© © ~N o o

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

29

30

31

32

33

34

35

36

37

38

39

40

4

42

43

44

45

46

47

48

49

50

51

The role of migration in mutant dynamics in
fragmented populations

Abstract

Mutant dynamics in fragmented populations have been studied extensively in evolutionary
biology. Yet, open questions remain, both experimentally and theoretically. Some of the funda-
mental properties predicted by models still need to be addressed experimentally. We contribute
to this by using a combination of experiments and theory to investigate the role of migration
in mutant distribution. In the case of neutral mutants, while the mean frequency of mutants
is not influenced by migration, the probability distribution is. To address this empirically, we
performed in vitro experiments, where mixtures of GFP-labeled (“mutant”) and non-labeled
(“wid-type”) murine cells were grown in wells (demes), and migration was mimicked via cell
transfer from well to well. In the presence of migration we observed a change in the skewedness
of the distribution of the mutant frequencies in the wells, consistent with previous and our own
model predictions. In the presence of de novo mutant production, we used modeling to investi-
gate the level at which disadvantageous mutants are predicted to exist, which has implications
for the adaptive potential of the population in case of an environmental change. In panmictic
populations, disadvantageous mutants can persist around a steady state, determined by the
rate of mutant production and the selective disadvantage (selection-mutation balance). In a
fragmented system that consists of demes connected by migration, a steady state persistence of
disadvantageous mutants is also observed, which, however, is fundamentally different from the
mutation-selection balance and characterized by higher mutant levels. The increase in mutant
frequencies above the selection-mutation balance can be maintained in small (N < N.) demes
as long as the migration rate is sufficiently small. The migration rate above which the mu-
tants approach the selection-mutation balance decays exponentially with N/N,.. The observed
increase in the mutant numbers is not explained by the change in the effective population size.
Implications for evolutionary processes in diseases are discussed, where the pre-existence of
disadvantageous drug-resistant mutant cells or pathogens drives the response of the disease to
treatments.

1 Introduction

Understanding the principles of mutant dynamics has been a major focus in evolutionary biology.
Generation and spread of mutants is central to adaptation, where beneficial mutants tend to fix
while deleterious mutants are gradually removed from the population. These processes depend on
the environment and are guided by forces of selection, the rate of mutation, genetic drift, and the
population structure.

Population structure is an important determinant of the evolutionary trajectories [25, 42]. Evo-
lutionary dynamics in fragmented populations are of interest for questions connected to ecology and
ecological conservation [6, 46, 41, 39, 14, 40, 22]. Human interference as well as natural factors may
fragment habitats and isolate subpopulations of a species from the rest, thus influencing genetic
variability and species survival. Population genetics in structured populations has been applied to
studies of island biogeography, dynamics of species living in patchy environments, extinction and re-
colonization, see e.g. [47, 11]. Another area where population fragmentation is of great importance
is host-associated microbiomes. Spatial structures are generated by host anatomy and physiology;
examples include gastrointestinal crypts [8] and skin pores [5]. Understanding the microbial evo-
lution in structured populations is critical for modeling community diversity and stability, species
coexistence, and predicting the response of microbiomes to treatments. Further applications to
biomedical problems are discussed below.

Mathematical models have been an important component of research into mutant dynamics.
Different types of evolutionary models have been explored; most relevant for the current paper are
the Moran process [34, 35] and the Wright-Fisher model [57] that assume constant population sizes.
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Various evolutionary measures have been considered, including the average frequency of mutants
at a given time or population size, the fixation probability of mutants, and the average time to
fixation for mutants of varying relative fitness [19, 38, 27, 15, 54, 31].

Evolution in fragmented populations is described by models that are sometimes referred to as
structured or subdivided population models, as well as patch or deme models [35, 26, 25, 12, 42, 11].
These models describe a group of distinct, spatially separated populations of the same type. Some
amount of interaction between the separate groups occurs via migration of individuals from one
group to another, and the dynamics within a single group of individuals is generally assumed to be
non-spatial [35, 26, 49, 13]. Migration of individuals can either occur to the nearest neighboring
regions (spatially restricted), or individuals can migrate to any region in the system. A higher
rate of migration decreases population fragmentation because it results in each region’s dynamics
becoming dependent on a larger portion of the overall population and thus in better mixing of
individuals [57, 35, 12, 49]. The term “metapopulation models” is often reserved to describing the
dynamics with local extinctions and re-colonization, see e.g. [25, 43, 47, 42, 11, 3].

Mathematical patch models with different assumptions on structure and migration between
groups have been studied in the context of evolutionary dynamics. A number of important results
about the effect of fragmentation and structure on mutant dynamics have been established. Com-
monly, it is found that the fixation probability of a mutant is largely independent of migration
(depending on the explicit model assumptions) [32, 33, 49], but that other quantities such as the
time to fixation and effective population size can vary based on model structure [44, 54]. The
distribution of mutant numbers in individual demes has been studied in different contexts, starting
with the seminal paper by Wright [57], which gave rise to the standing balance theory of evolution.
Further developments include both discrete (Wright-Fisher) and overlapping (Moran) models of
population dynamics and different assumptions on the migration process, see e.g. [35, 12, 49, 13].
It was found that generally, migration among demes transforms the probability distribution of mu-
tant frequency in a deme from bimodal to unimodal. Another set of results comes from the diffusion
approximation that describes selection and drift of mutants in subdivided populations. In [4, 48], a
Wright-Fisher process in a subdivided population with inter-deme migrations is considered, while in
[49], the local dynamics are described by a Moran process. Analytical expressions for the effective
population size are derived. It is shown that although the form of the diffusion approximation is
equivalent between a structured and panmictic population, fragmentation can significantly increase
the effective population size and the variance of allele frequencies.

The interplay between patch dynamics and traits or alleles has also been previously studied in
multiple experimental contexts [23, 18, 9, 2]. For instance, Kerr et al identified path dependent
migration effects in the eco-evolutionary dynamics of E.coli-T4 phage co-cultures [18]. Excitingly,
recent work on range expansions in asexually reproducing microbes has shown that an excess of
spontaneous mutations (relative to Luria-Delbruck expectations) are generated during spatial range
expansions by allele surfing [9].

