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Abstract 
With the availability of high dimensional genetic biomarkers, it is of interest to identify 
heterogeneous effects of these predictors on patients’ survival, along with proper statistical 
inference. Censored quantile regression has emerged as a powerful tool for detecting 
heterogeneous effects of covariates on survival outcomes. To our knowledge, there is little 
work available to draw inference on the effects of high dimensional predictors for censored 
quantile regression. This paper proposes a novel procedure to draw inference on all predictors 
within the framework of global censored quantile regression, which investigates covariate-
response associations over an interval of quantile levels, instead of a few discrete values. The 
proposed estimator combines a sequence of low dimensional model estimates that are based 
on multi-sample splittings and variable selection. We show that, under some regularity 
conditions, the estimator is consistent and asymptotically follows a Gaussian process indexed 
by the quantile level. Simulation studies indicate that our procedure can properly quantify the 
uncertainty of the estimates in high dimensional settings. We apply our method to analyze the 
heterogeneous effects of SNPs residing in lung cancer pathways on patients’ survival, using 
the Boston Lung Cancer Survival Cohort, a cancer epidemiology study on the molecular 
mechanism of lung cancer. 

KEYWORDS: Conditional Quantiles; Fused-HDCQR; High Dimensional Predictors; 

Statistical Inference; Survival Analysis. 
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Lung cancer presents much heterogeneity in etiology (McKay et al. 2017; Dong 

et al. 2012; Huang et al. 2009), and some genetic variants may insert different 

impacts on different quantile levels of survival time. For example, in the Boston 

Lung Cancer Survival Cohort (BLCSC) (Christiani 2017), a cancer epidemiology 

cohort of over 11,000 lung cancer cases enrolled in the Boston area since 1992, 

it was found that SNP AX.37793583 (rs115952579), along with age, gender, 

cancer stage and smoking status, had heterogeneous effects on different 

quantiles of survival time. A total of 674 patients in the study were genotyped, 

with the goal of identifying lung cancer survival-predictive SNPs. Target gene 

approaches, which focus on SNPs residing in cancer-related gene pathways, are 

appealing for increased statistical power in detecting significant SNPs (Moon 

et al. 2003; Risch and Plass 2008; Ho et al. 2019), and the investigators have 

identified SNPs residing in 14 well-known lung cancer-related genes (Zhu 

et al. 2017; Korpanty et al. 2014; Yamamoto et al. 2008; Kelley et al. 2001). One 

goal was to investigate whether and how each SNP might play a different role 

among the high-risk (i.e., lower quantiles of overall survival) and low-risk (i.e., 

higher quantiles of overall survival) cancer survivors. 

Quantile regression (QR) (Koenker and Bassett Jr 1978) is a significant 

extension of classic linear regression. By permitting the effects of active variables 

to vary across quantile levels, quantile regression can naturally accommodate 

and examine the heterogeneous impacts of biomarkers on different segments of 

the response variable’s conditional distribution. As survival data are subject to 

censoring and may be incomplete, QR methods developed for complete data 

may be unsuitable. Efforts have been devoted to developing censored quantile 

regression (CQR) (Powell 1986; Portnoy 2003; Peng and Huang 2008, among 

others), which has become a useful alternative strategy to traditional survival 

models, such as the Cox model and the accelerated failure time model. QR has 

also been widely studied to accommodate high dimensional predictors. For 

example, Wang et al. (2012) dealt with variable selection using non-convex 

penalization; Zheng et al. (2013) proposed an adaptive penalized quantile 
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regression estimator that can select the true sparse model with high probability; 

and Fan et al. (2014) studied the penalized quantile regression with a weighted 

L1 penalty in an ultra-high dimensional setting. As to high dimensional CQR 

(HDCQR), He et al. (2013) provided a model-free variable screening procedure 

for ultrahigh dimensional covariates, and Zheng et al. (2018) proposed a 

penalized HDCQR built upon a stochastic integral based estimating equation. 

However, most of the existing works in HDCQR were designed to select a subset 

of predictors and estimate the effects of the selected variables, instead of 

drawing inference on all predictors. 

Progress in high dimensional inferences has been made for linear and non-linear 

models (Zhang and Zhang 2014; Bühlmann et al. 2014; Javanmard and 

Montanari 2014; Ning and Liu 2017; Fei et al. 2019; Fei and Li 2021). For 

example, Meinshausen et al. (2009) proposed to aggregate p-values from multi-

sample splittings for high dimensional linear regression. Another line of works 

referred to as post-selection inference includes Berk et al. (2013), Lee 

et al. (2016), and Belloni et al. (2019), which provided post-selection inference at 

fixed quantiles for complete data. However, these methods may not handle 

censored outcomes. For censored median regression, Shows et al. (2010) 

provided sparse estimation and inference, but it cannot handle high dimensional 

data. 

We propose to draw inference on high dimensional HDCQR based on a splitting 

and fusing scheme, termed Fused-HDCQR. Utilizing a variable selection 

procedure for HDCQR such as Zheng et al. (2018), our method operates partial 

regression followed by smoothing. Specifically, partial regression allows us to 

estimate the effect of each predictor, regardless of whether or not it is chosen by 

variable selection. The fused estimator aggregates the estimates based on 

multiple data-splittings and variable selection, with a variance estimator derived 

by the functional delta method (Efron 2014; Wager and Athey 2018). To 

comprehensively assess the covariate effects on the survival distribution, we 
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adopt a “global” quantile model (Zheng et al. 2015) with the quantile level varying 

over an interval, instead of a local CQR that focuses only on a few pre-specified 

quantile levels. The global quantile model can address the molecular mechanism 

of lung cancer, our motivating disease, that hypothesizes that some genetic 

variants may cause heterogeneous impacts on different but unspecified 

segments of survival distribution (McKay et al. 2017; Dong et al. 2012; Huang 

et al. 2009). 

Our work presents several advantages. First, compared to high dimensional Cox 

models (Zhao and Li 2012; Fang et al. 2017; Kong et al. 2021), the employed 

HDCQR stems from the accelerated failure time model (Wei 1992) and offers 

straightforward interpretations (Hong et al. 2019). Second, utilizing the global 

conditional quantile regression, it uses various segments of the conditional 

survival distribution to improve the robustness of variable selection and capture 

global sparsity. Third, our splitting-and-averaging scheme avoids the 

technicalities of estimating the precision matrix by inverting a p × p Hessian 

matrix of the log likelihood, which is a major challenge for debiased-LASSO type 

methods (Zhang and Zhang 2014; Van de Geer et al. 2014) and is even more so 

if we apply debiased-LASSO to the CQR setting. Finally, as opposed to post-

selection inferences (Belloni et al. 2019, among others), Fused-HDCQR 

accounts for variations in model selection and draws inference for all of the 

predictors. 

The rest of the paper is organized as follows. Section 2 introduces the method, 

and Section 3 details the asymptotic properties. Section 4 derives a non-

parametric variance estimator, Section 5 conducts simulation studies, and 

Section 6 applies the proposed method to analyze the BLCSC data. The 

technical details, such as proofs and additional lemmas, are relegated to the 

online Supplementary Materials. 

