
The role of migration in mutant dynamics in1

fragmented populations2

Abstract3

Mutant dynamics in fragmented populations have been studied extensively in evolutionary4

biology. Yet, open questions remain, both experimentally and theoretically. Some of the funda-5

mental properties predicted by models still need to be addressed experimentally. We contribute6

to this by using a combination of experiments and theory to investigate the role of migration7

in mutant distribution. In the case of neutral mutants, while the mean frequency of mutants8

is not influenced by migration, the probability distribution is. To address this empirically, we9

performed in vitro experiments, where mixtures of GFP-labeled (“mutant”) and non-labeled10

(“wid-type”) murine cells were grown in wells (demes), and migration was mimicked via cell11

transfer from well to well. In the presence of migration we observed a change in the skewedness12

of the distribution of the mutant frequencies in the wells, consistent with previous and our own13

model predictions. In the presence of de novo mutant production, we used modeling to investi-14

gate the level at which disadvantageous mutants are predicted to exist, which has implications15

for the adaptive potential of the population in case of an environmental change. In panmictic16

populations, disadvantageous mutants can persist around a steady state, determined by the17

rate of mutant production and the selective disadvantage (selection-mutation balance). In a18

fragmented system that consists of demes connected by migration, a steady state persistence of19

disadvantageous mutants is also observed, which, however, is fundamentally different from the20

mutation-selection balance and characterized by higher mutant levels. The increase in mutant21

frequencies above the selection-mutation balance can be maintained in small (N < Nc) demes22

as long as the migration rate is sufficiently small. The migration rate above which the mu-23

tants approach the selection-mutation balance decays exponentially with N/Nc. The observed24

increase in the mutant numbers is not explained by the change in the effective population size.25

Implications for evolutionary processes in diseases are discussed, where the pre-existence of26

disadvantageous drug-resistant mutant cells or pathogens drives the response of the disease to27

treatments.28

1 Introduction29

Understanding the principles of mutant dynamics has been a major focus in evolutionary biology.30

Generation and spread of mutants is central to adaptation, where beneficial mutants tend to fix31

while deleterious mutants are gradually removed from the population. These processes depend on32

the environment and are guided by forces of selection, the rate of mutation, genetic drift, and the33

population structure.34

35

Population structure is an important determinant of the evolutionary trajectories [25, 42]. Evo-36

lutionary dynamics in fragmented populations are of interest for questions connected to ecology and37

ecological conservation [6, 46, 41, 39, 14, 40, 22]. Human interference as well as natural factors may38

fragment habitats and isolate subpopulations of a species from the rest, thus influencing genetic39

variability and species survival. Population genetics in structured populations has been applied to40

studies of island biogeography, dynamics of species living in patchy environments, extinction and re-41

colonization, see e.g. [47, 11]. Another area where population fragmentation is of great importance42

is host-associated microbiomes. Spatial structures are generated by host anatomy and physiology;43

examples include gastrointestinal crypts [8] and skin pores [5]. Understanding the microbial evo-44

lution in structured populations is critical for modeling community diversity and stability, species45

coexistence, and predicting the response of microbiomes to treatments. Further applications to46

biomedical problems are discussed below.47

48

Mathematical models have been an important component of research into mutant dynamics.49

Different types of evolutionary models have been explored; most relevant for the current paper are50

the Moran process [34, 35] and the Wright-Fisher model [57] that assume constant population sizes.51
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Various evolutionary measures have been considered, including the average frequency of mutants52

at a given time or population size, the fixation probability of mutants, and the average time to53

fixation for mutants of varying relative fitness [19, 38, 27, 15, 54, 31].54

55

Evolution in fragmented populations is described by models that are sometimes referred to as56

structured or subdivided population models, as well as patch or deme models [35, 26, 25, 12, 42, 11].57

These models describe a group of distinct, spatially separated populations of the same type. Some58

amount of interaction between the separate groups occurs via migration of individuals from one59

group to another, and the dynamics within a single group of individuals is generally assumed to be60

non-spatial [35, 26, 49, 13]. Migration of individuals can either occur to the nearest neighboring61

regions (spatially restricted), or individuals can migrate to any region in the system. A higher62

rate of migration decreases population fragmentation because it results in each region’s dynamics63

becoming dependent on a larger portion of the overall population and thus in better mixing of64

individuals [57, 35, 12, 49]. The term “metapopulation models” is often reserved to describing the65

dynamics with local extinctions and re-colonization, see e.g. [25, 43, 47, 42, 11, 3].66

67

Mathematical patch models with different assumptions on structure and migration between68

groups have been studied in the context of evolutionary dynamics. A number of important results69

about the effect of fragmentation and structure on mutant dynamics have been established. Com-70

monly, it is found that the fixation probability of a mutant is largely independent of migration71

(depending on the explicit model assumptions) [32, 33, 49], but that other quantities such as the72

time to fixation and effective population size can vary based on model structure [44, 54]. The73

distribution of mutant numbers in individual demes has been studied in different contexts, starting74

with the seminal paper by Wright [57], which gave rise to the standing balance theory of evolution.75

Further developments include both discrete (Wright-Fisher) and overlapping (Moran) models of76

population dynamics and different assumptions on the migration process, see e.g. [35, 12, 49, 13].77

It was found that generally, migration among demes transforms the probability distribution of mu-78

tant frequency in a deme from bimodal to unimodal. Another set of results comes from the diffusion79

approximation that describes selection and drift of mutants in subdivided populations. In [4, 48], a80

Wright-Fisher process in a subdivided population with inter-deme migrations is considered, while in81

[49], the local dynamics are described by a Moran process. Analytical expressions for the effective82

population size are derived. It is shown that although the form of the diffusion approximation is83

equivalent between a structured and panmictic population, fragmentation can significantly increase84

the effective population size and the variance of allele frequencies.85

86

The interplay between patch dynamics and traits or alleles has also been previously studied in87

multiple experimental contexts [23, 18, 9, 2]. For instance, Kerr et al identified path dependent88

migration effects in the eco-evolutionary dynamics of E.coli-T4 phage co-cultures [18]. Excitingly,89

recent work on range expansions in asexually reproducing microbes has shown that an excess of90

spontaneous mutations (relative to Luria-Delbruck expectations) are generated during spatial range91

expansions by allele surfing [9].92

93

While several aspects of mutant dynamics in fragmented populations have been mathematically94

elucidated, there still remain open theoretical questions and experimental gaps, some of which we95

address in this paper. (i) From an experimental point of view, to the best of our knowledge, di-96

rect tests of model predictions regarding mutant distributions in fragmented asexual populations97

in the presence and absence of migration are lacking. Here, we provide an experimental test of98

fundamental model predictions about mutant distributions for neutral mutants, using a system99

where GFP-labeled and unlabeled murine cell lines (“mutant” and “wild-type”) are co-cultured in100

96-well plates, and migration is mimicked by swapping cells between demes (wells) with a pipette.101

