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Abstract: In this work, we propose a longitudinal quantile regression framework that enables a
robust characterization of heterogeneous covariate-response associations in the presence of high-
dimensional compositional covariates and repeated measurements of both the response and the
covariates. We develop a globally adaptive penalization procedure that can consistently identify
covariate sparsity patterns across a continuum set of quantile levels. The proposed estimation
procedure properly aggregates longitudinal observations over time, and satisfies the sum-zero
coefficient constraint needed for a proper interpretation of the effects of compositional covariates.
We establish the oracle rate of the uniform convergence and weak convergence of the resulting
estimators, and further justify the proposed uniform selector of the tuning parameter in terms of
achieving global model selection consistency. We derive an efficient algorithm by incorporating

existing R packages to facilitate stable and fast computation. Our extensive simulation studies
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1. INTRODUCTION

confirm our theoretical findings. We apply the proposed method to a longitudinal study of
cystic fibrosis children, where the associations between the gut microbiome and other diet-

related biomarkers are of interest.

Key words and phrases: Compositional covariates; Globally adaptive penalization; Longitudinal

data; Quantile regression.

1. Introduction

Compositional data are frequently encountered in a variety of research fields. Examples
include household expenditure compositions in economics, geochemical compositions of
rocks in geology, and human microbiome compositions in medical studies. Composi-
tional data consist of proportions bounded between zero and one and sum to one, and
are often high dimensional. For instance, human microbiome data are usually captured
as percentages (or the relative abundance) of gene sequencing reads (Tyler et al., 2014)
at a certain taxonomy level, and the number of operational taxonomy units (e.g., phyla
or genus) can range over hundreds, thousands, or even millions. With advancements
in technology, an increasing number of studies are collecting such compositional data
repeatedly over time. A common question of substantive interest is how these longitu-
dinal compositional measurements are associated with other longitudinal biomarkers or
clinical outcomes. This poses a regression problem subject to multiple complications,

including a large number of covariates, positiveness and unit-sum constraints on the
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covariates, and within-subject dependence of the longitudinal observations.

To deal with the high dimensionality of the covariates, a notable line of research
has been established in the penalization framework (e.g., Meinshausen and Buhlmann,
2006; Zhang and Huang, 2008; Kim et al., 2008; Lv and Fan, 2009; Fan and Lv, 2011).
Extensions to longitudinal settings have also been developed (e.g., Wang et al., 2012;
Zheng et al., 2018). When covariates are compositional, given the unit-sum constraint,
an increase in one covariate must induce a decrease in another covariate. Applying
traditional penalization regression methods without accounting for the compositional
nature of the covariates may lead to results that are difficult to interpret. A common
strategy for accommodating compositional covariates is to apply a sensible operation
to the compositional proportions before incorporating them into a regression model,
as in the linear log-contrast model and logistic normal multinomial regression model
(Aitchison, 1982; Aitchison and Bacon-shone, 1984; Aitchison, 2003; Xia et al., 2013).
Many studies have focused on covariates that are both compositional and high dimen-
sional. For example, Lin et al. (2014) proposed a Lasso-penalized method for the linear
log-contrast regression model that properly accounts for the compositional nature of
the covariates. Shi et al. (2016) studied an extension of the model of Lin et al. (2014)
with a set of linear constraints. Lu et al. (2019) generalized the model further to a gen-
eralized linear log-contrast model, and proposed an [;-penalized likelihood estimation

procedure.
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However, few works have proposed methods for high-dimensional compositional
covariates in a longitudinal setting. Moreover, most existing approaches use a mean-
based linear regression, which typically confines covariate effects to be location shifts,
and thus can be restrictive for real data. The quantile regression (Koenker and Bassett,
1978), characterized by its flexibility when assessing covariate effects across different
quantile levels, has demonstrated promising utility for identifying and depicting dy-
namic covariate-response associations that often provide useful scientific insights. The
modeling strategy of the quantile regression has been incorporated in analyses of longi-
tudinal data under various perspectives (e.g., Koenker, 2004; Wang and Fygenson, 2009;
Ma et al., 2019). In the presence of high-dimensional covariates, many studies (e.g., Li
et al., 2007; Zou and Yuan, 2008; Wang et al., 2012; Zheng et al., 2013; Fan et al., 2014)
have examined penalized quantile regression methods. These methods model a single
or multiple prespecified quantiles of the response; in other words, are locally concerned.
These methods are subject to inherent problems, such as undesirable variability in the
variable selection results across neighboring quantile levels, and the potential failure to
detect some important variables, owing to an off-target selection of the quantile levels.
To address these limitations, Zheng et al. (2015) proposed the perspective of globally
concerned quantile regression that enables a simultaneous examination of regression
quantiles over a continuum set of quantile levels, and thus reflects the underlying sci-

entific interest in a more robust way. However, although it demonstrates improved
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stability and “power” of variable selection compared with locally concerned quantile
regression approaches, their method is not suitable for handling either longitudinal data
or compositional covariates.

In this work, we develop a globally concerned longitudinal quantile regression frame-
work that is tailored to evaluate the effects of high-dimensional longitudinal compo-
sitional covariates on longitudinal responses. We consider a longitudinal linear log-
contrast quantile regression model, where quantiles of the longitudinal response are
linked to the log contrasts of the corresponding compositional covariates. To avoid
the shortcomings associated with selecting an irrelevant covariate as the reference in
the logcontrasts, we reformulate the model into a symmetric form with a zero-sum
constraint of the coefficients, which ensures sensible interpretations of the effects of
the compositional covariates. We propose a regularization method, in which a globally
adaptive Lasso penalty is imposed on the longitudinal quantile loss function that ap-
propriately aggregates repeated measurements from the same subject. We adapt the
rq.fit.fnc() function in the existing R package quantreg to facilitate the estimation in
the presence of the zero-sum constraint of the coefficients.

