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Abstract

With the availability of high dimensional genetic biomarkers, it is of interest to identify
heterogeneous effects of these predictors on patients’ survival, along with proper statistical
inference. Censored quantile regression has emerged as a powerful tool for detecting
heterogeneous effects of covariates on survival outcomes. To our knowledge, there is little
work available to draw inference on the effects of high dimensional predictors for censored
quantile regression. This paper proposes a novel procedure to draw inference on all predictors
within the framework of global, censored quantile regression, which investigates covariate-
response associations over aninterval of quantile levels, instead of a few discrete values. The
proposed estimator combines a sequence of low dimensional model estimates that are based
on multi-sample splittings and variable selection. We show that, under some regularity
conditions, the estimator is consistent and asymptotically follows a Gaussian process indexed
by the quantile level. Simulation studies indicate that our procedure can properly quantify the
uncertainty of'the estimates in high dimensional settings. We apply our method to analyze the
heterogeneous effects of SNPs residing in lung cancer pathways on patients’ survival, using
the Boston Lung Cancer Survival Cohort, a cancer epidemiology study on the molecular
mechanism of lung cancer.

KEYwoRDsS: Conditional Quantiles; Fused-HDCQR; High Dimensional Predictors;

Statistical Inference; Survival Analysis.

1 Introduction
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Lung cancer presents much heterogeneity in etiology (McKay et al. 2017; Dong

et al. 2012; Huang et al. 2009), and some genetic variants may insert different

impacts on different quantile levels of survival time. For example, in the Boston

Lung Cancer Survival Cohort (BLCSC) (Christiani 2017), a cancer epidemiology

cohort of over 11,000 lung cancer cases enrolled in the Boston area since 1992,
it was found that SNP AX.37793583 (rs115952579), along with age, gender,
cancer stage and smoking status, had heterogeneous effects on different
quantiles of survival time. A total of 674 patients in the study were genotyped,
with the goal of identifying lung cancer survival-predictive SNPs. Target gene
approaches, which focus on SNPs residing in cancer-related gene pathways, are
appealing for increased statistical power in detecting significant SNPs (Moon

et al. 2003; Risch and Plass 2008; Ho et al. 2019), and the,investigators have
identified SNPs residing in 14 well-known lung cancer-related genes (Zhu

et al. 2017; Korpanty et al. 2014; Yamamoto et ak, 2008; Kelley et al. 2001). One

goal was to investigate whether and how each SNP might play a different role

among the high-risk (i.e., lower quantiles of overall survival) and low-risk (i.e.,

higher quantiles of overall survival) eancer survivors.

Quantile regression (QR) (Koenker.and Bassett Jr 1978) is a significant

extension of classic linear regression. By permitting the effects of active variables
to vary across quantile levels, quantile regression can naturally accommodate
and examine the heterogeneous impacts of biomarkers on different segments of
the response variable’s conditional distribution. As survival data are subject to
censoring and may be incomplete, QR methods developed for complete data
may be unsuitable. Efforts have been devoted to developing censored quantile
regression (CQR) (Powell 1986; Portnoy 2003; Peng and Huang 2008, among

others), which has become a useful alternative strategy to traditional survival

models, such as the Cox model and the accelerated failure time model. QR has
also been widely studied to accommodate high dimensional predictors. For

example, Wang et al. (2012) dealt with variable selection using non-convex

penalization; Zheng et al. (2013) proposed an adaptive penalized quantile




regression estimator that can select the true sparse model with high probability;

and Fan et al. (2014) studied the penalized quantile regression with a weighted

L4 penalty in an ultra-high dimensional setting. As to high dimensional CQR

(HDCQR), He et al. (2013) provided a model-free variable screening procedure

for ultrahigh dimensional covariates, and Zheng et al. (2018) proposed a

penalized HDCQR built upon a stochastic integral based estimating equation.
However, most of the existing works in HDCQR were designed to select aisubset
of predictors and estimate the effects of the selected variables, instead of

drawing inference on all predictors.

