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Abstract  Proper orthogonal decomposition (POD) allows reduced-order mod-
eling of complex dynamical systems at a substantial level, while maintaining a
high degree of accuracy in modeling the underlying dynamical systems. Ad-
vances in machine learning algorithms enable learning POD-based dynamics
from data and making accurate and fast predictions of dynamical systems.
In this paper, we leverage the recently proposed heavy-ball neural ODEs
(HBNODEs) [Xia et al. NeurIPS, 2021] for learning data-driven reduced-
order models (ROMs) in the POD  context, in particular, for learning
dynamics of time-varying coefficients generated by the POD analysis on
training snapshots generated from solving full order models. HBNODE
enjoys several practical advantages for learning POD-based ROMs with
theoretical guarantees, includ-ing 1) HBNODE can learn long-term
dependencies effectively from sequential observations and 2) HBNODE is
computationally efficient in both training and testing. We compare HBNODE
with other popular ROMs on several complex dynamical systems, including
the von Kármán Street flow, the Kurganov-Petrova-Popov equation, and
the one-dimensional Euler equations for fluids modeling.

Keywords Neural OD E   Momentum  Reduced-order modeling  Deep
learning

Mathematics Sub ject  Classification (2020) 65P99  68T07

J.  Baker, E .  Cherkaev
Department of Mathematics
University of Utah
E-mail: baker@math.utah.edu, E-mail: elena@math.utah.edu

A.  Narayan, B.  Wang
Department of Mathematics, and Scientific Computing and Imaging ( S C I )  Institute
University of Utah
E-mail: akil@sci.utah.edu, E-mail: bwang@math.utah.edu



1     INTRODUCTION

1 Intro duction

Numerical long-time simulation of full-order models (FOMs) of complex dy-
namical systems is computationally costly. This is particularly true for physical
systems that contain a wide range of spatial and temporal scales, including
direct numerical simulation (DNS) [37] or large eddy simulation (LES)  in fluid
mechanics [17,60,12] and chaotic systems [27,52,53]. Reduced-order models
(ROMs) have been utilized as alternative scientific simulation tools,
which are computationally much more efficient than FOMs and retain
comparable accuracy for simulating complex dynamical systems. ROMs have
played crucial roles in designing, optimizing, and controlling dynamical
systems [18,1,2,5].

Several data-driven numerical algorithms have been proposed for reduced-
order modeling, including dynamic mode decomposition (DMD) [51] and proper
orthogonal decomposition (POD) [6]. These models leverage some FOM simu-
lation data to construct low-dimensional simplified models that describe the
underlying dynamics, with the goal of using these simplified models in gener-
alization regimes to predict the unseen dynamics. Classical projection-based
reduced-order modeling techniques (of which DMD and POD are examples) are
among the most popular approaches for constructing ROMs of dynamical sys-
tems. This approach transforms the simulation results of FOM into a suitable
low-dimensional subspace that preserves the largest variance of the training
data. In, e.g., POD, classical numerical algorithms (such as Galerkin methods),
are subsequently used to rewrite the state variable in the governing equation
of the underlying dynamics into a system of ODEs, resulting in a substantially
reduced degree of freedom for describing the complex dynamics. Both DMD
and POD have been widely used in scientific simulations, particularly for fluid
simulations.

ROMs generated from projection-based approaches can preserve crucial
physical structures of the dynamics system. However, inappropriate truncation of
the POD  modes in governing equations can severely degrade modeling
accuracy and result in unexpected, unphysical predictive results. Moreover, the
precise strategy for mode truncation is task-dependent and is typically limited to
explicit and closed definitions of the mathematical models [50]. Another
drawback of direct projection-based approaches is that they require knowledge of
governing equations that model the dynamical system, and this information is
often absent for real-world problems. As such, data-driven reduced-order
modeling has drawn significant recent attention. For instance, the learning of
closure models to compensate for information loss due to mode truncation [49,
48,38,36], and data-driven reduced basis representations have been learned from
simulation data that provides significantly improved predictive performance of
the dynamics compared to classical models [39,31,58]. More recently, “vanilla”
versions of machine learning approaches such as neural ODEs (NODEs) and
recurrent neural networks (RNNs) have been used to learn temporal coefficients of
the POD of a given complex dynamical system [45,24,25].
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1     INTRODUCTION 1.1     Our contribution

1.1 Our contribution

We employ the recently developed heavy-ball neural OD E  (HBNODE)  [59],
an extension of NODE [9], to learn the temporal coefficients of the POD  of
complex physical systems with a focus on time-dependent simulations in
scientific computing. In particular, our examples include the von Kármán
Street ( V K S )  flow, the Kurganov-Petrova-Popov ( K P P )  equation, and the
one-dimensional Euler equations for fluids modeling. There are three major
advantages of learning PODs using HBNODEs over the existing deep learning
approaches:

– HBNODEs are a class of continuous-depth neural networks, and they
are suitable for learning irregularly-sampled simulation data or physical
observations. Hence, observation protocols that entail missing or sparse
data are easily tackled in this framework.

– Certain spectral properties of HBNODEs enable them to capture long-term
dependencies from sequential data, which is crucial for learning PODs of
complex dynamics.

– Both HBNODEs and their adjoint ODEs are much less stiff than other
NODEs, and thus learning HBNODEs is computationally much more effi-
cient than other NODEs.

We provide numerical validation on benchmark tasks and a detailed em-
pirical and theoretical analysis of why HBNODEs are beneficial for learning
dynamics of POD  modes. Our numerical results show the adjoint state of
HBNODEs does not vanish, confirming that HBNODEs do learn long-term
dependencies, which results in remarkable performance gain over the baseline
NODEs. Moreover, our experimental results show significant computational
advantages in training and testing HBNODEs over the baseline ROM models.

1.2 Related work

There is a healthy amount of recent work on learning POD  mode dynamics
using deep neural networks, particularly RNNs and vanilla NODEs. Perhaps
the most related papers to this article are [45,16,15], which study the NODE
framework for learning ROMs. In [45], the authors developed a POD-NODE
ROM framework for learning POD coefficients, which starts from FOM snap-
shots and then uses an autoencoder to encode the POD  representations of
FOM snapshots, followed by NODE training and forecasting. The POD-NODE
ROM framework achieves appealing results for learning reduced dynamics
of the V K S  model, and it significantly outperforms the direct application of
a long short-term memory ( L S T M )  network for sequential learning. In [16,
15], the authors study the effectiveness of NODEs for reduced-order modeling
and predicting environment hydrodynamics. On the one hand, they find that
NODEs provide an elegant framework for the stable and accurate evolution
of latent-space dynamics with promising generalizability. On the other hand,
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they noticed that in order to facilitate the widespread adoption of NODEs
for large-scale systems, significant effort needs to be directed at accelerating
training time. This limitation motivates this article’s study and utilization of
HBNODEs.