We conduct theoretical studies for the proposed method in the ultrahigh-dimensional
setting, where the number of covariates p may increase exponentially with the sample
size n (i.e., logp = o(n?), for some b > 0), and the number of relevant covariates s also

increases with n. We attain the uniform convergence rate of the proposed estimator as
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Op(\/m), which is the fastest possible rate. Because the longitudinal quantile
loss function is not differentiable, to attain this result, we cannot adapt existing works
on linear regression-based methods for high-dimensional compositional data, such as
that of Lin et al. (2014), which penalizes a smooth least-squares loss function. Instead,
we employ theoretical techniques, including chaining theory (Talagrand, 2005), the con-
traction inequality (Ledoux and Talagrand, 1991), and the empirical process (van der
Vaart and Wellner, 1996), as in Zheng et al. (2015). However, these do not address
the longitudinal data structure and the compositional constraint for high-dimensional
covariates. Therefore, we develop new arguments to account for these special data
features. Notably, we properly formulate and establish a crucial Karush—-Kuhn—Tucker
(KKT) condition tailored to compositional data, which is new in the literature. In
addition, we thoroughly justify that penalizing the proposed longitudinal quantile loss
function, which adopts the simple working independence assumption, is capable of
accommodating longitudinal data with dependent repeated measures.

Our theoretical studies provide useful results not discussed in existing works on
high-dimensional compositional covariates based on log-contrast models, such as those
of Lin et al. (2014) and Shi et al. (2016). For example, our theoretical investigation
reveals that the asymptotic behavior of the globally adaptive estimator based on a
constrained linear log-contrast quantile regression model is asymptotically equivalent

to its unconstrained counterpart, as long as the reference variable for the latter is a truly
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relevant variable, which is usually not known in advance. In addition, we establish the
weak convergence of any linear combination of the proposed estimator to a Gaussian
process. We develop a GIC-type uniform tuning parameter selector. We show that
the proposed estimation and tuning parameter procedures can correctly identify all
globally relevant variables with probability tending to one (i.e., global model selection
consistency).

The remainder of this paper proceeds as follows. In Section 2, we introduce a
globally concernedframework built on a longitudinal linear log-contrast quantile regres-
sion model. Then, we propose a globally adaptive regularization procedure based on a
symmetric model representation with a zero-sum coefficient constraint. In Section 3,
we present the asymptotic studies for the proposed estimation procedure. In Section
4, we investigate the finite-sample performance of proposed method using simulations.
Finally, we demonstrate our methodology by applying it to a longitudinal observational

study of children with cystic fibrosis (CF).

2. Methodology

2.1 Longitudinal Linear Log-contrast Quantile Regression Model

Consider a longitudinal study with n subjects. Let Y;(t), X;(t), and W;(t) denote
the longitudinal response, an r x 1 vector of regular covariates with one as the first

component, and a p X 1 vector of compositional covariates at time ¢ for subject ¢
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(1=1,...,n), respectively. A component of X;(¢) may flexibly represent the value of a
time-dependent covariate measured at time ¢ or a summary of the covariate history up to
time t. We consider the setting where r is fixed and p increases with n, satisfying logp =
o(n), for some b > 0. At each time point ¢, the compositional covariates in W, (¢) are
subject to the unit-sum constraint. That is, W;(t) belongs to the (p — 1)-dimensional
positive simplex SP7! = {(wy,...,wp) : w; >0, j=1,...,p; Z§:1 w; = 1}. Suppose
Yi(t), X;(t), and W,(t) are observed at m; time points, denoted by {tz(»k), k=1,...,m;}.
Define a counting process for the observation time as N;(t) => " T (tz(»k) <t).

To obtain a comprehensive and flexible view of how the covariates influence the re-
sponse, we use quantile regression modeling to formulate the covariate effects on the 7th
conditional quantile of Y'(¢) given X(¢) and W (¢), which is defined as Qy ) {7|X(t), W(t)} =
inf{y : Pr{Y(¢) < y|X(t), W(t)} > 7}. However, plugging W (t) directly into a regres-
sion model is problematic, because the components of W (#) cannot change freely, own-
ing to the unit-sum constraint, making it difficult to interpret the coefficients of W (t).
To deal with the unit-sum constraint, we apply the log-contrast (or log-ratio) trans-
formation of Aitchison and Bacon-shone (1984), which transforms the compositional
W, (t) from SP71 to ZE(t) = {log{Wi(t)/Wi,(t)}, ..., log{W,,_1(t)/Wi,(t)}}', where
W;;(t) denotes the jth component of W;(¢). The transformation from W(t) to Z(¢)
is one-to-one and ZF(t) is freely ranged in RP~! without any constraint. A log-contrast

transformation requires selecting a reference covariate. For Z(t), the pth component
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of W(t), W,(t), serves as the reference.

We consider the following longitudinal linear log-contrast quantile regression model:
Qyvi {71 Xi(t), Wi(1)} = Xi(t) ao(7) + Zf(t)—r,607\p<7') for 7€ A, (2.1)

where ay(7) is an rx 1 vector of regression coefficients for X; (), By \,(7) = {Bo.1(7), - - -,
Bop-1(T)} is a (p — 1) x 1 vector of regression coefficients for ZF(¢), and A C (0, 1)
is a set of quantile levels, prespecified to align with the scientific problem of interest.
For example, if we need to identify the variables affecting the center of the response
distribution, we can choose A = [0.4,0.6]. If we are interested in the upper tail of the
response distribution, we can choose A = [0.75,0.9]. A subtle drawback of model (2.1)
is that any variable selection based on the model automatically includes W, (t) as a
relevant covariate, even when W;,(¢) is not a relevant variable.

Following the strategy employed in the linear regression setting with compositional
covariates (Lin et al., 2014; Shi et al., 2016), we define [y ,(7) = — Z?;i Boj(7), and

re-express model (2.1) as
Qui{TIXi(t), Zi(t)} = Xi(t) o (7) + Zi(t) By (7), (2.2)
subject to iﬁo,j(ﬂ =0, for 7€ A.
Here, Z;(t) = {log{Wa(t)}, .. .log{Wi,(t)}}', and By(7) = {Bo. (7). - -, Bop-1(7), Bop(7)},

with fy ;(7) denoting the jth component of 8 (7). Unlike model (2.1), model (2.2) takes

a symmetric form, and does not require choosing the reference covariate. The symmet-
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ric form of model (2.2) also enables an estimation that possesses desirable properties
such as scale invariance, permutation invariance, and selection invariance (Aitchison,
1982; Lin et al., 2014).

