er-
rors, resulting in final datasets free of detectable errors. Moreover, 
in mortality censuses at both SCBI and HF, error rates declined 
precipitously, and with a large effect size, immediately after the CI 
implementation (Figure  4c,d). Additionally, the continuously up-
dated dashboards (e.g. Figures 2 and 3) were useful for all team 
members to assess progress. Finally, use of this system acted as a 
reproducibility safeguard by quickly alerting computer technicians 
to failures in the data pipeline due to changes in code, data, and 
software.

F I G U R E  4  Tree mortality census stem counts, field fix error rates, and auto fix error rates for SCBI (a, c) and Harvard Forest (b, d). In (a, 
c), data were aggregated weekly while in (b, d) data were aggregated daily, reflecting the differing time lengths it took to complete the two 
surveys. Continuous integration was activated at SCBI on July 6, 2021, which was mid-way through the census, and at HF on July 7, 2021, 
which was the first data collection date. Field technicians were thus first equipped with feedback from the continuous integration system on 
the first subsequent data collection date, July 7 at SCBI and July 8 at HF (marked with dashed vertical lines). For the SCBI time series plots, 
the dashed horizontal lines mark overall pre-CI and post-CI error rates. The differences in pre versus post error rates for both types of errors 
were statistically significant (p < 0.001).
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While this approach makes an enormous advance in guarantee-
ing that final datasets are free of ‘detectable’ errors, there remain 
two classes of errors that may go undetected. First, some errors can 
never be detected based on review of data because no test can be 
written. An example would be if a field technician fails to notice a 
wound on a tree and incorrectly records the tree as unwounded and 
healthy. Second, and more importantly, errors that are theoretically 
detectable will only be caught if appropriate tests have been defined 
and appropriately coded. An omission or oversight will allow such 
errors through. For example, after completing the HF census, data 
technicians realized that a couple minor wording differences be-
tween the HF and SCBI censuses had resulted in some tests failing 
to run, the result being that the dataset included some errors that 
had to be revisited after the end of the census. Thus, test definition 
merits careful consideration and review, and the corresponding code 
should be structured to ensure all tests work on the particular data-
set being collected, for example by taking a previous year's dataset 
and deliberately injecting known errors into it.

While the tests applied here were fairly simple (completion tests, 
consistency tests, and rudimentary tests for consistency with pre-
vious data), there is vast potential to increase test sophistication. 
For example, our anomaly detection algorithm for biweekly den-
drometer band measurements (Figure 3) used a crude classification 
rule: ‘Does the new measurement differ by 10 mm or more than the 
previous measurement?’ This approach can be improved by using a 
classification rule based on species growth rates over time instead 
of absolute differences in growth. This would help lower the false 
alarm rate and improve immediate detection of anomalies (e.g. 
avoiding errors in Figure 3d,f). In the long run, we can also use ex-
isting Bayesian models of tree growth that fuse dendrometer band 
data with other data sources (e.g. census and tree-ring data) to fore-
cast reasonable dendrometer band readings and produce warnings 
when newly measured values fall outside a prescribed confidence/
prediction interval (Clark et al., 2007; Heilman et al., 2022; Schliep 
et al.,  2014). The latter approach would be more sensitive at de-
tecting measurement anomalies; it would likely have caught the 
anomalous dendrometer band reading that incorrectly passed our 
rudimentary test for growth outliers at the time it was taken and 
was only later identified as an anomaly (Figure 3f). Thus, while the 
datasets collected here have far fewer errors than would be possi-
ble without implementation of such a system, test refinement could 
produce even more reliable data.

In both mortality censuses, field-fix error rates declined imme-
diately and dramatically following the implementation of the CI sys-
tem (Figure 4c,d). At SCBI, where the CI system was implemented 
midway through the census, the post-CI implementation mean field-
fix error rate declined dramatically to 21.3% of the pre-CI mean 
(p < 0.001). While this suggests that implementation of the system 
directly reduced data collection error rates, a direct causal state-
ment on the learning effect engendered by the CI system is difficult 
to make, chiefly due to the nonexperimental nature of the pre-CI 
versus post-CI comparison. However, there are three reasons why 
we believe these declines were still attributable to initiation of the 

CI system. First, the timing of declines differs at the two sites and are 
coincident with the implementation of the CI system. Specifically, 
field-fix error rates declined to a relatively stable, low value much 
earlier during the census at HF, where the field team was notified of 
errors immediately after the first day of data collection (Figure 4d), 
compared to SCBI, where the census had been in progress for 
1 month prior to CI implementation (Figure  4c). Second, field-fix 
error rates, which required field technicians to go back to the field, 
declined more dramatically following implementation of CI than did 
auto-fix errors, which were fixed via computer code by data tech-
nicians (Figure 4c,d). This observation suggests that the error rate 
reduction was linked to the field technicians' level of awareness of 
past errors. Finally, and perhaps most significantly, all field techni-
cians and principal investigators responsible for project oversight 
anecdotally reported that after receiving feedback on their data col-
lection errors, they were much more mindful of their data collection 
technique during subsequent field visits. Thus, while a direct exper-
imental test for a causlearning effect was not conducted here, the 
evidence strongly suggests that such an effect occurred.