Progress in high dimensional inferences has been made for linear and non-linear
models (Zhang and Zhang 2014; Buhlmann et al. 2014; Javanmard and
Montanari 2014; Ning and Liu 2017; Fei et al. 2019; Feiiand Li 2021). For

example, Meinshausen et al. (2009) proposed to aggregate p-values from multi-

sample splittings for high dimensional linear,regression. Another line of works

referred to as post-selection inference.includes Berk et al. (2013), Lee

et al. (2016), and Belloni et al. (2019), which provided post-selection inference at

fixed quantiles for complete data. However, these methods may not handle

censored outcomes. For censored median regression, Shows et al. (2010)

provided sparse estimation and inference, but it cannot handle high dimensional

data.

We propose to drawsinference on high dimensional HDCQR based on a splitting
and fusing scheme, termed Fused-HDCQR. Utilizing a variable selection

procedure for HDCQR such as Zheng et al. (2018), our method operates partial

regression followed by smoothing. Specifically, partial regression allows us to
estimate the effect of each predictor, regardless of whether or not it is chosen by
variable selection. The fused estimator aggregates the estimates based on
multiple data-splittings and variable selection, with a variance estimator derived
by the functional delta method (Efron 2014; Wager and Athey 2018). To

comprehensively assess the covariate effects on the survival distribution, we




adopt a “global” quantile model (Zheng et al. 2015) with the quantile level varying

over an interval, instead of a local CQR that focuses only on a few pre-specified
quantile levels. The global quantile model can address the molecular mechanism
of lung cancer, our motivating disease, that hypothesizes that some genetic
variants may cause heterogeneous impacts on different but unspecified
segments of survival distribution (McKay et al. 2017; Dong et al. 2012; Huang

et al. 2009).

Our work presents several advantages. First, compared to high dimensional Cox
models (Zhao and Li 2012; Fang et al. 2017; Kong et al. 2021), the employed

HDCQR stems from the accelerated failure time model (Wei 1992) and offers

straightforward interpretations (Hong et al. 2019). Second, utilizing the global

conditional quantile regression, it uses various segments of the conditional
survival distribution to improve the robustness of variable selection and capture
global sparsity. Third, our splitting-and-averaging‘'scheme avoids the
technicalities of estimating the precisionsmatrix by inverting a p x p Hessian
matrix of the log likelihood, which is.a major challenge for debiased-LASSO type

methods (Zhang and Zhang 2014;Van.de Geer et al. 2014) and is even more so

if we apply debiased-LASSO to the CQR setting. Finally, as opposed to post-

selection inferences (Belloniet al. 2019, among others), Fused-HDCQR

accounts for variations in.model selection and draws inference for all of the

predictors.

The rest of the paper is organized as follows. Section 2 introduces the method,
and Section.3 details the asymptotic properties. Section 4 derives a non-
parametric variance estimator, Section 5 conducts simulation studies, and
Section 6 applies the proposed method to analyze the BLCSC data. The
technical details, such as proofs and additional lemmas, are relegated to the

online Supplementary Materials.

2 Model and Method

2.1 High dimensional censored quantile regression



Let 7and C denote the survival outcome and censoring time, respectively. We
assume that Cis independent of 7given Z, a (p—1)-dimensional vector of
covariates (p>1). Let X =min{7,C},A=1{T<C},and Z= (1,ZT)T, where 1{-} is
the binary indicator function. The observed data, D" = {(X,,A,,Z.),i=1,...,n},
are nidentical and independently distributed (i.i.d.) copies of (X,A,Z). With
Y=logT,let Q,(r|Z)=inf{t:P(Y <t|Z) >} be the ~th conditional quantile of Y

given Z. A global censored quantile regression model stipulates
O, (r|Z)=Z" (2), 7 €(0,1), (1)

where £ (7) is a p-dimensional vector of coefficients at 7. We aim to draw
inference on ,Bj.(r) for each 7 €(0,7,] and forall j{l,..., p}, where 0< 7, <1 is
an upper bound for estimable quantiles subject to identifiability constraint caused

by censoring (Peng and Huang 2008).

Let N(t)=1{log X <t,A=1}, A, (t| Z)=—log(l=P(logT <t|Z)), and
H(u)=—log(1-u). Then, M ()= N(t) - A (ralog X | Z) is a martingale process
under model (1) (Fleming and Harrington 2011) and hence E(M(t)|Z)=0.We
use N,(¢) and M, (¢),i=1,...,n, to denote the sample analogs of M#) and M. Let
6,(z)=Z]B(z) and

U8, = 32, pAgm)- [ iog X, > Ganari .

We denote by u(f;7) the expectation of U, (f,7).