In addition to the NODE paradigm of continuous-depth neural networks
for reduced-order modeling, the RNN — a natural sequential deep learning
model — has also been successfully used for learning-assisted model reduction.
Many advanced RNN algorithms can also be leveraged to enhance learning
ROMs, e.g., LSTM networks [21]. RNN-based ROMs have achieved remarkable
success in many applied domains, including multiphase flow simulation [24,25],
learning advection-dominated systems [35], learning chaotic dynamics [32], and
learning nonlinear aeroelastic models [33]. Compared to NODEs for learning
ROMs, RNNs cannot learn irregularly-sampled time series effectively and can
even depart from the underpinning physics due to their discrete nature.

1.3 Organization

We organize the paper as follows: In Sections 2 and 3, we briefly review the
POD-based reduced-order modeling and HBNODE for continuous-depth deep
learning, respectively. We present the benchmark physical models of the complex
dynamical systems and full-order modeling for data generation in Section 4.
Section 5 shows the detailed deep learning model and pipeline for learning
POD-based ROMs. We verify the efficacy of our proposed machine learning
models and contrast them with several baseline models in Section 6, followed
by concluding remarks.

2 POD-based Reduced-order Mo deling

In this section, we briefly review key ideas and procedures of POD-based
reduced-order modeling.

2.1 Notation

We denote vectors and matrices by lower- and upper-case boldface letters,
respectively. For a vector x  =  (x1 ;  ; xd )>  2  Rd , where (x1 ;  ; xd )>  denotes the
transpose of the row vector (x1 ;  ; xd), we use kxk =  ( d x2)1=2 to
denote its ‘2 norm, and use 0 to denote the zero vector. In cases when d =  2 and
x  is a spatial vector, we will write the components instead as x  =  (x; y )> . For a
matrix A ,  we use A > ,  A  1, and kAk to denote its transpose, inverse, and
spectral norm, respectively. We use I  to denote the identity matrix, whose size
will be clear based on context.

We will consider the approximation of a space-time function u  =  u(x; t)
where x  is a spatial vector (typically of 1 or 2 dimensions) and t is a scalar
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on [0; T ] for some fixed and finite terminal time T . The function u  may be
vector-valued. In much of our discussion we will take the concrete example of
u  being a solution to a discretized V K S  problem, whose details are given in
Section 4.1. For the V K S  problem, u  2  R2  contains the horizontal (x)  and
vertical (y) components of a fluid velocity field. We will write u  =  (ux ; uy ) to
denote these two components.

2.2 POD snapshots

Data
Components

Pre-
processing

Mean
Subtracted

Proper Orthogonal
Decomposition

Temporal
Modes

F i g .  1  P O D  pipeline: We first pre-process the data, from experimental observation or FO M
simulation, by subtracting the mean. Then we apply spectral decomposition of the covariance
matrix and only keep the first r  eigenmodes, resulting in the reduced representation —

r
i ( t )  i ( x )  — of u0 (x; t), where (t)s are the temporal coefficients and     (x)s  are the

eigenmodes.

POD shares a similar spirit and implementation as the celebrated principal
component analysis (PCA) ,  the latter of which has been a very popular tool for
data analysis [43,30]. The key idea of P C A  is to project high-dimensional data
into a lower-dimensional space that is spanned by the eigenvectors corresponding
to the leading eigenvalues of the covariance matrix of the data. P C A  preserves
the largest variance of training data and thus contains the most important
information contained in the originally high-dimensional data. POD has been
introduced in accelerating fluids simulation and reducing the complexity of
fluid models since the pioneering work of Berkooz et al. [7]. Once the leading
eigenmodes are obtained via analysis of training data, it is possible to reduce
the order (the computational complexity and degrees of freedom) of the complex
FOMs. The POD-based dimension reduction approach starts with some training
samples of physically observed or numerically simulated snapshots of dynamics.
These sample snapshots are aggregated into an ensemble matrix Y  , where each
row contains the state of a dynamical system at a fixed time step. Next, we
compute the covariance matrix of the rows of the matrix Y  , and the eigenvectors
— sorted according to the corresponding decreasing-ordered eigenvalues — are
used as the new orthogonal basis for representing the ROM. Below we summarize
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the crucial steps of identifying the low-dimensional representations via the
POD approach, which has also been visualized in Fig. 1.

– Data generation. We simulate the FOM, which is computationally expensive,
for a short time to obtain the training data at time steps t1; t2;  ; tN .
For the V K S  problem, when our solution u contains two components
u  =  (ux ; uy ) that depend on the two-dimensional spatial variable x  =  (x; y),
we assume that FOM snapshots ux (t j ) ,  uy (t j )  are vectorized representations
of N  spatial degrees of freedom. Then we have

ux (t j ) ; uy (t j )  2  R N  ; j  =  1; 2; : : : ; Nt:

For real-world dynamical systems for which we do not know the exact
governing equation, we sample the true dynamics via experimental mea-
surements as training data. In either case, we assume that training data is
available to us (as the snapshots above), and our goal is to efficiently
leverage this data to learn reduced-order dynamics without recourse to the
FOM, which we assume is unknown.

– Linearly center the data dynamics. With our VKS-centric notation above,
according to the Reynolds decomposition of the flow, we have for fixed tj ,

u x  =  u x  +  ux ; u y  =  u y  +  uy ; (1)

where u x  and u y  are the temporal mean of the solutions, computed over our
N t  snapshots. The components u0 and u0 are the fluctuating components of
the data.

– Data assembling. Concatenate the simulated and centered FOM snapshots
into the following matrix Y  ,

0
(u0 (t1 ))>

Y  =  B
(u0 (t2 ))>

(u0 (tN t  ) ) >  

(u0 (t1 ))> 1

(u0 (t2 ))>
C ; (2)

(u0 (tN t  ) ) >  

so that row j  contains the concatenated snapshot u0 (tj ); u0 (tj ), i.e., the
two flattened velocity components at time step j .  The size of the matrix Y
is N t   2N .

– Perform a spectral decomposition of the covariance matrix. We construct the
covariance matrix K  of the rows of Y  and compute its eigendecomposition:

K  =  Y  Y  > ; K  =  A A T  ; A  =  (1; : : : ; Nt ) ; (3)

where j  is the j th eigenvector, and the matrix  is diagonal containing
entries j ,  the associated non-negative eigenvalues of K .  We assume the
eigenvalues are listed in non-increasing order, j   j + 1 .
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– Identify reduced-order modes and truncate. Larger eigenvalues of K  are
directly related to the dominant characteristics of the dynamical system,
while small eigenvalues correspond to small perturbations of the dynamical
behavior. The matrix K  has N t  eigenvalues, and we choose the order of
the reduced-order model to be r   N t  by inspecting a relative information
content I (r ) ,  defined as,

I ( r )  =  P i = 1  i  ; (4)
i = 1       i

so that 1  I ( r )  is a relative Frobenius norm error between K  and its rank-r
spectral approximation. As we will see in Section 6, I ( r )  is close to one for
practical problems, even for very small r. As output of the procedure, we
can construct the following (discretized) ROM of the fluctuating component
of the dynamics

u(t j )   
X

( i ) j       ; i ; (5)
i = 1

where  2  fx; yg, and ( >  ;     >  ) >  2  R 2 N  is a vector denoting a discretized
spatial function; the entries of ; i  correspond to the N  degrees of freedom in
the snapshots u, and is a subvector of the i-th right-singular vector of Y  .
Equivalently, it is defined as,

; i  =  
1 

Y  >
i  =  

1 X
( i ) j u 0  (t j )  i i

j = 1

A  “standard” POD  approach would next project the (assumed known)
dynamical model onto spanf ; i gr        . We will proceed assuming that such a
dynamical model is unknown to us, and will instead use machine learning
models to predict dynamics.