While several aspects of mutant dynamics in fragmented populations have been mathematically
elucidated, there still remain open theoretical questions and experimental gaps, some of which we
address in this paper. (i) From an experimental point of view, to the best of our knowledge, di-
rect tests of model predictions regarding mutant distributions in fragmented asexual populations
in the presence and absence of migration are lacking. Here, we provide an experimental test of
fundamental model predictions about mutant distributions for neutral mutants, using a system
where GFP-labeled and unlabeled murine cell lines (“mutant” and “wild-type”) are co-cultured in
96-well plates, and migration is mimicked by swapping cells between demes (wells) with a pipette.
This system does not contain de novo mutant production, and the experimental results are inter-
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preted with a corresponding Moran process model, which reproduces previous theoretical insights
and is found to be consistent with the data. (ii) The model is then used to extend this analysis
assuming de novo mutant production and different mutant fitness. In particular, we study the
perceived “selection-mutation balance” in populations. This refers to the persistence of disadvan-
tageous mutants around a steady state in a population of wild-types at equilibrium, the level of
which can be calculated and is determined by the mutation rate and the degree of the selective
disadvantage. We show that for a fragmented habitat, disadvantageous mutants can also persist at
a steady state level similar to the selection-mutation balance in a panmictic population, but that
there is a fundamentally different scenario in which the expected number of mutants at the steady
state can be significantly higher. Our results demonstrate that the previously obtained change in
the effective population size of fragmented populations is not enough to explain the change in the
level at which the disadvantageous mutants persist. This has implications for understanding the
adaptive potential of a population in response to environmental change, with broad applicability
ranging from ecological systems to biomedical problems, such as the emergence of drug resistant
mutants.

2 Methods

2.1 Experiments with neutral mutants

To address the existing gap in the literature concerning studies of neutral mutant dynamics in
fragmented populations in the presence and absence of migration, we performed experiments that
represent an in vitro comparison to the mathematical model presented in the following section.
To create a system representing neutral migration we mixed GFP labeled mammalian cells with
unlabeled cells. This suspension of mammalian cells could be propagated in the wells of a 96
well plate. By systematically transferring small volumes of the cell suspension, we experimentally
simulated migration between wells. Cells were continually maintained at confluent cell population
densities to mimic the Moran process. The proportion of mutants in the wells both with and
without migration of cells between wells was assessed at the end of the experiment. Further details
on the in vitro experiments are presented below.

Experimental details. 96 demes (wells) were filled with cells. Cell types were wild type and
mutant, which were neutral with respect to one another. To create this model we transduced murine
Ba/F3 cells (DSMZ; ACC-300) with green fluorescent protein (GFP). GFP+ cells were mixed with
wild-type Ba/F3 cells into populations of approximately 0.1 and 1 percent GFP+. Ba/F3 popu-
lations were maintained in RPMI 1640 Medium (Sigma Aldrich), supplemented with 10 percent
FBS (Fisher), 10 ng/mL IL-3 (PeproTech), 100 U/mL penicillin and 100 ug/mL streptomycin
(Life Technologies). The control condition was no migration and the experimental condition was
migration between demes, which was performed by swapping cells between demes using a pipette.
Four total experiments were performed, with both conditions starting at approximately 0.1% initial
mutants and also at 1% initial mutants in all demes. Wells in each plate were diluted twice daily
with fresh medium on a 16/8 hour time interval to maintain competition at high confluence, with
one plate from each mixed population subject to migration events at these intervals. All wells were
maintained at 200 ul. — dilutions with fresh medium were performed to maintain cell confluency at
stationary phase and replenish nutrients. This was done to approximate a Moran process and allow
for continuous culture, and it was a significant challenge. Throughout the experiment, maximum
population densities were adjusted based on viability, to maintain population density and compe-
tition. Migration events were performed immediately prior to viability dilutions on one plate of
each GFP+ population through the duration of the experiment. Each well in a row was thoroughly
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H Notation Description H

K number of demes
N constant number of individuals in each deme
NK constant total number of individuals in overall population
r fitness of the mutant individuals
rate of forward mutation wild type — mutant
Up rate of back-mutation wild type < mutant
Prmigr migration probability
Nind number of individuals exchanged during a swapping event
Tswaps number of swaps that occur during a migration event
Jsel—mut selection mutation balance in each deme

Table 1: Description of model parameters.

homogenized, and 5 ul of each well’s 200 uL. volume was transferred to the vertically adjacent well.
Receiving wells were then homogenized and 5 ul. was transferred to the next adjacent well; this
process was repeated until all eight rows had received volume from its adjacent upstream row and
transferred to its downstream adjacent row.

2.2 Mathematical modeling

To study the role of population fragmentation and migration in evolution, we will consider a popu-
lation of asexually reproducing (haploid) individuals of two types, which we refer to as “wild types”
and “mutants”, see Figure 1. The total population of N K individuals is split into K demes of N
individuals each, as in for instance [13]. We assume a finite island model, where all demes are
equidistant. Competition is implemented by assuming that (neutral or deleterious) mutants may
have relative fitness (denoted by » = 1 — s < 1) that is not necessarily equal to the fitness of the
wild types (assumed to be 1). De novo mutations are included through forward mutation (with
probability u per division of a wild type cell) and back-mutation (with probability u; per division of
a mutant cell, further details included in Section 2.2.1). Migration is modeled in the following way.
A single migration event is attempted with probability 0 < py,igr < 1 and performed by randomly
selecting two demes, then randomly selecting n;,q individuals from each and swapping them with
each other; ngyqps migration updates are completed each time.

The dynamics are set up in the following way. First, a migration update is performed, where
individuals have a chance to swap demes. This is followed by a birth-death update in all K demes.
Further details on birth-death updates are given in Section 2.2.1, and on migration in Section 2.2.2;
Table 1 lists all the model parameters. We run simulations until long-term dynamics have been
established and (quasi)-stationary states (mutant extinction/fixation or a stable average number
of mutants within individual demes and the overall system) have been reached.

2.2.1 The Moran process

Within each deme, we model the stochastic birth-death dynamics by using the well-known Moran
process (see e.g. [34, 35]). Therefore, the population size of each deme as well as the total popula-
tion size remains constant. The process of de novo (forward and/or backward) mutation may be
included in our framework. De novo mutation occurs during reproduction, so for instance if a wild
type cell is chosen for reproduction, there is a 1 — u chance of faithful reproduction and a u chance
to create a mutant. If a mutant cell divides, it creates a wild-type offspring with probability wuy
(and a mutant offspring with probability 1 — wuy).



183

184

186

187

188

189

190

191

192

193

194

195

197

198

199

200

201

(a)

(b)

Before a swap After a swap

migration event: migration event:
O ( X
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Figure 1: A schematic illustrating the mathematical model. (a) General model structure: each rectangle
represents a deme, and green (red) circles represent wild-type (mutant) individuals. Two-sided arrows
represent random swap-migration events within randomly chosen pairs of demes. (b) Details of a swap
migration event: groups of n;,q = 3 cells are randomly selected within two demes, and exchanged. As a
result of this particular event, the number of mutants in the top deme decreased, and the number of mutants
in the bottom deme increased by 2.