This system does not contain de novo mutant production, and the experimental results are inter-102
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preted with a corresponding Moran process model, which reproduces previous theoretical insights103

and is found to be consistent with the data. (ii) The model is then used to extend this analysis104

assuming de novo mutant production and different mutant fitness. In particular, we study the105

perceived “selection-mutation balance” in populations. This refers to the persistence of disadvan-106

tageous mutants around a steady state in a population of wild-types at equilibrium, the level of107

which can be calculated and is determined by the mutation rate and the degree of the selective108

disadvantage. We show that for a fragmented habitat, disadvantageous mutants can also persist at109

a steady state level similar to the selection-mutation balance in a panmictic population, but that110

there is a fundamentally different scenario in which the expected number of mutants at the steady111

state can be significantly higher. Our results demonstrate that the previously obtained change in112

the effective population size of fragmented populations is not enough to explain the change in the113

level at which the disadvantageous mutants persist. This has implications for understanding the114

adaptive potential of a population in response to environmental change, with broad applicability115

ranging from ecological systems to biomedical problems, such as the emergence of drug resistant116

mutants.117

118

2 Methods119

2.1 Experiments with neutral mutants120

To address the existing gap in the literature concerning studies of neutral mutant dynamics in121

fragmented populations in the presence and absence of migration, we performed experiments that122

represent an in vitro comparison to the mathematical model presented in the following section.123

To create a system representing neutral migration we mixed GFP labeled mammalian cells with124

unlabeled cells. This suspension of mammalian cells could be propagated in the wells of a 96125

well plate. By systematically transferring small volumes of the cell suspension, we experimentally126

simulated migration between wells. Cells were continually maintained at confluent cell population127

densities to mimic the Moran process. The proportion of mutants in the wells both with and128

without migration of cells between wells was assessed at the end of the experiment. Further details129

on the in vitro experiments are presented below.130

131

Experimental details. 96 demes (wells) were filled with cells. Cell types were wild type and132

mutant, which were neutral with respect to one another. To create this model we transduced murine133

Ba/F3 cells (DSMZ; ACC-300) with green fluorescent protein (GFP). GFP+ cells were mixed with134

wild-type Ba/F3 cells into populations of approximately 0.1 and 1 percent GFP+. Ba/F3 popu-135

lations were maintained in RPMI 1640 Medium (Sigma Aldrich), supplemented with 10 percent136

FBS (Fisher), 10 ng/mL IL-3 (PeproTech), 100 U/mL penicillin and 100 µg/mL streptomycin137

(Life Technologies). The control condition was no migration and the experimental condition was138

migration between demes, which was performed by swapping cells between demes using a pipette.139

Four total experiments were performed, with both conditions starting at approximately 0.1% initial140

mutants and also at 1% initial mutants in all demes. Wells in each plate were diluted twice daily141

with fresh medium on a 16/8 hour time interval to maintain competition at high confluence, with142

one plate from each mixed population subject to migration events at these intervals. All wells were143

maintained at 200 uL — dilutions with fresh medium were performed to maintain cell confluency at144

stationary phase and replenish nutrients. This was done to approximate a Moran process and allow145

for continuous culture, and it was a significant challenge. Throughout the experiment, maximum146

population densities were adjusted based on viability, to maintain population density and compe-147

tition. Migration events were performed immediately prior to viability dilutions on one plate of148

each GFP+ population through the duration of the experiment. Each well in a row was thoroughly149
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Notation Description

K number of demes

N constant number of individuals in each deme

NK constant total number of individuals in overall population

r fitness of the mutant individuals

u rate of forward mutation wild type → mutant

ub rate of back-mutation wild type ← mutant

pmigr migration probability

nind number of individuals exchanged during a swapping event

nswaps number of swaps that occur during a migration event

jsel−mut selection mutation balance in each deme

Table 1: Description of model parameters.

homogenized, and 5 uL of each well’s 200 uL volume was transferred to the vertically adjacent well.150

Receiving wells were then homogenized and 5 uL was transferred to the next adjacent well; this151

process was repeated until all eight rows had received volume from its adjacent upstream row and152

transferred to its downstream adjacent row.153

2.2 Mathematical modeling154

To study the role of population fragmentation and migration in evolution, we will consider a popu-155

lation of asexually reproducing (haploid) individuals of two types, which we refer to as “wild types”156

and “mutants”, see Figure 1. The total population of NK individuals is split into K demes of N157

individuals each, as in for instance [13]. We assume a finite island model, where all demes are158

equidistant. Competition is implemented by assuming that (neutral or deleterious) mutants may159

have relative fitness (denoted by r = 1 − s ≤ 1) that is not necessarily equal to the fitness of the160

wild types (assumed to be 1). De novo mutations are included through forward mutation (with161

probability u per division of a wild type cell) and back-mutation (with probability ub per division of162

a mutant cell, further details included in Section 2.2.1). Migration is modeled in the following way.163

A single migration event is attempted with probability 0 ≤ pmigr ≤ 1 and performed by randomly164

selecting two demes, then randomly selecting nind individuals from each and swapping them with165

each other; nswaps migration updates are completed each time.166

167

The dynamics are set up in the following way. First, a migration update is performed, where168

individuals have a chance to swap demes. This is followed by a birth-death update in all K demes.169

Further details on birth-death updates are given in Section 2.2.1, and on migration in Section 2.2.2;170

Table 1 lists all the model parameters. We run simulations until long-term dynamics have been171

established and (quasi)-stationary states (mutant extinction/fixation or a stable average number172

of mutants within individual demes and the overall system) have been reached.173

174

2.2.1 The Moran process175

Within each deme, we model the stochastic birth-death dynamics by using the well-known Moran176

process (see e.g. [34, 35]). Therefore, the population size of each deme as well as the total popula-177

tion size remains constant. The process of de novo (forward and/or backward) mutation may be178

included in our framework. De novo mutation occurs during reproduction, so for instance if a wild179

type cell is chosen for reproduction, there is a 1− u chance of faithful reproduction and a u chance180

to create a mutant. If a mutant cell divides, it creates a wild-type offspring with probability ub181

(and a mutant offspring with probability 1 − ub).182
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Figure 1: A schematic illustrating the mathematical model. (a) General model structure: each rectangle
represents a deme, and green (red) circles represent wild-type (mutant) individuals. Two-sided arrows
represent random swap-migration events within randomly chosen pairs of demes. (b) Details of a swap
migration event: groups of nind = 3 cells are randomly selected within two demes, and exchanged. As a
result of this particular event, the number of mutants in the top deme decreased, and the number of mutants
in the bottom deme increased by 2.