Many longitudinal quantile regression models studied in literature (e.g., Lipsitz
et al., 1997; Wang and Fygenson, 2009; Sun et al., 2016; Cho et al., 2016; Gao and Liu,
2020) bear similar forms to model (2.1) or (2.2), but they do not involve the zero-sum
coefficient constraint and were investigated under the locally concerned perspective.

We study a globally concerned framework based on the longitudinal quantile re-
gression model (2.2), where a covariate is considered relevant if it has nonzero effects
on the conditional quantiles of Y () at some, not necessarily all, quantile levels in A.

That is, the set of relevant (or active) compositional covariates is defined as

Sa={je{l,....p}: T €A, |B,(1) >0}.

It is clear that S; = S{;; C Sa when 7 € A. The globally concerned perspective
warrants a global sparsity assumption, that is, s = |Sa| = o(n), for model identifiability

purposes, where | - | denotes the cardinality.

2.2 Globally adaptive L, penalized estimation

The observed longitudinal data can be generally formulated as {(Y;(¢)dN;(t), X;(t)dN;(t),

Z;(t)dN;(t)),1 = 1,...,n}. When p is fixed, model (2.2) without the zero-sum coeffi-
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cient constraint can be estimated by minimizing the longitudinal quantile loss function,

Qe B:7) Z / o {Yilt) — Xa(t)Tex — Zo(t) BYAN, (D),

where p,(t) = t(7 — I{t < 0}) is the 7th quantile loss function. From the definition,
Q(a, B; 7) takes an equal weight summation of the quantile loss function, assessed at all
within-subject observation time points. This mimics the idea of constructing a general-
ized estimating equation (GEE) for longitudinal data under the working independence
assumption (Liang and Zeger, 1986). The same strategy is adopted in existing works
on longitudinal quantile regressions (e.g., Wang and Fygenson, 2009; Sun et al., 2016).
Estimations based on Q(«, 3;7), like the GEE approach, can properly accommodate
longitudinal data with correlated repeated measures.

We propose applying the adaptively weighted L; regularization to Q(e, 3;7) to
address the high dimensionality of Z;(¢). This renders a regression coefficient estimator

(1) as a solution to the following constrained minimization problem:

5(r) = (&) B(r)) = argming g 5o Qe 37 +Azw] 8il). (23)

Aligning with the perspective of globally concerned quantile regression, A is a tuning pa-
rameter that is constant over 7 and controls for the global sparsity over 7 € A, namely,
Sa. Here, w;(7) is a nonnegative adaptive weight function that gauges the importance

of Z;;(t), the jth component of Z;(t), for j = 1,...,p. The adaptive weights may

take the following forms: (wl) w;(7) = 1/|Bj(7')|; (w2) wy(r) = 1/(sup,ea \B](T)]),
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(w3) w =1/ |,3 )|dr, where B(7) is a uniformly consistent estimator of B, (7).
As discussed in Zheng et al. (2015), (w2) and (w3) are globally adaptive weights that
capture the global impact of a covariate, and may be theoretically and empirically
preferable. A uniformly consistent estimator B(T) can be obtained by directly adapt-
ing the approach of Belloni and Chernozhukov (2011) to high-dimensional longitudinal
compositional data (i.e., solving the minimization problem (2.3) with the penalty term
and tuning parameter selector presented by Belloni and Chernozhukov (2011)). This
can be justified by slightly modifying the proof of Theorem 1 (Section 3), combined
with the techniques of Belloni and Chernozhukov (2011).

To solve the constrained minimization problem in (2.3), we first write the objective
function as a classical quantile loss function. Let e; be a p-dimensional vector with
the jth component equal to one and all others equal to zero, for 7 = 1,...,p. In
addition, for any integer m > 2, denote the m-vector of ones and zeros by 1,, and 0,,,

respectively. Because p,(u) + p,(—u) = |u],

)‘ij )18l = Z{pf X;Ta - Z;’Tﬁ) + (Y — X;ﬂ a—2Z,; 'B)}’
where (Y, X3, Z5) = (0,0,, \wj(7)e;) and (Y, X5, . Zs, ) = (0,0, —Aw;(7)e;).

Letting v = (a', ,BT)T, we then formulate the equality constraint Z?Zl B; = 0 as
two inequality constraints, ?:1 B; > 0 (or expressed as (0], 1;)17 > 0 in matrix
form) and — 377 | 8; > 0 (or expressed as (0], —1;)™y > 0 in matrix form). Then,

the quantile regression problem in (2.3) with the linear inequality constraints can be
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solved using the existing function rq.fit.fnc() in the R package quantreg, and the aug-
mented data set {Y}(tl(»k)),Xi(tEk)), Zi(tz(»k)), k=1,...,m;i=1,...,n}, coupled with
{(Yy*u X;a Zj)7 <}/p*+]7X;(;+]7 Z;Jrj)? .] = 17 e 7p}

The set of relevant compositional covariates, Sa, is estimated by
Sa={je{l,....p}: dr e, |B(r) >0}

2.3 Tuning parameter selection

Tuning parameter selection plays an important role in variable selection. In the globally
concernedsetting, a critical idea is to set A as a common tuning parameter across all
7 € A as a means to control the overall model complexity and avoid overall fitting. We
adapt the generalized information criterion (GIC) (Nishii, 1984; Fan and Tang, 2013)
to the setting of globally concerned longitudinal quantile regression with compositional
covariates.

Specifically, we propose the following uniform selector of the tuning parameter by

minimizing
GICO) = [ Jogar(r)dr + (155] = Do
A
where S'A ={je{l,...,p} :sup,ea |Bj,>\(7')| # 0},

() =2 3 [ pedilt) = Xt () - 2T By baNi (),



2. METHODOLOGY

and ¢, is a sequence converging to zero with n. Here, B]‘,)\(T), é\(7), and B,(7)
represent the proposed estimates for §;(7), a(r), and B(7), respectively, with the
tuning parameter fixed at A\. A popular choice of ¢, is n~!log(p)log(log(n)). Note
that the model size pertaining to the compositional covariates is |§,\| — 1, owning to
the zero-sum constraint.