In the absence of de novo forward mutation (u = 0), the model has only one absorbing state,
given by mutant extinction in all demes. Similarly, in the absence of de novo back mutation (u; = 0),
mutant fixation in all demes is the only absorbing state. With the inclusion of both forward and
back mutation, there are no absorbing states [34]. In the absence of migration, the stationary
probability distribution in an individual deme can be calculated. For example, in the regime where
mutant fixation happens on a much faster time-scale than mutant production, a simple expression
for the stationary probability can be derived. Denoting by y; the probability to have ¢ mutants in

the deme, we have
Up

= Tt
with the probability of the other states being of the order of the mutation rate, which is described
in further detail in Section 2.2.3. This is similar to previous approximations of the stationary dis-
tribution for the Moran process with de novo mutation and selection and under various conditions,
see for instance [35, 7, 51, 16, 49]. Another useful quantity is the selection-mutation balance, which
is given (for an individual deme, in the limit of small mutation rates) by

. Nu
Jsel—mut = 11— (2)

Yo ) Yn = 1_3/0; (1)

this quantity represents the number of (negatively selected, r = 1 — s < 1) mutants, in the Moran
process with de novo mutations, which corresponds to an equal probability to increase and decrease
this number in a single birth-death update. This quantity is also identical to the classical expression
of the expected number of deleterious mutations at mutation-selection balance. Section 2.2.3 (see
also [7, 51, 35]) provides details of the calculations for expressions (1) and (2), as well as higher
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order approximations.

The process of Moran birth-death updates within an individual deme is set up as follows.
Suppose the number of mutants is given by j (and thus the number of wild type individuals is
given by N — j). For each time step a cell is chosen randomly to die and a cell is chosen based

on fitness to reproduce.! Therefore, the chance that a mutant is chosen to reproduce is 7 _&{,_r
and the chance that a wild type is chosen to reproduce is 7714\:7];]—3 This is a Markov process, where

the states of the model (the number of mutants in the deme) are integers j € {0,1,..., N}. This
model has a tridiagonal transition matrix. Let us define

pt o V=) i —uw) +(N—jju 5 J rjup+ (N —j)(1 —u)

3
J N rji+N—j 9N rj+N—j )

to be the probabilities to increase and decrease the number of mutants starting from j mutants, in
one step. Then we have

Pl k=j+1,
4 s
f)j]\lgoran: Pj’ ) i k—j 17 OSJSN
1—(Pj+Pj) k=17,
0 otherwise.

Let us denote the probability to have m mutants at time ¢ in a deme as 7, (¢), with 0 < m < N,
Z%:O mm(t) = 1. The row vector 7 (t) contains this information for each discrete time-step, t. The
initial condition is

. 1, m = my,
mm(0) = { 0, otherwise.

In the absence of migration, we have (in matrix form)

m(t 4 1) = n(t)PMoran ¢ >,

If both populations reproduce faithfully (v = u, = 0), we have two absorbing states, j = 0
(mutant extinction) and j = N (mutant fixation) [35]. Let ¢; denote the probability for mutants
to reach fixation given that we start with j mutants. We have

1-(1/r)?
¢j _ 1—(1/r)N r#1,
j/N, r=1.

2.2.2 Modeling migration

We assume a migration update is attempted each step with some migration probability 0 < pyigr <
1. We assume that at each migration update, n;,q individuals are randomly picked from one deme
and replaced with n;,q individuals randomly selected from the second deme. In some simulations,
to increase the intensity of migration, we repeated this procedure ng,qps times for each migration
update. We assume that the probability of migration applies to all swap events jointly, and thus
that ngwaeps swap events occur with probability py,ier, and no swap events occur with probability

!Note that in this formulation we do not distinguish between a birth-death or a death-birth process [17]. Assume
r = 1. In a true death-birth process, if a mutant dies, the probability of mutant division would be given by (j —1)/N
(assuming that a cell that just dies cannot divide). Similarly, in a true birth-death process, the probability of mutant
death following a mutant division would be (7 — 1)/N (assuming that an individual that just divided does not
immediately die). In the present model formulation we do not include these considerations.
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1 — Pmigr- Mind and Ngwaeps are non-negative integers that we set before performing a simulation.

To incorporate migration, let us assume that a migration update precedes a Moran update.
Then we can write,

w(t+1/2) = 7(O)P™7, w(t+ 1) = m(t + 1/2) PMoran, (4)

where P™9" denotes the transition matrix associated with migrations. In order to formulate this
transition matrix, we will need the Hypergeometric distribution, which describes the probability of
picking n mutants in n;,q draws without replacement, if the total number of mutants is j out of N

individuals:
o= ()5 )

The probability to change the number of mutants from m; to mo in a population characterized by
vector 7(t) is given by

a N
Hmyme = Z P (n1) Z T ()™ (M2 — m1 +na).

n1=0 m=1
Here, we assume that the population containing m1 mutants loses ny mutants to another deme and
gains ng mutants from the other deme; we sum over all possible values of n1, and note that

my1 —n1 + ng = mao,

which gives us the expression for no = mo — mj; + n1. The probability to lose n; individuals is
p™ (nq1). The probability to gain ny individuals is calculated as follows: the donor deme is assumed
to contain m mutants (probability m,,(t)), because all individuals are assumed to obey the same
laws and the number of mutants in the deme at time ¢ are drawn from the same probability distribu-
tion, 7(t). The probability to gain ny mutants from a deme containing m mutants is m,,(¢)p™(n2),
and to get the total probability of gaining ns individuals, we sum over all m.

Finally, the transition matrix for the migration step is given by
szzgr = Pmigrtij + (1 - pmigr)éija

where 6;; is the Kronecker delta.

The steady state, 7, satisfies the following equation:

7_1'] = Z P]ﬁj\{m‘an (pmigr Z Zﬁzﬁmhzmk + (1 - pmigr)’i_rk) ) (5)
k m

i

where

Rimk = Zpl(n)pm(k —i+mn).

2.2.3 The stationary probability distribution and the selection-mutation balance in
the absence of migration

In the presence of de novo forward and back mutations, let us determine the stationary probability
distribution for the number of mutants. Let us suppose the stationary probability distribution is
given by (zg,x1,...,zN) with

N
7=0
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The components x; satisfy the following equations,

mjflpjtl + xj+1Pj¢+1

—;(P] +P)=0, 0<j<N, (7)
where x_1 = 41 = 0 and the transition probabilities are given by Equation (3). Let us suppose
that the mutation rates are small compared with 1 — r and the inverse of the deme size %, and
denote

u=eU, up=elp,

€< 1—r,e<1/N. Solving Equation (7) in the zeroth order (i.e. under the assumption of no de

novo mutations, setting e = 0) we obtain x; = 0 for 1 < ¢ < N — 1, with probabilities z¢ and xy
undefined. To find the approximate solution under the assumption of small mutation rates, we go
to the first order in €. Let us set

o =Y, Tn=yYn, Ti=c¢€y; forl<i<N—1.