183

In the absence of de novo forward mutation (u = 0), the model has only one absorbing state,184

given by mutant extinction in all demes. Similarly, in the absence of de novo back mutation (ub = 0),185

mutant fixation in all demes is the only absorbing state. With the inclusion of both forward and186

back mutation, there are no absorbing states [34]. In the absence of migration, the stationary187

probability distribution in an individual deme can be calculated. For example, in the regime where188

mutant fixation happens on a much faster time-scale than mutant production, a simple expression189

for the stationary probability can be derived. Denoting by yi the probability to have i mutants in190

the deme, we have191

y0 =
ub

rN−1u+ ub
, yN = 1− y0, (1)

with the probability of the other states being of the order of the mutation rate, which is described192

in further detail in Section 2.2.3. This is similar to previous approximations of the stationary dis-193

tribution for the Moran process with de novo mutation and selection and under various conditions,194

see for instance [35, 7, 51, 16, 49]. Another useful quantity is the selection-mutation balance, which195

is given (for an individual deme, in the limit of small mutation rates) by196

jsel−mut =
Nu

1− r
, (2)

this quantity represents the number of (negatively selected, r = 1− s < 1) mutants, in the Moran197

process with de novo mutations, which corresponds to an equal probability to increase and decrease198

this number in a single birth-death update. This quantity is also identical to the classical expression199

of the expected number of deleterious mutations at mutation-selection balance. Section 2.2.3 (see200

also [7, 51, 35]) provides details of the calculations for expressions (1) and (2), as well as higher201
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order approximations.202

203

The process of Moran birth-death updates within an individual deme is set up as follows.204

Suppose the number of mutants is given by j (and thus the number of wild type individuals is205

given by N − j). For each time step a cell is chosen randomly to die and a cell is chosen based206

on fitness to reproduce.1 Therefore, the chance that a mutant is chosen to reproduce is rj
rj+N−j ,207

and the chance that a wild type is chosen to reproduce is N−j
rj+N−j . This is a Markov process, where208

the states of the model (the number of mutants in the deme) are integers j ∈ {0, 1, . . . , N}. This209

model has a tridiagonal transition matrix. Let us define210

P ↑j =
(N − j)
N

rj(1− ub) + (N − j)u
rj +N − j

, P ↓j =
j

N

rjub + (N − j)(1− u)

rj +N − j
(3)

to be the probabilities to increase and decrease the number of mutants starting from j mutants, in
one step. Then we have

PMoran
jk =


P ↑j , k = j + 1,

P ↓j , k = j − 1,

1− (P ↑j + P ↓j ) k = j,

0 otherwise.

0 ≤ j ≤ N.

211

Let us denote the probability to have m mutants at time t in a deme as πm(t), with 0 ≤ m ≤ N ,∑N
m=0 πm(t) = 1. The row vector π(t) contains this information for each discrete time-step, t. The

initial condition is

πm(0) =

{
1, m = m0,
0, otherwise.

In the absence of migration, we have (in matrix form)

π(t+ 1) = π(t)PMoran, t ≥ 0.

212

If both populations reproduce faithfully (u = ub = 0), we have two absorbing states, j = 0
(mutant extinction) and j = N (mutant fixation) [35]. Let φj denote the probability for mutants
to reach fixation given that we start with j mutants. We have

φj =

{
1−(1/r)j
1−(1/r)N , r 6= 1,

j/N, r = 1.

213

2.2.2 Modeling migration214

We assume a migration update is attempted each step with some migration probability 0 ≤ pmigr ≤215

1. We assume that at each migration update, nind individuals are randomly picked from one deme216

and replaced with nind individuals randomly selected from the second deme. In some simulations,217

to increase the intensity of migration, we repeated this procedure nswaps times for each migration218

update. We assume that the probability of migration applies to all swap events jointly, and thus219

that nswaps swap events occur with probability pmigr, and no swap events occur with probability220

1Note that in this formulation we do not distinguish between a birth-death or a death-birth process [17]. Assume
r = 1. In a true death-birth process, if a mutant dies, the probability of mutant division would be given by (j− 1)/N
(assuming that a cell that just dies cannot divide). Similarly, in a true birth-death process, the probability of mutant
death following a mutant division would be (j − 1)/N (assuming that an individual that just divided does not
immediately die). In the present model formulation we do not include these considerations.
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1− pmigr. nind and nswaps are non-negative integers that we set before performing a simulation.221

222

To incorporate migration, let us assume that a migration update precedes a Moran update.223

Then we can write,224

π(t+ 1/2) = π(t)Pmigr, π(t+ 1) = π(t+ 1/2)PMoran, (4)

where Pmigr denotes the transition matrix associated with migrations. In order to formulate this
transition matrix, we will need the Hypergeometric distribution, which describes the probability of
picking n mutants in nind draws without replacement, if the total number of mutants is j out of N
individuals:

ρj(n) =

(
nind
n

)(
N − nind
j − n

)
/

(
N

j

)
The probability to change the number of mutants from m1 to m2 in a population characterized by
vector π(t) is given by

µm1,m2 =
a∑

n1=0

ρm1(n1)
N∑

m=1

πm(t)ρm(m2 −m1 + n1).

Here, we assume that the population containing m1 mutants loses n1 mutants to another deme and
gains n2 mutants from the other deme; we sum over all possible values of n1, and note that

m1 − n1 + n2 = m2,

which gives us the expression for n2 = m2 − m1 + n1. The probability to lose n1 individuals is225

ρm1(n1). The probability to gain n2 individuals is calculated as follows: the donor deme is assumed226

to contain m mutants (probability πm(t)), because all individuals are assumed to obey the same227

laws and the number of mutants in the deme at time t are drawn from the same probability distribu-228

tion, π(t). The probability to gain n2 mutants from a deme containing m mutants is πm(t)ρm(n2),229

and to get the total probability of gaining n2 individuals, we sum over all m.230

231

Finally, the transition matrix for the migration step is given by

Pmigr
ij = pmigrµij + (1− pmigr)δij ,

where δij is the Kronecker delta.232

233

The steady state, π̄, satisfies the following equation:234

π̄j =
∑
k

PMoran
kj

(
pmigr

∑
i

∑
m

π̄iπ̄mhimk + (1− pmigr)π̄k

)
, (5)

where
himk =

∑
n

ρi(n)ρm(k − i+ n).

2.2.3 The stationary probability distribution and the selection-mutation balance in235

the absence of migration236

In the presence of de novo forward and back mutations, let us determine the stationary probability237

distribution for the number of mutants. Let us suppose the stationary probability distribution is238

given by (x0, x1, . . . , xN ) with239

N∑
j=0

xj = 1. (6)
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The components xj satisfy the following equations,240

xj−1P
↑
j−1 + xj+1P

↓
j+1 − xj(P

↑
j + P ↓j ) = 0, 0 ≤ j ≤ N, (7)

where x−1 = xN+1 = 0 and the transition probabilities are given by Equation (3). Let us suppose
that the mutation rates are small compared with 1 − r and the inverse of the deme size 1

N , and
denote

u = εU, ub = εUb,

ε� 1− r, ε� 1/N . Solving Equation (7) in the zeroth order (i.e. under the assumption of no de
novo mutations, setting ε = 0) we obtain xi = 0 for 1 ≤ i ≤ N − 1, with probabilities x0 and xN
undefined. To find the approximate solution under the assumption of small mutation rates, we go
to the first order in ε. Let us set

x0 = y0, xn = yN , xi = εyi for 1 ≤ i ≤ N − 1.