2 Model and Method 

2.1 High dimensional censored quantile regression 
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Let T and C denote the survival outcome and censoring time, respectively. We 

assume that C is independent of T given Z , a ( 1)p  -dimensional vector of 

covariates (p > 1). Let min{ , }, 1{ }X T C T C    , and 
T T(1, )Z Z , where 1{·} is 

the binary indicator function. The observed data, ( ) {( , , ), 1, , }n
i i iD X i n   Z , 

are n identical and independently distributed (i.i.d.) copies of ( , , )X  Z . With 

logY T , let ( | ) inf{ : P( | ) }YQ t Y t   Z Z  be the τ-th conditional quantile of Y 

given Z. A global censored quantile regression model stipulates 

T *( | ) ( ), (0,1),YQ    Z Z β  (1) 

where *( )β  is a p-dimensional vector of coefficients at τ. We aim to draw 

inference on *( )j   for each (0, ]U   and for all {1, , }j p  , where 0 1U   is 

an upper bound for estimable quantiles subject to identifiability constraint caused 

by censoring (Peng and Huang 2008). 

Let ( ) 1{log , 1}, ( | ) log(1 P(log | ))TN t X t t T t        Z Z , and 

( ) log(1 )H u u   . Then, ( ) ( ) ( log | )TM t N t t X   Z  is a martingale process 

under model (1) (Fleming and Harrington 2011) and hence ( ( ) | ) 0E M t Z . We 

use ( )iN t  and ( ), 1, ,iM t i n  , to denote the sample analogs of N(t) and M(t). Let 

T( ) ( )i i   Z β  and 

  1

0
1

( , ) ( ) 1{log ( )} ( ) .
n

n i i i i i
i

n N X u dH u


   



   U Zβ  

We denote by ( , )u β  the expectation of ( , )n U β . 

The martingale property implies *( , ) 0 u β  with [0, ]U  , entailing an 

estimating equation with (0, ]U  : 

  1/2 1/2

0
1

( , ) ( ) 1{log ( )} ( ) 0.
n

n i i i i i
i

n n N X u dH u


   



    U Zβ  (2) 

The stochastic integral in (2) naturally suggests sequential estimation with 

respect to τ. We define a grid of quantile values  0 1, , ,m m      to cover the 

Acc
ep

ted
 M

an
us

cri
pt



interval [ , ]U  , where 0   and m U  . The assumption on the lower bound 

0   is made to circumvent the singularity problem with CQR at τ = 0, as 

detailed in assumption (A1). In practice, ν is chosen such that only a small 

proportion of observations are censored below the ν-th quantile. 

Then, 
´
( )kβ ’s, the estimates of ( )kβ ’s, k m  , can be sequentially obtained by 

solving 

 
1

1 ´
1/2

1 0

( ) 1{log ( )} ( ) 0,r

r

n k

ii i i k i r
i r

n N X dH u



   






 

 
    

 Z  

where 
´ ´

T( ) ( )i k i k   Z β . Due to the monotonicity of ( )i   in τ, 
´
( )kβ  can be 

solved efficiently via L1-minimization. And 
´
( ), [ , ]U   β , is defined as a right-

continuous piece-wise constant function that only jumps at the grid points. It can 

be shown that 
´
( )β  is uniformly consistent and converges weakly to a mean zero 

Gaussian process for [ , ]U    when ( )p o n . More importantly, 
´
( )β  provides 

a comprehensive understanding of the covariate effects on the conditional 

survival distribution over the quantile interval [ , ]U  . We incorporate this 

sequential estimating procedure for low dimensional CQR estimation in our 

proposed method. 

In addition, our method requires dimension reduction, which can be 

accomplished by existing methods, including the screening method proposed by 

He et al. (2013) and the penalized estimation and selection procedure developed 

by Zheng et al. (2018). Specifically, Zheng et al. (2018) incorporated an L1 

penalty into the stochastic integral based estimating equation in (2) to obtain an 

L-HDCQR estimator, which achieves a uniform convergence rate of 

log( ) /q p n n , and results in “sure screening” variable selection with high 

probability, where q is defined in condition (A4). Zheng et al. (2018) also 

proposed an AL-HDCQR estimator by employing the Adaptive Lasso penalties, 
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which attains a uniform convergence rate of log( ) /q n n  and selection 

consistency. 

2.2 Fused-HDCQR estimator 

Our proposed Fused-HDCQR procedure consists of multiple data splitting, 

selecting variables, fitting low dimensional CQRs with partitioned data, applying 

append-and-estimate to all predictors, and aggregating those estimates. 

1. With the full data ( )nD , determine via cross-validation the tuning 

parameter(s) λn of , an HDCQR variable selection method. 

2. Let B be a large positive integer. For each 1, ,b B  , 

(i) randomly split the data into equal halves, 1
bD  and 2

bD ; 

(ii) on 1
bD , apply  with λn on [ , ]U  , to select a subset of predictors, 

denoted by ˆ
n

bS , or ˆbS  for short; 

(iii) on 2
bD , for each 1, ,j p  , append j to ˆbS  such that ˆ ˆ{ }b b

jS j S   , 

fit a partial CQR on the covariates indexed by ˆb
jS , and denote their 

coefficient estimates by ˆ ( ), [ , ]b
j US    


β . Here, ˆ ( )b

jS 


β  is a right-

continuous piecewise-constant function with jumps only at the grid 

points of k m  ; 

(iv) denote by  ˆ( ) ( )b
j

b
j S j

  


 β  the entry of ˆ ( )b
jS 


β  corresponding to Zj. 

3. Fusing: the final estimate of *( ), [ , ], 1, ,j U j p        is 

1

1ˆ ( ) ( ).
B

b
j j

bB
   



   (3) 

Remark 1. We could select different tuning parameters for  in each data split, 

but with much added computation. Our numerical evidence suggests that a 

globally chosen λn work well. 
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Remark 2. Our procedure needs a variable selection procedure to reduce 

dimension. For example, L-HDCQR selects a subset: 

0ˆ{ {2, , }: max | ( ) | , },k j k k mj p a      where ˆ ( )j k  ’s are the L-HDCQR 

estimates, 0 0a   is a predetermined threshold, and j starts with 2 as the intercept 

term (corresponding to j = 1) is always included in the model. For the choice of 

variable selection methods, our experience suggests that we adopt the screening 

method in He et al. (2013) for fast computation, use L-HDCQR for detecting any 

non-zero effects in the quantile interval [ , ]U  , and choose AL-HDCQR if we opt 

to select fewer predictors. 

Remark 3. We select λn by minimizing a K-fold cross-validation error defined by 

deviance residuals in the presence of censored outcomes (Zheng et al. 2018). 

Specifically, we partition the data to K folds, and let 
( )

( )
k

 


β  be the penalized 

estimate of ( )β  using all of the data excluding the k-th fold with a tuning 

parameter λ and [ , ]U   , where 1, ,k K  . Under the global CQR model (1), 

we define the cross-validation error as 

( )

1 fold 

CV Error( ) [ ( )] ,| |U
K k

i
k i k

D d



  



 

   β  (4) 

where 

[ ( )] sign ( ( )) 2 ( ( )) log ( ( )){ } { }i i i i i iD M M M        β β β β  

with ( ( )) ( ( )) 1{log ( ( ))} ( )T T
i i i i i iM N X N u dH u




     Z Zβ β β . Here, 

( ) log(1 ), (·)iH u u N    is the counting process, and ( ( ))iM β  is the martingale 

residual under model (1) (Zheng et al. 2018). 

Remark 4. When carrying out quantile regression at each grid point, we formulate 

it as a linear programming problem (Koenker 2005), which can be solved by a 

simplex algorithm with a computational complexity of 2( )O n p  (Klee and 
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Minty 1972). Since our grid size is O(n) and the number of resampling, B, is O(n), 

the computational complexity of our procedure is 4( )O n p . 

3 Theoretical Studies 

3.1 Notation and regularity conditions 

For any vector pRδ  and a subset {1, , }S p  , denote by SC its 

complementary set, and define ,|| || || ||r S S rδ δ , the lr-norm of the sub-vector Sδ , in 

which jS j   if j S  and 0jS   if Cj S . We set the following conditions. 