Taking into account only the terms of order € in Equation (7), we obtain a degenerate system of
N + 1 equations for N + 1 unknowns y;. The additional condition in given by Equation (6) and in
the lowest order in € reduces to yy = 1 — yo. The solution is similar to what is found by [7, 51] in
similar models, and is given by

y U (8)
0 rN=-1U 4+ U, rN=Lly + uy’
yn = 1—uyo. 9)

In particular, in the absence of de novo back mutations, the system converges to the j = IV state
(mutant fixation), and in the absence of de novo forward mutations, we have yo = 1 (mutant
extinction). If we include higher order terms, then the stationary distribution for the intermediate
states is given by

Nri=Y(N —i +ir)UU,
i(N =) (N 4+ Up)

yi = 1<i<N-1. (10)

Approximation (8)-(9) can also be obtained from the following simple consideration. Let us
assume that the system spends most of the time in “pure” states (that is, in state j = 0 or in
state j = N), which is the consequence of the time-scale separation: the waiting time to obtain
a de novo mutation must be much longer than the typical time of mutant fixation. Then we can
establish the balance of the following two processes. (1) If the system is in state j = 0 (denote
this probability by yo), then the transition to state j = N happens at rate Nu X ¢, which is the
product of the mutant production rate, Nu, and the probability of a single mutant fixation given
by ¢; with j = 1. (2) On the other hand, the probability of finding the system in state i = N is
1 — yp, and the rate at which the system leaves and gets fixed at ¢ = 0 is given by multiplying the
rate of wild type production (Nuy) by the probability of a wild-type fixation (¢;) where we replace
r with 1/r, which is the relative fitness of the wild type compared to that of mutants. We obtain

the equation
1-1/r 1—7r
Nu———— = (1 —yo)N
Yo ul—l/?“N ( yO) ubl_TNv

whose solution gy is given by Equation (8).

To calculate the selection-mutation balance, we solve the equation PjT = Pji for j and obtain
Equation (2), where we used the largest contribution in e (this is also the exact solution for the
selection-mutation balance in the case of only forward mutation). We also note that back mutation
does not effect the selection-mutation balance as long as € < (1 — r). The exact solution for the
selection-mutation balance is given by

rub—r+u+1—\/((T‘(Ub—1)+“+1)2+4(T_1)u). (11)
2(1—r)

jselfmut =N
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In the case that the two types are neutral with respect to each other (r = 1), we again solve the
equation PjT = Pji for j and as in [35] obtain

Up

(12)

sel—mut = .
.756 mu u+Ub

3 Results

3.1 Population fragmentation changes mutant distribution for neutral mutants

To motivate this study, we performed some simple experiments that examined the role of frag-
mentation and migration in neutral mutant dynamics. 96 wells were filled with cells, such that
each well contained 1% of (neutral) mutants. The process of cell migration was implemented by
swapping a small percentage of cells between demes by using a pipette (which is described in more
detail in Section 2.1 and in Supplementary Information Section 1). The number of mutants in the
wells was assessed at the end of the experiment and compared with the control condition with no
migration. The resulting experimentally obtained distribution of the mutant numbers is shown
in Figures 2 and S1, where we plot the percent mutant contents in the 96 demes in the form of
histograms. Figure 2 shows experimental results for the 1% mutants initial condition and Figure
S1 shows experimental results for both the 0.1% and 1% mutants initial conditions.

We observed that while the mean number of mutants in the absence and in the presence of
migration was the same, the distribution was significantly different; in particular, the distribution
without migration had a much larger skewness, while in the presence of migration it was more
symmetric (Figure 2). Specifically, the average percent of mutants without migration is 1.03%,
and with migration is 1.13%, which is not significantly different using the T-test (p-value greater
than 0.1). However, the Kolmogorov-Smirnov test between the two distributions gives a p-value of
about 1073, which suggests that the distributions are significantly different. The skewness for the
experiment without migration is 0.89, and with migration it is much smaller at 0.07.

25 I —
No migration

20} & (blue)

With migration

(yellow)

# wells

- Imi_=

0.0 0.5 1.0 1.5 20 25

% mutants

Figure 2: Effect of migration on neutral mutant distribution, experimental results. The blue bars represent
the control condition without migration between the wells, the yellow bars represent the experimental con-
dition with migration, and the gray color denotes the overlap. Initial condition of 1% mutants in each well.
The average percent of mutants in each well without migration is 1.03%, and with migration is 1.13% (not
significantly different using the T-test, p-value greater than 0.1). The Kolmogorov-Smirnov test between
the two distributions gives a p-value of about 10~2, which suggests that the distributions are significantly
different. The skewness without migration is 0.89, and with migration it is much smaller at 0.07. Full
experimental results are shown in Figure S1.
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To explain these observations and extend the results to other conditions, we began by analyzing
the dynamics of neutral mutants (r = 1).

Unimodal versus bimodal mutant distribution in the absence of de novo mutations.
To reproduce the experimental set-up, we assumed that there is no de novo mutation, and started
with some small initial number of mutants in each deme (myg). In order to analyze the effect of mi-
gration/population fragmentation, we ran simulations with and without migration of cells between
the distinct demes, a description of the mathematical model can be found in Section 2.
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Figure 3: Stochastic simulations (histograms) and iterations of Equation (4) (blue lines). Panel (a) repre-
sents the absence (pyigr = 0) and panel (b) represents the presence (pyigr = 1) of migration. The probability
distributions are presented at several moments of time (¢ in each plot corresponds to the number of discrete
Moran steps). The rest of the parameters are N = 20, mg = 4, Nswaps = 750, Nina =5, 7 =1, u=1u, =0,
and K = 1.5 x 103.

As in the experimental results, in both the model simulations and analysis we found that the
mean percent of neutral mutants is independent of migration, and is equal to the initial ratio of
mutants in the system. This is because the transition probabilities are symmetric, see Equation
(3) and Section 2 in the Supplementary Information for details. Furthermore, as the wild type and
mutant are neutral, the probability for the mutant to fix within the system (assuming a non-zero
migration rate) is equal to the initial frequency of mutants in the system (although the time to
such fixation depends on migration [44, 54]). This is because in the context of a symmetric random
walk, the fixation (i.e. absorption at the upper boundary) probability is proportional to the initial
condition, see Supplementary Information Section 2 and [32, 34, 35].

