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Improving Deep Neural Networks’ Training for
Image Classification with Nonlinear Conjugate
Gradient-style Adaptive Momentum

Bao Wang and Qiang Ye

Abstract—Momentum is crucial in stochastic gradient-based
optimization algorithms for accelerating or improving training
deep neural networks (DNNs). In deep learning practice, the
momentum is usually weighted by a well-calibrated constant.
However, tuning the hyperparameter for momentum can be a
significant computational burden. In this paper, we propose a
novel adaptive momentum for improving DNNs training; this
adaptive momentum, with no momentum-related hyperparam-
eter required, is motivated by the nonlinear conjugate gradient
(NCG) method. Stochastic gradient descent (SGD) with this new
adaptive momentum eliminates the need for the momentum
hyperparameter calibration, allows using a significantly larger
learning rate, accelerates DNN training, and improves the final
accuracy and robustness of the trained DNNs. For instance, SGD
with this adaptive momentum reduces classification errors for
training ResNet110 for CIFAR10 and CIFAR100 from 5.25%
to 4.64% and 23.75% to 20.03%, respectively. Furthermore,
SGD, with the new adaptive momentum, also benefits adversarial
training and hence improves the adversarial robustness of the
trained DNNs.

Index Terms—Deep learning, image classification, adaptive
momentum, nonlinear conjugate gradient.

I. INTRODUCTION

Given a training dataset Qy := {z;,y; }}*, with x; and y;
being the data-label pair of the ith instance, natural training,
i.e., training a machine learning (ML) classifier y = g(x, w),
can be formulated as solving the following empirical risk
minimization (ERM) problem [50]:

N
Zfz %Zﬁ(g(mi,wmi), M

where £ is a loss function, e.g., cross-entropy, between the
prediction g(x;, w) and the ground truth y;. Moreover, we
can solve the following empirical adversarial risk minimization
(EARM) problem to train an adversarially robust model [29]:

min NZ
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where € > 0 is a constant. Training deep neural networks
(DNNs) by solving (1) or (2) is challenging: 1) the objective
function is highly nonconvex [24]; 2) N is very large, e.g.,
in ImageNet classification N ~ 10¢ [44], making computing
the gradient of the loss function difficult and inefficient; 3)
the dimension of w is very high; for instance, in training
ResNet200 for ImageNet classification, w is of dimension
~ 65M [17]. Due to the above challenges, stochastic gradient
descent (SGD) becomes the method of choice for training
DNNs for image classification [3]; momentum scaled by
a well-calibrated scalar is usually integrated with SGD to
accelerate or improve training DNNs [2, 38, 40, 48, 52].

Starting from wy, po(= 0) € RY, in the nth iteration (with
n > 1) of SGD with momentum (scaled by a constant 5 > 0),
we randomly sample a mini-batch {ix}}" ; C [N] (m < N);
update w,, as follows [38]:

Pn = BPn—1+ % ; vfik (wn)a Wn+1 = Wn — APn, 3)
where a > 0 is the step size, and V f;, (w,,) can be replaced by
V fi. (W, —ap,_1) to get the Nesterov momentum (NM) [48].
In training DNNs, the hyperparameters o and 3 are manually
tuned, which is time-consuming. As a result, several adaptive
step size algorithms have been developed and are widely
used: Adagrad [9] adapts step size to the parameters based
on the sum of the squares of the gradients; Adadelta [54] and
RMSprop [20] modify Adagrad by restricting the window of
accumulated past gradients to some fixed size; Adam integrates
momentum with adaptive step size and achieves remarkable
performances in many applications [21, 8, 28, 42]. However,
there is limited work on developing adaptive strategies for
B. It is shown in [40] that for any 0 < 8 < 1 and
0 < a < 2(1+ B)/Amax> the momentum method converges
locally. Furthermore, the optimal convergence rate

« _VE—1
P =kt

is obtained when o = a* := 4/(v/Amax + VAmin)? and 3 =
Y= (\/Amax - \/)\min)Q/(\/Amax + \/>\min)2; where k =
Amax/Amin and Apin and Ap,.y are, respectively, the minimum
and the maximum eigenvalues of the Hessian V2 f(w*) at a
local minimizer w*. Despite this elegant convergence theory,
the optimal values o* and S* are not available in practice.
In this work, we tackle the problem of choosing the
momentum weight 5 by observing that the classical (linear)
conjugate gradient (CG) method [45] can be considered as a
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generalization of the momentum method where 3 is chosen to
enforce local orthogonality among the search directions p and
« is chosen to minimize the objective function in the search
direction. CG converges at the rate p* = (v/k — 1)/(v/k + 1),
matching the rate of the classical momentum method for
quadratic optimization problems. The nonlinear generalization
of CG — nonlinear conjugate gradient (NCG) [10] — uses the
same formulation of 5 as in CG (or an equivalent version) and
determines « through line search, i.e., o := argmin,, f(wy —
apy). NCG also significantly accelerates the convergence of
gradient descent, and it has some nice theoretical convergence
guarantees [1, 11, 6, 15, 41, 57]. A major obstacle to using
NCG is the need for line search at each iteration; even an
inexact search requires several function/derivative evaluations.
As a result, it is not used very often in DNN applications [23].

A. Our Contributions

We recognize that the formulation of 3 in NCG is crucial to
its success in accelerating GD/SGD, particularly in improving
training DNNs for image classification. The theory of NCG
methods motivates us to propose an adaptive formulation
of B using the Fletcher-Reeves (FR) formulation [10]. We
call GD/SGD with an adaptive formulation of S an adaptive
momentum method. We establish some convergence results
to show the global convergence of the proposed adaptive
momentum method under certain conditions on the learning
rate. For quadratic functions, we will show the accelerated
convergence rate of the proposed adaptive momentum method
under some mild conditions. The major advantages of SGD
with adaptive momentum are threefold:

« It converges faster and allows us to use significantly larger
step sizes than the existing benchmark algorithms to train
DNNE.

o Compared to the benchmark stochastic optimization algo-
rithms, it significantly improves the accuracy and adversarial
robustness of the trained DNNs for image classification.
For instance, it reduces test errors of training ResNetl10
for CIFAR10 and CIFARI100 classification from 5.25% to
4.64% and 23.75% to 20.03%, respectively. Furthermore,
SGD with the new adaptive momentum benefits adversarial
training and improves the robustness of the trained DNNs.

o It eliminates the work for momentum-related hyperparam-
eter tuning with almost no computational overhead. It can
be implemented simply by adapting the existing momentum
optimization codes.

B. Related Works

Momentum scaled by an iteration-dependent scalar has been
used to accelerate GD. One of the most prominent results is
the Nesterov’s accelerated gradient (NAG) [33, 32], which
achieves a convergence rate of O(1/n?) with n being the
number of iterations, for convex optimization (vs. GD with
a convergence rate of O(1/n)). Both adaptive and scheduled
restarts can further accelerate NAG with provable guarantees
in certain circumstances [31, 12, 47, 37, 43]. However, directly
applying NAG to SGD suffers from error accumulation [7, 52],

which can be alleviated by using NAG with scheduled restart
[52, 34, 53, 35] at the cost of hyperparameter calibration.