As shown in Theorem 3, with a properly chosen ¢, and a reasonable upper bound
imposed on the model size, the proposed tuning parameter 5\, which is the minimizer of
GIC(\) with respect to A, can consistently identify the true model Sa. In other words,

A

with probability tending to one, S5 = Sa.

2.4 Grid-based Approximation

With finite sample sizes, minimizing (2.3) for all 7 € A yields estimates that are exactly
piecewise constant functions of 7. However, although the exact breakpoints of these
piecewise constant functions can be identified by adapting the procedure of Koenker and
d’Orey (1987) and Portnoy (1991), the computation expense can be overwhelming in the
ultrahigh-dimensional cases. Therefore, we approximate &(-) and B() using piecewise
constant functions that jump only at the grid points of a prespecified sufficiently fine
7-grid in A to alleviate the computation burden. Let S,, denote the 7-grid in A, for 7y <
71 < ... < Tum(n), and define the size of S,, as ||S,|| = max{r, — 71 : k=1,...,M(n)}.

The grid-based approximations are given by &°"(-) = 224:(? ) a(me)l (T < 7 < 1),
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”‘Sn n) > . . .
and B () = ZkMz(l),B(Tk)I(Tk,l < 7 < 7). With a certain smoothness assumption
~Sn R A~
for ao(-) and B,(-), we can show that (&5 (-)", 8" ()" and (&(-)", B(-)")" have the
same convergence rate and asymptotic distribution if ||S,|| converges to zero at the rate

o((ns)~1/?).

3. Theoretical Results

Without loss of generality, we assume that r, the number of usual covariates, is finite.
Let Sa ={1,...,s} and use S = {s+1,...,p} to denote the collection of all irrelevant
compositional variables. We allow the number of compositional covariates p, = p and
the true model size s,, = s to increase with the sample size n. For ease of presentation,
we often omit the subscript n when it is clear from the context.

Let V,(t) = (Xy(t)", Zi(t)")" and v(7) = (a(7)", B(7)")", satisfying >°¥_, 8;(7) = 0.
Thus, v, (7) = (ao(7)", By(7)")". We decompose Z;(t) into (Zi(t)", Zgu(t)")" and Vi(t)
into (Vi (1), Vi (1)), where Zi,(t) = (Z;1(t), ..., Zi o))", Via(t) = (Xi(t)", Ziu(t)")T,
and V() = Zip(t) = (Zisi1(t), ..., Zip(t))". Similarly, B(7) = (8B,(7)", B(7)")" and
Y(7) = (Va1 7(7))T, where B,(7) = (Bi(7), ... Bs(1)), Ya(7) = (e(7)", Bu(T) "),
and v,(7) = B,(1) = (Bsx1(7),...,By(7))". The regularity conditions (C1)-(C5) are
stated in Section S1 of the Supplementary Material.

In Theorem 1, we show that the proposed estimator is uniformly consistent over A

with the convergence rate O,(+/(r + s)logn/n), which is the fastest possible and is as
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good as that of the globally adaptive estimator of Zheng et al. (2015). For a single 7 or
a finite number of 7, we establish a faster convergence rate, O,(+/(r + s)/n), as stated

in Corollary 1.

Theorem 1. Suppose conditions (C1)-(C5) (stated in the Supplementary Material)

hold. Furthermore, we assume that n/((r 4 s)3log? max{n, r + p}) — co and

E(fy {Vii(t)Vi(t) 0}2dNi(t)] _ . (10g max{n, r +p}> '

s (r+s)logn

j>r+575€Rr+s—1 ||6||2

Ifr+s=0(n'/?), sup;cq, rea Awj(7) = Op(v/nlogn), A/ (v/r + slogmax{n,r +p}) —

00, and (infjs,qsrenw;(7))"2/n//(r + s)logmax{n,r + p} = O,(1), then the pro-

posed estimator satisfies

sup [4(7) = 7o(r)| = (/T + ) logn/m).

Corollary 1. Suppose the conditions in Theorem 1 hold. Then, the proposed estimator

satisfies
19 (70) = Yo(m0) | = Op(v/(r + 5) /).

In Theorem 2, we establish the weak convergence of the proposed estimator.

Theorem 2. Suppose the conditions in Theorem 1 hold. If (r + s)*log*n = o(n), for

any given & € R, 1 and ||€]| = 1, we have the following results:

(a) If \/n/{(r + s)logn}infi<j<s rea |Bo; (7)| — o0, then

n2€T [HL {3(r) — 7o(r)} + eo(r)
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converges weakly to a mean-zero Gaussian process with covariance
E(1,7') = E{hner(V(),Y)hner (V(1),Y)} = E{hng(V(1),Y)} E{hner (V(1),Y)},
where hye - (V(t),Y) = fooo EV(AY (1) = V() (1) YN (1), ¢y (u) = 7 — I(u < 0),

Ho_ B[y fir {0IVi(t)} Via(t)Via(t)'dN;(t)] O

0 0

w(7) = (0], (w(7) o sign(By(1)))", 0;73)1 o denotes the Hadamard product, and w(1) =

(wi (), wp(7)';

() If supean™ {3 s, M3 (1)}V/? = 0,(1), then n'2€H {F(7) — 75(7)} con-

verges weakly to a mean-zero Gaussian process with covariance X(1,7').

To establish the asymptotic properties of the GIC tuning parameter selector, we
assume the following condition (C5+), which is an enhanced version of (C5) presented

in the Supplementary Material:

(C5+) (a)
S'E[ [ V() V,(t)TdN;(1)|d
.\ 5™ VOV di (1)
€ Ry (<1+1,540 0]
S"E[[Z°V,(t)V.(t) dN;(t)|é
.. UZViOViOraNols
0€Ry £<r+kK,6#40 ||6H
(b)

E[ [V, (£)T82dN;(t)]3/2
Je sy BUs V@SPANoPE

seRpt<rinszo E[[]° [Vi(t)T812dN;(t)]
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where Ry = {6 = (81,6))": 6, € R", L1025 = 0,[|04]lo <€ —r}, with || - [|o denoting
the Ly norm.