The martingale property implies u(f",7)=0 with 7 €[0,7,], entailing an

estimating equation with 7 (0,7, ]:
WU, 1)=n""Y 2, {M (6.(2)-] 1log X, > «2(u>}dH(u)} =0. @
i=1

The stochastic integral in (2) naturally suggests sequential estimation with

respect to 7. We define a grid of quantile values ', ={z,,7,,...,7,} to cover the



interval [v,7,], where 7, =v and r, = z,,. The assumption on the lower bound
v>0 is made to circumvent the singularity problem with CQR at 7= 0, as
detailed in assumption (A1). In practice, vis chosen such that only a small

proportion of observations are censored below the ~th quantile.

Then, #(z,)’s, the estimates of #(z,)’s, 7, €I',,, can be sequentially obtained by

solving
n k-1 '

>z, [N,. (6.(z) -2 [ 1{log X, > ei(rr)}dH(u)] =0,
i=1 r=0 "

where 0;(z,)=Z' B(z,) . Due to the monotonicity of 6,(z) in7, B(z;) can be

solved efficiently via L+-minimization. And g(7),7 €[v, 7], isydefined as a right-

continuous piece-wise constant function that only jumps at the grid points. It can
be shown that g(r) is uniformly consistent.and converges weakly to a mean zero

Gaussian process for 7 €[v, 7,,] when ¢= o(r) \More importantly, ﬁ(z‘) provides
a comprehensive understanding ofithe covariate effects on the conditional
survival distribution over the quantile interval [v, 7, ]. We incorporate this
sequential estimating procedure for low dimensional CQR estimation in our

proposed method.

In addition, our method requires dimension reduction, which can be
accomplished by existing methods, including the screening method proposed by

He et al. (2013) and the penalized estimation and selection procedure developed

by Zheng etwal. (2018). Specifically, Zheng et al. (2018) incorporated an L1

penalty into the stochastic integral based estimating equation in (2) to obtain an

L-HDCQR estimator, which achieves a uniform convergence rate of

\/qlog(pvn)/n , and results in “sure screening” variable selection with high

probability, where g is defined in condition (A4). Zheng et al. (2018) also

proposed an AL-HDCQR estimator by employing the Adaptive Lasso penalties,



which attains a uniform convergence rate of 4/(] log(n)/n and selection

consistency.

2.2 Fused-HDCQR estimator

Our proposed Fused-HDCQR procedure consists of multiple data splitting,
selecting variables, fitting low dimensional CQRs with partitioned data, applying

append-and-estimate to all predictors, and aggregating those estimates.

1. With the full data D", determine via cross-validation the tuning
parameter(s) A, of S, an HDCQR variable selection method.

2. Let Bbe a large positive integer. For each 6=1,...,B,
(i) randomly split the data into equal halves, D;“and D! ;

(i) on D!, apply S with A,0n [v,7,],t0 select a subset of predictors,
denoted by S , or S for short;

(iiyon D!, foreach j=L...,p, append jto S’ such that §*, = {j}US",
fit a partial CQR on the covariates indexed by Sfj , and denote their
coefficient estimates by ﬂ&[:/(f),f elv,7,]. Here, p’sf/(r) is a right-
continuous piecewise-constant function with jumps only at the grid

points of z=el',;

(iv)denote by ,Ej?(r) :(ﬂﬁf/(r)) the entry of ﬂﬂ/(r) corresponding to Z;.

J
3. Rusing: the final estimate of S,(7), r €[v,7,], j=1,...,p is
A 1 <& -~
B(0)=—> (). (3)
B b=1
Remark 1. We could select different tuning parameters for S in each data split,

but with much added computation. Our numerical evidence suggests that a

globally chosen A, work well.



Remark 2. Our procedure needs a variable selection procedure to reduce
dimension. For example, L-HDCQR selects a subset:

{j €2,---,p}:max, |y ,(z,) > ay, 7, €T, }, where y,(z,)’s are the L-HDCQR
estimates, g, >0 is a predetermined threshold, and s starts with 2 as the intercept
term (corresponding to /= 1) is always included in the model. For the choice of
variable selection methods, our experience suggests that we adopt the screening

method in He et al. (2013) for fast computation, use L-HDCQR for detecting-any

non-zero effects in the quantile interval [v, 7, ], and choose AL-HDCQRif we opt

to select fewer predictors.