On the other hand, the distribution of the frequency of mutants in the system and the dy-
namics within individual demes are significantly influenced by the presence of migration (Figure
3). Starting from a delta-like distribution (as initially all demes contain m mutants), the distri-
butions get wider with time and eventually reach a quasi-stationary distribution. In the absence
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of migration (Figure 3(a)), the dynamics of each deme are independent from one another. Since
the probability of fixation is simply the initial fraction of mutants (my/N), there is a large chance
(given by 1 —mg/N) of mutant extinction in each deme. Therefore, the probability distribution
of the number of mutants in each deme becomes flatter and develops a skew to the right, as most
demes will trend toward mutant extinction, while a few will trend toward mutant fixation (i.e. a
bimodal distribution, with modes at mutant extinction (j = 0) and fixation (j = N)). Eventually,
as time — oo, all demes will be fixed at either mutant extinction or fixation. In the presence of
migration (panel (b)), the dynamics of each deme are no longer independent from one another.
As was similarly found in [49, 13, 12, 35, 57], migration makes all the demes look more similar to
each other, resulting in a one-humped (unimodal) distribution. These results match well with in
vitro experimental simulations of the computational model, which are shown in Figure 2 (see also
Supplementary Information Section 1). Note that while the figure shows a long-term state, this is
not an equilibrium, and the only outcomes as time — oo is mutant fixation or mutant extinction
in the whole system (individual demes, if py,igr = 0) because there is no de novo mutation [13, 35].

In addition to the extremes of no migration or a large amount of migration (where the system is
well-mixed), we also investigate other regimes where there is some intermediate level of migration
of individuals between the demes in the system. Figure S4 shows the time-evolution of the mutant
probability distributions obtained by iterating Equation (4) (see panels (a-c) for three different
values of pmigr), and then by plotting the resulting quasi-stationary probability distributions (panel
(d)). Here we see that the effect of the Moran process is to “make” the probability distribution
bimodal, and the effect of migration is to “make” it unimodal. The result is a trade-off of the two
tendencies, and depending on the amount of migration, the distribution shape changes accordingly.

Quasi-stationary distributions become stationary in the presence of de novo muta-
tion. Next, we expand the theory beyond the experimental conditions of Figure 2 to include the
effect of de novo mutations. Since mutants are now generated stochastically, we alter the initial
conditions to start with the wild type fixed in all demes (my = 0). In the case of only forward
mutation, the mutant will be created via mutation more often than the wild type. This muta-
tional bias results in the neutral mutant (r = 1) fixing quickly in the entire population (see Figure
S6(a-b)). On average, the time to fixation decreases with increasing migration, as faster migra-
tion results in more frequent introduction of the mutant into all of the demes, see [49, 44, 11, 54, 44].

In the case of both forward and back de novo mutation, the dynamics are more complex. Figure
4(a) shows simulations representing 2 x 10% demes of 20 individuals each, after 10° iterations with
varying rates of migration. The histograms represent the number of neutral mutants per deme. In
the absence of migration (left), the number of mutants will drift around, becoming extinct or fixed
within a deme. In a highly fragmented population, this will happen more often, and the mutant
will be at the extinction/fixation long-term state most of the time. Increasing migration (and/or
decreasing population fragmentation by increasing the size of the demes, not shown) will result in
fluctuation around the equilibrium value (Equation (12)) in each deme (Figure 4(a, right)). As
in the simulations without de novo mutation, if the rate of forward and back mutation is equal
(u = up), then migration does not change the expected mean number of neutral mutants (as the
stationary distribution is symmetric around the selection-mutation balance of 50% mutants, see
Figures S5 and S6(c-d)). If the rate of forward and back mutation is not equal (u # uy), then the
expected level of mutants is given by ;2 (see Equation (12) and [35] for details of this calculation).

Note also that the presence of mutations changes the nature of the long-term system behav-
ior: the quasi-stationary distribution observed in the absence of de novo mutations (Figure 3(b),
bottom graph) becomes a stationary distribution in the presence of forward and back mutation, as
absorbing states no longer exist [13].
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Figure 4: Histograms for the number of mutants per deme in the absence (pmigr = 0) and presence
(Pmigr = 1) of migration, after 105 Moran iterations. (a) Neutral mutant (r = 1) with both forward and
back mutation (u = u, = 0.005), see Figure S5 for intermediate migration cases; (b) disadvantageous mutant
(r =0.9) with forward mutation only (u = 0.005, u, = 0), see Figure S12 for intermediate migration cases;
(¢) disadvantageous mutant (r = 0.9), with forward and backward mutation (v = u, = 0.005), see Figure S13
for intermediate migration cases. The horizontal axis is the number of mutants and the vertical axis is the
number of demes at that number of mutants. The vertical lines in the right panels represent the theoretical
mutant equilibria, Equation (12) for (a) and the selection-mutation balance Equation (2) for panels (b-c).
Other parameters are N = 20, mg = 0, Ngyaps = 100, njpng = 10, and K =2 x 103.

3.2 Population fragmentation changes mutant frequencies and distribution for
disadvantageous mutants

Next we turn to the dynamics of disadvantageous mutants. While this scenario is highly biologi-
cally realistic for many populations, it is often more difficult to study experimentally due in part
to the lower probability of mutant growth. In the absence of de novo mutation, a small initial
number of disadvantageous mutants will likely decay quickly and go extinct. Therefore, we focus
on mathematical models that include de novo mutation processes. We will show that while migra-
tion changes the distribution of demes in a similar manner for both disadvantageous and neutral
mutants, in the disadvantageous case migration also changes the expected number of mutants at
the (quasi)-stationary state in fragmented populations. This is related to the concept of “drift load”
[29, 30, 56], which describes how the accumulation of deleterious mutations can cause a gradual
reduction in population size (and in small populations random genetic drift will progressively over-
power selection making it easier to fix future mutations). As we assume constant population sizes,
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Figure 5: Number of mutants over time for varying rates of migration with a disadvantageous mutant
(r = 0.9). Panels (a-b) include forward mutation only, and panels (c-d) include both forward and back
mutation. Other parameters are N = 10, my = 0, and K = 100. Selection-mutation balance is approximately
10 mutants in the system and mutant fixation is 10 mutants in each deme. Blue lines, no migration. The
approximate expected number of mutants can be calculated using Equation (1). Yellow lines, low migration:
Dmigr = %, Nowaps = 1, and nyq = 1. Green lines, medium migration: ppmigr = 1, Newaps = 1, and
Ninga = 1. Red lines, high migration: pyigr = 1, Newaps = 5, and npq = 1. Purple lines, very high migration:
Dmigr = 1, Nswaps = 10, and n;,q = 5. The approximate expected number of mutants is the selection-
mutation balance. (a) Forward mutation only (u = 1072, u, = 0), number of mutants in the system at each
time step (typical runs). (b) Forward mutation only (u = 1072, u; = 0), temporal average of the number of
mutants in the system at each time step. Dashed lines represent the selection-mutation balance and mutant
fixation. (c) Forward and back mutation (u = u, = 1073), number of mutants in the system at each time
step (typical runs). (d) Forward and back mutation (u = u, = 1072), temporal average of the number of
mutants in the system at each time step. Dashed lines represent the selection-mutation balance (Equation
(2)) and the predicted average number of mutants under no migration (Equation (1)).

size fluctuation cannot occur; instead we observe elevated fractions of disadvantageous mutants
depending on migration and population structure.