NCG [10] is a popular optimization method that has been
studied extensively. For various formulations, it has been
proved for a general function to have a descent property and
global convergence under some assumptions on the line search
known as Wolf conditions; see [1, 6, 11, 15, 41, 57]. NCG
has been applied to deep learning; [23] empirically compares
NCG, L-BFGS, and the momentum methods and found each to
be superior in some problems. There are some related works in
avoiding the line search in NCG, e.g., [30] uses some estimate
of the Hessian to approximate the optimal step size a.

C. Organization

We organize this paper as follows: In Section II, we give
a brief review of NCG, and then we leverage the adaptive
momentum to accelerate GD and SGD. In Section III, we
give the convergence guarantees of the proposed algorithms.
We present the practical performance of SGD with adaptive
momentum for training DNNs in Section IV. Technical proofs
are provided in Sections VI and VIIL.

D. Notations

We denote scalars by lower or upper case letters; vectors/
matrices by lower/upper case boldface letters. For a vector
@ = (r1,...,74)" € R we use ||zl = (X0, |2:]*)"2 to
denote its /5 norm, and denote the £, norm of x by ||x|c =
max?_, |z;|. For a matrix A, we use [|A|ls/o to denote its
induced norm by the vector {5/, norm. We denote the set
{1,2,...,N} as [N]. For a function f(w) : R — R, we
denote Vf(w) and V2f(w) for the gradient and Hessian of
f(w), respectively.

II. ALGORITHM: GD/SGD WITH ADAPTIVE MOMENTUM
A. Nonlinear Conjugate Gradient Methods

The classical GD with an optimal learning rate (step size)
has a local convergence rate that depends on the condition
number x of the Hessian matrix at a local minimum. The
conjugate gradient (CG) method augments the gradient with
a suitable momentum term as the search direction. In the
quadratic case, i.e., min,, f(w € R?) :=1/2w'Aw - b"w
with A € R¥? and b € R being known. The modified di-
rections of CG maintain orthogonality in the A-inner product
w ' Aw, and it yields a significantly accelerated convergence
rate p* = ﬁ_l that depends on /k. CG has been generalized

rk+1
to general nonlinear functions as follows:

« In the first iteration, perform a line search along the direction
po := Vf(wg) to get the initial step size, i.e., ag =
arg min,, f(wo —apg), and update w by w1 = wy — apPo.

« For the nth iteration, we perform the following updates:

— Compute

(Vf(wn) "V fwn))
(vf(wn—l)va(wn—l)).
— Update the search direction:

Pn = vf(wn) + ﬂnpn—b

Bn = BFR =
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— Perform a line search:
ap, = argmin f(w, — ap,).
(03
— Update the position, i.e., the weights of the model:
Wn41 = Wy — QpPp.

There are several possible formulations of /3, in the litera-
ture, and the one we present 35 is known as the Fletcher-
Reeves formula [10]; see [19, 6, 39, 46, 15] for other formu-
lations and related theoretical properties. The NCG has been
empirically found to have some similar convergence properties
as the classical linear CG method. There have been several
analyses to show a descent property and convergence of NCG
for a general function under some forms of the Wolf conditions
for inexact line search of «,,; see [1, 11, 6, 15, 41, 57].
However, there appears to be no result characterizing its CG-
like accelerated convergence rate.

In the NCG method, a line search is performed to determine
o, while 8, can be regarded as the momentum coefficient.
Here, the adaptive momentum coefficient is determined by the
gradient at the current and previous iterations. This has an
advantage over the traditional momentum method in that the
momentum coefficient is adaptively determined, and no tuning
is needed. A disadvantage of NCG is that even an inexact line
search for «,, requires several function/gradient evaluations
and would make the method less appealing for training DNNs.
Therefore, NCG is rarely used for DNNs.

B. (Stochastic) Gradient Descent with NCG Momentum

CG yields the optimal convergence rate of the momentum
method without the spectral information needed to determine
the optimal « and (3. Although this is achieved with a line
search, the formulation of the coefficient (5, should play a
significant role as well. This motivates us to integrate (3,, of
CG into GD/SGD. We propose an adaptive momentum for
GD/SGD, i.e., with a fixed « but with g = ﬁffR as the
momentum coefficient at each step. This has two potential
benefits: (1) As a generalization of NCG, this may retain some
acceleration effects of NCG. (2) As a momentum method,
there is no need to determine or tune the hyperparameter
for momentum. We have chosen the Fletcher-Reeves formula
BER for its simplicity and robustness, as indicated by our
preliminary numerical testing. We call the resulting algorithm
FRGD/FRSGD, which we state as follows: Starting with wy,
we set p_; = 0 and By = 0 and iterate for n > 0 as follows:

Pn = Tn + BnPn—1; Wpi1 = Wy — AP, (5)
where
r, = {Yf(’%n)a for FRGD
w21 Vfi;(wn), for FRSGD,
and

Bn = (Tlrn)/(rl—lrn—l)

We have found that this adaptive momentum method sig-
nificantly accelerates the convergence of GD with momentum
and outperforms NAG as well. The only extra computational
cost over the momentum method is in computing an inner

product =,/ r,, at each step, which is negligible. Before testing
FRGD/FRSGD in training DNNSs, we first present an academic
example to illustrate its potential advantage.
EXAMPLE 2.1: We consider the following quadratic optimiza-
tion problem [16]:

rrLi)n flw) = %'wTLw —b'w, (6)
where L € R®00%590 jg the Laplacian of a cycle graph, and b
is a 500-dimensional vector whose first entry is 1 and all the
other entries are 0. It is easy to see that f(w) is convex (not
strongly convex) with Lipschitz constant 4. We run GD, GD
with momentum scaled by 0.9 (GD + Momentum), NAG, and
FRGD with step size 1/4 (the same hyperparameters as that
used in [16]). As shown in Fig. 1, GD 4+ Momentum converges
faster than GD, while NAG speeds up GD + Momentum
dramatically and converges to the minimum in an oscillatory
fashion. Moreover, FRGD converges exponentially fast and
significantly outperforms all other methods in this case.

= 107% %
%
; e N
&= 107%{ — FRGD —
- —— NAG
210104 — GD + Momentum
= —— GD
-14 ] , ‘
10 0 2000 4000
lterations

Fig. 1: Comparison between a few optimization algorithms for
optimizing the quadratic function f(w) = 1/2w "Lw —b' w,
where L € R509%500 jg the Laplacian of a cycle graph, and
w, b € R0, In particular, b is the vector whose first entry is
1 and all the others are Os [16]. Momentum accelerates GD
slightly; NAG oscillates to the minimum, w*, and converges
much faster than GD (with momentum); FRGD converges
exponentially fast to w*.

This example demonstrates that FRGD converges at a rate
much faster than GD; we will present some theoretical results
to demonstrate this property in the next section.

III. MAIN THEORY

In this section, we present some theoretical results to
demonstrate the descent property and convergence of FRGD
and FRSGD. For FRGD, we shall focus on strongly convex
functions and quadratic functions. Our results are applicable
only locally for a general function. For the case of quadratic
functions, we present convergence bounds to demonstrate an
accelerated convergence rate. For FRSGD, we establish its
convergence guarantee for general nonconvex functions with a
small modification of the original scheme. The proofs of these
results are provided in Sections VI and VII.