In addition, we set a model size upper bound, denoted by k, with s < kK < p,

g =min { iy [ Joa,(rlar.in, [ 160y (r)lar}.

which measures the minimal overall effect of the usual and compositional relevant vari-
ables on the conditional distribution. Theorem 3 and Corollary 2 present the consis-

tency of the tuning parameter selection based on the GIC.

Theorem 3. Suppose the conditions in Theorem 1 and (C5+) hold. Furthermore,

log(r +p)/n = o(én), ¢n = o 2/2), and kn~'logmax{n,r + p} = o(&3). Then,

P( inf  GIC(S) > GIC(SA)> 1.

S#Sa|8|<k

Corollary 2. Under the same conditions as in Theorem 3, if

{ inf wj(T)}_l\/ﬁ/\/(T + s)log max{n,r 4+ p} = O,(1)

j>risrea
and sup, e jes. wi(17) = Op(v/n/(\/r + slogmax{n,r +p})), then P(g;\ =Sa) — L.

For any 1 <[ < s, we use ZL(t) to denote the log-ratio transformed W;(¢) when
the reference is the Ith component; that is, Z.(¢) is the vector Z;(t) — Z;;(t)1,, with
the Ith component removed. We also define Vi(t) = (X;(t)", Z(t)")". Let v(7) =

(a(T)Tv B\Z<T>T)T7 where IB\Z<T) = (ﬁl (7—)7 s >Bl—1(7_)7 Bl-l-l(T)? s 76P(T)>T' Let PA}I\l(T) be
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the solution of the following unconstrained minimization problem:

; 2 /ooo pr{Yilt) = VIO nJANi() + X D wi(n)IB;) (3.4)

=LA
where v, = (o, s, Br, ++ , Biet, Birt, -+ 5 Bp)". Then, the globally adaptive un-
constrained estimator 4;'(7) with the [th component as the reference is (31,\(7), - -+, 3\ (7),
At ()55 At (T)s = Dt ot Ytk (T)s Yo (T)s -+ Arapa(7)) 7. We state

the asymptotic properties of 4;'(7) in the following theorem:

Theorem 4. Under the same conditions as in Theorem 2, if (r + s)?log*n = o(n)
and sup,cp jes, P Aw; (1) = 0,(1), then, for any given & € Rois_1, ||| = 1, and
1 <1< s, we have

(a) n'2E€TH, {4} (T) — v,(T)} converges weakly to a mean-zero Gaussian process
with covariance (7, 7') and P(sup,ca [[¥4(7)[lc = 0) — 1;

(b) n' 2 {4 (1) = ~o(1)} and n'2E{A(T) — v,(7) Yare asymptotically equivalent.

Theorem 4 indicates that the proposed constrained estimator is asymptotically
equivalent to an unconstrained estimator that uses a relevant variable as the reference.
However, the latter approach requires preliminary knowledge about the truly relevant
variables, which may not be available in practice.

By our theorems, the technical constraints for s include (r + s)®log® max{n,r +
p} = o(n) and (r + s)?log*n = o(n). When p = O(n®) (a > 0), we can allow s

to be close to, but smaller than o(n'/?), which is the fastest model size growth rate
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derived in Welsh (1989) and He and Shao (2000) for an unpenalized quantile regression
estimator to achieve asymptotic normality. Proofs of the theorems are provided in the

Supplementary Material (Section S4).

4. Simulation Studies

In this section, we carry out simulation studies to evaluate the finite-sample perfor-
mance of the proposed method. We consider the sample size n = 100 and generate Y (¢)
based on the assumed quantile regression model with » = 4 and p = 400. Specifically, we
generate the longitudinal observation times tgk), fork=1,...,m,;, from a standard Pois-
son process, where m; is the integer part of 2+U; with U; ~ Uniform(0,2). With r = 4,
we generate X;; from Uniform(0,1) and X, from Bernoulli(0.5). For each observed

) we first generate a p-dimensional vector Zi(t) = (Zu(t), ..., Zy®)"

time point ¢ = ¢\
from a multivariate normal distribution N,(0,X), where X = (p~7l) with p = 0.5.
Next, we set Z;;(t) = ®(Z;(t)), for j # 7 and Zi7(t) = —®(Ziz(t)), and then standard-
ize Z;j(t) so that its second moment is equal to one, where ®(-) is the standard normal
distribution function and 7 = 1,...,p. The standardized Z,-j(t) (j=1,...,p) form the
covariate vector Z;(t).

To generate the longitudinal responses, we consider the following four setups:

Setup (I): Data are generated from a longitudinal linear model with independent ho-
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MOogeneous errors,
Yi(t) = =X + Xig — t + Zi(t)'b + (1),
where b = (1,0.8,0.9,1,2, —1.5, —4.2,0,...,0)", &(t) ~ N(0,1) for any ¢ > 0, and €;(#)
and ¢;(t') are independent for ¢ > 0, ¢ > 0, and ¢ # t'.
Setup (II): Data are generated from a longitudinal linear model with dependent homo-

geneous €rrors,

Yi(t) = —Xi + Xio — t + Zi(t) b + a; + &(t),
where b = (1,0.8,0.9,1,2, —1.5,—-4.2,0,...,0), a; ~ N(0,1/2), &(t) ~ N(0,1/2) for
t >0, ¢(t) and ¢;(t') are independent for ¢t > 0, ¢ > 0, and ¢t # t, and a; and €;(¢) are
independent for ¢ > 0.
Setup (III): Data are generated from a longitudinal linear model with independent

heterogeneous errors,

Y;(t) — — A4 + Xig —t —+ Zl(t)—rbl -+ (le + Zi(t)Tbg)Ei(t),

where b; = b = (1,0.9,0.75,0.5,0.8, 1, —4.95,0,...,0)7, by = (0,0.25,0,1,0,0, —1.25,0, . ..

€;(t) ~ N(0,1) for any t > 0, and ¢;(t) and ¢;(t') are independent for ¢t > 0, ¢ > 0, and
tAt.
Setup (IV): Data are generated from a longitudinal linear model with dependent het-

erogeneous errors,

Y;(t) = —X;1 + Xig —t+ Zz(t)Tbl + (Xﬂ + Zl(t)Tbg)(az + Ei(t»,
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whereb; = b = (1,0.8,0.9,1,2, —1.5, —4.2,0,...,0), by = (0,0.2,0,0.1,0,0, —0.3,0, ..., 0),
a; ~ N(0,1/2) and ¢;(t) ~ N(0,1/2) for t > 0, ¢;(t) and ¢;(¢') are independent for ¢ > 0,
t'>0,and t # ', and a; and ¢(t) are independent for ¢ > 0.