(A1) There exist a quantile ν and a constant c > 0 such that 

 1 T * 1/2

1

1 log ( ) (1 )
n

i i i
i

n C cn 



    Z β  

holds for sufficiently large n. 

(A2) (Bounded observations) 0|| || CZ . Without loss of generality, we 

assume 0 1C  . In addition, | log |E X   . 

(A3) (Bounded densities) Let 

     ( | ) P log | , ( | ) log 1 ( | ) , ( | ) P log |T T TF t T t t F t F t X t       Z Z Z Z Z Z , 

and  ( | ) P log , 1|G t X t   Z Z . Also, define ( | ) ( | ) /f t dF t dtZ Z , and 

( | ) ( | ) /g t dG t dtZ Z . 

(a) There exist constants , ,f f g  and g  such that 

T * T *

, [ , ] , [ , ]

T * T *

, [ , ] , [ , ]

inf ( ( ) | ) sup ( ( ) | ) ,

inf ( ( ) | ) sup ( ( ) | ) .
U U

U U

f f f f

g g g g

     

     

 

 

 

 

  

  

z z

z z

z z z z

z z z z

β β

β β
 

(b) There exist constants 0   and A such that, when | |t  , 
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T * T *

, [ , ]

T * T *

, [ , ]

sup ( ( ) | ) ( ( ) | ) | |,

sup ( ( ) | ) ( ( ) | ) | | .
U

U

f t f A t

g t g A t
  

  

 

 





  

  

z

z

z z z z

z z z z

β β

β β
 

(A4) (Sparsity) Assume 1/2log ( )p o n , and let 

* * * *

[ , ][ , ]

{ : ( ) 0}, : sup | ( ) | 0 , and | | .
UU

j jS j S S j q S 
    

   


 
      

 
 

Let Ŝ  be the index set of covariates selected by  with a tuning 

parameter λn. There exist constants 1 2 1 20 1/ 3, , , 0c c K K    such that 

1 1
1 1

ˆ, | |c cq K n S K n  , and 

  21*
2

ˆP 1 ( ) .cS S K p n  
     

(A5) Let  T *( ) 1 log ( )E X     Z β . There exists a constant L > 0 

such that * *
1 2 1 2| ( ) ( ) | | |j j L         and 1 2 1 2| ( ) ( ) | | |L        , for all 

1 2, ( , ]U     and 1 j p  . 

(A6) (Bounded eigenvalues) T T 2[ ] / || ||i iE Z Zδ δ δ  is bounded below and 

above by min  and max , respectively, over 1
0 1|| || , 0cK n δ δ , where 

min max0    ; 

(Nonlinear impact) 
1

0 1

T 2 3/2 T 3
2

|| || ,
: inf [( ) ] / [| | ] 0

c i i
K n

c E E
 

 
0

Z Z
δ δ

δ δ . 

(A7) Γm is equally gridded with 1
1 0k k n c n  

    for k m   ( 1, ,k m 

) and a constant 0 0c  . 

Assumption (A1) requires the number of censored observations below the ν-th 

quantile not to exceed 1/2cn , which is satisfied if the lower bound of C’s support is 

greater than the lower bound of T’s support, a reasonable scenario in real 

applications. As recommended in Zheng et al. (2018), ν is chosen such that only 

a small proportion of the observed survival times below the ν-th quantile are 
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censored. (A2) assumes that the covariates are uniformly bounded. As pointed 

out by Zheng et al. (2015), the global linear quantile regression model is most 

meaningful when the covariates are confined to a compact set to avoid crossing 

of the quantile functions. (A3) ensures the positiveness of ( | )f t Z  between 

T *( )Z β  and T *( )UZ β , which is essential for the identifiability of *( )β  for U  . 

(A4) restricts the order of data dimensions, as well as the sparsity of *( )β , which 

is necessary for the convergence of the low dimensional estimator in (2) 

(Condition C4 in Wang et al. (2012)). (A4) also characterizes the “sure screening” 

property by . This asymptotic property does not assess the variability of 

selection with a finite sample; it is crucial to account for such variability for high 

dimensional inference (Fei et al. 2019; Fei and Li 2021). Also, several variable 

selection methods for high dimensional CQR satisfy the sure screening property 

in (A4) with additional mild conditions. 

 L-HDCQR: by Corollary 4.1 of Zheng et al. (2018), a beta-min condition is 

required in addition to the set of conditions in this paper. Explicitly, there 

exist constants 1 2, 0C C  , such that 

*

*
1 2

[ , ]
inf sup | ( ) | exp( ) log( ) / .

L U
j U n

j S
C C q q p n n L q

  

  
 

    

 AL-HDCQR: by Corollary 4.2 of Zheng et al. (2018), AL-HDCQR achieves 

the stronger selection consistency property, which implies the sure 

screening property. 

 Quantile-adaptive Screening: by Theorem 3.3 of He et al. (2013), with a 

proper threshold value in their technical conditions, the screening 

procedure achieves the sure screening property. 

(A5) characterizes the smoothness of *( )β . The eigenvalue condition in (A6) is 

the sparse Riesz condition in Zhang and Huang (2008), satisfied by many 

commonly used covariance structures, including the compound symmetry 

structure and the first order autoregressive structure (AR(1)) (Zhang and 
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Huang 2008). Also, the nonlinear impact condition controls the minoration of the 

quantile regression objective function by a quadratic function, as adopted in 

Zheng et al. (2018), for establishing the consistency of L-HDCQR estimator. The 

condition is satisfied when the covariates iZ  have a log-concave density, which 

includes the commonly used normal distribution, Wishart distribution and Dirichlet 

distribution (Lovász and Vempala 2007). (A7) details the fineness of Γm, which 

renders an adequate approximation to the stochastic integration in (2). 

3.2 Theoretical properties of Fused-HDCQR 

We first extend the results in Peng and Huang (2008) from a fixed p to a p-

diverges-but-less-than-n case. The results are novel and critical since we allow 

the true model size *| |q S  to increase with n, while the selected ˆbS ’s in the 

fused procedure vary around *S . Specifically, we assume a subset {1, , }S p   

in Theorems 1 and 2, where 1
1 1| | , 0 1/ 3cS K n c    and 1 0K  . Let 

´
( ), [ , ]US    β  be the estimator from Peng and Huang (2008) of fitting the CQR 

with SZ  over the τ-grid Γm. 

Theorem 1. (Consistency with a diverging number of covariates) Under 

Conditions (A1) – (A7) and given a subset {1, , }S p  such that *S S  and 

1
1| | cS K n , there exist positive constants ζ1 and ζ2 such that 

1
´

1* 1/2
1 2 1sup || ( ) ( ) || exp( )( log )

U

c
S K n n

  

    

 

 β β  

with probability at least 1 22
0 11 20 cc K n  . 

Remark 5. From the proof of this theorem (in particular, the proofs of 

Propositions 1 and 2 in the Supplementary Materials that lead to this theorem), it 

can be seen that ζ1 and ζ2 do not depend on the choice of S or n. Thus, ζ1 and ζ2 

are universal for all possible S satisfying *S S  and 1
1| | cS K n . 

Next, we derive the weak convergence of 
´

j  for any j S . 
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Theorem 2. (Weak convergence with a diverging number of covariates) Under 

Conditions (A1) – (A7) and given a {1, , }S p  such that *S S  and 1
1| | cS K n , 

it holds that 

´
*( ) ( )jjn    

 
  

 

converges weakly to a mean zero Gaussian process for [ , ]U    and any j S . 

In high dimensional settings, the next theorem shows that the fused estimator 

enjoys desirable theoretical properties. 