A. Convergence of FRGD

We first consider a convex function f(w) with Lipschitz
continuous Hessian matrix.
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Theorem 1 (Convergence of FRGD for strongly convex
functions). Consider applying the adaptive momentum method

FRGD (5) for finding the minimum of f(w) : R? — R.
2

Assume that the Hessian matrix H(w) = [gw)_c é’:’j)_] is Lipschitz

continuous with the Lipschiz constant C (i.e., |H(w) —

H(w)| < Cllw — w||) and its eigenvalues are in the interval
[Amin, Amax] With Amin > 0, Le., f(w) is strongly convex.
Assume o < M‘W for some K > 0. Then

max

pnrn >0

7]l < V1 = @nin |71,

where v, = V f(w,) and n < K.

and

Theorem 1 shows that p, is a descent direction and 7,
converges monotonically with a rate of at least v/1 — aApin.
Although such properties are expected for GD, it is important
that with the adaptive momentum, FRGD maintains these
properties. However, NAG does not converge monotonically to
the minimum; instead, it oscillates [47]. Moreover, it is worth
noting that: 1) our assumption on the Hessian is different from
the convergence theory of GD, we need Lipschitz Hessian
while GD requires bounded Hessian; 2) both the step size
constraint and the convergence rate are also different from
that of GD.

1) Quadratic Functions: To further study the convergence
rate. FRGD, we consider a quadratic function f(w) =
1w Aw — bTw, where A is a positive definite matrix. In
this case, the optimization problem reduces to solving the
linear system Aw = b. The classical CG method has been
studied extensively for solving the linear system, and strong
convergence results exist. With a fixed «, most properties that
the analysis of CG relies on are no longer held. Fortunately, a
technique used for the analysis of inexact CG due to round-off
errors or inexact preconditioning [13, 49] can be adapted to
our method. Using coupled two-term recurrences, our adaptive
momentum becomes a Krylov subspace method, and we can
derive the following convergence rate.!

Theorem 2 (Convergence of FRGD for quadratic functions at
the beginning phase). Consider applying the adaptive momen-
tum method FRGD (5) for minimizing f(w) = %wTAw —
b'w. Let 7, = Vf(w,) = Aw, —

b z, =
and Z,, = [z0,21,...,2n-1) If 20,21,...,2, are linearly
independent, then

NS
NCES
where K, < n(1+ np/2)||A||k(Znt1), p = Maxo<jci<n—1
l7ill?/||lr;|12, and k = K(A) is the spectral condition number

of A

wws2u+Kw( )'Wﬂ, @

The bound in (7) contains a linearly converging term with
the rate (v/k—1)/(y/k+1), but it also depends on the term K,
which may grow with n. The key term in K, is k(Zp4+1) =

IBelow, we use x(M) := ||[M]||||MT|| to denote the spectral condition
number of a matrix M where M ™ is the pseudo-inverse of M.

1Zn+1ll|Z), 1|l = vn+1||Z; ||, which measures the linear
independence among zg, 21,...,2,. Lhus, at the beginning
phase of iterations, as long as zg, 21, ..., 2, maintains some
level of linear independence property as measured by the
magnitude of k(Z,,1), K,, may be a modestly increasing term
so that ||r,|| converges at a rate close to (v/k —1)/(v/k+1).
Note that p may be expected to be bounded. In particular,
if ||r,| is monotonic, which holds under the condition of
Theorem 1, then p < 1.

When the number of iterations n is large, the sequence
z0,21,...,2, is expected to lose the linear independence
property. Here, we present one way to circumvent this diffi-
culty by considering the last n—m iterates z,,, Zm+1,-- -, Zn,
which can be expected to be linearly independent for any
m < n as long as n —m is sufficiently small. In that case, the
proof of Theorem 2 can be modified to obtain a similar but
weaker bound, given in the following Corollary.

Corollary 1 (Asymptotic convergence of FRGD for quadratic
functions). Consider applying the adaptive momentum method
FRGD (5) to minimize f(w) = tw"Aw — b"w. Let v, =

Vfi(wy) = Aw,—b, z, = r,/||rn]. If m (withm < n) is an
integer such that z,,, Zm+1, . .., 2y, are linearly independent,
let Zp, = [Zm), Zm41s - - - s zn,l]. Then we have

Irall < (14 Kan) IP(AE)|[ ]| ®

EPn—m, p( )=

- ‘m,g)(ler\f)HAH K(Znt1), ’=
maxo<j<i<n—1 [|7ll?/[75]° L+ VB =

l
with \/Bme’” Ll b, er = [1,0...,0]7,

is the set of pol)lzgzomzals of degree n — m.

The term minyep, . »0)=1 [|[P(AE)| [|7m], in (8), de-
cays monotonically and is equivalent to the residual of
the generalized minimal residual (GMRES) method [45]
for the matrix AE, where E is a rank-one perturbation
of the identity matrix I with the norm of the perturbed
matrix bounded by m./p||Z; . Then the spectrum of AE
is expected to have a similar distribution as A and hence
mingyep, . no)=1 [[P(AE)| [[7m|| converges like CG iterates
for A. m can be chosen to be any integer less than n such
that x(Z,+1), which is a measure of linear independence
of zn,Zm+1,...,2n, is bounded. Then K, is a modest
factor and we have a residual reduction ||r,||/rm| < (1 +
K,)minyep,  n0)=1 |[P(AE)]|| similar to GMRES over the
last n — m iteration. Thls characterizes the asymptotic conver-
gence behavior of FRGD.

Note that the classical CG method converges at the rate of
(vVk —1)/(v/6+ 1) when A is positive definite — so does
the momentum method (4) with the optimal «* and 3*. How-
ever, they require strong conditions with the former requiring
variable v, (see its definition in the previous section), while
the latter requires the optimal a* and 3*. All these methods
significantly accelerate GD with constant step size «, which
has a convergence rate of (x — 1)/(k + 1) at best.

We remark that a slightly more general bound ||r,,|| < (1+
K,) min,ep, n0)=1 |[P(A)rol| holds in place of (7) without
the assumption that A is positive definite; see the proof in
Section VI. Thus our method are applicable to more general
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situations of positive semi-definite A (Example 2.1) or the
trust region problem with indefinite A [5, 55].

We also note that the theorem also does not require any ex-
plicit condition on the learning rate «. Although o may affect
the quality of the basis zg, 21, . . ., 2, generated, as long as K,
increases gradually at a rate slower than (1/k—1)/(y/k+1), we
have the convergence of r,,. This may explain the success of
our method with quite large learning rates (see our numerical
results in Section IV). Of course, this is only true to the extent
that « is not so large that the condition number of the basis
generated grows unbounded.

B. Convergence of FRSGD

This part consists of the convergence analysis for FRSGD.
First, we collect several necessary assumptions that are widely
used in (non)convex stochastic optimization.