Under Setups (I) and (II), we can show that
Qi {71Xi(1), Zi(1)} = Qe(7) — X + Xio — t + Zy(t)'b,

where (Q).(7) is the 7th quantile of the standard normal distribution. Under Setups

(IIT) and (IV), we can show that
Qv {TIXi(t), Zs(t)} = {=1+ Qc(7)} Xir + Xia — t + Zy(t) {b1 + byQ(7)}.

In all setups, the true regression coefficients for Z;(t) satisfy the zero-sum constraint at
each 7.

We evaluate the finite-sample performance of the proposed globally adaptive Lasso
estimators with weights (w2) and (w3), denoted by AW, and AWj, respectively. We
set A =[0.1,0.9] and the 7-grid S,, as {0.1 < 0.125 < ...< 0.9}. We select the tuning
parameter \ using a GIC criterion with ¢,, = log(logn)logp/n, except for that in the
initial estimator. The candidate values for A include N/4 equally spaced grid points
between N/150 and N/15, where N = ) "  m; is the total number of longitudinal
observations. We adapt the method of Belloni and Chernozhukov (2011) over A to get
the estimator B(T) for calculating the adaptive weight functions.

We compare AW, and AW3 with the locally concerned adaptive Lasso estimator
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at a single predetermined quantile level 7 = 0.2,0.5, or 0.8, denoted by SS(7), as
well as with the pointwise approach, which simply combines the estimates from SS(7)
over 7 € A, and is denoted by PS. We also consider four other benchmark estimation
procedures, namely, ALasso (i), ALasso (ii), ALasso (iii), and ALasso (iv). The ALasso
(i) estimators are the unconstrained estimators obtained by minimizing (3.4), with the
reference, the [-th component, chosen randomly. The ALasso (ii) estimators are the
globally adaptive estimators derived from model (2.2) without considering the zero-sum

7y ()

constraint. That is, the ALasso (i) estimators, (&(7)W 3(7) "), are obtained as

n oo P

argming { ~ > | oetvite) = Xite e~ Zu(07BYaN (1) + >}
i= j—
The ALasso (iii) estimator is obtained by fitting the log-contrast model based on the
relevant variables selected by the ALasso (ii) approach. The ALasso (iv) estimator is
obtained by solving the minimization problem (2.3) without including the zero-sum
constraint, using the selected relevant variables to fit a log-contrast model, and then
selecting the tuning parameter using the GIC criterion and determining the final esti-
mator.

We assess the variable selection performance of the different methods described
above in terms of the mean number of correctly identified relevant variables (NCN),
mean number of incorrectly selected variables (NIN), percentage of under-fitted models
(PUUF), percentage of correctly fitted models (PCF), and percentage of over-fitted

models (POF). To evaluate the global estimation accuracy over 7 € A, we consider
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three average estimation errors, AEE, , AEE,,, and AEE,_, where

AEE,, = ﬁ /A 1B(r) — B° ()]l dr.

For SS(7), we calculate the average estimation errors by extrapolating the coefficient
estimate as the constant value of the whole coefficient function over 7 € A. To assess
how well the estimated coefficients satisfy the zero-sum constraint, we adopt the crite-
rion SUM, which is defined as SUM = >7_, 8;(7.), where 3;(-) denotes the estimated
coefficient function and 7. = argmax, .| _7_, 8;(7)|. Better performance is indicated
by NCN closer to seven, the true number of relevant covariates, PCF closer to 100%,

NIN, PUF, and POF closer to zero, smaller AEE,,, AEE,,, and AEE,_, and SUM

closer to or equal to zero.

The simulation results for setups (I)—(IV) are presented in Table S1, Table S2, Table
S3, and Table 1, respectively, where Tables S1-S3 are provided in the Supplementary
Material. Simulation results are summarized based on 300 replicates. As seen from
these tables, the proposed estimators with the globally adaptive weights, AW, and AW3,
perform well in all setups, where the error terms can be homogeneous or heterogeneous,
and can be independent or dependent across different time points. In all setups, the
PCF's based on these estimators are around or above 85%, and the zero-sum constraint is
always met by the estimated coefficient functions. As shown by additional simulations

reported in the Supplementary Material (see Tables S4-S5), the PCFs can increase

further as the variance of the longitudinal error decreases. In setups (I) and (II),
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where the effects of Z(t) are constant over 7, the estimation accuracy is comparable
between the proposed globally adaptive estimators and the local estimators, SS(7), for
7 =0.2,0.5,0.8. However, the variable selection based on SS(7) is more likely to miss
relevant variables, as reflected by the higher PUFs, particularly when 7 = 0.2 or 0.8. In
setups (III) and (IV), where the effects of Z(t) are not constant over 7, SS(7) performs
much worse in terms of variable selection than do AW, and AW3. This may lead to
a deterioration in the average estimation errors for SS(7) observed in setups (III) and
(IV). In all setups, the pointwise method produces average estimation errors similar to
those of AW, and AW3. However, the pointwise method tends to overfit, with a POF
equal to 31.7% in setup (I), 26.3% in setup (II), and 23% in setups (III) and (IV).
The results for the globally adaptive estimators under ALasso (i) show a common
overfitting problem associated with adopting the unconstrained log-contrast model.
This is because the ALasso (i) procedure automatically includes the reference composi-
tional covariate, which may not be a truly relevant covariate. The results under ALasso
(ii) suggest that the underlying zero-sum constraint of the coefficients is not satisfied
if it is not carefully accounted for in the estimation procedure. In such a situation,
interpreting the resulting coefficient estimates as the effects of compositional covariates
is problematic. The ALasso (iii) approach renders satisfactory rates of correct fitting,
but yields larger estimation errors compared with those of the proposed method. The

ALasso (iv) method tends to overfit, with the percentages of overfitting above 25%.
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The enlarged estimation errors and the overfitting behavior reflect the disadvantage of
handling the zero-sum constraint separately from the model estimation and variable
selection. In summary, the simulation results show the importance of the proposed

globally adaptive estimators, as well as their satisfactory empirical performance.