Theorem 3. Consider the Fused-HDCQR estimator in (3). Under assumptions 

(A1) – (A7), for any {1, , }j p  , 

 *ˆ ( ) ( )j jn      

converges weakly to a mean zero Gaussian process for [ , ]U   . 

Our framework enables us to obtain the joint distribution of any K-dimensional 

estimated coefficients, where K is a finite number. Let  be the collection of the 

indices of K covariates of interest. We can show that the weak convergence 

result of 
´

( )β , a K-dimensional subvector of the oracle estimator, still holds for 

[ , ]U   , that is, 
´

*( ( ) ( )), [ , ]Un      β β  converges to a K-dimensional 

Gaussian distribution at any [ , ]U   . We only need to replace 
´

( )j β  by 
´

( )β  

in the proof of Theorem 2 in the Appendix and slightly modify the arguments 

accordingly. Consequently, the term I in the proof of Theorem 3 still converges 

weakly to a mean zero Gaussian distribution, while the norms of items II and III 

are still (1)po . Therefore, Theorem 3 still holds for any K-dimensional subvector 

of ( )β , i.e., *( ( ) ( ))n  β β  converges to a mean zero K-dimensional 

Gaussian distribution at any [ , ]U   . 
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As shown in the proof, the covariance function of ˆ ( )j   depends on the unknown 

active set *S , the unknown conditional density functions ( | )f t Z  and ( | )g t Z , and 

other unknown quantities. Thus, it is not calculable. The next section proposes 

an alternative model-free variance estimator based on the functional delta 

method and the multi-sample splitting properties (Efron 2014; Fei and Li 2021). 

4 A Variance Estimator via the Functional Delta Method 

Let {0,1}biJ   indicate whether the ith observation is in the bth sub-sample 2
bD , 

and 1
·

1

B

i bi
b

J B J



  . For each 1, ,i n  , we define the re-sampling covariance 

between Jbi and ( )b
j k   at k m   as 

   ·
1

1 ˆ( ) ( ) ( ) .
B

b
ij k bi i j k j k

b

J J
B

    


  s  

Define  
T

1 2( ) ( ), ( ), , ( )j k j k j k nj k    S s s s  and let 1 2| |bn D . It follows that the 

covariance between ˆ ( )j k   and ˆ ( )j   can be consistently estimated by 

2
T

2
11 1

1 ( 1)Cov ( , ) ( ) ( ) ( ) ( ),
( )

n

j k ij k ij j k j
i

n n n n
n n n n n

     


  
    

s s S S  

where the multiplier 2
1( 1) / ( )n n n n   is a finite-sample correction for sub-

sampling (Wager and Athey 2018). In particular, by taking k  , a variance 

estimator for ˆ ( )j k   is 

T
2

1

( 1)ˆ ( ) ( ) ( ).
( )j k j k j k
n nV
n n

  





S S  (5) 

As in Wager and Athey (2018), it follows that  ˆˆ ( ) / Var ( ) 1p
j k j kV      with 

,n B . Furthermore, for a finite B, we propose a bias corrected version of (5): 

 
2

11

11

ˆˆ ˆ( ) ( ) ( ) ( ) , .
( )

B
B b
j k j k j k j k k m

b

nnV V B
B n n

      



 
    

  
  (6) 
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The correction term in (6) is a suitable multiplier of the re-sampling variance of 

( )b
j k  ’s, and converges to zero with n  and 1 ( )n O n . Thus, the two 

variance estimators in (5) and (6) are asymptotically equal. However, ˆ ( )j kV   in 

(5) requires B to be of order 3/2n  to reduce the Monte Carlo noise below the 

sampling noise, while ˆ ( )B
j kV   in (6) only requires B to be of order n to achieve the 

same (Wager et al. 2014). 

Since ˆ ( )j   converges weakly to a Gaussian process by Theorem 3, and our 

variance estimators are consistent on the grid points, we define an asymptotic 

100(1 )%  point-wise confidence interval for *( )j k   at any k m   as 

 1 1ˆ ˆˆ ˆ( ) (1 / 2) ( ) , ( ) (1 / 2) ( ) ,B B
j k j k j k j kV V             

where ˆ ( )B
j kV   is as defined in (6), and   is the standard normal cumulative 

distribution function. The p-value of testing *
0 : ( ) 0j kH     for a k m   is 

 ˆ ˆ2 1 | ( ) | / ( ) .{ }B
j k j kV     

5 Simulation Studies 

In various settings, we compare the proposed method, Fused-HDCQR (referred 

to as “Fused” in the tables and figures hereafter), with some competing methods 

in quantile regression or high dimensional inference. These methods include 

Wang et al. (2012) (“W12”) and Fan et al. (2014) (“F14”) for quantile regression; 

Zheng et al. (2018) (“Z18”) for censored quantile regression; and Meinshausen 

et al. (2009) (“M09”) for inference with aggregated p-values from multi-sample 

splittings. 

In the simulations and the later data analysis, we choose L-HDCQR described in 

Section 3 as the variable selection tool for Fused-HDCQR. We also explore the 

feasibility of using other alternatives for variable selection, such as Fan 

et al. (2009) (“F09”) and M09. 
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When implementing Fused-HDCQR, we specify the number of splits as B = 300, 

the quantile interval as [ , ] [0.1,0.8]U   , and the grid length as / logm n p . As 

regards the selection of tuning parameters, Theorems 1 and 2 suggest that our 

procedure not be sensitive to tuning parameters as long as they can ensure sure 

screening. In practical settings, we recommend to select tuning parameters by 

minimizing the 5-fold cross-validation error as in (4), which may help achieve 

sure screening and works well in our simulations. We study the following 

examples with sparse non-zero effects, some of which are heterogeneous. 

Example 1. The event times are generated by 

T
log , 1, , ,ii iT i n   Z b  

where the coefficient vector b is sparse with 20 40 600.5, 1, 1.5, 0jb b b b     for all 

other j’s, and ~ (0,1)i N . Therefore, the true coefficients satisfy 

* T T( ) ( ( ), )Q  bβ  for all (0,1)  , where ( )Q  , the τ-th quantile of the 

distribution of ε, is the intercept. The covariates ,j iZ ’s are i.i.d. from Unif ( 1,1)  

and are independent across {1, , }j p  . The censoring times are generated 

independently as log ~ (3,17.25)iC N , giving a censoring rate around 25%. 

Example 2. The event times follow 

T

3,log 1.5 ,ii i iT Z  Z b  (7) 

where 20 40 601, 1.5, 2b b b   , bj = 0 for all other j’s, and ~ (0,1)i N . We first 

generate 
´

~ (0, )i pNZ Σ  with an AR(1) ( )k p p Σ , where | |0.3k
k

 , and then 

let 
´

i iZ Z , except that the third covariate 
´

3,3, | | 0.5iiZ Z  . Thus, 

* *
1 4( ) 0, ( ) 1.5 ( )Q      , and *

1( )j jb   , for all other j’s. The censoring times 

are generated independently as log ~ (4,17.25)iC N , giving a censoring rate 

around 23%. 

Example 3. The event times follow 
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T

1 1, 4 4,log ( ) ( ) ,ii i i i iT Z Z     Z b  

where 20 40 601, 1.5, 2b b b   , bj = 0 for all other j’s, ~ (0,1)i N , and 1 4,   are 

monotone functions as the dashed lines in Figure 1, both are continuous with 

zero and non-zero pieces over τ. We first generate 
´

~ (0, )i pNZ Σ  as in Example 

2, and then let 
´

i iZ Z , except that 
´

1,1, | | 0.5iiZ Z   and 
´

4,4, | | 0.5iiZ Z  . 