Fragmentation increases mutant numbers and decreases time to fixation. In the ab-
sence of de novo back mutations, mutant fixation in all demes is the only absorbing/stationary
state, which will again eventually be reached with 100% probability. However, when there is a
large amount of migration and/or a large, well-mixed population, then fixation will take a very
long time and quasi-stationary states are possible [13, 44].

Figure 4(b) shows a system of small patches in histogram form in the absence and presence of
migration, for disadvantageous mutants with only forward mutation. When the overall population
is highly fragmented (no migration, left), fixation will occur quickly in each of the individual demes,
and thus in the overall population as well. However, if the overall population is well-mixed, then
fluctuation around a quasi-stationary state that is equal to the selection-mutation balance in each
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deme is observed (panel (b, right)): the equilibrium value from Equation (2) is shown by the vertical
line; see also time-series in Figure 5. Between these extreme scenarios, we observe that the overall
system fluctuates around a quasi-stationary equilibrium that is between selection-mutation balance
in each deme and complete fixation in the overall system (see Figure S12). We can see that in the
case of disadvantageous mutants, population fragmentation does not only change the distribution of
mutants, but also increases the expected number of disadvantageous mutants. To further illustrate
this, Figure 5(a-b) shows the time course of the number of disadvantageous mutants for different
rates of migration. Here we can see the (quasi)-stationary number of mutants in the system (as we
run simulations over 2 x 10° discrete Moran steps), and that there are on average more mutants
expected with lower migration rates (higher levels of population fragmentation), because fixation
in each deme is more easily reached for fragmented (small) populations [55, 30]. In particular, in
Figure 5(b) the (quasi)-stationary level of mutants goes from complete mutant fixation (blue line)
under no migration to fluctuation around the selection-mutation balance (purple line, see Equation
(2)) under a high migration regime.

Fragmentation increases mutant frequencies even when fixation is not an absorbing
state. In the case of both de novo forward and back mutations, there are no longer any absorbing
states.

Low migration High migration

EEEREREERN
100%D __________
. % mutants
Jsel-mut [~ 2=

@ @
N .

100% - =mm e mm— - - = = 100%F--=-=-=-=-=-=-====—-
. % mutants . % mutants
Jsel-mut [T 2= Jsel-mut [~ =

Figure 6: Summary of results: de novo forward and back mutation with varying migration (columns) and
deme size (rows), assuming a constant total population. There are no absorbing states. Individual demes are
represented as green rectangles, and the level of mutants in each is shown in red. Total frequency of mutants
panels schematically show the percent of mutants as a function of time; the black dashed lines represent the
selection-mutation balance, jse;—mut, and 100% fixation.

Small demes

Large demes

Figure 4(c) shows histograms for the number of disadvantageous mutants in the absence and
presence of migration, with the inclusion of back mutation. The dynamics are similar to the forward
mutation only case (panel (b)), except the quasi-stationary distributions described in the preceding
paragraph are now stationary distributions, as demes will not all eventually trend toward fixation
(left panel). In particular, depending on the level of population fragmentation, demes will either
fluctuate around a stationary value, or will individually bounce back and forth between mutant
extinction and mutant fixation. In the latter case (high fragmentation), the system is character-
ized by a higher expected number of mutants compared to the well-mixed (or high migration rate)
system. As seen in Figure 5(c-d), since mutant fixation is no longer an absorbing state, we expect
a smaller number of mutants compared to when there is only forward mutation (panels (a-b)). The
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expected number of mutants in the absence of migration can be computed in the case of a small
mutation rate, according to Equation (1). As the amount of migration increases, the expected
number of mutants converges to the selection-mutation balance given by Equation (2). In partic-
ular, in Figure 5(d) the number of mutants goes from an elevated predictable number (blue line,
see Equation (1)) under no migration to fluctuation around the selection-mutation balance (purple
line, see Equation (2)) under a high migration regime. The overall dynamics for different cases are
summarized schematically in Figure 6.

The role of the effective population size, N.. The effective population size (Ne) is the
number of individuals in an “idealized” (panmictic) population that would be characterized by a
specified quantity (measuring the strength of genetic drift such as variance, coalescence, etc) that is
equal to that in the real population. Population fragmentation into subdivided demes can increase
[36, 49] or decrease [53] the effective population size. As shown in [36] (Wright-Fisher type island
model), and [49] (Moran type island model), in the case where the overall population structure
does not change for a long evolutionary time (as is the case in our model), the effective population
size of a subdivided population can be much larger than the total population size (and is larger
with lower levels of migration). At the same time, the effective selection coefficient (s.) becomes
smaller. A natural question is then: is the change in N, and s, sufficient to explain the observed
differences in mutant dynamics between non-fragmented and fragmented populations, including a
higher frequency of deleterious mutations?

In Supplementary Information Section 3.1 we discuss the diffusion approximation for our frag-
mented model with migration, and obtain the following approximations for the effective population
size and effective selection coefficient:

K
N, = NK<1—|— ), (13)
2Npmigr NswapsTind
K —1
Se = s|1+ . 14
‘ < 2Npmigrnswapsnind) ( )

Figure S7 illustrates the validity of the diffusion approximation and motivates the definition of the
“variance” effective population size, Equation (13), see also Figure S8 that compares this approxi-
mation with numerically obtained values for V..

In order to obtain the predicted average number of mutants in a fragmented system, based on
the effective population size, we can apply Equation (11), where the system size is given by N, and
mutant fitness r = 1 — s.. The results are presented in Figure S9. While the general trend is qual-
itatively captured (higher degrees of fragmentation result in a larger number of disadvantageous
mutants), the size of the effect predicted by this substitution is not quantified correctly.

This suggests that, as noted in [49], it is not only a change in effective population size that dis-
tinguishes the subdivided population with many demes and migration from the singular panmictic
one. In other words, a rescaling of population size (and adjusting the selection coefficient) does not
make the two populations equivalent. If a fragmented population with effective population size N,
is replaced with a well-mixed population of size N, the number of mutants will increase compared
to a well-mixed population of size NK. In addition, the frequency of mutants in each individual
deme will be very different: a single large deme at selection-mutation balance (well-mixed popula-
tion) versus many demes that are either completely wild type or completely mutant (fragmented
population). As a consequence, the mutant dynamics in a fragmented system will proceed in a
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qualitatively different way, and the expected number of mutants will not be governed by a simple
balance between production and selection, as it is in a panmictic system.

When can we expect to see more mutants than predicted by selection-mutation bal-
ance? The number of disadvantageous mutants is amplified relative to a well-mixed population
when the population is highly fragmented (that is, the individual patches are sufficiently small)
and the migration rate is not too high, see Figure 6.