Assumption 1: The stochastic gradient is an unbiased
estimate of the gradient, i.e., Er, = V f(w,).

Assumption 2: The gradient of f is L-Lipschitz, i.e.,
(IVf(w) —Vf(u)] < L|jw— ul| with L > 0.

Assumption 3: The stochastic gradient is uniformly
bounded, i.e., sup,{||7.||} < R with R > 0.

To prove the convergence of SGD with FR momentum, we
need to clip the FR momentum such that the upper bound is
1 —§ with § > 0 being any given small number, resulting in
the following adaptive momentum scheme

[l *

Hrnflnwl“s}‘ ©)

Note that under the condition of Theorem 1, Bn =
I7all?/1rn-111? € V1 = admin <1 =8 if @dmin > 26 — 62
Indeed, in our numerical tests, the clipping above does not
change the performance of FRSGD when § < 1073, In all
the following deep learning experiments, we set § = 1072, In
general, we also call SGD with the momentum in (9) FRSGD.

For general nonconvex optimization problems, we have the
following convergence guarantee for FRSGD for nonconvex
optimization.

Bn = min{

Theorem 3 (Convergence of FRSGD for general nonconvex
functions). Let {w,},>1 be generated by FRSGD with mo-
mentum in (9) and suppose Assumptions 1, 2 and 3 hold. We
have that
(f(w1) — min f)

aK ’

where Cy > 0 is a constant independent of «, d, and K.

min {E[|Vf(w,)[I*} < Cra +

1<n<K

According to Theorem 3, the upper bound of the er-
ror min<,<x{E|Vf(w,)||?} is the sum of Cia and
lw)-minf) T get ¢ error for min; << {E[|V.f(w,)|?}
i.e., to ensure minj< <k {E||Vf(w,)||*} < € we need to
set the step size to be a = ©(e) and the number of iteration
to be K = O(%). In summary, the obtained results above
show that the speed of FRSGD can run as fast as SGD in the
general nonconvex cases. It demonstrates the stability of the
adaptive momentum in the stochastic setting, which also has a
stronger convergence guarantee than the stochastic Nesterov’s
acceleration and its restart variants [7, 52].

IV. EXPERIMENTS

In this section, we present numerical results to illustrate the
advantage of FRSGD over the baseline SGD with constant
momentum, Adam [21], AdamW [27], and RMSprop [20] in
training DNNSs for image classification. We run all experiments
with five independent random seeds and report the means and
standard deviations of the results.

a) Objective: Our experimental results will demonstrate
the following advantages of FRSGD over the baseline methods
of SGD with momentum or Nesterov momentum: 1) FRSGD
converges significantly faster; 2) FRSGD is significantly more
robust to large step sizes; 3) DNN trained by FRSGD is
more accurate and more robust against adversarial attacks
than that trained by the baseline methods, including SGD
with momentum or Nesterov momentum, Adam, AdamW, and
RMSprop.

b) Datasets: We consider the benchmark CIFAR10, CI-
FAR100 [22], and ImageNet datasets [44], and we follow the
standard training/test splitting.

c) Tasks, Experimental Settings, and Baselines: For CI-
FAR10 and CIFAR100, we consider both natural and adver-
sarial training. We use pre-activated ResNets (PreResNets)
models of different depths [18]. As baseline optimization
algorithms, we consider SGD with the standard momentum
and with the Nesterov momentum scaled by 0.9, and we denote
them as SGD and SGD+NM, respectively. We note that SGD
is the optimizer used in the original ResNet implementations
[17, 18]. For the SGD and SGD+NM baselines, we follow
the standard setting of ResNets by running it for 200 epochs
with an initial learning rate of 0.1 and decay it by a factor
of 10 at the 80th, 120th, and 160th epoch, respectively. We
run Adam, AdamW, and RMSprop for 240 epochs with an
initial learning rate of 0.003 and reduce it by a factor of
10 at the 100th, 160th, and 200th epoch, respectively. For
FRSGD, we run it for 240 epochs with an initial learning rate
of 0.5 and reduce it by a factor of 10 at the 180th, 220th, and
230th epoch, respectively?. For adversarial training, we use
the same SGD and FRSGD solvers described above to solve
the outer minimization problem, and we run 10 iterations of
the iterative fast gradient sign method (IFGSM'?) attack with
a = 2/255 and € = 8/255 to approximate the solution of the
inner maximization problem. We provide the details of IFGSM
[14] and a few other attacks in Section VIII.

For ImageNet, we only consider natural training and use
the standard setting for SGD with momentum scaled by 0.9,
i.e., run SGD with momentum for 90 epochs with an initial
learning rate of 0.1 and decay it by a factor of 10 at the 30th
and 60th epoch, respectively. As a comparison, we run FRSGD
for 100 epochs with an initial learning rate of 0.5 and decay
it by a factor of 10 at the 60th and 80th epoch, respectively.

A. FRSGD is Robust Under Large Learning Rates

In this subsection, we compare the performance of SGD,
SGD+NM, and FRSGD in training PreResNet56 for CIFAR10

2Here, we are able to use a larger learning rate under which FRSGD is still
stable, and we decay the learning rate when the decrease of the loss function
becomes slower.
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Fig. 2: Plots of epochs vs. training loss and accuracy of PreResNet56 trained by FRSGD, SGD (with momentum), and
SGD+NM with different learning rates. FRSGD is the most robust optimizer to large learning rates; where the performance
of SGD and SGD-+NM deteriorate when a large learning rate is used.

and CIFAR100 classification using different learning rates. We
set the learning rate to be 0.1, 0.3, and 0.5, with all the other
parameters the same as before. We plot epochs vs. training
loss and training accuracy in Fig. 2. These results show that:
1) under the same small learning rate, e.g., 0.1, FRSGD
converges remarkably faster than both SGD and SGD+NM;
2) the convergence of SGD and SGD+NM gets deteriorated
severely when a larger learning rate is used; in particular,
the training loss will not converge when 0.5 is used as the
learning rate. However, FRSGD maintains convergence even
when a very large learning rate is used; 3) the training loss
and accuracy curves of SGD and SGD-+NM get plateau very
quickly at a large loss, while FRSGD continues to decay.

B. FRSGD Improves Accuracy of DNNs

a) CIFARI0: We consider training PreResNets with dif-
ferent depths using the settings mentioned before for the
CIFARI10 classification. We list the test errors of different
ResNets trained by different stochastic optimization algorithms
in Table I. In general, SGD performs on par with SGD+NM;
SGD-+NM has small advantages over SGD for training shal-
low DNNs. SGD is significantly better than Adam, AdamW,
and RMSprop. FRSGD outperforms SGD by 0.5 ~ 0.7%
for ResNets with the depth ranging from 56 to 470. These
improvements over already small error rates are significant in
the relative sense, e.g., for PreResNet470, the relative error
reduction is ~ 13% (4.92% vs. 4.27%).

b) CIFARIO00: Here, we consider CIFAR100 classifica-
tion with the same DNNs and the same settings as those
used for CIFARIO classification. We report the test errors
in Table II. In this case, FRSGD improves the test accuracy
over both SGD and SGD+NM by ~ 1.0 to 1.6%. Again,
Adam, AdamW, and RMSprop perform worse than the other
optimization algorithms.