Remark 1 With the training data i  available at time steps t1; t2;  ; tN
through the above procedure, extrapolation of the FOM dynamics or exper-
imental measurements amounts to predicting the POD  coefficients i (t) for
future time t accurately, in our case using machine learning models. Notice
that i (t) is observed sequentially and has a continuous profile, indicating the
potential advantages of using NODE for learning i (t), as we describe next.

3 Heavy-bal l  Neural  O D E s

In this section, we briefly review NODE and HBNOD E  and algorithms for
their training and testing. Moreover, we provide some simple analysis of why
HBNODE is better for learning POD coefficients for reduced-order modeling.

7
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3.1 Neural ODEs

NODEs [9] are a class of continuous-depth (-time) neural networks [46,11]. The
continuous-time nature of NODEs makes them particularly suitable for learning
complex dynamics from irregularly-sampled sequential data, see, e.g., [9,47,
14,34,41]. Mathematically, a NODE is formulated as the following first-order
ODE:

dh(t) 
=  f (h(t); t; ); (6)

where f (h(t); t; ) 2  Rd  is specified by a neural network parameterized by , e.g.,
a two-layer feed-forward neural network. Starting from the input h(0),
NODEs learn the representation and perform prediction by solving (6) from t
=  0 to T using a numerical integrator with a given error tolerance, often with
adaptive step size solver or adaptive solver for short [13]. Solving (6) from t =  0 to
T in a single pass with an adaptive solver requires evaluating f (h(t); t; ) at
various timestamps, with computational complexity measured by the number
of function evaluations in a time-forward sweep (“forward NFEs”) [9].

The adjoint sensitivity method, or the adjoint method [8], is a memory-
efficient method for training NODEs through optimization of . We regard the
output h(T ) as the prediction and denote the loss between the prediction h(T )
and the ground truth as L .  Let a(t) : =  @L=@h(t) be the adjoint state, then we
have (see [9,8] for details)

d 
=  

Z

0

T 

a ( t ) >  @f (h(t); t; )
dt; (7)

with a(t) satisfying the following adjoint ODE

da(t) 
=   a ( t ) >  @ 

f (h(t); t; ); (8)

which is solved numerically from t =  T to 0 and also requires the evaluation of
the right-hand side of (8) at various timestamps, with the number of NFEs
during this time-backward sweep (“backward NFEs”)  measuring the
computational complexity.

There are several critical problems with NODEs, including (i) Given an
error tolerance, the NFEs  required in a single forward pass can be excessive.
Moreover, solving the adjoint ODE (8) often requires more NFEs than solving
the forward OD E  (6). (ii) In training NODEs, the adjoint state a(t)  often
vanishes, i.e., the norm of a(t)  tends to 0, impeding NODEs from learning
long-term dependencies [29], resulting in poor predictive performance.

3.2 Heavy-ball neural ODEs

The authors of [59,56] proposed HBNODEs and their generalized version,
named generalized HBNODEs (GHBNODEs).  HBNODEs are motivated by

8
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ideas from momentum-accelerated gradient descent [44] and they can be re-
garded as the continuous limit of the MomentumRNN model [40]. Mathemati-
cally, the HBNODE is a special second-order neural ODE of the following form

d2h(t) 
+  

dh(t) 
=  f

 
h(t); t; ; (9)

where   0 is the damping parameter, which can be set as a tunable or a
learnable hyperparameter with positivity constraint. In the trainable case, we
adopt the one used in [59], that is  =    sigmoid(!) for a trainable !  2  R  and a
fixed tunable upper bound , e.g.,  =  1. The HBNODE (9) can be rewritten as the
following system of first-order NODEs

dh(t) 
=  m(t);

dm(t) 
=   m(t)  +  f (h(t); t; ): (10)

3.2.1 Computational advantages of HBNODE vs. NODE

To show why HBNODE enjoys computational efficiency in training and testing,
let us first consider the adjoint equation of (9), which will again be solved
using adaptive numerical OD E  solvers. First, the following theoretical result
[59] shows that the adjoint of an HBNODE is also an HBNODE.

Proposition 1 ( Ad j o i nt  equation for H B N O D E  [59]) The adjoint state
a(t) : =  @L=@h(t) for the HBNODE (9) satisfies the following HBNODE with
the same damping parameter  as that in (9),

d 
dt

(t) 
     

d 
dt

t) 
=  a(t)

@h
(h(t); t; ): (11)

Notice that we solve the adjoint equation (11) from t =  T to 0 via backward
propagation. By letting  =  T      t and b() =  a(T      ), we can rewrite (11) as follows,

d2b() 
+  

db() 
=  b()

@f 
(h(T      ); T      ; ): (12)

Therefore, the adjoint of the HBNODE is also an HBNODE and they have the
same damping parameter.

The above result indicates that the adjoint problem for HBNOD E  is of the
same type as the forward problem, accelerating backward propagation provided
the forward propagation is accelerated.

Next, for a very simple linear case, we show that HBNOD E  can reduce
the stiffness of the original NODE significantly. In particular, we consider the
following two linearized high-dimensional ODE systems

dh(t) 
=  Ah(t) ; (13)

9
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and

dh(t) 
=  m(t) d 

 
h(t) 0 I

 
h(t)

dm(t) 
=   m(t)  +  A h ( t )         

dt m(t)
| 

A  (  I )  
}  

m(t)

: = B

(14)

We assume A  is negative definite to simplify our analysis and reveal intuition of
the advantages of HBNODE over NODE. Let the eigenvalues and eigenvectors
of A  be given by i ; v i  respectively. One trick to find the eigenvalues and the
corresponding eigenvectors of the matrix B  is to assume B  has eigenvectors of

the following form cvi
for some constant c. Then B  satisfies the following

eigenvalue-eigenvector equation

0 I  
 
v i  cvi

 A   I

cvi                   i v i       cvi

In which case if  is an eigenvalue of B  then it is given by the value c satisfying,

 =  c =  i       c :

Notice that c satisfies a quadratic equation in terms of i , c2 +  c   i  =  0.
Therefore the eigenvalues of B  are given by

 =  
  

p
2

 
+  4i :

Let max and min be the eigenvalues of A  of the largest and smallest magni-tude.
Then the largest (max ) and smallest (min) eigenvalues, in magnitude, of B
satisfy the following

jmax j =  
 +  

p  
+  4max

 
; jmin j =  

      
p  

+  4min
 
:

Therefore, we have

+
p  

+ 4 m a x
 

s

jmax j =  p  
2

 jmax j ; (15)
min       

 
2

+ 4 m i n  min

where we obtained the last inequality by simply setting  =  0.
Note that the ratio jmax j=jmin j and jmax j=jmin j are the stiffness ratio of the

linear ODE model (13) and the corresponding linear HBNODE counterpart
(14). Thus (15) implies that the the heavy-ball ODE can be much less stiff
than the original NODE. If the stiffness of the ODE model is , using a heavy-
ball model results in a stiffness of at most , which is a substantial
reduction.