Taking into account only the terms of order ε in Equation (7), we obtain a degenerate system of241

N + 1 equations for N + 1 unknowns yi. The additional condition in given by Equation (6) and in242

the lowest order in ε reduces to yN = 1− y0. The solution is similar to what is found by [7, 51] in243

similar models, and is given by244

y0 =
Ub

rN−1U + Ub
=

ub
rN−1u+ ub

, (8)

yN = 1− y0. (9)

In particular, in the absence of de novo back mutations, the system converges to the j = N state245

(mutant fixation), and in the absence of de novo forward mutations, we have y0 = 1 (mutant246

extinction). If we include higher order terms, then the stationary distribution for the intermediate247

states is given by248

yi =
Nri−1(N − i+ ir)UUb

i(N − i)(rN−1U + Ub)
, 1 ≤ i ≤ N − 1. (10)

249

Approximation (8)-(9) can also be obtained from the following simple consideration. Let us
assume that the system spends most of the time in “pure” states (that is, in state j = 0 or in
state j = N), which is the consequence of the time-scale separation: the waiting time to obtain
a de novo mutation must be much longer than the typical time of mutant fixation. Then we can
establish the balance of the following two processes. (1) If the system is in state j = 0 (denote
this probability by y0), then the transition to state j = N happens at rate Nu × φ1, which is the
product of the mutant production rate, Nu, and the probability of a single mutant fixation given
by φj with j = 1. (2) On the other hand, the probability of finding the system in state i = N is
1− y0, and the rate at which the system leaves and gets fixed at i = 0 is given by multiplying the
rate of wild type production (Nub) by the probability of a wild-type fixation (φj) where we replace
r with 1/r, which is the relative fitness of the wild type compared to that of mutants. We obtain
the equation

y0Nu
1− 1/r

1− 1/rN
= (1− y0)Nub

1− r
1− rN

,

whose solution y0 is given by Equation (8).250

251

To calculate the selection-mutation balance, we solve the equation P ↑j = P ↓j for j and obtain252

Equation (2), where we used the largest contribution in ε (this is also the exact solution for the253

selection-mutation balance in the case of only forward mutation). We also note that back mutation254

does not effect the selection-mutation balance as long as ε � (1 − r). The exact solution for the255

selection-mutation balance is given by256

jsel−mut = N
rub − r + u+ 1−

√
((r(ub − 1) + u+ 1)2 + 4(r − 1)u)

2(1− r)
. (11)
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In the case that the two types are neutral with respect to each other (r = 1), we again solve the257

equation P ↑j = P ↓j for j and as in [35] obtain258

jsel−mut = N
ub

u+ ub
. (12)

259

3 Results260

3.1 Population fragmentation changes mutant distribution for neutral mutants261

To motivate this study, we performed some simple experiments that examined the role of frag-262

mentation and migration in neutral mutant dynamics. 96 wells were filled with cells, such that263

each well contained 1% of (neutral) mutants. The process of cell migration was implemented by264

swapping a small percentage of cells between demes by using a pipette (which is described in more265

detail in Section 2.1 and in Supplementary Information Section 1). The number of mutants in the266

wells was assessed at the end of the experiment and compared with the control condition with no267

migration. The resulting experimentally obtained distribution of the mutant numbers is shown268

in Figures 2 and S1, where we plot the percent mutant contents in the 96 demes in the form of269

histograms. Figure 2 shows experimental results for the 1% mutants initial condition and Figure270

S1 shows experimental results for both the 0.1% and 1% mutants initial conditions.271

272

We observed that while the mean number of mutants in the absence and in the presence of273

migration was the same, the distribution was significantly different; in particular, the distribution274

without migration had a much larger skewness, while in the presence of migration it was more275

symmetric (Figure 2). Specifically, the average percent of mutants without migration is 1.03%,276

and with migration is 1.13%, which is not significantly different using the T-test (p-value greater277

than 0.1). However, the Kolmogorov-Smirnov test between the two distributions gives a p-value of278

about 10−3, which suggests that the distributions are significantly different. The skewness for the279

experiment without migration is 0.89, and with migration it is much smaller at 0.07.280

281

Figure 2: Effect of migration on neutral mutant distribution, experimental results. The blue bars represent
the control condition without migration between the wells, the yellow bars represent the experimental con-
dition with migration, and the gray color denotes the overlap. Initial condition of 1% mutants in each well.
The average percent of mutants in each well without migration is 1.03%, and with migration is 1.13% (not
significantly different using the T-test, p-value greater than 0.1). The Kolmogorov-Smirnov test between
the two distributions gives a p-value of about 10−3, which suggests that the distributions are significantly
different. The skewness without migration is 0.89, and with migration it is much smaller at 0.07. Full
experimental results are shown in Figure S1.
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To explain these observations and extend the results to other conditions, we began by analyzing282

the dynamics of neutral mutants (r = 1).283

Unimodal versus bimodal mutant distribution in the absence of de novo mutations.284

To reproduce the experimental set-up, we assumed that there is no de novo mutation, and started285

with some small initial number of mutants in each deme (m0). In order to analyze the effect of mi-286

gration/population fragmentation, we ran simulations with and without migration of cells between287

the distinct demes, a description of the mathematical model can be found in Section 2.288

289

Figure 3: Stochastic simulations (histograms) and iterations of Equation (4) (blue lines). Panel (a) repre-
sents the absence (pmigr = 0) and panel (b) represents the presence (pmigr = 1) of migration. The probability
distributions are presented at several moments of time (t in each plot corresponds to the number of discrete
Moran steps). The rest of the parameters are N = 20, m0 = 4, nswaps = 750, nind = 5, r = 1, u = ub = 0,
and K = 1.5× 103.

As in the experimental results, in both the model simulations and analysis we found that the290

mean percent of neutral mutants is independent of migration, and is equal to the initial ratio of291

mutants in the system. This is because the transition probabilities are symmetric, see Equation292

(3) and Section 2 in the Supplementary Information for details. Furthermore, as the wild type and293

mutant are neutral, the probability for the mutant to fix within the system (assuming a non-zero294

migration rate) is equal to the initial frequency of mutants in the system (although the time to295

such fixation depends on migration [44, 54]). This is because in the context of a symmetric random296

walk, the fixation (i.e. absorption at the upper boundary) probability is proportional to the initial297

condition, see Supplementary Information Section 2 and [32, 34, 35].298

299

On the other hand, the distribution of the frequency of mutants in the system and the dy-300

namics within individual demes are significantly influenced by the presence of migration (Figure301

3). Starting from a delta-like distribution (as initially all demes contain m0 mutants), the distri-302

butions get wider with time and eventually reach a quasi-stationary distribution. In the absence303
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of migration (Figure 3(a)), the dynamics of each deme are independent from one another. Since304

the probability of fixation is simply the initial fraction of mutants (m0/N), there is a large chance305