¢) FRSGD vs. SGD with More Epochs: In the original
ResNet experiments, we have run SGD and SGD+NM for 200
epochs, after which no training loss decay is observed. To com-
pare over longer iterations, we train PreResNet110 by running
SGD, SGD+NM, and FRSGD for 240 epochs 3. Moreover,
we also compare them with running Adam, AdamW, and
RMSprop for 240 epochs using the aforementioned settings.

3Based on trial and error, we found that adding 20 epochs each in the first
and second learning rate stages gives the best performance. All the reported
results are based on using this setting.

Table III lists the training and testing losses as well as errors
of PreResNet110 trained by different optimizers on CIFAR10.
The best test error of SGD, SGD+NM, Adam, AdamW,
and RMSprop for CIFARI10 classification are 5.23 + 0.15%,
5.19 + 0.16%, 6.47 £ 0.31%, 6.54 + 0.15%, 10.88 £ 0.35%,
respectively, compared with 4.73 £ 0.12 for FRSGD. We see
that adding 40 more epochs to SGD and SGD+NM does not
improve classification accuracy much, and this is because the
training loss has reached the plateau at each stage with a
budget of 200 epochs. Adam and AdamW converge faster with
a smaller final training loss, but the testing loss and accuracy
are far behind those of SGD, SGD+NM, and FRSGD.

d) Training FRSGD with a Large Number of Epochs: In
the previous experiments, considering the training efficiency,
we limited the budget for training epochs of FRSGD by drop-
ping the learning rate when the training loss convergence slows
down but before reaching plateaus. This learning rate reduction
may be premature and the result may not be the best accuracy
our method can achieve. In this experiment, we relax this
budget and use a much larger number of epochs for FRSGD
and see if we can get more improvement in classification
accuracy. In particular, we train PreResNetl 10/PreResNet290
by running 400 epochs of FRSGD with an initial learning rate
of 0.5 and reducing the learning rate by a factor of 10 at the
200th, 300th, and 350th epochs, respectively.

In this setting, we get the best test error rates of 4.64 &
0.12/4.26 £ 0.09% for CIFARIO and 20.03 £+ 0.29/19.89 +
0.19% for CIFAR100, which remarkably improves what we
get by using 240 epochs (4.73 + 0.12/4.44 + 0.10 for
CIFARI10 and 22.52 + 0.35/20.66 + 0.31 for CIFAR100).
Furthermore, the training loss of FRSGD at the last epoch
in training the PreResNet290 for CIFAR10 classification also
becomes significantly smaller than that of SGD or SGD+NM
(0.00138 + 0.00012 (FRSGD), vs. 0.0048 + 0.0003 (SGD),
and 0.0052 £ 0.0003 (SGD+NM)).

e) ImageNet: We train ResNetl8, whose implementa-
tion is available at [25], using both SGD with momentum
and FRSGD with five different random seeds. We set the
weight decay to be 0.0001 for both SGD with momentum
and FRSGD. Table IV lists top-1 and top-5 accuracies, over
five independent runs, of the models trained by two different
optimization algorithms; we see that FRSGD can outperform
SGD with momentum in classifying images.
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TABLE I: Test error (%) on CIFAR10 using the SGD (with momentum), SGD+NM, Adam, AdamW, RMSprop, and FRSGD.
We also include the reported results from [18] (in parentheses) in addition to our reproduced results. ResNets trained by
FRSGD are consistently more accurate than those trained by SGD, SGD+NM, Adam, AdamW, and RMSprop.

Network SGD (baseline) SGD+NM Adam AdamW RMSprop FRSGD
PreResNet56 6.12+0.24 5.90+£0.17 | 7.564 £0.09 | 7.36 £0.13 | 11.31 £0.42 | 5.39£0.13
PreResNet110 | 5.25 +0.14 (6.37) | 5.24 +£0.16 | 6.83 +0.10 | 6.54 £0.15 | 10.88 £ 0.35 | 4.73 +0.12
PreResNet164 | 5.10 £0.19 (5.46) | 5.08 £0.21 | 6.65+0.13 | 6.37 £0.19 | 10.60 +0.37 | 4.50 + 0.16
PreResNet290 5.05 £0.23 5.044+0.12 | 6.61 £0.11 | 6.31 +0.18 | 10.55 + 0.29 | 4.44 +£0.10
PreResNet470 4.92 +0.10 4.97+0.15 | 6.50+0.16 | 6.22 +0.21 | 10.52 4+ 0.33 | 4.27 + 0.09

TABLE II: Test error (%) on CIFAR100 using the SGD (with momentum), SGD+NM, Adam, AdamW, RMSprop, and FRSGD.
We also include the reported results from [18] (in parentheses) in addition to our reproduced results. ResNets trained by FRSGD
are uniformly more accurate than those trained by SGD, SGD+NM, Adam, AdamW, and RMSprop.

Network SGD SGD+NM Adam AdamW RMSprop FRSGD
PreResNet56 26.60 £ 0.33 26.14£0.38 | 33.88£0.57 | 32.95£0.63 | 36.07 £0.98 | 25.00 £0.32
PreResNet110 23.75+0.20 23.65 £0.36 | 30.05£0.55 | 29.81 +0.48 | 33.05£0.92 | 22.52+0.35
PreResNet164 | 22.76 + 0.37 (24.33) | 22.79+0.29 | 28.99 +£0.50 | 28.93 £0.51 | 31.86 +0.75 | 21.38 £ 0.34
PreResNet290 21.78 +£0.21 21.68 £0.21 | 28.07 £ 0.44 | 27.954+0.40 | 30.05 £ 0.87 | 20.66 + 0.31
PreResNet470 21.43 +£0.30 21.21 £0.30 | 27.83+0.48 | 27.70 +0.47 | 29.99 £+ 0.86 | 19.92 + 0.29

TABLE III: Lists of the optimal training/test loss and accuracy of PreResNet110 trained by FRSGD, SGD (with momentum),
SGD+NM,Adam, AdamW, and RMSprop with 240 epochs. Adam has a smaller training loss than the others, but the
PreResNet110 trained by FRSGD has the smallest test loss/error.

Optimizer Training Loss Training Error Rate (%) Test Loss Test Error rate (%)
SGD 0.00529 + 0.00043 0.042 £ 0.006 0.1950 £ 0.00091 5.23+£0.15
SGD+NM 0.00462 + 0.00047 0.032 £ 0.005 0.1846 £ 0.00101 5.19 +£0.16
Adam 0.00033 + 0.00003 0.002 £ 0.002 0.3237 £ 0.00125 6.47 +£0.31
AdamW 0.00038 + 0.00004 0.001 + 0.002 0.3309 £ 0.00118 6.54 £ 0.15
RMSprop 0.19059 + 0.00178 6.180 + 0.162 0.4263 £+ 0.0107 10.88 £0.35
FRSGD 0.00680 + 0.00021 0.090 + 0.002 0.1611 + 0.00086 4.73+0.12

TABLE IV: Test accuracy (%) of ResNetl8 for ImageNet
classification, where the models are trained by SGD with
momentum (step size 0.1) and FRSGD.