10
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Recall that we use the adaptive step size explicit solver to solve both forward
and backward ODEs, from t =  0 to T , in training NODEs and HBNODEs. A
less stiff model allows the adaptive solver to use a much large step size and
thus can significantly reduce NFEs. Moreover, Proposition 1 indicates that
the adjoint equation of an HBNOD E  is also an HBNODE, and therefore we
reap the computational advantages of relaxed stiffness in both forward and
backward propagation phases. Our previous analysis only considers very simple
linear ODE models. How to extend the analysis to the neural network is a very
interesting future direction. One particular idea is analyzing the NODE and
HBNODE when they are overparameterized, in which case one could leverage
neural tangent kernel theory [23].

3.2.2 Generalized HBNODEs (GHBNODEs)

Compared to vanilla NODEs, high-order NODEs include HBNODEs usually
suffer from uncontrolled aggregation of the hidden state, deteriorating model
performance at best and blowing up training at worst. To  alleviate this issue, in
[59] the authors propose the following generalized HBNODE

dh(t) 
=  (m(t));

dm(t) 
=   m(t)  +  f (h(t); t; )      h(t); (16)

where ()  is a nonlinear activation, which is set as tanh by default. The
positive hyperparameters ;  >  0 are two tunable or learnable hyperparameters. In
the trainable case, we let  =    sigmoid(!) as in HBNODE,  and  =
softplus() to ensure that ;   0. Compared to HBNODEs, GHBNODEs
integrate two ideas to improve the neural network architecture design: (i)
Incorporating the gating mechanism  used in LSTM [22] and GRU [10], which
can suppress the aggregation of m(t); (ii) Following the idea of skip connections
[20], HBNODEs add the term h(t) into the governing equation of m(t), which
benefits training and generalization of GHBNODEs.  It has been extensively
verified that G H BNO D E  can indeed control the growth of h(t) effectively,
which significantly improve the performance of machine learning models on
various sequential learning tasks.

Another interesting result is that though the adjoint state of the GHBNODE
does not satisfy the exact heavy-ball ODE,  it also significantly reduces the
backward NFEs  in practice. We observe that sometimes GHBNODEs are
computationally more efficient than HBNODEs.

3.2.3 (G)HBNODEs learn long-term dependencies effectively

Learning long-term dependencies is crucial for the success of deep learning for
sequential data, and vanishing and exploding gradients are two bottlenecks
for training RNNs to learn long-term dependencies [4,42]. The exploding
gradients issue can be effectively resolved via gradient clipping, training loss
regularization, etc [42]. The vanishing gradient phenomenon in training RNNs
materializes in continuous-depth neural networks as vanishing of the adjoint

11
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state [59]. In particular, we consider a(t) : =  @L=@h(t), and when the vanishing
gradient phenomenon occurs, a(t) goes to 0 quickly as T      t increases, so that
dL=d in (7) will be essentially independent of a(t) for larger T      t. We have the
following expressions for the adjoint states of the NODE and HBNOD E  (see
[59] for details):

– For NODE, we have

( Z t
)

@
h

t 
=  

@hT @ht 
=  

@hT 
exp        

T  @h
(h(s); s; )ds :

– For GHBNODE1 , we have

"  
@h     @h      

#

@h @m
       =  @h @m 

 @ht @ mt

@ht @ mt )
 @

=  @ hT       @ m T         
exp      

| T @h      I
 
 I

 
ds     :

: = M

(17)

(18)

For the matrix M ,  we have the following useful property about its spectrum.

Proposition 2 ([59]) The eigenvalues of  M  can be paired so that the sum
of each pair equals (t      T ).

Following the argument in [59], Proposition 2 can be used to show that the
adjoint state of NODE in (17) may vanish when T      t is large, but the adjoint
state of (G)HBNODEs in (18) will not vanish. This property supports the
claim that HBNODEs benefit in learning long-term dependencies, which in turn
further boosts the accuracy in learning POD of complex dynamical systems.

In Section 6, we will validate the above theoretical merits of HBNODEs
over NODEs using the benchmark problems listed in Section 4 below.

4 Benchmarks and Data Preparation

In this section, we will present some details of the three benchmark physical
models — V K S ,  K P P,  and Euler equations — used for validating the efficacy of
learning POD with HBNODEs. Our training data for the K P P  and Euler
equations are generated by solving FOMs; the training data for the V K S  dataset is
adopted from a publicly available dataset.

1 H B N O D E  can be seen as a special G H B N O D E  with  =  0 and  be the identity map.
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4.1 V K S  model

The von Kármán vortex street ( V K S )  is a fluid dynamics phenomenon where
vortices appear in a periodic fashion in the wake of flow past a blunt object,
frequently a cylinder. A  very small Reynolds number results in a laminar
smooth flow past the cylinder, and very large Reynolds numbers result in a
turbulent flow. In an appropriate middle regime, the V K S  phenomenon appears
and can be simulated. The associated dynamical model is the two-dimensional
Navier-Stokes equations; with u  =  (ux ; uy ) the fluid velocity, these equations
read,

@t 
=  r 2 u       ( u   r ) u    

0 
r p ;

where 0 is the spatially uniform pressure, and  is the kinematic viscosity,
which is inversely related to the Reynolds number. Our experimental setup
concerns flow past a cylinder in two spatial dimensions with conditions that
result in steady-state V K S  flow after a initial transient period. We follow the
experimental setting used in [45] to acquire simulation data.

4.2 K P P  model

The Kurganov-Petrova-Popov ( K P P )  model is a scalar, two-dimensional con-
servation law, first proposed in [28]. This system is difficult to simulate since it
features a non-convex flux, and is given by,

@t 
+  r   f (u )  =  0; t >  0; x  2  [ 2; 2]; y 2   

2
; 

2 
;

where f (u)  =  (sin u; cos u) and r  : = @x; @y     . Our setup mirrors that in
[28], so that we use the following initial data

u(x; y; 0) =  
 
14 ; x

s
+  y2 <  1;

We employ a finite volume scheme utilizing a Lax-Friedrichs flux with a 5th-
order WENO reconstruction over the two-dimensional rectangular domain with
a Cartesian mesh up to time T =  10. The simulation uses a tensorial grid with
N x  =  50, N y  =  50 (corresponding to N  =  N x N y  =  2500 total spatial degrees
of freedom), and N t  =  1250.