5. A real-data example

We applied the proposed method to a longitudinal data set from the Feeding Infants
Right... from the STart (FIRST) study. The FIRST study is an ongoing perspec-
tive observational study that has enrolled and followed up on children with CF from
the neonatal period. In this study, various diet-related biomarkers were collected re-
peatedly at prespecified CF care visits. For example, fecal specimens were collected
at approximately 2, 4, 6, 8, and 12 months of age for each child. Gut microbiome
composition data were then extracted from the fecal specimens using 16S rRNA gene
pyrosequencing, and comprise the relative abundance of 364 unique genera subject to
the unit-sum constraint. The level of calprotectin, a biomarker for inflammation in the
gastrointestinal (GI) tract, was also tracked over time, and recorded in units of micro-
grams per gram of stool. In our analysis of the FIRST data set, the specific question
of interest is how the gut microbiome composition is associated with the calprotectin
level over time. Identifying the subcompositional bacterial taxa linked to the variations

in calprotectin can provide useful insights into the early CF disease mechnisam.
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The final data set includes 135 subjects and a total of 328 longitudinal records,
after excluding seven children with a low birth weight. Table S6 in the Supplemen-
tary Material presents the basic summary statistics by gender, number of longitudinal
records, and calprotectin levels. The results show that 56% of the subjects are boys,
and about 50% of the subjects have three or four longitudinal records. Furthermore,
the calprotectin levels present a skewed distribution, with the median (= 64.5) consid-
erably smaller than the mean (= 111.2). In this case, adopting longitudinal quantile
regression modeling can deliver a more comprehensive and robust view about how the
gut microbiome composition influences calprotectin levels.

In our analysis, we implement the proposed globally adaptive methods with the
adaptive weights (w2) and (w3) and A = (0.2,0.8] (denoted by AW, and AWj3, respec-
tively), the locally concerned adapive-Lasso method SS(7) with 7 = 0.2,0.3,...,0.8,
and the pointwise method (denoted by PS), which is a union set for SS(7), with
7=0.2,0.225,...,0.8. We include gender as a regular covariate. The compositional co-
variates are the relative abundance of the 364 genera measured from the gut microbiome
samples. We exclude six genera that have a relative abundance below the detection
limit in all samples. In addition, we replace all non-detectable relative abundance with
an extremely small constant 1072°, which is much smaller than the minimum nonzero
relative abundance captured in our data set, 4.418 x 1075, For the tuning parame-

ter selection, the candidate values of A include N/4 equally spaced grid points between
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N/150 and N/15, where N = 328. To avoid selecting boundary A, ¢,, in the GIC is cho-
sen as log(logn)logp/(20n) for the globally concerned and locally concerned quantile
regressions. Estimates below 10™* are shrunk to zero.

To evaluate each method, we compute the prediction errors as follows. We first
randomly split the 135 subjects into a training set of size 120 and a testing set of
size 15. We apply the method to the training data set and obtain the estimator of

~ train

(ao(7)T, By(T))T, denoted by (&™™(r)T, 3 " (7)7)". Then, we calculate the predic-

tion error in the testing set as

~ train

Sier Ja Sy prAYilt) = Xi(0) & (r) — Zy(1)'B (1) }AN;(¢)dr
2 Wi e T} ’

where T denotes the test set. For SS(7), we calculate PE(A) by treating the coefficient

PE(A) =

estimate as a constant-valued function over 7 € A.

Table 2 lists the genus sets selected using the different methods. The average
prediction errors (PEs) and the corresponding standard deviations (within parentheses)
are also presented. The PE calculations are based on 200 random splits of the training
and test sets. Table 2 shows that the selected genus sets vary considerably across
the locally concerned methods, SS(7), with different choices of 7. These observations
suggest that some genera may have varying effects on different quantiles of calprotectin
level, and, may also, in part, reflect the variable selection instability associated with
SS(7) (Zheng et al., 2015). For example, the genus “gl15” may only affect median

calprotectin, but not the lower or upper quantiles. In contrast, the proposed globally



6. CONCLUSION

concerned methods give robust and parsimonious selections of genus sets. For example,
the selected genus sets are almost identical between AW, and AWj3. The selected
genera are mostly also selected by one of the SS(7). Naively pooling the results from
the SS(7), as shown by the PS method, leads to selecting an excessive number of genera
(i.e., 26 genera). Some genera selected by SS(7), but not by AW, or AW3, are possibly
“false positives” as suggested by the apparent overfitting behavior of the PS method
demonstrated in the simulation studies. Moreover, the proposed method AW 3 yields the
smallest prediction error. The prediction error of AW5 is close to the second smallest
value. The locally concerned SS(7) methods produce larger prediction errors, because
they neglect important genera that do not show effects at the 7th quantile, but are
relevant to other quantiles. In summary, the proposed globally adaptive methods strike
the best balance between parsimonious variable selections and accurate predictions,
while retaining sensible interpretations by satisfying the zero-sum constraint of the

coefficients.

6. Conclusion

In this work, we develop a globally concerned longitudinal quantile regression framework
that accommodates high-dimensional compositional covariates. The proposed method
achieves the oracle convergence rate and the global model selection consistency, while

enjoying interpretative advantages.
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The longitudinal quantile regression model presented here assumes that no covari-
ate effects change over time. To accommodate temporal covariate effects, model (2.1)
or (2.2) can be extended with the regression coefficients formulated as bivariate func-
tions of 7 and t. Intuitively, this can be achieved by combining the proposed method
with the strategy of Park and He (2017). That is, the longitudinal loss function can be
modified by incorporating spline approximations of the regression coefficient functions,
with the penalty term adjusted accordingly. Nevertheless, this approach may be com-
putationally prohibitive because of the additional high-dimensional layer induced by
the spline approximations. Specifically, suppose there are L spline basis functions and
L = O(n'/?). Based on the proposed estimation for model (2.1), the computational
complexity is about O(n? - p - M(n)), based on the result of Klee and Minty (1972)
for the simplex algorithm. When considering the spline-based estimation for the ex-
tended model with time-varying coefficients, we expect that the computational intensity
will be roughly equivalent to that of fitting a quantile regression model for a data set
with sample size nM (n) and covariate dimension pL, which is about O(n?M (n)*pL).
Given M(n) = O(n), as suggested by Zheng et al. (2015), tackling the more flexible
model with time-varying coefficients would require O(n%°) times the computational
effort needed for the proposed model (2.1), which can be computationally prohibitive
for high-dimensional applications. =~ How to address such an obstacle merits future