Remark 3. We select A, by minimizing a A-fold cross-validation error defined by

deviance residuals in the presence of censored outcomes,(Zheng et al. 2018).

Specifically, we partition the data to Afolds, and let ﬂ;‘k)(r) be the penalized
estimate of #(7) using all of the data excluding the 4th fold with a tuning
parameter Aand 7 €[v,7,], where k=1,...;K.. Under the global CQR model (1),

we define the cross-validation error as

CVErmor()=) > [* s, @] d @)

k=1 iefold k

where

D[(2)] = sign{MBE)}2M,(B(2) + A, log {A, — M, (B(x)) }

with M, (B() = N,(Z] () - [ 1{log X, > N,(Z] p(u))}dH (u)— v . Here,
H(u)==log(I-u), N,(-) is the counting process, and M,(f(7)) is the martingale
residual under model (1) (Zheng et al. 2018).

Remark 4. When carrying out quantile regression at each grid point, we formulate

it as a linear programming problem (Koenker 2005), which can be solved by a

simplex algorithm with a computational complexity of O(n*p) (Klee and



Minty 1972). Since our grid size is O(n) and the number of resampling, B, is O(n),

the computational complexity of our procedure is O(n*p).

3 Theoretical Studies

3.1 Notation and regularity conditions

For any vector 6 eR” and a subset S c{l...., p}, denote by SCits

complementary set, and define || d||, ;=|| d ||, , the /-norm of the sub-vector g , in

which 5,,=6,if jeS and 5, =0 if j eS°. We set the following conditions:

(A1) There exist a quantile vand a constant ¢> 0 such.that

n

n' Y logC <ZIf (W} (1-A)<cn™”

i=1
holds for sufficiently large n.

(A2) (Bounded observations) \Z]|,,< Gy, Without loss of generality, we

assume C, =1. In addition, E|leg X [<ee.

(A3) (Bounded densities) et

F(t|Z)=P(logT <t|Z)yA, (t|Z) = —log(1-F,(t| Z)), F(t|Z) =P (log X <t| Z),
and G(t|Z)=P(logX <{;A=1|Z). Also, define f(¢|Z)=dF(t|Z)/dt, and
g(t|Z)=dG(t| Z)) |.di

(a) There‘exist constants f, f,g and g such that

J_’Szﬂrier[lfrb,]f(ZTl)’*(f)IZ)S sup f(2' ()| 2)< f,

z,7elv, 7y ]

g< inf g@f(D|D< sw g@'f(@)|D<E.

Z,TE[",TU]

(b) There exist constants x>0 and A such that, when |7 <«



sup |f(2"B () +t|2)- (2 B ()| 2)| < A1),

z,7ev,7y]

sup ]\g(zTﬂ*(r)HIZ)—g(zTIf*(r)IZ)\SA|t|~

z,7qVv,7y

(A4) (Sparsity) Assume log p = o(n'?), and let

Sr={j:ﬂj(7)¢0}, S = U ST={j: sup |ﬂ;(r)|>0}, and ¢=|S"|.

v,y ] rqv,7y]

Let S be the index set of covariates selected by S with a tuning
parameter A,. There exist constants 0<¢, <1/3,¢,, K, K, >0 such that
qg<Kn?,| S I<Kn", and

P(S* c 3’) >1-K,(pvn) .

(A5) Let u(7)= E[l{logX > ZT/)’*(r)}J. There exists a constant L >0

such that | 8(z,)—B.(7,) IS L| 7, — 7, | and h(zp~ i(7,) < L| 7, -7, |, for all

7,7, €(v,7,] and 1< j<p.

(AB) (Bounded ejgenvalues) 6*E[Z,Z.)16/ |||’ is bounded below and
above by A4 . and A

ax 2

respectively, over || d||,< Kn",0 #0, where

O < ﬂ‘min < ﬂ‘max ’
(Nonlinear impacty cy:=" inf  E[(Z'0)’T"*/E[|Z]6[']>0.
16]lo <K,n! ,06+0
(A7) [mis equally gridded with 7, =7, =€, =cn” for 7, T, (k=1,...,m

) and a constant ¢, > 0.