4.3 Euler equations for fluids modeling

The one-dimensional Euler equations of gas dynamics are a system of con-
servation laws. We consider the simulation of a parameterized shock-entropy

13
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problem from this differential equation, whose setup is given by,

@
u 

+  
@f

(u)
 
=  0; t >  0; x 2  [ 5; 5];

0
u

1 T

with f (u)  =  @ u2 +  p A ;
( E  +  p)u

where u  : =  (  u E ) >  2  R3  is the unknown with (; u; p; E ) denoting the gas
density, velocity, pressure, and energy, respectively. The system is closed via
the following relationship between E  and p:

 p
=  (       1) E    

2
u2      ;

where  is the heat capacity ratio, a gas-dependent constant.2 We take boundary
conditions at x  =  5 as those given by the initial data. The shock-entropy
problem features smoothly oscillating as well as discontinuous features.

We again employ a finite volume scheme to solve the Euler equations, using
a Harten-Lax-van Leer (HLL)  flux, which is an approximated Riemann solver
[19]. Our simulations integrate up to terminal time T =  1:8, with a uniform
grid having N  =  1000 degrees of freedom in the scalar spatial variable x.

This last example differs from the previous two in that we consider this
a parametric equation, where  =  (u ; ) 2  R2  is a parameter for the initial
conditions. We initialize the dynamics using the parameter  as follows, where u
varies on the interval [2; 3] and  varies on the interval from [3; 4]. The
parametric initial data (u(x; 0); (x; 0); p(x; 0)) =  (u0; 0; p0) are given by

(

u0 =
0

u x  <   4
else

(

0 =
1 +  0:2 sin(x)

x  <   4
else

(
3 1

p0 =
1

x  <   4
else

We generate training data by gathering an ensemble of trajectories for the
above problem over a grid of  values and attempt to learn dynamics on unseen
values of . Thus, in this example we not only seek to predict to future times, but
also trajectories on parameter values not in the training set.

5 Learning Pip el ine

In this section, we describe the detailed pipeline of using deep learning for
reduced-order modeling accompanied by the baseline ROMs.

2 This  is distinct from the  discussed in Section 3.2.
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5.1 Learning-based reduced-order modeling

Our machine learning-based reduced-order modeling framework is flexible for
machine learning model selection, e.g., using either HBNODE or NODE as
shown in Fig. 2 and Fig. 3, respectively. In our learning-based reduced-order
modeling framework, we first apply POD outlined in Section 2 on the training

data to extract (discretized) temporal coefficients (t)’s and the eigenmodes
(x)’s following (5). Next, we will use machine learning models to predict

future dynamics u(x; t) leveraging these coefficients and modes. In particular,
the main task is extrapolation of the temporal coefficients (t)’s using NODEs

or HBNODEs.

To  predict future values of the POD data, we consider two different machine
learning architectures, showing in Fig. 2 and Fig. 3, respectively. The first
architecture is a one-to-one architecture that predicts the value at tk + 1  based on
the data at tk . The second architecture is a sequence-to-sequence architecture
that uses sequence data points to predict the following sequence of data points.
The overlap in the sequence prediction can be adjusted so that the predicted
sequence is entirely new or that only one new data point is predicted.

The first architecture under our study is adapted from [45], which was
originally used to compare the performance of NODE and L S T M  in model
reduction. We replace the vanilla NODE used in [45] with the HBNODE, and
we depict the modified architecture in Fig. 2. Compared to the pipeline used
in [45], after the RNN encoding of the temporal coefficients we have to sample
both h  and m  to accommodate learning using HBNODE. In contrast, the
vanilla NODE used in [45] only needs to sample the state h. The above encoding
and sampling procedure is accomplished via a variational autoencoder [26].

HBNODE
ODESolve

RNN
Encoder

RNN
Decoder

Noise

F i g .  2  The pipeline of predicting the temporal coefficients for a single step forward using
H B N O D E  leveraging a variational autoencoder. We first use a R N N  encoder to encode the
input data and then sample the states h  and m  and evolve them using a H B N O D E .  Finally, we
apply a R N N  decoder to the final representation to get the prediction.
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5.2     A  baseline comparison: Dynamic Mode Deco5mpoLsEitAioRnN(IDNMGDP)IPELINE

We plot the second architecture in Fig. 3, where the vanilla NODE can be
replaced with (generalized) HBNODE. For the second architecture, i.e., the
sequence-to-sequence architecture, takes a sequence of length n inputs and
predicts a sequence of outputs, we encode the input sequence f i ( t j )g j = 0  into the
latent sequence fz i (t j )gn  1 using an RNN encoder, then we use NODE or
HBNODE to evolve the latent sequence to get the desired representation,
followed by an RNN decoder to get the final long-term prediction f i ( t j )g j = n .

RNN
Encoder

NODE
ODESolve

RNN
Decoder

F i g .  3  The pipeline of predicting the temporal coefficients for multi-steps ahead. First,
we encode the input sequence f i( t j ) g j = 0      using a R N N  encoder to obtain the latent

sequence f z i ( t j ) g j = 0  . Second, we use a N O D E  to learn a “good” representation of the input

sequence by evolving the latent sequence f z i ( t j )g n      1 . Third, we apply a R N N  decoder to the
“good” representation to get the final prediction. Notice that N O D E  can be replaced with
(generalized) H B N O D E ,  in which case we need to obtain another sequence of momentum
states from the R N N  encoder.

5.2 A  baseline comparison: Dynamic Mode Decomposition (DMD)

We employ DMD as another baseline model reduction method to demonstrate
the effectiveness of learning-based model reduction using HBNODEs. In this
part, we briefly review the idea of DMD for reduced-order modeling. To
compare DMD to the learning-based reduced-order modeling using HBNODE,
we consider only modeling the fluctuating components u0 of the snapshots, see
(1). The predictions of DMD are generated by a linear operator A
corresponding to a linear difference equation u0 =  Au 0  , where A  must be
learned. In DMD, dominant eigenvalues and eigenvectors of A  are computed
via the singular value decomposition (SVD).  Although the true underlying
dynamics may be nonlinear, the Koopman operator formalism concludes that
a lifted version of the dynamics is indeed linear. For nonlinear problems, DMD
attempts to learn these lifted linear dynamics.