Therefore, * * *
1 2 1 5 4( ) 0, ( ) ( ), ( ) ( )            , and *

1( )j jb   , for all other j’s. 

The censoring times are generated independently as log ~ (6,17.25)iC N , which 

gives a censoring rate around 20%. 

For each of these examples, we set (n, p)=(300, 1000) and (700, 1000) to study 

the impacts of the sample size and the number of variables on the performance, 

and, in particular, how the methods fare when p > n. In Example 3, which mimics 

the real data example in Section 6 most closely, we have also explored 

( , ) (700,2000)n p  , which is roughly equal to the dimension of the real dataset. 

For every parameter configuration, a total of 100 independent datasets are 

generated, and we report the average results based on these replications. We 

choose 100 replications because the penalized methods for high dimensional 

CQR in general take much computing time (Table 5). 

We first evaluate the feasibility of using various variable selection tools for our 

proposed method. Comparisons of true positives and false negatives among 

F09, M09, and L-HDCQR under Examples 1–3 are reported in Table 1. F09 

presents a subpar performance because, by taking intersections of variables 

selected from different partitions of data, it tends to miss out some true signals 

and thus have fewer true positives. In contrast, L-HDCQR retains more true 

positives than both F09 and M09, while having more false positives. Because our 

method requires the variable selection step to include the true signals with high 

probability, even at the cost of some false positives, we use L-HDCQR as the 

screening tool for our method. 
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We next compare the performance of Fused-HDCQR with other high dimensional 

quantile regression methods at .25,.5,.75   under Example 1. As a benchmark 

for comparisons, we also compute the oracle estimates based on the true model 

(with *S  known). Since W12, F14, and Z18 only provide coefficient estimates 

without standard errors (SEs), we only report the estimation biases for them, 

while reporting the average SEs, empirical standard deviations (SDs) and 

coverage probabilities of the confidence intervals for our method. Table 2 shows 

that Fused-HDCQR presents the smallest biases, which are comparable to those 

of the oracle estimates. In contrast, Z18 has smaller biases when the sample 

size is large, and larger biases otherwise, while W12 and F14 incur substantial 

biases since they are not designed for censored data. Moreover, the average 

SEs based on Fused-HDCQR agree with the empirical SDs of the estimates. The 

consistent estimates of coefficients and SEs obtained by Fused-HDCQR lead to 

proper coverage probabilities around the 0.95 nominal level. In addition, the 

coverage probabilities improve as n increases. 

Table 2 also concerns the power for detection of signals. Since W12, F14, and 

Z18 cannot draw inference and, in general, there is a lack of literature that deals 

with inference for HDCQR, we compare our method with the aggregated p-value 

approach (M09) in the quantile setting, though M09 originated from linear 

regression. The results indicate that Fused-HDCQR outperforms M09, presenting 

more power when the effect size is moderate or large. 

Table 3 summarizes the results from Example 2 with the heterogeneous effect β4 

varying with τ. We compare the estimation accuracy between Fused-HDCQR 

and Z18, as well as the statistical power between Fused-HDCQR and M09. 

Again, Fused-HDCQR presents smaller biases than Z18 and a higher power than 

M09. To assess whether the tuning parameters selected as in Remark 3 help the 

variable selection method (L-HDCQR), used by Fused-HDCQR, satisfy 

assumption (A4) in Section 3, we report the selection frequency of each signal 

variable in Table 3 (and also in Table 4), and observe that the selection 
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frequency increases as the sample size increases, hinting that assumption (A4) 

may be satisfied with these selected tuning parameters. 

Table 4 summarizes the results based on Example 3. For the two heterogeneous 

effects β2 and β5 that vary with τ, their estimation biases of Fused-HDCQR 

become smaller and the estimated SEs are closer to the empirical ones as n 

increases. Figure 1 shows that the Fused-HDCQR estimates in general agree 

with the oracle estimates and the truth, except at the non-smooth change points, 

and have narrower confidence intervals with a larger n, where the vertical bars 

are the average confidence intervals of the τ grid. 

In regards to the choice of B in the variance computation, our numerical 

experience suggests that it may be sufficient to use a B that is of the same order 

of the sample size, even when n is less than p. This coincides with the note 

under (6) that B is only required to be of order n to reduce the Monte Carlo noise 

below the sampling noise. 

Finally, we compare the computation intensity among Z18, M09, W12, F14, and 

Fused-HDCQR under Example 1 and report in Table 5 the computing time on 

average per dataset. Our method is the most computationally intensive, because 

it involves multiple data-splittings and draws inferences on all of the p 

coefficients. However, by utilizing parallel computing, we have managed to 

reduce the computational time to the same order of Z18, W12, and F14 that are 

based on penalized regression. The R code used for generating the simulation 

results can be accessed via https://github.com/feizhe/HDCQR_Paper. 

6 Application to the Boston Lung Cancer Survival Cohort (BLCSC) 

Detection of molecular profiles related to cancer survival can aid personalized 

treatment in prolonging patients’ survival and improving their quality of life. In a 

subset of BLCSC samples, 674 lung cancer patients were measured with 

survival times, along with 40, 000 SNPs and clinical indicators, such as lung 

cancer subtypes (adenocarcinoma, squamous cell carcinoma, or others), cancer 
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stages (1-4), age, gender, education level (  high school or > high school) and 

smoking status (active or non-active smokers); see Table 6 for patients’ 

characteristics. The censoring rate was 23% and a total of 518 deaths were 

observed during the followup period, with the observed followup time varying 

from 13 to 8, 584 days. 

We could have included all 40,000 SNPs in our analysis. However, for more 

statistical power, we opt for the targeted gene approach by focusing on 2,002 

SNPs residing in 14 genes identified to be cancer related, namely, ALK, BRAF, 

BRCA1, EGFR, ERBB2, ERCC1, KRAS, MET, PIK3CA, RET, ROS1, RRM1, 

TP53, and TYMS (Brose et al. 2002; Toyooka et al. 2003; Paez et al. 2004; Soda 

et al. 2007). Pinpointing the effects of individual loci within the targeted genes is 

helpful for understanding disease mechanisms (Evans et al. 2011; D’Antonio 

et al. 2019) and designing gene therapies (Pâques and 

Duchateau 2007; Hanawa et al. 2004). We also adjust for patients’ clinical and 

environmental characteristics listed in Table 6, which gives a total of p = 2, 011 

predictors. 

We apply Fused-HDCQR to compute the point estimates (3) and the variance 

estimates (6). We set the quantile interval to be [0.2,0.7] , which is wide enough 

to cover high- and low-risk groups and, in the meantime, ensures the quantile 

parameters be estimable in the presence of censoring (Zheng et al. 2015). We 

choose the lower bound 0 0.1    to circumvent the singularity problem with 

CQR at τ = 0, because few ( 2% ) observations are censored below the 0.1-th 

quantile. With 0.01n  , we form the τ-grid Γm of length m = 61. We set B = 750 

as the number of re-samples, which is sufficiently large and comparable to the 

sample size. To determine the tuning parameter λn in L-HDCQR for selection, we 

use 5-fold cross-validation as specified in Remark 3. 