Assumption (A1) requires the number of censored observations below the 1-th
quantile not to exceed cn'?, which is satisfied if the lower bound of C's support is
greater than the lower bound of 7’s support, a reasonable scenario in real

applications. As recommended in Zheng et al. (2018), vis chosen such that only

a small proportion of the observed survival times below the -th quantile are



censored. (A2) assumes that the covariates are uniformly bounded. As pointed

out by Zheng et al. (2015), the global linear quantile regression model is most

meaningful when the covariates are confined to a compact set to avoid crossing
of the quantile functions. (A3) ensures the positiveness of f(¢|Z) between

Z'B (v) and Z' B (z,), which is essential for the identifiability of g7(z) for r< <z, .
(A4) restricts the order of data dimensions, as well as the sparsity of #°(z), which
is necessary for the convergence of the low dimensional estimator in (2)

(Condition C4 in Wang et al. (2012)). (A4) also characterizes the “sure screening”

property by S . This asymptotic property does not assess the variability of
selection with a finite sample; it is crucial to account for such variability for high

dimensional inference (Fei et al. 2019; Fei and Li 2021). Also; several variable

selection methods for high dimensional CQR satisfy the sure sereening property

in (A4) with additional mild conditions.

« L-HDCQR: by Corollary 4.1 of Zheng.et'al/ (2018), a beta-min condition is

required in addition to the set ofieanditions in this paper. Explicitly, there

exist constants C,,C, >0, such that

inf sup | £(2) > C, exp(Csgryfqlog(p n)/n+ Lyge,.

7.7y

« AL-HDCQR: by Corollary 4.2 of Zheng et al. (2018), AL-HDCQR achieves

the stronger selection consistency property, which implies the sure

screening property.

e Quantile-adaptive Screening: by Theorem 3.3 of He et al. (2013), with a

proper,threshold value in their technical conditions, the screening

procedure achieves the sure screening property.

(A5) characterizes the smoothness of (7). The eigenvalue condition in (A6) is

the sparse Riesz condition in Zhang and Huang (2008), satisfied by many

commonly used covariance structures, including the compound symmetry

structure and the first order autoregressive structure (AR(1)) (Zhang and



Huang 2008). Also, the nonlinear impact condition controls the minoration of the
quantile regression objective function by a quadratic function, as adopted in
Zheng et al. (2018), for establishing the consistency of L-HDCQR estimator. The

condition is satisfied when the covariates Z, have a log-concave density, which

includes the commonly used normal distribution, Wishart distribution and Dirichlet

distribution (Lovasz and Vempala 2007). (A7) details the fineness of "5, which

renders an adequate approximation to the stochastic integration in (2).

3.2 Theoretical properties of Fused-HDCQR

We first extend the results in Peng and Huang (2008) from a fixed. pto a p-

diverges-but-less-than-n case. The results are novel and critical'since we allow
the true model size ¢ =|S" | to increase with n, while the selected S"’s in the
fused procedure vary around S”. Specifically, we assume a'subset S c{l,..., p}

in Theorems 1 and 2, where | S|<Kn%,0<¢ <1/3 and K, >0. Let

p(7),7 €[v,7,] be the estimator from Peng and Huang (2008) of fitting the CQR

with Z, over the ~grid .

Theorem 1. (Consistency with a diverging number of covariates) Under
Conditions (A1) — (A7) and given‘asubset S —{l,---, p} such that S < S and

| S |< K,n, there exist positive,constants ¢ and ¢ such that

sup || B5(2)— B (2) e, exple, ) K"~ Tog )2

1232377}
with probability at least 1-20c,”K,n“ .

Remark 5. From the proof of this theorem (in particular, the proofs of
Propositions 1 and 2 in the Supplementary Materials that lead to this theorem), it
can be seen that ¢ and & do not depend on the choice of Sor n. Thus, & and &

are universal for all possible Ssatisfying "< S and |S|< Kn“.

Next, we derive the weak convergence of g, forany jeS.



Theorem 2. (Weak convergence with a diverging number of covariates) Under
Conditions (A1) — (A7) and givena S — {l,---, p} such that S"c S and |S|< Kn",
it holds that

[ 8,0)-5,)
converges weakly to a mean zero Gaussian process for z €[v,7,,] and any j €S .

In high dimensional settings, the next theorem shows that the fused estimator

enjoys desirable theoretical properties.

Theorem 3. Consider the Fused-HDCQR estimator in (3). Under assumptions
(A1) = (A7), forany j €{l,..., p},

Jn(B(0)-F,(0)
converges weakly to a mean zero Gaussian process for 7 €[v,7,,].