Let U ( k )  be the snapshot matrix for the time interval t0; : : : ; ttrain 1 and
U ( k + 1 )  be the snapshot matrix for the time interval t1; : : : ; ttrain, i.e., column j  of
U ( k )  corresponding to time snapshot t j  1. In particular, let U ( k + 1 )   A U ( k )  where
U ( k )  is given by the S V D  U ( k )  =  X V  . We further denote X ,  V , and  as the
rank-r truncation of X ,  V , and , respectively. Then we may
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compute an approximation A  directly from U ( k + 1 )  by the following,

A  =  X U ( k + 1 ) V   1 (19)

The reduced matrix A  is composed of the dominant r  eigenvalues 1; : : : ; r
and eigenvectors 1; : : : ; r . These eigenvectors are also known as the DMD
modes. Given training data on the training interval t0; : : : ; ttrain, the matrix
A  is formulated by partitioning the snapshot matrix u0 into two time inter-
vals. Validation data on the interval ttrain+1; : : : ; tvalid is generated by solving
u0(ttrain+k ) =  Ak u0 (ttrain ). We depict DMD-based reduced-order modeling in
Fig. 4. More details of DMD can be found at e.g., [51].

Data
Components

Pre-
processing

Mean
Subtracted Data

Dynamic Mode
Decomposition

Dynamic
Modes

F i g .  4  D M D  pipeline: The data is pre-processed by subtracting the mean to capture the
fluctuating components of the data. In addition the following lifts fcos(x); sin(x); x2 ; x3 g
were applied to the data, and then vectorized along the snap-shot axis. We then generate the
full-order model according to the spectral decomposition of the linear transform between the
two snapshot matrices at subsequent time intervals. To  reduce the order only the dominant
r  eigenmodes are selected, resulting in a representation u0 (x; t) = r

i
k      1 b i  for the

lifted data u (x; t).

6 Exp erimental  Results

In each experiment below, we contrast the performance of HBNODE-based
ROM to two baseline ROMs, namely, NODE-based and DMD-based ROMs.
We observe consistently improved predictive performance of HBNOD E  over
baseline ROMs. We interpret the improved performance using HBNODEs
by inspecting the stiffness and adjoint state of HBNODEs, confirming the
theoretical results. Animated comparisons of the data reconstructions can be
found at [3].

6.1 Transient and steady-state V K S

The V K S  dataset is obtained by simulating the FOM in Section 4.1 on the time
interval [0; 400], containing two different regimes. When t <  100, the dynamics lie
in the transient state and approaches the steady-state as t increases; while the
dynamics maintain a steady-state when t  100, as shown in Fig. 5.
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x
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u0
y
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(a) Transient state t =  50 (b) Steady-state t =  150

F i g .  5  Comparison of transient and steady-state phases of the V K S  dataset. The steady-
state phase contains quasi-periodic solutions conducive to machine learning. The transient
phase does not contain such well-behaved dynamics.
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F i g .  6  The steady-state P O D  modes are highly oscillatory with quasi-periodic patterns.

ROMs for steady state dynamics. We contrast different ROMs for simulating
V K S  flow in the steady-state regime. In particular, both the DMD and POD
training is taken over the time interval from t =  100 to 400. The POD
modes for the steady-state flow oscillate quasi-periodically, see Fig. 6, and the
relative information content I ( r )  in (4) decays rapidly in r. The POD relative
information content for 8 leading modes is  99%, as illustrated in Fig. 7 (a). In
contrast, the lifted DMD model, using the lifts fcos(x); sin(x); x2 ; x3 g with x  =
(x; y), requires 24 modes to achieve  99% relative information content, shown
in Fig. 7 (b). The quasi-periodic nature of the POD  modes indicates that a
model with high training accuracy will continue to perform well on the
validation data.
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(a) P O D  decay

100

10-1

10-2

10-3

10-4

10-5

10-6

10-7

10-8

10-9

-10

0       50 100        150        200        250        300

Number of Modes (r)

(b) D M D  decay

F i g .  7  Comparison of the relative information decay for P O D  and D M D  over the steady-
state V K S .  The P O D  modes decay far more rapidly than those of DMD. Therefore, one can
expect better results with a smaller order of RO M  using P O D  than DMD.

ROMs for transient to steady state dynamics. ROMs behave very differently
over the entire time interval from t =  0 to 400. The POD modes do not oscillate
over the entire interval but only over the steady-state phase. For both POD
and DMD, the relative information decays much slower. The POD  relative
information decreases to  96% for the dominant 8 modes. While for the
dominant 24 lifted DMD modes, the relative information is reduced to  94% over
the full dynamics. This suggests that a machine learning-based ROM which
is able to train on the transient phase to predict the steady-state phase
accurately captures the intrinsic patterns of the underlying dynamics.

Hyp erparameter Value
Latent dimension                                               6

Layers encoder                                                  4
Units encoder                                                  10
Layers O D E                                                    12

Units decoder                                                  41
Layers decoder 4
Learning rate                                              .00153

Epochs 2000

Ta b l e  1  The hyperparameters for the V A E  architecture — shown in Fig. 2 — for N O D E
and HBNODE-based ROMs. The parameters are tuned to the best N O D E  specification.

Learning steady-state dynamics. In this task, we train the pipeline shown in
Fig. 2 for single-input-single-output dynamics prediction. Following the baseline
in [45], we train over the steady-state dynamics starting from t =  100 using the
dominant 8 POD modes. The training data consists of the POD modes from
t =  100 to 174, and the training labels consist of the POD modes from t =  101
to 175. The validation data consists of the POD  modes from t =  175 to 199,
with the objective to predict the POD modes at time steps from t =  176 to 200.
We use the mean squared error to measure the loss between the labeled data
and the predictions. We utilized an AdamW optimizer to train the network
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based on this loss criteria. For the black-box integration method, we selected
DOPRI-5 [13] with a relative tolerance of 1e 8. The model’s hyperparameters
are tuned to best the NODE as outlined in [45] and restated in Table 1.

Hyp er-parameter Value
Layers                                                          12

Hidden layers                                                   64
Sequence length 9

Learning rate                                                 .001
Epochs 500

Ta b l e  2  Hyperparameters of N O D E  and H B N O D E  for learning ROMs from transient to
steady-state V K S  dynamics.

Learning transient to steady-state dynamics. In this task, we train the pipeline
outlined in Fig. 3 for multi-input-single-output dynamics prediction. The
objective of this task is to capture the phase transition at t =  100. The data
consisted of the dominant 8 POD  modes for the time interval from t =  0 to
400. The data was sequenced in a multi-input-single-output structure so that 9
preceding time steps were used to predict the 10-th time step. The training
data consists of the POD modes for the transient time interval from t =  0 to 79.
The training labels consisted of the POD  modes from t =  10 to 80. The
validation data utilizes the POD modes from steady-state time interval t =  80
to 119, and the validation labels consist of data from t =  90 to 120. The other
experimental settings follow the above single-input-single-output scenario. The
model’s hyperparameters are the same for NODE and HBNODE components
and are given in Table 2.