Model ResNet18
SGD (top-1) 69.86 1+ 0.048 (69.86, [26])
SGD (top-5) 89.31 + 0.090
FRSGD (top-1) 69.99 £ 0.057
FRSGD (top-5) 89.62 £ 0.088

C. FRSGD Improves Adversarial Training

Finally, we numerically demonstrate that FRSGD can also
improve the adversarial robustness of the trained DNNs using
adversarial training. We train the PreResNetl110 by applying
the adversarial training using the settings listed before. Then
we apply the well-trained PreResNet110 to classify the test
set under three kinds of benchmark adversarial attacks: fast
gradient sign method (FGSM), m steps IFGSM (IFGSM™
with m = 10, 20,40,100) [14], and C&W attacks [4]. We
apply the same set of hyperparameters for these attacks as
that used in [51, 29] in the following experiments. A brief
introduction of these attacks and the used hyperparameters are
available in Section VIIL

Tables V and VI list the accuracy of the adversarially
trained PreResNet110 for classifying CIFAR10 and CIFAR100
images with or without adversarial attacks *. First, we see that
the robust PreResNet110 trained by FRSGD is slightly more
accurate than that trained by SGD+NM for classifying the
clean CIFAR10 and CIFAR100 images without any attack,

4We only compare FRSGD with SGD+NM since SGD performance is
weaker than SGD+NM in this case.

e.g., the accuracy of FRSGD is 82.36 4 0.27% and 54.95 £
0.49% for CIFAR10 and CIFARI100 classification, while the
corresponding accuracy of the model trained by SGD+NM
is 82.19 4+ 0.29% and 54.75 £ 0.52%, respectively. Second,
the model trained by FRSGD is more robust than that trained
by SGD+NM under all three adversarial attacks mentioned
before, e.g., under the IFGSM!%0 attack, the robust accuracy
of these two models is 52.15+0.19% vs. 51.08+0.35% for CI-
FARI10 classification, and are 27.4040.48% vs. 29.01+0.39%
for CIFARI100 classification. Although the improvements are
not very significant, the good performance of FRSGD in this
difficult setting illustrates its robustness in different problem

types.

V. CONCLUDING REMARKS

In this paper, we leverage adaptive momentum from the
NCG to improve SGD, and the resulting algorithm performs
surprisingly well in the following sense: 1) It can accelerate
GD significantly; in particular, we observed that it achieves
exponential convergence for optimizing a specific convex
function; 2) It allows us to use much larger step sizes and
converges faster than SGD with (Nesterov) momentum in
training DNNs; 3) DNNs trained by FRSGD have remarkably
higher classification accuracy and are more robust to adversar-
ial attacks for image classification. The method is as simple
as SGD and is easy to implement. It is well suited for DNN
training.

There are several interesting open questions that are worth
further investigation. First, can we integrate the adaptive
momentum with adaptive step size to further improve stochas-
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TABLE V: Test accuracy (%) of PreResNet110 on CIFAR10 using PGD adversarial training with SGD+NM and FRSGD as
the outer solver. FRSGD improves accuracies for classifying both clean and adversarial images.

Optimizer Natural FGSM IFGSM 10 IFGSM?20 IFGSM?0 IFGSM 100 C&W
SGD+NM | 82.19 £0.29 | 57.61 £0.33 | 55.35 £ 0.42 | 52.02 £0.34 | 51.45 £0.33 | 51.08 £0.35 | 62.92 £ 0.50
FRSGD | 82.36 £0.27 | 58.27+0.29 | 55.83 £ 0.31 | 53.07 £ 0.28 | 52.39+0.25 | 52.15+0.19 | 63.05 +0.33

TABLE VI: Test accuracy (%) of PreResNet110 on CIFAR100 using PGD adversarial training with SGD+NM and FRSGD
as the outer solver. FRSGD improves accuracies for classifying both clean and adversarial images.

Optimizer Clean FGSM IFGSMT0 IFGSM?0 IFGSM?0 IFGSM 100 C&W
SGD 54.75 £ 0.52 | 30.75 £ 0.41 | 29.61 £0.45 | 27.87 £0.44 | 27.51 £ 0.42 | 27.40 £ 0.48 | 38.97 £0.66
FRSGD | 54.95+0.49 | 31.77 £ 0.43 | 30.79 +0.33 | 29.32 + 0.37 | 29.09 £+ 0.40 | 29.01 +0.39 | 39.01 + 0.50

tic optimization algorithms? Second, can we prove stronger
convergence results for FRGD/FRSGD under more general
conditions? Third, can we leverage adaptive momentum to
improve training DNNs for other deep learning tasks beyond
image classification? Application of the FRSGD to other
computer vision tasks, e.g., objection detection, is another
interesting future work. One particular question is whether
FRSGD can improve the performance of existing object de-
tection frameworks [56, 36].

VI. PROOF OF THE CONVERGENCE OF FRGD
First, using the integral form of the mean value theorem,
we write
Vf(wni1) =V f(wn)

1
:/ H(wn + t(w7l+1 - wn))dt(wn+1 - wn)
0

where H(w) = [%(w)] is the Hessian matrix and
iOW;

1
Hn = / H(wn + t(wn-‘rl - w”))dt
0

We now consider the iterates of FRGD and give some lemmas
and then prove Theorem 1.

Lemma 1. Assume that the Hessian H(w) is Lipschitz con-
tinuous with the Lipschiz constant C, i.e., |H(w)—H(w)|| <
Cllw — w||. Then,

1
[Hpt1 — Hyl| < §C(||wn+2 = Wpi1 | + [[wnt1 — wal]).

Proof. Using the definition of H,,, we have
Hoir — Hy |

1
:H / H('wn+1 + t(w'n+2 - wn+1))dt
0 1
— / H(wn, + t(wny1 — wn))dt||
0
1
S/ [H(wn i1 + t(wny2 — wni1))dt — H(wn + w1 — wn))
0
1
S/ Cllwnt1 + Hwntz — Wat1)) — Wn — H(Wnt1 — wn))||dt
0

1
<C [ twns = wos) |+ (1= l[wnir = wn ds
0

1 1
=5Cllwnsz = wai)l| + 5Cllwn 1 — wnl]

O

Hn (wn+1 - wn)

Lemma 2. If the eigenvalues of the Hessian H(w) are in

[Amin, Amax] for all w, then the eigenvalues of H,, are in
P\mina )\max} f()r all n.

Proof. For any nonzero vector * € RY, using the minimax
theorem, we have

TH(w)zx

<
Tz

< )\max .