Our framework enables us to obtain the joint distribution of any A~dimensional
estimated coefficients, where K'isa finite number. Let K be the collection of the

indices of K covariates of interest"We can show that the weak convergence
result of #,.(7), a A~-dimensional subvector of the oracle estimator, still holds for
7 €[v,7,], that is; «/Z(,b’K(r)—ﬂZ(r)), 7 €[v,7,] converges to a K-dimensional

Gaussian distribution at any z €[v, z,,]. We only need to replace /;’j(r) by /;’K(r)
in the proof of Theorem 2 in the Appendix and slightly modify the arguments
accordingly. Consequently, the term | in the proof of Theorem 3 still converges
weakly to a mean zero Gaussian distribution, while the norms of items Il and llI
are still o,(1). Therefore, Theorem 3 still holds for any A-dimensional subvector
of p.(7),i.e., \/Z(ﬂk(r)—ﬂ;(r)) converges to a mean zero A~dimensional

Gaussian distribution at any z €[v, 7, ].



As shown in the proof, the covariance function of ﬁj(r) depends on the unknown
active set S”, the unknown conditional density functions 7(¢|Z) and g(¢|Z), and
other unknown quantities. Thus, it is not calculable. The next section proposes
an alternative model-free variance estimator based on the functional delta

method and the multi-sample splitting properties (Efron 2014; Fei and Li 2021).

4 A Variance Estimator via the Functional Delta Method

Let J,. €{0,1} indicate whether the # observation is in the 4" sub-sample™D;

B
and J, = B‘IZJ,”. .Foreach i=1,...,n, we define the re-sampling covariance
b=1

between Jx and B_f(rk) at r, eI’ as

sii(rk):%Z(Jbi —Ji)(ﬁ?(rk)—ﬁ,(fk))-

b=1
Define S_j(z-k)=(sl_j(rk)’sz_j(rk)""’snj(rk))T andlet s, = D’ |. It follows that the

covariance between ﬁ/(rk) and /}/(r() can.be consistently estimated by

n(n—1)
(n—m)’

Covj(rk,z'()— )8, (7)) = ST(rk)S (7,),

i

where the multiplier n(n~1)/(n—n,)* is a finite-sample correction for sub-

sampling (Wager and Athey 2018). In particular, by taking 7, =z, , a variance

estimator for ﬁj(rk) iS

n(n=l)

Vj(rk) 3 (i _”1)2

Sj(rk)sj(rk)' (5)

As in Wager and Athey (2018), it follows that r@(rk)/\/ar(ﬁj(rk))—b1 with

n, B — oo . Furthermore, for a finite B, we propose a bias corrected version of (5):

Vi) =V, (5,)- (” ){ lz(ﬁi(m—ﬁj(m)z}, 7 €, (6)

b=1



The correction term in (6) is a suitable multiplier of the re-sampling variance of

ﬁf(rk) s, and converges to zero with n —c and n, = O(n) . Thus, the two
variance estimators in (5) and (6) are asymptotically equal. However, I}j(z'k) in

(5) requires Bto be of order n”* to reduce the Monte Carlo noise below the
sampling noise, while I?jB(rk) in (6) only requires Bto be of order nto achieve the

same (Wager et al. 2014).

Since ,éj(r) converges weakly to a Gaussian process by Theorem 3, and-our
variance estimators are consistent on the grid points, we define an asymptotic

100(1 - )% point-wise confidence interval for ﬂj.(rk) atany 7, eI, as
ﬁj(rk)—q)_l(l—a/2),ﬁ}jB(T,{),,éj(’rk)+CD_l(l—a/2) I?f(rk)),

where I%.B(rk) is as defined in (6), and @ is the standard-normal cumulative

distribution function. The p-value of testing( &, :,B;(rk) =0forar, el is

2 x {1—@(1@(%) |/ I?f(rk))}.
5 Simulation Studies

In various settings, we compare, the proposed method, Fused-HDCQR (referred
to as “Fused” in the tables and figures hereafter), with some competing methods
in quantile regression or high dimensional inference. These methods include

Wang et al. (2012) (‘W12”) and Fan et al. (2014) (“F14”) for quantile regression;

Zhengeet al. (2018) (“Z18”) for censored quantile regression; and Meinshausen

et al. (2009) (“M09”) for inference with aggregated p-values from multi-sample

splittings.