The value of a CI system, such as that applied here, lies not just 
in the system and its outputs in and of themselves, but also the 
inherent thought and adherence to best practices required for its 
design and implementation. First, designing and writing tests re-
quires clearly defined variables, variable codes, and allowable value 
ranges, and other such metadata. Second, for CI to function, an ab-
solutely strict threshold of code reproducibility is necessary, right 
down to the robustness to package version changes (Beaulieu-Jones 
& Greene,  2017; Stodden et al.,  2016; Stodden & Miguez,  2014; 
Wilson et al., 2014). Third, because the system requires automation 
from end-to-end, the number of manual interventions must be min-
imized; for example, the number of variables that are coded stati-
cally as opposed to dynamically (e.g. dates, file names). Fourth, all 
the steps in the data pipeline are enumerated in the GitHub Actions 
.yaml files located in the .github/workflows/ folder, facilitating clear 
communication of all necessary data processing and wrangling steps 
to current and future collaborators. Data centralization, and the 
scripts that check and manipulate them in a single stable repository 
accessible to any collaborator, ensure clear organization, version 
control, and tractability. Finally, use of the CI system ensures that 
everyone involved in data collection and quality control adhere to 
best practices, and any failure would be readily detected and could 
be promptly addressed.

The CI system described here proved successful for three sur-
veys at two sites, and expansion to other sites and census types—
while almost certainly worthwhile—will require a few considerations. 
First, while the CI system is compatible with any data collection sys-
tem, its effectiveness would be maximized by a system that allows 
pushing newly collected data to GitHub directly from the field. This 
would provide field technicians with an assessment of newly col-
lected data within minutes of data submission, allowing them to ad-
dress any problems before leaving the data collection site. However, 
in situations where this is not possible (e.g. no internet connection 
or inappropriate device configuration), as was the case in this study, 
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the system is still enormously valuable. A CI system could be used 
at remote sites or with data collection on paper, with its value pro-
portional to the frequency with which data could be entered (or 
synchronized) and checked. Frequent data checking, especially near 
the beginning of censuses, is particularly valuable given the apparent 
learning effects produced by using the CI system (Figure 4c,d).

An additional consideration pertains to use of this CI system 
across sites for the same census type. Even deploying the mortality 
census to just two sites was a difficult task of coordination: changes 
in the R code tests in one repository had to be manually mirrored in 
the other. In the future, such standardization can be done by having 
all tests coded as functions in a shared r package. Using a CRAN 
based repository version of the package would not be appropriate 
as frequent updating of CRAN packages is not permitted. Rather, as 
part of the CI routine, a development version of the package could 
be installed at each push using the install_github() function from the 
remotes package (Hester et al., 2021).

As mentioned earlier, our system is a modification of Yenni 
et al. (2019) and White et al. (2019)’s system for collecting and an-
alysing rodent population data. We did so by mirroring the overall 
GitHub repository and GitHub Actions structure detailed in Figure 1, 
but replacing all rodent specific R scripts with tree mortality and den-
droband specific R scripts: generate_reports.R, generate_warnings.R, 
and generate_dashboard.R. This same mirroring can be replicated to 
establish a CI system for QA/QC of data of any kind, in particular if 
researchers have pre-existing R scripts that can be reused. We have 
included resources for those new to GitHub Actions in Appendix S1, 
including a description of a quickstart tutorial available at https://
www.updat​ingda​ta.org/githu​bacti​ons/.

In a broader sense, this system opens the door not only to im-
proved QA/QC, but also to a scientific inquiry system wherein the 
cycle of hypothesis formation, data collection, hypothesis testing, 
and result dissemination is greatly accelerated (Dietze et al., 2018; 
Dietze, 2017). Combined with a Bayesian system for generating near-
term iterative forecasts of some ecological phenomenon along with 
their corresponding uncertainty estimates, this system would allow 
automated hypothesis testing (White et al., 2019), even as data are 
still being collected. Data analysis relative to current model expec-
tations in near real-time can quickly alert researchers to unexpected 
dynamics or gaps in understanding, giving them opportunities to 
adjust data collection and test new hypotheses before the relevant 
data collection window closes. For example, an unexpectedly high 
mortality rate of a particular tree species, which could be revealed 
while a tree mortality census is still in progress (Figure 4), could alert 
researchers to the potential of a taxa-specific forest insect or patho-
gen (Anderson-Teixeira et al., 2021). Surveyors could then diagnose 
and document taxa-specific symptoms of decline during the current 
census. Thus, we view this CI implementation as the first step to-
wards a system of data collection that is not only more accurate and 
efficient, but also more responsive to rapidly changing ecological 
dynamics, making it better suited to study ecological systems in the 
current era of rapid environmental change.
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