For ease of presentation, we summarize the results evaluated at 6 quantile 

levels, 0.2,0.3, ,0.7   , instead of the whole grid Γm. To highlight the findings of 
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the high-risk group, we rank all SNPs based on their p-values at 0.2  . In 

particular, after Bonferroni correction for multiple testing, there are 83 significant 

SNPs for 0.2   with the overall type I error of 0.05  . Our method estimates 

the coefficients and the p-values for all predictors, and we only present the 

results for the patient characteristics, the top 10 significant SNPs, and the 3 least 

significant SNPs in Figure 2 and Table 7. The estimated coefficient of active 

smoking drops from –0.42 (p = 0.0011) to –0.53 (p = 0.0005) as τ changes from 

0.2 to 0.5, and then increases to –0.31 (p = 0.038) as τ changes to 0.7, 

suggesting that active smoking might be more harmful to the high- and median-

risk groups than the low-risk group of patients. The most significant SNP at 

0.2   is AX.37793583_T, which remains significant throughout 0.2   to 

0.7  . However, its estimated coefficient decreases from 2.75 ( 0.2  ) to 1.39 (

0.7  ), indicating its heterogeneous impacts on survival, i.e., stronger protective 

effect at lower quantiles and vice versa. 

The effects of some SNPs are nearly zero for higher quantiles. For example, the 

estimated coefficient of AX.15207405_G decreases from 2.03 ( 0.2  ; 2410p  ) 

to –0.05 ( 0.7  ; p = 0.92), with the estimated standard error increasing from 

0.20 to 0.48. Similarly, the estimated coefficient of AX.40182999_A decreases 

from 1.5 ( 0.2  ; 139.6 10p   ) to –0.01 ( 0.7  ; p = 0.96). The results again 

hint at heterogeneous SNP effects in various risk groups, which cannot be 

detected using traditional Cox models. 

Finally, our results shed light on the roles of SNPs in the high-risk group (i.e., 

lower quantiles). Specifically, we map the 83 SNPs with significant effects at the 

0.2-th quantile by Fused-HDCQR to the corresponding genes and rank the genes 

by the number of significant SNPs (over total number of SNPs for each gene in 

the parenthesis), which are TP53 (14/321), RRM1 (14/174), ERCC1 (10/167), 

BRCA1 (10/114), ALK (8/163), ROS1 (5/294), EGFR (5/261), ERBB2 (4/167), 

and 6 other genes with numbers of significant SNPs less than 4. While these 

genes were reported to be associated with lung cancer (Toyooka 
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et al. 2003; Takeuchi et al. 2012; Rosell et al. 2011; Lord et al. 2002; Zheng 

et al. 2007; Sasaki et al. 2006; Brose et al. 2002), our analysis provides more 

detailed information as to which SNPs and locations of the genes are jointly 

associated with the lung cancer survival, as well as the estimated effects and 

uncertainties. Analysis of heterogeneous SNP effects has been gaining 

increasing research attention in lung cancer research (McKay et al. 2017; Dong 

et al. 2012; Huang et al. 2009), and beyond it (Garcia-Closas et al. 2008; Cheng 

et al. 2010; Gulati et al. 2014). 

7 Conclusions 

Our proposed procedure involves repeated estimates from low dimensional 

CQRs, which are computationally straightforward and can be efficiently 

implemented with parallel computing. We require the variable selection to 

possess a sure screening property as in condition (A4). This seems to be 

supported by our simulations, which find our procedure works well when the 

variable selection method can select a superset of the true model with high 

probability. Our condition is much weaker than a condition of selection 

consistency as specified in Fei et al. (2019). 

For the selection of B, we recommend B to be in the same order of the sample 

size n. Smaller B might not affect coefficient estimation much; but it might yield 

inaccurate estimated standard errors, leading to incorrect inferences. In addition, 

we opt to define Γm by setting the grid as / logn p  equally spaced points between 

τ0 and τU. This may cover the quantile interval well, with reasonable computation 

efficiency. 

There are open questions to be addressed. First, substantial work is needed for 

handling highly correlated predictors as the performance of our method, like the 

other competing methods, deteriorates when correlations among predictors 

become stronger. Second, it is of interest to investigate an alternative method 

when the sparsity condition fails. For example, it is challenging to find an 
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effective strategy to draw inference when a non-negligible portion of predictors 

have small but non-zero effects. We will pursue them elsewhere. 
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Fig. 1 Estimated heterogeneous effects and confidence intervals of Fused-

HDCQR using Example 3: *
2 (·)  (left panel) and *

5 (·)  (right panel). From the top 

to the bottom are the plots for ( , ) (300,1000),(700,1000)n p   and (700, 2000), 

respectively. 
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Table 1 Summary of variable selection results based on the simulated datasets. 

    TP FP 

 (n, p) CR q L-HDCQR M09 F09 L-HDCQR M09 F09 

Example 1 (300,1000) 0.25 3 2.67 2.12 1.64 7.95 0.00 0.19 

 (700,1000) 0.25 3 2.98 2.78 2.27 13.08 0.01 0.34 

Example 2 (300,1000) 0.22 4 3.60 3.58 2.22 12.45 0.00 0.22 

 (700,1000) 0.23 4 3.99 3.99 3.54 11.29 0.00 0.64 

Example 3 (300,1000) 0.20 5 3.82 3.63 1.91 10.00 0.00 0.17 

 (700,1000) 0.20 5 4.81 4.77 4.35 11.73 0.01 0.54 

 (700,2000) 0.19 5 4.78 4.76 4.17 16.34 0.00 0.47 

          

Note: CR, average censoring rate; *| |q S ; TP, average true positives; FP, 

average false positives; M09, Meinshausen et al. (2009); F09, Fan et al. (2009); 

L-HDCQR, Zheng et al. (2018). 
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Table 2 Results of Example 1 based on the simulated datasets. 

 Bias EmpSD SE Cov Power 

 Oracle Fused Z18 F14 W12 Fused Fused M09 

 300, 1000n p   

21 0.5   0.02 0.02 -0.38 -0.50 -0.48 0.14 0.13 0.93 0.97 0.06 

 0.02 0.01 -0.24 -0.49 -0.48 0.12 0.13 0.95 0.98 0.04 

 0.01 0.01 -0.13 -0.50 -0.48 0.12 0.13 0.96 1.00 0.02 

41 1   -0.01 -0.01 -0.02 -0.91 -0.33 0.14 0.13 0.92 1.00 0.99 

 -0.00 -0.00 -0.03 -0.68 -0.32 0.14 0.12 0.92 1.00 0.98 

 0.02 0.01 -0.01 -0.70 -0.30 0.17 0.14 0.93 1.00 0.94 

61 1.5   -0.00 0.01 0.00 -0.92 -0.24 0.12 0.13 0.92 1.00 1.00 

 0.00 0.01 0.01 -0.64 -0.25 0.11 0.13 0.97 1.00 1.00 

 0.02 0.01 0.02 -0.70 -0.25 0.13 0.14 0.95 1.00 1.00 

 700, 1000n p   

21 0.5   -0.02 -0.01 -0.01 -0.47 -0.23 0.09 0.08 0.92 1.00 0.56 

 -0.01 -0.01 -0.01 -0.39 -0.22 0.08 0.08 0.89 1.00 0.65 

 -0.01 -0.01 -0.01 -0.40 -0.23 0.10 0.09 0.89 1.00 0.44 

41 1   0.00 0.00 0.04 -0.53 -0.17 0.09 0.08 0.91 1.00 1.00 

 -0.00 0.00 0.03 -0.49 -0.19 0.09 0.08 0.90 1.00 1.00 

 -0.01 -0.01 0.01 -0.53 -0.18 0.08 0.10 0.87 1.00 1.00 

61 1.5   0.01 0.01 0.06 -0.54 -0.21 0.10 0.09 0.93 1.00 1.00 

 0.01 0.01 0.03 -0.62 -0.21 0.08 0.08 0.93 1.00 1.00 

 -0.00 0.00 0.03 -0.71 -0.21 0.07 0.09 0.94 1.00 1.00 
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Note: Each β has three rows corresponding to .25,.5,.75   from the top to 

bottom; EmpSD, empirical standard deviation; SE, average standard error; Cov, 

coverage probability; Oracle, Oracle estimator; Z18, Zheng et al. (2018).F14, Fan 

et al. (2014); W12, Wang et al. (2012); M09, Meinshausen et al. (2009). 