In the simulations and the later data analysis, we choose L-HDCQR described in
Section 3 as the variable selection tool for Fused-HDCQR. We also explore the
feasibility of using other alternatives for variable selection, such as Fan

et al. (2009) (“F09”) and M09.



When implementing Fused-HDCQR, we specify the number of splits as B = 300,
the quantile interval as [v,7,]1=[0.1,0.8], and the grid length as m=n/logp . As
regards the selection of tuning parameters, Theorems 1 and 2 suggest that our
procedure not be sensitive to tuning parameters as long as they can ensure sure
screening. In practical settings, we recommend to select tuning parameters by
minimizing the 5-fold cross-validation error as in (4), which may help achieve
sure screening and works well in our simulations. We study the following

examples with sparse non-zero effects, some of which are heterogeneous:
Example 1. The event times are generated by

T
log7, =Z:b+¢, i=1,..,n,

where the coefficient vector b is sparse with b,, = 0.5b,, =155, =1.5,b, =0 for all
other /s, and & ~ N(0,1). Therefore, the true coefficients satisfy

B (7)=(Q.(r),b")" forall r€(0,1), where O,(z) ,the ~th quantile of the
distribution of ¢, is the intercept. The covariates Zj,l.’s are i.i.d. from Unif(-1,1)
and are independent across ; €{l,...3p}. The censoring times are generated

independently as logC, ~ N(3,17:25),.giving a censoring rate around 25%.
Example 2. The event times follow

logT =Zb+1.5Z, 4 @)

3,i%i°

where b,, =1,b,,=1.5,b,, =2, b= 0 for all other /s, and & ~ N(0,1). We first

generate Z =N (0,X) with an AR(1) £=(o,,),.,, Where o,, =0.3"", and then

pxp’
let Z; = Z:, except that the third covariate Z~3J. =|Z5:|+0.5. Thus,

B (1)=0,5,(r)=1.50,(7), and 3, (z) = b,, for all other /s. The censoring times
are generated independently as logC, ~ N(4,17.25), giving a censoring rate

around 23%.

Example 3. The event times follow



T - ~
logT, =Z:b+¢,(5)Z,, + 4,(5)Z,,,

where b,, =1,b,, =1.5,b, =2, b= 0 for all other /s, & ~ N(0,1), and ¢,,¢, are
monotone functions as the dashed lines in Figure 1, both are continuous with
zero and non-zero pieces over 1. We first generate Z ~N,(0,X) as in Example
2, and then let Z, = Z, except that Z,, =| Zl,; |+0.5 and Z,, = 24,; |+0.5 .
Therefore, () =0,5,(7) = ¢,(7), fi(7) = $,(r), and S, (z) =b,, for all otherfs.

The censoring times are generated independently as logC, ~ N(6,17.25), which

gives a censoring rate around 20%.

For each of these examples, we set (n, p)=(300, 1000) and (700,:1000) to study
the impacts of the sample size and the number of variables on.the performance,
and, in particular, how the methods fare when p > nsin Example 3, which mimics
the real data example in Section 6 most closely,we have also explored

(n, p) =(700,2000), which is roughly equal to'the 'dimension of the real dataset.
For every parameter configuration, a total'ef 100 independent datasets are
generated, and we report the average results based on these replications. We
choose 100 replications because the penalized methods for high dimensional

CQR in general take much,computing time (Table 5).

We first evaluate the feasibility of using various variable selection tools for our
proposed method. Comparisons of true positives and false negatives among
F09, M09, and L-HDCQR under Examples 1-3 are reported in Table 1. FO9
presents a subpar performance because, by taking intersections of variables
selected fromdifferent partitions of data, it tends to miss out some true signals
and thus have fewer true positives. In contrast, L-HDCQR retains more true
positives than both FO9 and M09, while having more false positives. Because our
method requires the variable selection step to include the true signals with high
probability, even at the cost of some false positives, we use L-HDCQR as the

screening tool for our method.