100 100

HBNODE HBNODE
NODE NODE

10-1

10-1

10-2

10-3

0 500  1000 1500
Epoch

10-2

0 500  1000 1500
Epoch

(a) Training loss (b) Validation loss

F i g .  8  Contrasting N O D E  and HBNODE-based ROMs for learning steady-state V K S
dynamics. H B N O D E  outperforms N O D E  in both training and validation loss.
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6.1.1 Results and comparison to existing ROMs

Results of learning steady-state dynamics. We contrast HBNODE and NODE-
based ROMs in Fig. 8 and Fig. 9. Figure 8 shows that HBNODE-based ROM
not only achieves remarkably smaller training loss but also significantly smaller
validation loss than NODE-based ROM. In terms of the predictive performance,
we see that HBNODE performs better at capturing several of the peaks of the
oscillatory modes as shown in Fig. 9.
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Time (t)
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20

40

60
100       120       140       160       180       200

Time (t)
(a) VA E - N O D E  dominant mode (b) VA E - H B N O D E  dominant mode

F i g .  9  Comparison of modes reconstruction for N O D E  and HBNODE-based ROMs for
learning steady-state V K S  dynamics. H B N O D E  captures the peaks of the dominant P O D
modes better than N O D E .  Before and after the vertical blue line stands for training and
validation, respectively.

100 100

HBNODE HBNODE
NODE NODE

10-1

10-2

10-3
0 100 200 300 400

Epoch

10-1

0 100 200 300 400
Epoch

(a) Training loss (b) Validation loss

F i g .  10 Contrasting training and validation loss of N O D E  and H B N O D E  for learning ROMs of
transient to steady-state V K S  dynamics. The progress made by the N O D E  is significantly
reduced by the vanishing gradient. H B N O D E  has a much slower decaying gradient and is
able to continue to make progress in both training and validation sets.

Results of learning transient to steady-state dynamics. Compared to learning
steady-state V K S  dynamics, HBNODE achieves more significant performance
gain over NODE for learning transient to steady-state dynamics in terms of
training and validation loss, as shown in Fig. 10. Since we are doing sequential
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learning, one interpretation of the improvement in learning dynamics is the
effective learning of long-term dependencies. Indeed, the criterion of learning
long-term dependencies has been widely used in measuring the efficacy of
sequential learning models [42,59]. In NODE and HBNODE, the effectiveness
of learning long-term dependencies can be measured by whether the adjoint
state vanishes quickly or not. We visualize the evolution of the magnitude
of the adjoint states of NODE and HBNODE in Fig. 11, which support the
theoretical result in Section 3.2.3. In particular, we see that the adjoint state of
NODE vanishes much more rapidly than that of HBNODE as T      t increases.
A  more detailed connection between the adjoint state and learning long-term
dependencies is provided in [59].
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(a) N O D E  adjoint state (b) H B N O D E  adjoint state

F i g .  11  Comparison of the adjoint states for the N O D E  and H B N O D E  in learning multi-
input-single-output. The N O D E  adjoint state vanishes substantially faster than H B N O D E .
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F i g .  12  Comparison of modes reconstruction for N O D E  and HBNODE-based ROMs for
learning multi-input-single-output task. N O D E  is able to reliably learn the first two dominant
modes but is unable to capture the steady-state dynamics, having a much larger frequency
and introducing substantial lag into the oscillation frequency. H B N O D E  is able to more
reliably capture the steady-state dynamics with slightly larger frequency and developing lag
much later than the N O D E  component. Before and after the vertical blue line stands for
training and validation, respectively.

In terms of the predictive performance, as shown in Fig. 12, the HBNODE
predictor captures the peaks of the oscillatory dynamics better than NODEs,
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especially in the first two modes 1 and 2. Moreover, the prediction error using
NODE is much larger than that of HBNODE, and the prediction error
amplifies as the prediction time goes, in particular, for modes 3 and 4.

Another primary advantage of HBNODE over NODE-based ROMs lies in
computational efficiency, which is theoretically supported by the discussion in
Section 3.2.1. As shown in Fig. 13 (a), the forward N F E  required in each
forward pass by HBNODE is consistent smaller than that of NODE. We also
monitor the stiffness of both NODE and HBNODE during the learning process,
and Fig. 13 (b) shows that the stiffness of NODE oscillates and maintains much
larger than HBNODE.
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104
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NODE

103
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(a) Forward N F E  comparison (b) Stiffness comparison

F i g .  13  Comparison of N F E s  and stiffness for the N O D E  and H B N O D E  in learning
transient to steady-state V K S  dynamics. N O D E  requires more N F E s  in each forward pass
than H B N O D E  as the N O D E  is much more stiff than H B N O D E .  The stiffness of N O D E
varies sharply as training goes, while the stiffness of H B N O D E  decays during the training.
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(a) P O D  mode decay
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(b) D M D  mode decay

F i g .  14  The decay of relative information content for P O D  and D M D  of the K P P  dataset.
The rapid decay in the modes indicates the problem is suitable to P O D  and DMD.

6.2 K P P  model

We obtain the K P P  dataset by simulating the FOM presented in Section 4.2 for
1000 timesteps (N t  =  1000). The K P P  model is well-suited for reduced-order
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modeling due to the rapidly decaying eigenvalues in both POD  and DMD,
seeing Fig. 14. However, we found in our experiments that it is particularly
difficult to capture the dynamics using machine learning architectures due to
the slow decaying ROM dynamics depicted in Fig. 15.
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F i g .  15  The dominant P O D  modes for the K P P  data. The oscillations of the modes decay
rapidly and have a very low frequency, making it challenging for learning compared to the
quasi-periodic oscillations of the V K S  dataset.

In our experiments, we note that the non-lifted DMD continuously de-
forms the center of mass in a way that defies physical constraints of the
system. A  comparison of lifted and non-lifted DMD predictions and POD
predictions are shown in [3]. To  lift DMD, we utilized the lifting functions
fcos(x); sin(x); x2 ; x3 g with x  =  (x; y). Figure 14 shows that the POD modes
decay faster than the lifted DMD modes. The dominant 24 DMD modes corre-
spond to 97% of the relative information content; in contrast, the dominant 8
POD modes correspond to 99% of the relative information value.

We train the pipeline depicted in Fig. 3 for learning multi-input-single-
output dynamics. The data is constructed from the 8 dominant POD modes
on the time interval from t =  0 to 1000. The data is sequenced so that every 4
preceding time steps are used to predict the 5-th time step. The training data
consists of the POD modes from t =  0 to 799 and the training labels consist of
POD modes from t =  5 to 800. The validation data utilizes data from t =  800
to 999 and the validation labels consist of data from t =  805 to 1000. The
model’s hyperparameters are the same for NODE and HBNODE components
and are given in Table 3.
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Hyp er-parameter Value
Layers 2

Hidden layers                                                   64
Sequence length 4

Learning rate                                                  .01
Epochs 500

Ta b l e  3  The hyperparameters of N O D E  and N O D E  for the learning ROMs of K P P  model.