(given by 1 −m0/N) of mutant extinction in each deme. Therefore, the probability distribution306

of the number of mutants in each deme becomes flatter and develops a skew to the right, as most307

demes will trend toward mutant extinction, while a few will trend toward mutant fixation (i.e. a308

bimodal distribution, with modes at mutant extinction (j = 0) and fixation (j = N)). Eventually,309

as time → ∞, all demes will be fixed at either mutant extinction or fixation. In the presence of310

migration (panel (b)), the dynamics of each deme are no longer independent from one another.311

As was similarly found in [49, 13, 12, 35, 57], migration makes all the demes look more similar to312

each other, resulting in a one-humped (unimodal) distribution. These results match well with in313

vitro experimental simulations of the computational model, which are shown in Figure 2 (see also314

Supplementary Information Section 1). Note that while the figure shows a long-term state, this is315

not an equilibrium, and the only outcomes as time → ∞ is mutant fixation or mutant extinction316

in the whole system (individual demes, if pmigr = 0) because there is no de novo mutation [13, 35].317

318

In addition to the extremes of no migration or a large amount of migration (where the system is319

well-mixed), we also investigate other regimes where there is some intermediate level of migration320

of individuals between the demes in the system. Figure S4 shows the time-evolution of the mutant321

probability distributions obtained by iterating Equation (4) (see panels (a-c) for three different322

values of pmigr), and then by plotting the resulting quasi-stationary probability distributions (panel323

(d)). Here we see that the effect of the Moran process is to “make” the probability distribution324

bimodal, and the effect of migration is to “make” it unimodal. The result is a trade-off of the two325

tendencies, and depending on the amount of migration, the distribution shape changes accordingly.326

Quasi-stationary distributions become stationary in the presence of de novo muta-327

tion. Next, we expand the theory beyond the experimental conditions of Figure 2 to include the328

effect of de novo mutations. Since mutants are now generated stochastically, we alter the initial329

conditions to start with the wild type fixed in all demes (m0 = 0). In the case of only forward330

mutation, the mutant will be created via mutation more often than the wild type. This muta-331

tional bias results in the neutral mutant (r = 1) fixing quickly in the entire population (see Figure332

S6(a-b)). On average, the time to fixation decreases with increasing migration, as faster migra-333

tion results in more frequent introduction of the mutant into all of the demes, see [49, 44, 11, 54, 44].334

335

In the case of both forward and back de novo mutation, the dynamics are more complex. Figure336

4(a) shows simulations representing 2× 103 demes of 20 individuals each, after 105 iterations with337

varying rates of migration. The histograms represent the number of neutral mutants per deme. In338

the absence of migration (left), the number of mutants will drift around, becoming extinct or fixed339

within a deme. In a highly fragmented population, this will happen more often, and the mutant340

will be at the extinction/fixation long-term state most of the time. Increasing migration (and/or341

decreasing population fragmentation by increasing the size of the demes, not shown) will result in342

fluctuation around the equilibrium value (Equation (12)) in each deme (Figure 4(a, right)). As343

in the simulations without de novo mutation, if the rate of forward and back mutation is equal344

(u = ub), then migration does not change the expected mean number of neutral mutants (as the345

stationary distribution is symmetric around the selection-mutation balance of 50% mutants, see346

Figures S5 and S6(c-d)). If the rate of forward and back mutation is not equal (u 6= ub), then the347

expected level of mutants is given by ub
u+ub

(see Equation (12) and [35] for details of this calculation).348

349

Note also that the presence of mutations changes the nature of the long-term system behav-350

ior: the quasi-stationary distribution observed in the absence of de novo mutations (Figure 3(b),351

bottom graph) becomes a stationary distribution in the presence of forward and back mutation, as352

absorbing states no longer exist [13].353
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Figure 4: Histograms for the number of mutants per deme in the absence (pmigr = 0) and presence
(pmigr = 1) of migration, after 105 Moran iterations. (a) Neutral mutant (r = 1) with both forward and
back mutation (u = ub = 0.005), see Figure S5 for intermediate migration cases; (b) disadvantageous mutant
(r = 0.9) with forward mutation only (u = 0.005, ub = 0), see Figure S12 for intermediate migration cases;
(c) disadvantageous mutant (r = 0.9), with forward and backward mutation (u = ub = 0.005), see Figure S13
for intermediate migration cases. The horizontal axis is the number of mutants and the vertical axis is the
number of demes at that number of mutants. The vertical lines in the right panels represent the theoretical
mutant equilibria, Equation (12) for (a) and the selection-mutation balance Equation (2) for panels (b-c).
Other parameters are N = 20, m0 = 0, nswaps = 100, nind = 10, and K = 2× 103.

354

3.2 Population fragmentation changes mutant frequencies and distribution for355

disadvantageous mutants356

Next we turn to the dynamics of disadvantageous mutants. While this scenario is highly biologi-357

cally realistic for many populations, it is often more difficult to study experimentally due in part358

to the lower probability of mutant growth. In the absence of de novo mutation, a small initial359

number of disadvantageous mutants will likely decay quickly and go extinct. Therefore, we focus360

on mathematical models that include de novo mutation processes. We will show that while migra-361

tion changes the distribution of demes in a similar manner for both disadvantageous and neutral362

mutants, in the disadvantageous case migration also changes the expected number of mutants at363

the (quasi)-stationary state in fragmented populations. This is related to the concept of “drift load”364

[29, 30, 56], which describes how the accumulation of deleterious mutations can cause a gradual365

reduction in population size (and in small populations random genetic drift will progressively over-366

power selection making it easier to fix future mutations). As we assume constant population sizes,367
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Figure 5: Number of mutants over time for varying rates of migration with a disadvantageous mutant
(r = 0.9). Panels (a-b) include forward mutation only, and panels (c-d) include both forward and back
mutation. Other parameters are N = 10, m0 = 0, andK = 100. Selection-mutation balance is approximately
10 mutants in the system and mutant fixation is 10 mutants in each deme. Blue lines, no migration. The
approximate expected number of mutants can be calculated using Equation (1). Yellow lines, low migration:
pmigr = 1

3 , nswaps = 1, and nind = 1. Green lines, medium migration: pmigr = 1, nswaps = 1, and
nind = 1. Red lines, high migration: pmigr = 1, nswaps = 5, and nind = 1. Purple lines, very high migration:
pmigr = 1, nswaps = 10, and nind = 5. The approximate expected number of mutants is the selection-
mutation balance. (a) Forward mutation only (u = 10−3, ub = 0), number of mutants in the system at each
time step (typical runs). (b) Forward mutation only (u = 10−3, ub = 0), temporal average of the number of
mutants in the system at each time step. Dashed lines represent the selection-mutation balance and mutant
fixation. (c) Forward and back mutation (u = ub = 10−3), number of mutants in the system at each time
step (typical runs). (d) Forward and back mutation (u = ub = 10−3), temporal average of the number of
mutants in the system at each time step. Dashed lines represent the selection-mutation balance (Equation
(2)) and the predicted average number of mutants under no migration (Equation (1)).