research.
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After applying the proposed method to a real data set, assessing the adequacy
of model (2.1) with the prespecified quantile index set A and the selected relevant
variables may be of practical interest. To this end, we can adapt the model-checking

strategy of Peng and Huang (2008), and consider the stochastic process

—n—wz / W (Vi(£)r {Yi(t) — Xa(t)é(r) — Za()B(r) }ANi(t)

as an analogue of the martingale-based diagnostic process employed by Peng and
Huang (2008), where ¢,(u) = 7 — I(u < 0). Here, W(-) is a known bounded func-
tion and V;(t) = (Xi(t)", Z;(t)")". A lack-of-fit test statistic can be constructed based
on sup,¢a |[K,(7)|. Following the lines of Peng and Huang (2008), the corresponding p-
value can be obtained by using a properly designed resampling scheme to approximate
the distribution of K, (-) under model assumption (2.1).

Following the idea of the weighted GEE (Liang and Zeger, 1986) and the quasi-
likelihood approach for a median regression (Jung, 1996), we can incorporate within-
subject correlations of repeated measures to further improve the estimation efficiency of

the proposed method. Specifically, consider a weighted penalized estimating equation,
_I/QZVTQZ (15, 8) 7' Si(1; 0, B) +)\ij )sign(s;) =

subject to constraint > ¥, 3; = 0, where V; = (Vi(tgl)) V)T S e, B) =
(Su (50 ), -, Sim, (75 00, B) with Su(m; e, B) = I(Yi(t)=X,(t]") a—Z:(1,")'8 <

0) — 7, and Q;(7; ¢, 3) is a working covariance matrix that approximates the covari-
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ance of S;(7; o, 3). When Q,;(7; o, B) is an identity matrix I,,,,, solving this estimating
equation is equivalent to minimizing (2.3), which adopts the working independence
assumption. However, note that the weighted estimating equation loses the nice mono-
tonicity property possessed by the unweighted version. In addition, the covariance of
Qi(7; ¢, 3) is often unknown in practice, and its empirical estimate may not be stable
when the sample size is not large, as in the FIRST data set. One possible way to
alleviate the computational issue is to adopt an iterative algorithm in which we first
solve the weighted estimating equation, with the parameters a and 3 in the weight
function Q;(7; e, 3)~! fixed, and then update the weight function using the resulting
parameter estimates. In this case, the estimating equation in each iteration is still
monotone. Applying this strategy may improve the estimation efficiency, while still
being computationally viable. Investigating such a weighted method is left to future

research.

Supplementary Material

Detailed proofs of the lemmas and theorems and additional simulation studies are

provided in the online Supplementary Material.
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Table 1:  Simulation results under Setup (IV) with dependent heterogeneous errors

AEE, AEE, AEE, NCN NIN PUF PCF POF SUM
(%) (%) (%)

Proposed
AW, 2261 1.024 0.694 6.923 0.040 7.7 883 4.0 0.000
AW, 2297 1.041  0.707 6.877 0.017 12.0 &86.7 1.3 0.000
SS(0.2) 2.828 1.275  0.841 6.110 0.007 57.3 42.0 0.7 0.000
SS(0.5)  1.908 0.863  0.577 6.670 0.017 29.0 693 1.7 0.000
SS(0.8) 2.623 1.206 0.829 6.273 0.023 43.3 54.7 2.0  0.000
PS 2277 1.034 0702 6970 0.257 3.0 740 23.0 0.000

ALasso (i)

AW, 2456 1.067 0.706 6.917 1.030 80 0.7 91.3 0.000
AW, 2491 1.084 0.718 6.860 1.010 13.3 0.7 86.0 0.000
ALasso (ii)

AW, 2326  1.064 0.725 6.913 0.033 87 883 3.0 1.916
AW, 2352 1.076  0.734 6.857 0.017 14.0 &4.3 1.7 —=2315
ALasso (iii)

AW, 2549 1.146  0.770 6.913 0.033 87 883 3.0 0.000
AW, 2668 1.199  0.811 6.857 0.017 14.0 &4.3 1.7 0.000
ALasso (iv)

AW, 2294 1.030 0.68 6.963 0.380 3.7 63.7 327 0.000
AW5; 2305 1.035 0.690 6.957 0.347 4.3 65.0 30.7 0.000
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Table 2: Analysis of the FIRST data set

T Method Selected Genus Sets PE
[0.2,0.8] AW, g50 g93 gl15 g137 g147 g152 g162 g178 g184  0.5279 (0.0837)

2197 2204 g210 g213 g219 g297 319 g370

AW, 50 293 g115 g147 g152 g162 g178 gl197 0.5271 (0.0837)

2204 210 g213 g219 g297 g319 g370

PS g14 g32 g50 g4 g93 gl15 gl119 gl137 gl47  0.5278 (0.0826)
152 g153 g162 g178 g183 g184 g188 193 g197

2199 g204 g210 g213 g219 g297 g319 g370

0.2 SS g147 g153 8213 0.7893 (0.1420)
0.3 SS None 0.6833 (0.1206)
0.4 SS g50 g93 g119 g147 g162 g183 0.6135 (0.1038)

2197 g199 g204 g213 g297

0.5 SS gld g115 g137 g147 g193 g197 0.5855 (0.0976)

8204 g213 g219 g297 g319
0.6 SS None 0.5960 (0.0981)

0.7 SS o147 g152 g178 g184 g197 g204 0.6621 (0.1025)

9213 297 g319 g370

0.8 SS g32 g147 g152 gl162 g178 g197 g204 g213 0.7926 (0.1235)
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