)\min

Then it follows from
1

TH,xz = / eTH(w, + t(w, 1 — w,))xdt
0

ie.,
zTH,x

Amin <
min me

S )\max N

Using the minimax theorem again, we have that the eigenval-
ues of H,, are in [Amin, Amax]- O

Proof of Theorem 1. Consider w,,_1,w,,w,+1. By Lemma
1, we have

Tntl — Tn = Vf(wn+1) - vf(wn)

10
= Hn(w'rH»l - wn) = _aann~ ( )

Furthermore,

1
[Hr = Hnoafl < 5 Cllwnsr — wall + [lwn — wn—1]])

1 amn
Co(([pnll + [[Pr-1])-

2
On the other hand, by Lemma 2, the eigenvalues of H,, are
on the interval [Amin, Amax]-
Now we prove by induction in n that, for 1 <n < K,

T
Tn_lanlpnfl

-
Tp—1Tn-1

and ||7, ]| < V1 — adminl|Tn-1]-
First, consider the case n = 1. Since pg = rg and r;
|dig — aHopy = 1o — aHgro, we have 7] Hopy = 7 Horg
AminTg 70, [[Poll = [I7o], and

2 Amin; [Pa—a|l < nllra-all, (2)

T T T 2 Tyy2
r1 T =1y To — 20y Horo + ory Hiro
T T 2,2 T
ST’O o — 205)\min7'() ro + « >\maxr0 To

<(1 = @Amin)70 70,

where we have used — A, + a2, <0 as

max —

condition on «. So, (12) holds for n = 1.

implied from the
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Assume that (12) holds for some n < K — 1. We prove it
for n + 1. Using (5) and the induction assumption, we have
Bn = ﬁ < 1 and then

P Pn =T Tn + 2By Pt + Babn_1Pn-1

7 I

[[rn
<[lrall® +2W\Irn\l\lpn 1H+Wnpn 12

<llrall® + 2lleal*n + lral*n® = (14+n0) ).

where we have used ||pn—1] < n||rn_1]-
Next, using (5) and (10), we have
TIann
:"'I H,r, + ﬁn"'l ann—l
:TIHnrn + /BnTI—lannfl - aﬁnpz—lanlannfl

T
T T ""n—lanlpnfl
Z)\min’rn Ty + TnTn

TI—1rn71
T T
T 1(Hpn —H,— _
+7'1I'rn n 1( Tfr -~ 1)p" ! - TTTLT” A?naxp'zflpn—l
Tn—1Tn-1 Tp—1Tn-1
ZAmianrn + T,,—,Ij"'nAmin - Hpn IH H — Hn_1||

-
S T

llpn— 1”
[[7n—1?

T T
ZAmin"'n Ty + Tn ”'n>\min -

- aAmaxrn Tn

c
T Tt (||pall + [Pna )

)\2 T 2
— Q@AmaxTn TnM

>AminTn Tn + Tt Prodmin — aPp Po—=n((n+ 1)||7n |

2
+nlraoil) = aXpaxrn Tan’®

>AminTr T + T Prdmin — ary PR C K2 ||roll — A\ P K

>NminTn T,

where the last inequality follows from the condition on «.
Finally, using the two inequalities above, we have

Ppi1Tns1 =1 T — 207, Hop, + o’p,, Hap,
T T 2,2 T
<Tn Tn — 2a)\min”‘n Tn + « )\maxpn Pn
<1'n Tn — 2a)\mm7‘n T+ )\,mx(n + 1) Tn Tn
aAmax(n + 1) )rn Tn

_(1 — Oé)\min)'f';ll—"'n - a()\min -

<(1- a)\min)'r;rn,

a2

where we note that n+ 1 < K and hence Apin — aAZ . (n+

1)2 > 0. This completes the proof of (12).

We now prove »,! p, > r}r, > 0 by induction. The case
n = 0 is trivial and assume it holds for n — 1. Then

T7-7|.—pn :T;zr/rn + 5n7'7-1rpn71

T T T
=TpTn + Bnrn—lpnfl - aﬁnpn—lanlpnfl

T T
T T Tpn—1Pn-1 T PpnaHn_1pn-1
=P Tn+ T Th—4——— — QP Tn———————
n,:["'n 1 T,L71'f'n—1
Hpn 1”

T T
Zrn Tn + TnTn — aAmdxrn Tn

[[7r—1?
227{7‘” - a)\maxnerrn

T
Z’rn Tn

wl;ere the last inequality follows from o < W <

A2 K2

max

This completes the proof of the theorem.
O

1
S Amax K2 :

Proof of Theorem 2. Let R,, = [rg,r1,...,7p_1], Dy =

diag{(|roll, [r1ll,-- -, l7n-1ll} and P, = [po,...,Pn-1].
Then Z,, = R, D, . Using r;1 = 7. — «Apy., we have

aAP, = [7‘0 — T, "1 —T2,...,"pn—-1— 'I’n]

=R,L, — rne, = ZyDpLy, — e,
and using py, = 71, + BrPr—1
Z,=R,D,!'=P,U,D;",
where e,, = [0,...,0,1]T and L,, is the nxn lower bidiagonal

matrix with 1 on the diagonal and —1 on the subdiagonal, and
U,, is the upper bidiagonal matrix with 1 on the diagonal and

—B1,...,—Bn_1 on the superdiagonal. Combining the two
equations, we obtain
AZ, =7Z,T, — i, Tn_eT
a’ [l
where T,, = 1D, L, U, D! and o = a||r,,—1]|/||70||. Note
that o/ = TT er. Apply Theorem 3.5 of [49] (with A,

there equal to 0 and the indexes shifted by 1) to the above
equation, we have

W<+ Ky ' A)rol, 13
Irall < (14 Kn) _ min ' lp(A)ro] (13)
where K, = |AZ, T L, O0]Z}, | <
AT H1Zn || Z, || and Py, is the set of polynomials of
degree n.
Note that B = [r&*/|re—sl® Write T, =
éDnLnD,’LanUnD;1 = éL U,,, where
fln ::DnLnD;1
1
[l |l
| e !
1
lrn—all
el L
1
-VBr 1
1 )
anl 1
and

U, :=D,U,D;"

.y
- 72l
L =B
1
1 VA
= :i,T
1 ﬁnfl
1

Then I:; 1'is a lower triangular matrix with the diagonals
being 1 and with the (4, j) entry being /5541 ... 05i—1 =
741 1l/llrs ]| for @ > j. Then bounding [fr;- |2/ [fr; |
by p, we have ||L; % < n+ n(n — 1)p/2. So, | T, =
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oL Y2 < aHﬂ#H% < an(1 + np/2). Combining this
with 2127y | < 1 Zoes |1 Zos || = #(Zopn) results in
K, < na(l + §p)||Al|k(Zy+1). Finally, the bound follows
from the standard CG convergence bound [45, p.215] that
shows

< i Ai
Ip(A)roll < min  max |p(A) o]

<2(V21) il

where \; (for 1 < ¢ < d) are eigenvalues of A. O

min max
PEPn,p(0)=1 i \p(

We give a lemma for the proof of Corollary 1.