size fluctuation cannot occur; instead we observe elevated fractions of disadvantageous mutants368

depending on migration and population structure.369

Fragmentation increases mutant numbers and decreases time to fixation. In the ab-370

sence of de novo back mutations, mutant fixation in all demes is the only absorbing/stationary371

state, which will again eventually be reached with 100% probability. However, when there is a372

large amount of migration and/or a large, well-mixed population, then fixation will take a very373

long time and quasi-stationary states are possible [13, 44].374

375

Figure 4(b) shows a system of small patches in histogram form in the absence and presence of376

migration, for disadvantageous mutants with only forward mutation. When the overall population377

is highly fragmented (no migration, left), fixation will occur quickly in each of the individual demes,378

and thus in the overall population as well. However, if the overall population is well-mixed, then379

fluctuation around a quasi-stationary state that is equal to the selection-mutation balance in each380
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deme is observed (panel (b, right)): the equilibrium value from Equation (2) is shown by the vertical381

line; see also time-series in Figure 5. Between these extreme scenarios, we observe that the overall382

system fluctuates around a quasi-stationary equilibrium that is between selection-mutation balance383

in each deme and complete fixation in the overall system (see Figure S12). We can see that in the384

case of disadvantageous mutants, population fragmentation does not only change the distribution of385

mutants, but also increases the expected number of disadvantageous mutants. To further illustrate386

this, Figure 5(a-b) shows the time course of the number of disadvantageous mutants for different387

rates of migration. Here we can see the (quasi)-stationary number of mutants in the system (as we388

run simulations over 2 × 105 discrete Moran steps), and that there are on average more mutants389

expected with lower migration rates (higher levels of population fragmentation), because fixation390

in each deme is more easily reached for fragmented (small) populations [55, 30]. In particular, in391

Figure 5(b) the (quasi)-stationary level of mutants goes from complete mutant fixation (blue line)392

under no migration to fluctuation around the selection-mutation balance (purple line, see Equation393

(2)) under a high migration regime.394

395

Fragmentation increases mutant frequencies even when fixation is not an absorbing396

state. In the case of both de novo forward and back mutations, there are no longer any absorbing397

states.398

399

Figure 6: Summary of results: de novo forward and back mutation with varying migration (columns) and
deme size (rows), assuming a constant total population. There are no absorbing states. Individual demes are
represented as green rectangles, and the level of mutants in each is shown in red. Total frequency of mutants
panels schematically show the percent of mutants as a function of time; the black dashed lines represent the
selection-mutation balance, jsel−mut, and 100% fixation.

Figure 4(c) shows histograms for the number of disadvantageous mutants in the absence and400

presence of migration, with the inclusion of back mutation. The dynamics are similar to the forward401

mutation only case (panel (b)), except the quasi-stationary distributions described in the preceding402

paragraph are now stationary distributions, as demes will not all eventually trend toward fixation403

(left panel). In particular, depending on the level of population fragmentation, demes will either404

fluctuate around a stationary value, or will individually bounce back and forth between mutant405

extinction and mutant fixation. In the latter case (high fragmentation), the system is character-406

ized by a higher expected number of mutants compared to the well-mixed (or high migration rate)407

system. As seen in Figure 5(c-d), since mutant fixation is no longer an absorbing state, we expect408

a smaller number of mutants compared to when there is only forward mutation (panels (a-b)). The409
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expected number of mutants in the absence of migration can be computed in the case of a small410

mutation rate, according to Equation (1). As the amount of migration increases, the expected411

number of mutants converges to the selection-mutation balance given by Equation (2). In partic-412

ular, in Figure 5(d) the number of mutants goes from an elevated predictable number (blue line,413

see Equation (1)) under no migration to fluctuation around the selection-mutation balance (purple414

line, see Equation (2)) under a high migration regime. The overall dynamics for different cases are415

summarized schematically in Figure 6.416

417

418

The role of the effective population size, Ne. The effective population size (Ne) is the419

number of individuals in an “idealized” (panmictic) population that would be characterized by a420

specified quantity (measuring the strength of genetic drift such as variance, coalescence, etc) that is421

equal to that in the real population. Population fragmentation into subdivided demes can increase422

[36, 49] or decrease [53] the effective population size. As shown in [36] (Wright-Fisher type island423

model), and [49] (Moran type island model), in the case where the overall population structure424

does not change for a long evolutionary time (as is the case in our model), the effective population425

size of a subdivided population can be much larger than the total population size (and is larger426

with lower levels of migration). At the same time, the effective selection coefficient (se) becomes427

smaller. A natural question is then: is the change in Ne and se sufficient to explain the observed428

differences in mutant dynamics between non-fragmented and fragmented populations, including a429

higher frequency of deleterious mutations?430

431

In Supplementary Information Section 3.1 we discuss the diffusion approximation for our frag-432

mented model with migration, and obtain the following approximations for the effective population433

size and effective selection coefficient:434

Ne = NK

(
1 +

K

2Npmigrnswapsnind

)
, (13)

se = s

(
1 +

K

2Npmigrnswapsnind

)−1
. (14)

Figure S7 illustrates the validity of the diffusion approximation and motivates the definition of the435

“variance” effective population size, Equation (13), see also Figure S8 that compares this approxi-436

mation with numerically obtained values for Ne.437

438

In order to obtain the predicted average number of mutants in a fragmented system, based on439

the effective population size, we can apply Equation (11), where the system size is given by Ne and440

mutant fitness r = 1− se. The results are presented in Figure S9. While the general trend is qual-441

itatively captured (higher degrees of fragmentation result in a larger number of disadvantageous442

mutants), the size of the effect predicted by this substitution is not quantified correctly.443

444

This suggests that, as noted in [49], it is not only a change in effective population size that dis-445

tinguishes the subdivided population with many demes and migration from the singular panmictic446

one. In other words, a rescaling of population size (and adjusting the selection coefficient) does not447

make the two populations equivalent. If a fragmented population with effective population size Ne448

is replaced with a well-mixed population of size Ne, the number of mutants will increase compared449

to a well-mixed population of size NK. In addition, the frequency of mutants in each individual450

deme will be very different: a single large deme at selection-mutation balance (well-mixed popula-451

tion) versus many demes that are either completely wild type or completely mutant (fragmented452

population). As a consequence, the mutant dynamics in a fragmented system will proceed in a453
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qualitatively different way, and the expected number of mutants will not be governed by a simple454

balance between production and selection, as it is in a panmictic system.455

When can we expect to see more mutants than predicted by selection-mutation bal-456

ance? The number of disadvantageous mutants is amplified relative to a well-mixed population457

when the population is highly fragmented (that is, the individual patches are sufficiently small)458

and the migration rate is not too high, see Figure 6.459

460

Figure 7: Estimating Nc. The expected number of mutants in a single deme in the absence of migration is
shown as a function of N ; it is computed numerically (blue circles) by determining the principal eigenvector
of the transition matrix, see Equation (3), and also by using approximations (8) and (10) (blue line). The
green line represents the fast fixation regime (NyN , Equation (1)); the yellow line is the selection-mutation
balance, jsel−mut (Equation (2)). The parameters are u = ub = 10−4 and r = 0.95. The threshold value Nc

is shown by the dashed vertical line.