The mean number of mutants

—
0 100 200 300 400 500

N, the deme size

Figure 7: Estimating N.. The expected number of mutants in a single deme in the absence of migration is
shown as a function of N; it is computed numerically (blue circles) by determining the principal eigenvector
of the transition matrix, see Equation (3), and also by using approximations (8) and (10) (blue line). The
green line represents the fast fixation regime (Nyy, Equation (1)); the yellow line is the selection-mutation
balance, jsei—mut (Equation (2)). The parameters are u = u; = 10~* and r = 0.95. The threshold value N,
is shown by the dashed vertical line.

Even in the absence of migration, if each deme size is too large, then fixation will almost never
be reached and fluctuation around the selection-mutation balance in each deme will be observed
instead. On the other hand, if the deme size is very small (N = 2), then the expected number
of mutants is approximately 50% of the system, as each deme will spend about 50% of the time
at mutant extinction and 50% of the time at mutant fixation because of the small mutation rate
(not shown). As the number of individuals per deme increases, this effect of fixation continues to
elevate the number of mutants, but contributes less and less as the fixation probability decreases.
Therefore, as the deme size grows, the expected number of mutants (the blue line in Figure 7) will
extrapolate between two regimes: (i) the fast fixation regime, where the mean number of mutants
in a deme is given by Nyy (Equation (1), green line in Figure 7) and drift dominates, and (ii) the
selection-mutation balance (Equation (2), yellow line in Figure 7) where selection dominates. To
estimate the threshold deme size, N., above which the expected frequency of mutants becomes close
to selection-mutation balance, we find the intersection of the fast-fixation (green) and selection-
mutation balance (yellow) lines by solving the equation Nyn = jsei—mut for N:

1-r—u
N, = M. (15)

As N, represents the threshold value for which drift can overpower selection if N < N, and
selection (of the disadvantageous mutant) overpowers drift for N > N, we have that N, can be
thought of as an approximation of the “selection effective population size” for our model in the
absence of migration [28, 50, 10]. For more details on these calculations, see Section 3 of the
Supplementary Information. If the deme size is smaller than N, a significantly larger number of
mutants compared to the selection-mutation balance is expected. However, if demes are connected
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to each other and migration is present, this may weaken the effect. Under intense migration, the
expected number of mutants tends to that predicted by selection-mutation balance. Therefore, an
important question is: what is the level of migration that is sufficient to lower the mutant levels
back to that of selection-mutation balance?

In this model, the overall intensity of migration (monotonically) depends on several parameters
(see Table 1): the probability of a migration event per update (pmigr), the number of swaps during a
migration event (ngyqps), and the number of individuals exchanged during a swapping event (npq).
To simplify the discussion, we will fix two of these to ngwaps = K/5 and n;pq = N/5, focusing on
the parameter pp,;4 as the one parameter determining the rate of migration.
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Figure 8: The role of migration in the level of mutants. (a) The mean frequency of mutants as a function of
DPmigr, calculated as a temporal average over 108 time-steps; the bars represent the standard error. Different
curves correspond to different values of N. The horizontal lines are jse;—mut and 2jse;—mut- The parameters
are u = up = 1073% r = 0.98, and N. = 205.48. (b) The threshold values, p., are plotted against the
corresponding N/N,, for several values of N.. The exponent B (Equation (16)) is 10.7£0.9. The rest of the
parameters are K = 20, ngyaps = K/5, and n;,q = N/5.

Figure 8(a) demonstrates how a threshold value of the migration probability can be calculated.
Fixing the values of u, up, and r, simulations were run for different choices of the deme size, N < N,
and the mean frequency of mutants (that is, the mutant number divided by the total population
size, NK) was determined for each ppis. As anticipated, the expected mutant frequencies are
higher than the level predicted by the selection-mutation balance; also, they decrease with the
deme size, N, and migration probability, pyis-. To quantify the migration probability that, for
each N, corresponds to a significant decay in the mutant population, we defined p. as the value of
Pmigr that leads the frequency of mutants to fall to twice the selection-mutation balance. In Figure
8(a), intersections of the mutant frequencies with 2js¢;—my are marked with colored symbols and
their horizontal coordinate gives p.. This quantity decreases with N.

Figure 8(b) shows the threshold migration rate as a function of N/N, for several different values
of N.. We observe that the dependence is exponential, and propose the empirical law:

pe = Ae BN/Ne, (16)

where the constants A and B do not depend on N. The value of the exponent, B, can be found
by fitting (see Figure 8); it is difficult to derive analytically because it falls in the intermediate
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migration rate regime (where our approximations of no migration or strong migration do not
apply). Therefore, we use numerical approximations to calculate it, as shown in Figure 8. Overall,
Figure 8(b) shows that the threshold migration rate (p.) decays exponentially with N/N,, which is
the deme size divided by the threshold deme size (N,.). This implies that even for small increases
in deme size N < N, drastic decreases in the migration rate pygr < p. are needed to maintain
the inflated number of mutants in the fragmented population compared to the expected number
of mutants at selection-mutation balance. Section 3.2 of the Supplementary Information presents
similar results obtained in the case of the Wright-Fisher model.

4 Discussion and Conclusion

Divided and fragmented habitats are common in nature. Some examples are naturally occurring
habitats such as islands (in the context of biogeography), aquatic habitats separated by land (such
as ponds or lakes), different parts of a plant that can be inhabited by lower organisms, or hosts
that are inhabited by ecto- and endoparasites. Human activities may lead to further fragmentation
of natural environments, which has implications for conservation biology. In general, most natu-
ral habitats are spatially structured, and are likely to be characterized by demes or microdemes,
with population movement between them, such as patches of high moisture or nutrient availability
across a larger habitat. Given the ubiquity of fragmented and deme-structured habitats in nature,
it is important to obtain a better understanding of how such structures impact evolutionary dy-
namics. As mentioned in the introduction, several aspects of evolution in fragmented populations
have been explored in the literature. Importantly, it has been shown that mutant fixation times
can be significantly increased in deme-structured habitats, even though the probability of mutant
fixation remains unaltered. Other aspects of evolution in deme-structured and fragmented habitats,
however, remain to be explored in more detail from an evolutionary theory point of view, but also
from an experimental point of view to verify model predictions. A more complete understanding
of these dynamics is crucial for better understanding evolutionary processes in natural populations.