6.2.1 Results and comparison to existing ROMs

50

0

50

100

150

40
30
20
10

0
10
20
30

50

0

50

100

150

40
30
20
10

0
10
20
30

0         200       400       600       800      1000

Time (t)
0         200       400       600       800      1000

Time (t)
0         200       400       600       800      1000

Time (t)
0         200       400       600       800      1000

Time (t)
30 30

20 20                                                                                                              20 20

10 10                                                                                                              10 10

0                                                                                               0                                                                                                                0                                                                                               0

10                                                                                            10                                                                                                              10                                                                                            10

20 20 20 20

0         200       400       600       800      1000

Time (t)
0         200       400       600       800      1000

Time (t)
0         200       400       600       800      1000

Time (t)
0         200       400       600       800      1000

Time (t)
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F i g .  16 Comparison of the K P P  modes prediction using N O D E  and H B N O D E .  H B N O D E  is
better in predicting the dynamics for the validation set than N O D E .  Before and after the
vertical blue line stands for training and validation, respectively.
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F i g .  17  Comparison of the training and validation loss of N O D E  and H B N O D E  for learning
ROMs for the K P P  model. N O D E  is unable to make progress due to a rapidly vanishing
gradient, impeding learning long-term dependencies.

We compare the prediction of NODE and HBNODE against ground truth in
Fig. 16, and we see that HBNODE performs remarkably better than NODE in
predicting the dynamics. In particular, HBNODE is able to properly capturing
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the oscillation dynamics of the modes unlike NODE. Figure 17 shows that
HBNODE has much smaller training and validation loss than that of NODE.

6.3 Euler equations for fluids modeling
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F i g .  18  The Euler Equations data at time step t =  50 with two different initial parameters, 0
and 50 . Variations in the parameter  produces widely varying dynamics, and as a result
varying P O D  modes. The objective of this task is to predict the dynamics for unseen
parameters  using a set of training parameters tra in .

We further consider learning reduced-order models for simulating the Euler
equations, where the dataset is obtained by simulating the full-order model
presented in Section 4.3 with a discrete ensemble of parameters 1; : : : ; M with M
=  100, over 180 timesteps. Two different parameter  values can produce
rather different dynamics, as as evidenced in Fig. 18. The Euler equations
data is unique in the sense that it may be segmented based on these initial
conditions. The ROM is generated by taking the dominant 8 POD modes for
each parameter i  on the time interval from t =  0 to 180. This data is shuffled
randomly among the initial parameter i  to no longer increasing sequentially.
The average relative information content across all 100 values of  is  95%.

In this task, we train the machine learning pipeline shown in Fig. 3 for
learning multi-input-multi-output dynamics. The training dataset comprises the
dominant 8 POD modes for each of the training parameters among 1; : : : ; train.
We use 90 of the 100 parameters, 1; : : : ; 90, for training and the rest for
validation. The training input consists of the dominant 8 POD modes for each
of the 90 training parameters on the time interval from t =  0 to 150. The
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training labels consist of the dominant 8 POD modes for each of the 90 training
parameters time steps from t =  151 to 180. The validation dataset is composed of
the validation parameters 91; : : : ; 100. The validation input and labels are
segmented using the same intervals as the training data.

The model uses a G H BNOD E  component with a hyperbolic tangent acti-
vation function. Al l  other experimental settings are the same as in the K P P
dataset, and the tuned hyper-parameters are listed in table 4. The NODE and
HBNODE models are trained and validated over the same data shuffling.

Hyp er-parameter Value
Layers 6

Hidden layers                                                   16
Learning rate                                                  .01

Epochs 100

Ta b l e  4  The hyperparameters of N O D E  and N O D E  for the learning ROMs of Euler
equations.

6.3.1 Results and comparison to existing models

We compare the prediction of NODE and GHBNODE for a randomly selected
parameter train from the training set and a randomly selected parameter valid from
the validation set. The modes for the training parameter train are shown in Fig.
19, and the modes for the validation parameter valid are shown in Fig. 20. We
observe that the POD  modes for the parameter train in Fig. 19 differ from
those for valid primarily in amplitude rather than shape. As a result, a poor
prediction model will have a sudden discontinuity between the input and
prediction values. The transition point between the input and the prediction is
indicated in Fig. 19 and Fig. 20 by the vertical blue line.

Figure 19 shows the dominant 4 POD modes for train from the training set.
The predictive capabilities of GHBNODE significantly outperform the NODE
model. In particular, for 2 and 3, we observe that the NODE has a large
jump discontinuity at the transition between the input and prediction. The
GHBNODE modes are smoother in the transition region, which indicates the
ability of the GHBNODE model to distinguish between separate parameters.

In Figure 20, we observe the same characteristics for NODE and GHBNODE.
NODE is unable to accurately predict the output for the parameter valid from
the validation set. In particular, for 3 of the validation parameter, the NODE
prediction is even less smooth than that of the training parameter shown in
Fig. 19. In this experiment, we observe that NODE is unable to distinguish
data with varying parameters as accurately as GHBNODE.
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(a) N O D E  Training Mode Recapture (b) G H B N O D E  Training Mode Recapture

F i g .  19 For a randomly selected initial parameter tra in ,  we plot the dominant four modes and
their predicted data using N O D E  and G H B N O D E .  The blue vertical line separates the input
and output data. The ground truth is in black, while the prediction data is in dashed red.
G H B N O D E  can learn the dynamics of 2 and 1 for the parameterized data significantly better
than N O D E .  This is evidenced by the fact that N O D E  predicts the inflection point of 2 too
early.
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(a) N O D E  Validation Mode Recapture (b) G H B N O D E  Validation Mode Recapture

F i g .  20  For the randomly selected initial parameter va l i d ,  we plot the dominant four modes and
their predicted data using N O D E  and G H B N O D E .  The blue vertical line separates the input
and output data. The ground truth is in black, while the prediction data is in dashed red.
H B N O D E  can predict the data for unseen parameterizations much better than N O D E .

7 Conc lud ing  Remarks

This paper employs the recently developed HBNODEs and their generalization
for learning POD coefficients for model reduction. We analyze through simple
linearized models and empirically verify the advantages of HBNODEs over
existing NODEs. In particular, HBNODEs enjoy the following advantages that
imply practical benefits for learning POD-based ROMs, including 1) The deep
learning model is continuous-depth, providing flexibility in learning irregularly-
sampled time series and faithful to the continuous profiling of the underlying
physical models. 2) Both the forward and adjoint ODEs of HBNODEs are of the
heavy-ball style, accelerating both training and testing of the machine learning
procedure. And 3) HBNODEs can learn long-term dependencies effectively,
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capturing intrinsic patterns from data. There are numerous avenues for future
works, and two particular interesting directions in our mind are 1) Improving
HBNODEs, particularly replacing the fine-tuned or learned damping parameter
with an adaptive one that are motivated by certain optimization algorithms
with adaptive momentum [55,54,57], and 2) Applying HBNODE-based ROMs
to model reduction arising from scientific challenges, especially when we do
not have the ground truth governing equation of the dynamical systems.
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