Even in the absence of migration, if each deme size is too large, then fixation will almost never461

be reached and fluctuation around the selection-mutation balance in each deme will be observed462

instead. On the other hand, if the deme size is very small (N = 2), then the expected number463

of mutants is approximately 50% of the system, as each deme will spend about 50% of the time464

at mutant extinction and 50% of the time at mutant fixation because of the small mutation rate465

(not shown). As the number of individuals per deme increases, this effect of fixation continues to466

elevate the number of mutants, but contributes less and less as the fixation probability decreases.467

Therefore, as the deme size grows, the expected number of mutants (the blue line in Figure 7) will468

extrapolate between two regimes: (i) the fast fixation regime, where the mean number of mutants469

in a deme is given by NyN (Equation (1), green line in Figure 7) and drift dominates, and (ii) the470

selection-mutation balance (Equation (2), yellow line in Figure 7) where selection dominates. To471

estimate the threshold deme size, Nc, above which the expected frequency of mutants becomes close472

to selection-mutation balance, we find the intersection of the fast-fixation (green) and selection-473

mutation balance (yellow) lines by solving the equation NyN = jsel−mut for N :474

Nc =
log
(
1−r−u
rub

)
− log r

. (15)

475

As Nc represents the threshold value for which drift can overpower selection if N < Nc and476

selection (of the disadvantageous mutant) overpowers drift for N > Nc, we have that Nc can be477

thought of as an approximation of the “selection effective population size” for our model in the478

absence of migration [28, 50, 10]. For more details on these calculations, see Section 3 of the479

Supplementary Information. If the deme size is smaller than Nc, a significantly larger number of480

mutants compared to the selection-mutation balance is expected. However, if demes are connected481
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to each other and migration is present, this may weaken the effect. Under intense migration, the482

expected number of mutants tends to that predicted by selection-mutation balance. Therefore, an483

important question is: what is the level of migration that is sufficient to lower the mutant levels484

back to that of selection-mutation balance?485

486

In this model, the overall intensity of migration (monotonically) depends on several parameters487

(see Table 1): the probability of a migration event per update (pmigr), the number of swaps during a488

migration event (nswaps), and the number of individuals exchanged during a swapping event (nind).489

To simplify the discussion, we will fix two of these to nswaps = K/5 and nind = N/5, focusing on490

the parameter pmigr as the one parameter determining the rate of migration.491

492

Figure 8: The role of migration in the level of mutants. (a) The mean frequency of mutants as a function of
pmigr, calculated as a temporal average over 108.5 time-steps; the bars represent the standard error. Different
curves correspond to different values of N . The horizontal lines are jsel−mut and 2jsel−mut. The parameters
are u = ub = 10−3.5, r = 0.98, and Nc = 205.48. (b) The threshold values, pc, are plotted against the
corresponding N/Nc, for several values of Nc. The exponent B (Equation (16)) is 10.7± 0.9. The rest of the
parameters are K = 20, nswaps = K/5, and nind = N/5.

Figure 8(a) demonstrates how a threshold value of the migration probability can be calculated.493

Fixing the values of u, ub, and r, simulations were run for different choices of the deme size, N < Nc,494

and the mean frequency of mutants (that is, the mutant number divided by the total population495

size, NK) was determined for each pmigr. As anticipated, the expected mutant frequencies are496

higher than the level predicted by the selection-mutation balance; also, they decrease with the497

deme size, N , and migration probability, pmigr. To quantify the migration probability that, for498

each N , corresponds to a significant decay in the mutant population, we defined pc as the value of499

pmigr that leads the frequency of mutants to fall to twice the selection-mutation balance. In Figure500

8(a), intersections of the mutant frequencies with 2jsel−mut are marked with colored symbols and501

their horizontal coordinate gives pc. This quantity decreases with N .502

503

Figure 8(b) shows the threshold migration rate as a function of N/Nc for several different values504

of Nc. We observe that the dependence is exponential, and propose the empirical law:505

pc = Ae−BN/Nc , (16)

where the constants A and B do not depend on N . The value of the exponent, B, can be found506

by fitting (see Figure 8); it is difficult to derive analytically because it falls in the intermediate507
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migration rate regime (where our approximations of no migration or strong migration do not508

apply). Therefore, we use numerical approximations to calculate it, as shown in Figure 8. Overall,509

Figure 8(b) shows that the threshold migration rate (pc) decays exponentially with N/Nc, which is510

the deme size divided by the threshold deme size (Nc). This implies that even for small increases511

in deme size N < Nc, drastic decreases in the migration rate pmigr < pc are needed to maintain512

the inflated number of mutants in the fragmented population compared to the expected number513

of mutants at selection-mutation balance. Section 3.2 of the Supplementary Information presents514

similar results obtained in the case of the Wright-Fisher model.515

4 Discussion and Conclusion516

Divided and fragmented habitats are common in nature. Some examples are naturally occurring517

habitats such as islands (in the context of biogeography), aquatic habitats separated by land (such518

as ponds or lakes), different parts of a plant that can be inhabited by lower organisms, or hosts519

that are inhabited by ecto- and endoparasites. Human activities may lead to further fragmentation520

of natural environments, which has implications for conservation biology. In general, most natu-521

ral habitats are spatially structured, and are likely to be characterized by demes or microdemes,522

with population movement between them, such as patches of high moisture or nutrient availability523

across a larger habitat. Given the ubiquity of fragmented and deme-structured habitats in nature,524

it is important to obtain a better understanding of how such structures impact evolutionary dy-525

namics. As mentioned in the introduction, several aspects of evolution in fragmented populations526

have been explored in the literature. Importantly, it has been shown that mutant fixation times527

can be significantly increased in deme-structured habitats, even though the probability of mutant528

fixation remains unaltered. Other aspects of evolution in deme-structured and fragmented habitats,529

however, remain to be explored in more detail from an evolutionary theory point of view, but also530

from an experimental point of view to verify model predictions. A more complete understanding531

of these dynamics is crucial for better understanding evolutionary processes in natural populations.532