Experimentally testing the validity of evolutionary mathematical models of fragmented and
deme-structured populations can be challenging, yet is an important component of this work. We set
up experiments in which murine cell colonies were grown in 96 wells, with migration implemented as
swapping small numbers of cells between randomly chosen wells with a pipette. We used this system
to quantify the distribution of neutral mutants across the demes / wells. The experimental findings
confirmed that while the mean number of mutants is not influenced by migration, the probability
distribution is, consistent with theoretical predictions. We used the same model to also investigate
the distribution of disadvantageous mutants across the demes, which was not feasible to follow
experimentally. Furthermore, we extended the model to include de novo mutations and examined
the average level at which the mutants were expected to persist, and compare this to the level that is
expected due to the balance between mutation and negative selection. We showed that the mutant
numbers experience an increase in frequency compared to that of the selection-mutation balance
of a non-fragmented system. We investigated this phenomenon; using the diffusion approximation,
we found that this increase cannot be simply explained by an elevation in the effective population
size and a decrease in the selection coefficient, which are consequences of fragmentation. In fact,
an increase in the effective population size does not capture a profound change in mutant dynamics
brought about by fragmentation and expressed in a shift from selection-mutation balance to the
dynamics of intermittent mutant fixation and extinction events. In a single deme, we found that the
increase (compared to the selection-mutation level) is observed when the deme size is lower than the
critical size, N, given by Equation (15). In a fragmented system that consists of connected demes
with a probability of migration, the increase in mutant numbers above the selection-mutation
balance can be observed in small (N < N.) demes as long as the migration rate is sufficiently
small. The migration rate above which the mutants approach the selection-mutation balance decays
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exponentially with N/N,, see Equation (16).

Implications for evolutionary biology. This work has important implications for issues sur-
rounding standing genetic variation in populations. Alleles that are mildly deleterious in current
environmental conditions can become advantageous later on, when the environment changes to
their favor. Such changes in the environment can arise naturally, or can be induced by xenobi-
otics, such as drugs, pesticides, or pollutants. Resistance evolution (such as pesticide or antibiotic
resistance) is of particular applied relevance in this respect, because resistant mutants often suffer
a fitness cost in the absence of the treatment and only become advantageous once treatment is
initiated. The pre-existence of resistant mutants at the selection-mutation balance is an important
determinant of outcome in such cases. Our mathematical modeling results indicate that the pool of
pre-existing resistant mutants, and more generally the pool of deleterious mutants that persist in
a population, can be significantly higher in a deme-structured or fragmented population compared
to the predictions made by models without such population structure. This means that in a lot of
natural settings, slightly deleterious mutants might be present at significantly greater abundances
than previously thought, which has relevance for understanding the adaptability of populations,
as well as for preventing xenobiotic adaptation. Besides a change in environment, the higher level
at which disadvantageous mutants might persist can also speed up the crossing of fitness valleys,
where a first mutation can lead to a selective disadvantage, but an additional mutation results
in an overall advantage. An important factor that determines whether these effects occur is the
population size within individual demes relative to the migration rate, as mentioned above. Higher
levels of deleterious mutant persistence will most likely occur if the within deme population size is
relatively small, as defined mathematically in our modeling framework.

Somatic evolutionary processes. In addition, and on a more speculative level, there are also
biomedical implications of our findings, if cell populations in vivo are viewed as a kind of ecosystem
in which cells evolve over time. Clonal evolution takes place within tissues as individuals age.
This has been clearly documented in the hematopoietic system [24], where a variety of mutant
clones with different characteristics emerge over time. These mutant clones can potentially lead
to a functional deterioration of the healthy tissue, and also in the longer term to the development
of malignancies. These mutants can be disadvantageous, neutral, or advantageous, and can form
the basis for further mutation accumulation. These evolutionary processes take place in the bone
marrow, where stem cells exist in niches, with traffic between different parts of the bone marrow via
the blood [52]. There is currently no detailed data that quantifies the rate at which cell populations
across the individual niches/demes communicate and the rate at which they migrate. Given the
intricate anatomical structures in the hematopoietic system, and given the tendency for cells to
home to their specific microenvironments [45], it is likely that cell dynamics are largely governed
by local processes, with a relatively low rate at which cells move from one location to another.
If this is true, then according to our model, the deme structure can influence the exact spatial
genetic composition of the cell population, with mutants being dominant in some parts of the bone
marrow but not others, especially for disadvantageous and neutral mutants. This in turn can have
implications for bone marrow biopsies when trying to assess or monitor the clonal composition of
the hematopoietic system.

Tumor evolution. Similar considerations can apply to tumors in the hematopoietic system once
they have started to expand. Although tumors grow over time and we have considered the evolu-
tionary dynamics in constant populations, tumors can be characterized by periods of slow growth
or temporary stasis until further mutants are generated that allow the cells to overcome specific
selective barriers. In the hematopoietic system, an example could be slowly growing/indolent cases
of chronic lymphocytic leukemia (CLL), where cells grow in spatially separated lymph nodes, the
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spleen, and the bone marrow. The evolution of drug-resistant mutants is a major problem that
results in the eventual failure of therapies, and the level at which resistant mutants exist before
the start of treatment tends to be an important determinant of the time to disease relapse [20, 1].
Mathematical models have been used to calculate the number of drug-resistant mutants, for ex-
ample in chronic lymphocytic leukemia [20] or chronic myeloid leukemia [21], and these models
assumed a spatially homogeneous growing tumor cell population. If drug-resistant mutants carry a
fitness cost and are therefore disadvantageous before the start of therapy, the models analyzed here
indicate that the organization of cells into demes can have a significant influence on the abundance
of pre-existing mutants. Depending on the deme size and the migration rate, the number of resis-
tant cells can be significantly larger than predicted by the selection-mutation balance, which could
dramatically speed up the rate at which the tumor relapses during therapy. If the drug-resistant
mutants are advantageous, which happens in the presence of treatment, then the spatial structure
could also result in a significant effect on quantities such as the timing of mutant expansion (and
therefore treatment failure). Advantageous mutant dynamics, however, are beyond the scope of
the present study. There are also implications for sampling strategies when attempting to assess
the burden of drug-resistant mutants before therapy, such that the true genetic diversity across
the different locations is determined, rather than a skewed picture arising from the analysis of one
or just a few locations. This concept of optimal sampling of tumors has also been explored with
spatially explicit computational models in a different context [58, 37]. Our analysis particularly
highlights the need to experimentally measure the rate at which lymphocytes redistribute from one
lymph node compartment to another, which would allow a more accurate prediction about how the
deme structures in the hematopoietic system influence the evolution of CLL cells.

Spatial migration. Finally, we note that in our model analysis, migration is assumed to be
among randomly (uniformly) chosen demes. For migration that is spatially restricted, disadvanta-
geous mutant levels will be elevated compared to non-spatially restricted migration because once
a region of demes becomes fixed with the mutant, it is less likely that the wild type will be rein-
troduced (for geometric reasons). Therefore, spatially restricted migration increases population
fragmentation compared to mixed migration, which increases the number of mutants. Including
different spatially restricted patterns of migration could be an interesting extension of our current
work.
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