Lemma 3. We have

D] 7] |7 |7
Irell = llee—all - ll7e—2ll [[7oll
Proof. 1t follows from py = v, + Bxpr—1 and B = ”ﬂ:fll‘lz‘z
that |[pxl| < il + Bllpr—i |l < Ilrel(1 + ploel el
Then
P | < el [lPr—1ll
Irell = el lre—all

Applying this repeatedly leads to

Pl 1+ ll7 |l el re—1ll lPe—2l|
el = IPe—1ll  lre—all lre—2|l l7e—2|l
<14 llx]] 7wl llre—ll
- [re—1ll * lre—all I7e—2]l
el lre—all ol [l2oll
[ri—sll Tra—zll Tiroll llroll
g ll7 |l ll7 |l T [l7 |l
[re—1ll  lI7e—2]l lloll
where we note that py = rg. L]

Proof of Corollary 1. The proof is similar to the one for
Theorem 2 but uses the iterates from m to n. For ease of nota-
tion, we use the same R,,, Z,,, D,, to denote similar matrices
defined from the iterates from m to n. Namely, let R, =

[’I”m, Tm+1y--+) ’rnfl]’ Zn = [Zm; Zm4ly--ey anl]’ Dn =
diag{|[rm ||, lrmt1ll,- -, [[rn-1]} and Py = [P, ..., pn—1]-
Then Z, = R, D, . Using 7,41 = r,, — @Ap,,, we have

AP, =[P — Prt1, Pl — P2y« -« s Pn—1 — Tn

=7Z,D,L,

T
—Tn€p_m,
and using px = 7k + BxPr—1

Rn = PnUn - Bmpmfle{v

where e, = [0,...,0,1]T, e; = [1,0,...,0]7, and L,
is the (n — m) x (n — m) lower bidiagonal matrix with
1 on the diagonal and —1 on the subdiagonal, and U,, is
the upper bidiagonal matrix with 1 on the diagonal and

_Berh coos =Pt On the superdiagonal. Then, noting that
mPm—
] : m\l?‘ > we have
- - Pm—1
n = R”Dnl — PnUnDnl — /Byt m— T
|7 — 1H

Combining this with the equation on «AP,,, we obtain

Ap,_1 T
AZ m Z77.T
L T s

1 r
nH el—7n’

where T,, = 1D,L,U,D;! and o/ = a|r,_1[|/|7ml].
Since Z,, has full column rank, we have ZZ, = I. So we
can write

1 r
AEZ,=7,T, - ——e' .
o [lro T
where E = I + /B, f 1H€1 Z}. Now, as in (13) and the

bound for K,, in the proof of of Theorem 2, we have

Irall < (L4 Kn) _ min © (lp(AE)rml,  (14)

EPn—m,p(0)=
where

Ko =|AEZ, T L, 0]Z 4 |

Ap'm 1
<||AZ, +\/ﬁm i et T3 H1Z5 4l

<(I1A[11Zx ||+||A|\\/@Hpm 1||

SNIEAT 1+\/ﬂm””"f"|' ||T I
<1+ "5 )14 VB [P A,
Now, by Lemma 3, we have
[Pl _ ll7mll |7l |75l
VB o < /p
"l T Hrm_1|| 172l 7ol Ve

Thus K,, < na(1l

o)1+ myp) |AlA(Znsr). O

VII. PROOF OF THE CONVERGENCE OF FRSGD

Lemma 4. Let f have Lipschitz gradient with constant L > 0
and let {w,, },>0 be generated by FRSGD with momentum in
(9), we have

R
sup [, —wn | < 7 (15)
and
a KR2
Z lwn — wn_1]? < : (16)

Proof. Note that FRSGD can be rewritten as
Wp41 = Wy — ATy + Bn(wn - wn—l)-

It holds that

loern || =[[wns1 — wn = Bo(wn — wn1)|
>|[wnt1 = wall = [|Bn(wn — wn1)]|
2l wni1 — wn|| — (1 = 6)|lwn — wn_1]].
Thus,
llarnal* > (|wnsr = wall = (1 = 8)wn — wa-1]])®
w1 = wa* = 201 = 8)ewni1 — wal
X lewn — wnal| + (1 = 8)*||w, — wai |

— w,|f? = 5(1 — §)||w, —

By using mathematical induction, we then get (15).
Summing the above equation from n =1 to K — 1, we get

K
6% llwn — w1
n=1
K-—1

Ollwicir — wiea | = Sflws — wol|* +6° > [lwn — waa|?

n=1
K—1
n=1

20 wn 1 wy ||

o’||rn|| < °KR®.
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O With Lemmas 4 and 5, we are then led to
K K
Lemma 5. Let f have Lipschitz gradient with constant L > 0 Z aE||V f (wn)|? < Z E(ﬁn<Vf(wn), w, — wn71>)
and let {w,,},>0 be generated by FRSGD with momentum in n—1 n=1

(9), we have Tk 2
+5 ;E”w” — wp—1]]” 4 f(w1) — min f.

K K
S BuE(Y flwa)wn —war) € SO S B, — w2
n=1

n=1 g Therefore,
L 2 _ 2
Proof. Direct calculation yields min {EHVf(wn)HQ} < 2 aR°6+(1-9)LaR
1<n<K - 3
<vf(wn)7wn - wn71> + f(wl) — mlnf
:<Vf(wn71)7wn_wn71> Ko
+ (Vf(wn) = Vf(wn_1), Wn — wn_1) By denoting C} := %’ we get the result. 0
S(Vf(wnq), Wn — wn71>
+ IV f(wn) = Vf(wn-1)l - lwn — wn—1]| VIII. ADVERSARIAL ATTACKS
2
<{(Vf(wn-1), wn — w"*? + Lllws — wn—1]| We focus on the /., norm-based FGSM, IFGSM, and C&W
=(Vf(wn-1),—arn_1+ Bn1(wp_1 — wn_2)) white-box attacks. For a given image-label pair {x,y}, a
+ Lljw, — w,_1||? given ML model g(x,w), and the associated loss f(x,y) :=

= — a(V f(Wn-1),Pn-1) + Bn-1(Vf(Wn-1), Wn—1 — Wn—2) Flg(z,w), y):
1 2 « Fast gradient sign method (FGSM) searches an adversarial,
Wn — Wa—1| ;e
x’, within an ¢..-ball as

Taking expectation, we then get 2 =& +e-sign (Vo f(@,y))

BV f(wn), wn = u;"’l? and we set € = 8/255 in all of our experiments.
< = aE[[Vf(wn-1)[" + o BE(Vf(wn-1), (Wn—1 —wn-2)) , Iterative FGSM (IFGSM™) [14] iterates FGSM and clip the
+ LE||w, — w1 range as

< An— n— n—1 7 n— n - n— 2~
B 1BV f(wn—1), (Wn—1 — wn_2)) + LE|w, — wn_1]| 2™ = Clip,, {m<m71> +a.sign(vm(m_l)f)},
With induction and the fact that w; = wg, we then get

with ) = &, m = 1,...,M and we set ¢ = 8/255

BaE(V f(wn), wn — wn_1) < Li(ﬁﬁ‘ﬁ”“" —wiy? and o = 1/255 in IFGSM attacks with different number of
n njs n n— — J K2 11—

= o iterations.
n . o C&W attack [4] searches the minimal perturbation () attack
<Ly (1=0)""Elwi — wia|. as
= min ||8]|o, subjectto g(w, @+ 8) =+¢, = + 6 € [0,1]%,
Thus, we have 6

« for Vt # y.

Z BrE(V f(wn), Wy — Wn_1) we use the same setting as that used in [51] for C&W attack.

n=1
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