533

Experimentally testing the validity of evolutionary mathematical models of fragmented and534

deme-structured populations can be challenging, yet is an important component of this work. We set535

up experiments in which murine cell colonies were grown in 96 wells, with migration implemented as536

swapping small numbers of cells between randomly chosen wells with a pipette. We used this system537

to quantify the distribution of neutral mutants across the demes / wells. The experimental findings538

confirmed that while the mean number of mutants is not influenced by migration, the probability539

distribution is, consistent with theoretical predictions. We used the same model to also investigate540

the distribution of disadvantageous mutants across the demes, which was not feasible to follow541

experimentally. Furthermore, we extended the model to include de novo mutations and examined542

the average level at which the mutants were expected to persist, and compare this to the level that is543

expected due to the balance between mutation and negative selection. We showed that the mutant544

numbers experience an increase in frequency compared to that of the selection-mutation balance545

of a non-fragmented system. We investigated this phenomenon; using the diffusion approximation,546

we found that this increase cannot be simply explained by an elevation in the effective population547

size and a decrease in the selection coefficient, which are consequences of fragmentation. In fact,548

an increase in the effective population size does not capture a profound change in mutant dynamics549

brought about by fragmentation and expressed in a shift from selection-mutation balance to the550

dynamics of intermittent mutant fixation and extinction events. In a single deme, we found that the551

increase (compared to the selection-mutation level) is observed when the deme size is lower than the552

critical size, Nc, given by Equation (15). In a fragmented system that consists of connected demes553

with a probability of migration, the increase in mutant numbers above the selection-mutation554

balance can be observed in small (N < Nc) demes as long as the migration rate is sufficiently555

small. The migration rate above which the mutants approach the selection-mutation balance decays556
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exponentially with N/Nc, see Equation (16).557

558

Implications for evolutionary biology. This work has important implications for issues sur-559

rounding standing genetic variation in populations. Alleles that are mildly deleterious in current560

environmental conditions can become advantageous later on, when the environment changes to561

their favor. Such changes in the environment can arise naturally, or can be induced by xenobi-562

otics, such as drugs, pesticides, or pollutants. Resistance evolution (such as pesticide or antibiotic563

resistance) is of particular applied relevance in this respect, because resistant mutants often suffer564

a fitness cost in the absence of the treatment and only become advantageous once treatment is565

initiated. The pre-existence of resistant mutants at the selection-mutation balance is an important566

determinant of outcome in such cases. Our mathematical modeling results indicate that the pool of567

pre-existing resistant mutants, and more generally the pool of deleterious mutants that persist in568

a population, can be significantly higher in a deme-structured or fragmented population compared569

to the predictions made by models without such population structure. This means that in a lot of570

natural settings, slightly deleterious mutants might be present at significantly greater abundances571

than previously thought, which has relevance for understanding the adaptability of populations,572

as well as for preventing xenobiotic adaptation. Besides a change in environment, the higher level573

at which disadvantageous mutants might persist can also speed up the crossing of fitness valleys,574

where a first mutation can lead to a selective disadvantage, but an additional mutation results575

in an overall advantage. An important factor that determines whether these effects occur is the576

population size within individual demes relative to the migration rate, as mentioned above. Higher577

levels of deleterious mutant persistence will most likely occur if the within deme population size is578

relatively small, as defined mathematically in our modeling framework.579

Somatic evolutionary processes. In addition, and on a more speculative level, there are also580

biomedical implications of our findings, if cell populations in vivo are viewed as a kind of ecosystem581

in which cells evolve over time. Clonal evolution takes place within tissues as individuals age.582

This has been clearly documented in the hematopoietic system [24], where a variety of mutant583

clones with different characteristics emerge over time. These mutant clones can potentially lead584

to a functional deterioration of the healthy tissue, and also in the longer term to the development585

of malignancies. These mutants can be disadvantageous, neutral, or advantageous, and can form586

the basis for further mutation accumulation. These evolutionary processes take place in the bone587

marrow, where stem cells exist in niches, with traffic between different parts of the bone marrow via588

the blood [52]. There is currently no detailed data that quantifies the rate at which cell populations589

across the individual niches/demes communicate and the rate at which they migrate. Given the590

intricate anatomical structures in the hematopoietic system, and given the tendency for cells to591

home to their specific microenvironments [45], it is likely that cell dynamics are largely governed592

by local processes, with a relatively low rate at which cells move from one location to another.593

If this is true, then according to our model, the deme structure can influence the exact spatial594

genetic composition of the cell population, with mutants being dominant in some parts of the bone595

marrow but not others, especially for disadvantageous and neutral mutants. This in turn can have596

implications for bone marrow biopsies when trying to assess or monitor the clonal composition of597

the hematopoietic system.598

Tumor evolution. Similar considerations can apply to tumors in the hematopoietic system once599

they have started to expand. Although tumors grow over time and we have considered the evolu-600

tionary dynamics in constant populations, tumors can be characterized by periods of slow growth601

or temporary stasis until further mutants are generated that allow the cells to overcome specific602

selective barriers. In the hematopoietic system, an example could be slowly growing/indolent cases603

of chronic lymphocytic leukemia (CLL), where cells grow in spatially separated lymph nodes, the604
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spleen, and the bone marrow. The evolution of drug-resistant mutants is a major problem that605

results in the eventual failure of therapies, and the level at which resistant mutants exist before606

the start of treatment tends to be an important determinant of the time to disease relapse [20, 1].607

Mathematical models have been used to calculate the number of drug-resistant mutants, for ex-608

ample in chronic lymphocytic leukemia [20] or chronic myeloid leukemia [21], and these models609

assumed a spatially homogeneous growing tumor cell population. If drug-resistant mutants carry a610

fitness cost and are therefore disadvantageous before the start of therapy, the models analyzed here611

indicate that the organization of cells into demes can have a significant influence on the abundance612

of pre-existing mutants. Depending on the deme size and the migration rate, the number of resis-613

tant cells can be significantly larger than predicted by the selection-mutation balance, which could614

dramatically speed up the rate at which the tumor relapses during therapy. If the drug-resistant615

mutants are advantageous, which happens in the presence of treatment, then the spatial structure616

could also result in a significant effect on quantities such as the timing of mutant expansion (and617

therefore treatment failure). Advantageous mutant dynamics, however, are beyond the scope of618

the present study. There are also implications for sampling strategies when attempting to assess619

the burden of drug-resistant mutants before therapy, such that the true genetic diversity across620

the different locations is determined, rather than a skewed picture arising from the analysis of one621

or just a few locations. This concept of optimal sampling of tumors has also been explored with622

spatially explicit computational models in a different context [58, 37]. Our analysis particularly623

highlights the need to experimentally measure the rate at which lymphocytes redistribute from one624

lymph node compartment to another, which would allow a more accurate prediction about how the625

deme structures in the hematopoietic system influence the evolution of CLL cells.626

Spatial migration. Finally, we note that in our model analysis, migration is assumed to be627

among randomly (uniformly) chosen demes. For migration that is spatially restricted, disadvanta-628

geous mutant levels will be elevated compared to non-spatially restricted migration because once629

a region of demes becomes fixed with the mutant, it is less likely that the wild type will be rein-630

troduced (for geometric reasons). Therefore, spatially restricted migration increases population631

fragmentation compared to mixed migration, which increases the number of mutants. Including632

different spatially restricted patterns of migration could be an interesting extension of our current633

work.634

635
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