Table 3 Results of Example 2 based on the simulated datasets. 

 Bias EmpSD SE Cov Freq Power 

 Oracle Fused Z18 Fused Fused M09 

 300, 1000n p   

4 1.5 ( )Q   0.01 0.13 0.29 0.32 0.31 0.88 0.73 0.82 0.16 

 -0.05 -0.07 0.06 0.33 0.29 0.90  0.11 0.00 

 0.01 -0.14 -0.05 0.31 0.34 0.82  0.62 0.10 

21 1   -0.01 -0.01 -0.01 0.14 0.13 0.90 0.69 1.00 0.88 

 -0.03 -0.01 -0.05 0.12 0.12 0.91  1.00 0.92 

 -0.01 -0.00 -0.02 0.14 0.13 0.92  1.00 0.84 

41 1.5   0.01 0.01 0.03 0.13 0.13 0.90 0.99 1.00 1.00 

 -0.01 0.01 0.03 0.12 0.13 0.93  1.00 1.00 

 -0.00 0.02 -0.02 0.13 0.14 0.93  1.00 1.00 

61 2   -0.03 -0.03 0.04 0.13 0.13 0.91 1.00 1.00 1.00 

 -0.03 -0.02 0.03 0.11 0.13 0.92  1.00 1.00 

 -0.01 -0.01 -0.00 0.12 0.15 0.95  1.00 1.00 

 700, 1000n p   

4 1.5 ( )Q   0.03 0.08 0.19 0.19 0.21 0.92 0.89 0.99 0.61 

 0.02 0.03 0.14 0.18 0.19 0.89  0.11 0.00 

 0.04 -0.03 -0.01 0.21 0.23 0.92  0.97 0.56 

21 1   0.01 0.01 0.05 0.09 0.08 0.94 0.99 1.00 1.00 
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 Bias EmpSD SE Cov Freq Power 

 0.01 0.01 0.01 0.08 0.08 0.87  1.00 1.00 

 0.01 0.01 0.05 0.10 0.09 0.89  1.00 1.00 

41 1.5   -0.01 0.00 0.08 0.08 0.08 0.94 1.00 1.00 1.00 

 -0.00 0.00 0.05 0.09 0.08 0.92  1.00 1.00 

 0.00 0.01 0.04 0.09 0.09 0.95  1.00 1.00 

61 2   -0.01 -0.01 0.10 0.08 0.09 0.93 1.00 1.00 1.00 

 -0.01 -0.01 0.06 0.08 0.09 0.91  1.00 1.00 

 -0.00 -0.00 0.07 0.09 0.10 0.90  1.00 1.00 

          

Note: See the footnote of Table 2; Freq, average selection frequency in B splits. 
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Table 4 Results of Example 3 based on the simulated datasets.  

 Bias EmpSD SE Cov Freq Power 

 Oracle Fused Z18 Fused Fused M09 

 300, 1000n p   

2 1( )    0.08 0.06 0.59 0.34 0.36 0.94 0.71 0.06 0.00 

 0.34 0.37 1.01 0.52 0.51 0.89  0.20 0.00 

 0.08 -0.20 -0.05 0.80 0.72 0.89  0.87 0.06 

5 4( )    0.10 0.14 0.27 0.65 0.50 0.90 0.67 0.77 0.36 

 -0.16 -0.20 -0.36 0.62 0.51 0.91  0.19 0.00 

 0.02 0.06 -0.03 0.56 0.52 0.90  0.10 0.00 

21 1.5   0.02 0.03 0.04 0.25 0.23 0.95 0.65 1.00 0.77 

41 2   0.01 -0.00 0.02 0.23 0.25 0.93 0.93 1.00 0.99 

61 2.5   -0.02 0.07 0.19 0.21 0.26 0.94 0.99 1.00 1.00 

 700, 1000n p   

2 1( )    0.01 0.04 0.27 0.21 0.23 0.94 0.96 0.06 0.00 

 0.13 0.30 0.79 0.37 0.40 0.88  0.27 0.01 

 0.00 0.08 0.35 0.51 0.51 0.90  1.00 0.77 

5 4( )    0.06 0.09 0.18 0.33 0.33 0.91 0.92 0.99 0.92 

 -0.09 -0.19 -0.23 0.35 0.34 0.85  0.21 0.00 

 -0.01 -0.04 -0.08 0.37 0.31 0.94  0.06 0.00 

21 1.5   -0.00 0.00 0.04 0.16 0.17 0.97 0.98 1.00 1.00 

41 2   0.01 -0.02 -0.01 0.15 0.18 0.95 1.00 1.00 1.00 

61 2.5   0.01 0.00 0.07 0.18 0.18 0.94 1.00 1.00 1.00 

 700, 2000n p   

2 1( )    -0.01 0.05 0.13 0.32 0.32 0.93 0.93 0.07 0.00 
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 Bias EmpSD SE Cov Freq Power 

 0.10 0.26 0.59 0.46 0.44 0.91  0.09 0.02 

 0.05 -0.07 0.15 0.53 0.46 0.87  0.74 0.58 

5 4( )    0.10 0.10 0.25 0.45 0.35 0.84 0.90 1.00 0.83 

 -0.03 -0.18 -0.31 0.41 0.36 0.89  0.76 0.01 

 -0.00 -0.01 -0.13 0.36 0.34 0.85  0.15 0.00 

21 1.5   0.01 0.01 0.03 0.18 0.21 0.98 0.98 1.00 1.00 

41 2   0.01 0.02 -0.07 0.22 0.20 0.91 0.99 1.00 0.98 

61 2.5   -0.01 -0.01 -0.05 0.25 0.20 0.94 1.00 1.00 0.98 

          

Note: See the footnote of Tables 2 and 3; For β2 and β5, the numbers are shown 

at .25,.5,.75   from the top to the bottom and, for the other β’s, at 0.5  . 
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Table 5 Comparisons of computing time (on average per dataset in seconds) 

when performing Example 1. 

 Fused Z18 W12 F14 M09 

( , ) (300,1000)n p   888 853 509 390 170 

( , ) (700,1000)n p   3,108 1,812 2,230 1,231 440 

      

Note: see the footnote of Table 2. 
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Table 6 Patients’ characteristics in the BLCSC samples. (n = 674) 

  Mean (SD) 

Age   60 (10.8) 

  Count (%) 

Female   259 (38) 

Education level   High school  264 (39) 

 > High school 410 (61) 

Smoking  Non-active  418 (62) 

 Active  256 (38) 

Cancer type  Adenocarcinoma  283 (42) 

 Squamous cell  110 (16) 

 Other  281 (42) 

Cancer stage  1  283 (42) 

 2  110 (16) 

 3  256 (38) 

 4  25 (4) 
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Table 7 Analysis of the BLCSC data with Fused-HDCQR. The SNPs are sorted by 

their p-values at 0.2  , corresponding to the high-risk groups. Results for the 

top 10 and the bottom 3 are presented.  

 

Estimat

or SE p-value 

Estimat

or SE  p-value  

Estimat

or SE p-value 

τ 0.2 0.3 0.4 

Int 6.90 

0.2

5 

1.4E-

165 7.48  

0.2

8 

4.3E-

157 7.94 

0.2

4 

3.2E-

241 

Adeno 0.20 

0.1

6 2.1E-01 0.14  

0.1

8 4.5E-01  0.02 

0.1

3 8.7E-01 

Squamous -0.16 

0.1

6 3.0E-01 -0.20  

0.1

6 2.1E-01  -0.34 

0.1

3 1.0E-02 

Stage2 -0.82 

0.2

4 6.3E-04 -0.99  

0.2

5 6.0E-05  -0.98 

0.2

4 3.2E-05 

Stage3 -0.97 

0.1

7 1.6E-08 -1.04  

0.2

0 2.0E-07  -1.13 

0.1

4 2.0E-15 

Stage4 -1.54 

0.1

7 3.0E-20 -1.77  

0.2

0 1.7E-19  -1.86 

0.1

4 2.2E-42 

Age -0.01 

0.0

1 1.5E-02 -0.01  

0.0

1 3.0E-02  -0.02 

0.0

1 1.0E-02 

Edu 0.08 

0.1

4 6.0E-01 0.06  

0.1

5 6.9E-01  0.07 

0.1

3 5.8E-01 

Female -0.30 

0.1

3 2.2E-02 -0.35  

0.1

4 1.0E-02  -0.37 

0.1

2 1.6E-03 

Smoke -0.42 

0.1

3 1.1E-03 -0.48  

0.1

4 5.0E-04  -0.52 

0.1

1 3.4E-06 

AX.37793583 2.75 0.2 3.0E-36 2.61  0.2 4.6E-39  2.39 0.2 3.7E-33 
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Estimat

or SE p-value 

Estimat

or SE  p-value  

Estimat

or SE p-value 

_T 2 0 0 

AX.83104700

_A 2.32 

0.2

0 4.0E-31 1.91  

0.1

9 6.3E-24  1.54 

0.1

9 1.5E-15 

AX.15207405

_G 2.03 

0.2

0 1.0E-24 1.59  

0.2

2 9.8E-13  1.17 

0.2

1 3.7E-08 

AX.16619495

_T 1.79 

0.2

0 3.3E-19 1.36  

0.2

0 1.3E-11  0.97 

0.2

0 1.2E-06 

AX.13920550

_G 1.93 

0.2

3 2.5E-17 1.41  

0.2

8 5.3E-07  0.87 

0.2

7 1.6E-03 

AX.83444620

_C 1.39 

0.1

7 7.4E-17 1.05  

0.1

9 6.6E-08  0.71 

0.2

1 8.8E-04 

AX.82902859

_T 1.58 

0.2

0 8.7E-16 1.19  

0.1

8 2.0E-11  0.90 

0.1

2 3.4E-14 

AX.40182999

_A 1.50 

0.2

1 9.6E-13 1.01  

0.2

5 3.9E-05  0.64 

0.1

4 6.5E-06 

AX.82976133

_A 2.32 

0.3

3 3.8E-12 2.02  

0.3

5 6.7E-09  1.58 

0.3

5 6.1E-06 

AX.82900605

_G 2.21 

0.3

5 1.6E-10 1.91  

0.2

9 9.1E-11  1.54 

0.3

3 2.9E-06 

...          

AX.41828883

_G 1.4E-03 

0.3

4 1.00 

-3.2E-

02  

0.4

2 0.94  

-5.7E-

02 

0.5

4 0.92 

AX.11293250

_T 

-3.6E-

04 

0.1

4 1.00 6.2E-02  

0.1

5 0.67  5.0E-02 

0.1

2 0.68 

AX.37863475

_C 

-3.1E-

04 

0.2

6 1.00 

-1.1E-

01  

0.2

5 0.68  

-1.8E-

01 

0.2

4 0.46 
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Estimat

or SE p-value 

Estimat

or SE  p-value  

Estimat

or SE p-value 

          

Analysis of the BLCSC data with Fused-HDCQR, continued.  

 

Estimat

or SE p-value 

Estimat

or SE  p-value  

Estimat

or SE p-value 

τ 0.5 0.6 0.7 

Int 8.30 

0.2

7 

4.8E-

214 8.55  

0.3

0 

4.9E-

180 8.69 

0.3

5 

2.8E-

132 

Adeno -0.09 

0.1

5 5.3E-01 -0.09  

0.1

3 4.8E-01  -0.09 

0.1

3 5.1E-01 

Squamous -0.50 

0.1

5 1.0E-03 -0.60  

0.1

6 2.1E-04  -0.50 

0.1

9 7.1E-03 

Stage2 -0.88 

0.2

5 5.0E-04 -0.73  

0.2

4 2.1E-03  -0.57 

0.1

9 2.8E-03 

Stage3 -1.08 

0.1

7 1.7E-10 -0.91  

0.1

5 6.4E-10  -0.68 

0.1

6 2.0E-05 

Stage4 -1.91 

0.1

5 7.0E-38 -1.93  

0.1

4 1.7E-44  -1.69 

0.1

6 2.1E-27 

Age -0.02 

0.0

0 3.3E-05 -0.02  

0.0

1 1.3E-03  -0.02 

0.0

1 1.9E-03 

Edu 0.15 

0.1

4 2.7E-01 0.16  

0.1

3 2.2E-01  0.11 

0.1

3 4.0E-01 

Female -0.44 

0.1

1 6.4E-05 -0.47  

0.1

2 1.6E-04  -0.38 

0.1

5 1.3E-02 

Smoke -0.53 0.1 4.9E-04 -0.36  0.1 2.4E-02  -0.31 0.1 3.8E-02 
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Estimat

or SE p-value 

Estimat

or SE  p-value  

Estimat

or SE p-value 

5 6 5 

AX.37793583

_T 2.16 

0.2

0 4.1E-28 1.84  

0.2

8 2.8E-11  1.39 

0.2

5 4.2E-08 

AX.83104700

_A 1.15 

0.2

7 1.6E-05 0.58  

0.2

7 3.5E-02  0.13 

0.2

5 6.0E-01 

AX.15207405

_G 0.75 

0.2

5 2.3E-03 0.34  

0.3

7 3.5E-01  -0.05 

0.4

8 9.2E-01 

AX.16619495

_T 0.66 

0.2

2 3.1E-03 0.44  

0.3

1 1.5E-01  0.18 

0.3

5 6.1E-01 

AX.13920550

_G 0.54 

0.2

7 4.3E-02 0.26  

0.6

0 6.7E-01  0.11 

0.6

0 8.6E-01 

AX.83444620

_C 0.55 

0.2

3 2.0E-02 0.29  

0.2

2 1.8E-01  0.01 

0.1

8 9.7E-01 

AX.82902859

_T 0.73 

0.1

3 4.2E-08 0.51  

0.3

2 1.1E-01  0.22 

0.4

6 6.3E-01 

AX.40182999

_A 0.41 

0.1

8 2.6E-02 0.22  

0.2

7 4.1E-01  -0.01 

0.3

0 9.6E-01 

AX.82976133

_A 1.17 

0.4

2 5.4E-03 0.61  

0.5

2 2.4E-01  0.24 

0.4

6 6.0E-01 

AX.82900605

_G 1.22 

0.3

5 4.5E-04 0.86  

0.3

4 1.1E-02  0.50 

0.3

1 1.0E-01 

...          

AX.41828883

_G 0.26 

0.6

0 0.66 0.32  

0.5

2 0.54  0.12 

0.6

8 0.86 

AX.11293250

_T -0.00 

0.1

2 1.00 -0.09  

0.1

2 0.44  -0.09 

0.1

5 0.56 
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Estimat

or SE p-value 

Estimat

or SE  p-value  

Estimat

or SE p-value 

AX.37863475

_C -0.24 

0.2

0 0.23 -0.37  

0.1

7 0.03  -0.57 

0.3

2 0.08 
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