We next compare the performance of Fused-HDCQR with other high dimensional
quantile regression methods at 7=.25,.5,.75 under Example 1. As a benchmark
for comparisons, we also compute the oracle estimates based on the true model
(with S known). Since W12, F14, and Z18 only provide coefficient estimates
without standard errors (SEs), we only report the estimation biases for them,
while reporting the average SEs, empirical standard deviations (SDs) and
coverage probabilities of the confidence intervals for our method. Table 2 shows
that Fused-HDCQR presents the smallest biases, which are comparable‘to,those
of the oracle estimates. In contrast, Z18 has smaller biases when the sample
size is large, and larger biases otherwise, while W12 and F14 incur substantial
biases since they are not designed for censored data. Moreover, the average
SEs based on Fused-HDCQR agree with the empirical SDs of.the estimates. The
consistent estimates of coefficients and SEs obtainedwby Fused-HDCQR lead to
proper coverage probabilities around the 0.95 neminal level. In addition, the

coverage probabilities improve as nincreases.

Table 2 also concerns the power far detection of signals. Since W12, F14, and
Z18 cannot draw inference and, in‘general, there is a lack of literature that deals
with inference for HDCQR, we compare our method with the aggregated p-value
approach (M09) in the quantile setting, though M09 originated from linear
regression. The results indicate that Fused-HDCQR outperforms M09, presenting

more power when the'effect'size is moderate or large.

Table 3 summarizes the results from Example 2 with the heterogeneous effect (4
varying withuz. We compare the estimation accuracy between Fused-HDCQR
and Z18, as well as the statistical power between Fused-HDCQR and M09.
Again, Fused-HDCQR presents smaller biases than Z18 and a higher power than
MO09. To assess whether the tuning parameters selected as in Remark 3 help the
variable selection method (L-HDCQR), used by Fused-HDCQR, satisfy
assumption (A4) in Section 3, we report the selection frequency of each signal

variable in Table 3 (and also in Table 4), and observe that the selection



frequency increases as the sample size increases, hinting that assumption (A4)

may be satisfied with these selected tuning parameters.

Table 4 summarizes the results based on Example 3. For the two heterogeneous
effects 5, and Gs that vary with 7, their estimation biases of Fused-HDCQR
become smaller and the estimated SEs are closer to the empirical ones as n
increases. Figure 1 shows that the Fused-HDCQR estimates in general agree
with the oracle estimates and the truth, except at the non-smooth change points,
and have narrower confidence intervals with a larger n, where the vertical bars

are the average confidence intervals of the rgrid.

In regards to the choice of Bin the variance computation, our.numerical
experience suggests that it may be sufficient to use a B that.is of the same order
of the sample size, even when nis less than p. This coincides with the note
under (6) that Bis only required to be of order #toreduce the Monte Carlo noise

below the sampling noise.

Finally, we compare the computation intensity among 218, M09, W12, F14, and
Fused-HDCQR under Example 1 and report in Table 5 the computing time on
average per dataset. Our method is the most computationally intensive, because
it involves multiple data-splittings and draws inferences on all of the p
coefficients. Howeveryby utilizing parallel computing, we have managed to
reduce the computational time to the same order of Z18, W12, and F14 that are
based on penalizedregression. The R code used for generating the simulation

results can besaccessed via https://github.com/feizhe/HDCQR_Paper.

6 Application to the Boston Lung Cancer Survival Cohort (BLCSC)

Detection of molecular profiles related to cancer survival can aid personalized
treatment in prolonging patients’ survival and improving their quality of life. In a
subset of BLCSC samples, 674 lung cancer patients were measured with
survival times, along with 40, 000 SNPs and clinical indicators, such as lung

cancer subtypes (adenocarcinoma, squamous cell carcinoma, or others), cancer


https://github.com/feizhe/HDCQR_Paper

stages (1-4), age, gender, education level (< high school or > high school) and
smoking status (active or non-active smokers); see Table 6 for patients’
characteristics. The censoring rate was 23% and a total of 518 deaths were
observed during the followup period, with the observed followup time varying
from 13 to 8, 584 days.

We could have included all 40,000 SNPs in our analysis. However, for more
statistical power, we opt for the targeted gene approach by focusing on 2,002
SNPs residing in 14 genes identified to be cancer related, namely, ALK, BRAF,
BRCA1, EGFR, ERBB2, ERCC1, KRAS, MET, PIK3CA, RET, ROS1, RRM1,
TP53, and TYMS (Brose et al. 2002; Toyooka et al. 2003; Paez et al. 2004; Soda

et al. 2007). Pinpointing the effects of individual loci within the targeted genes is

helpful for understanding disease mechanisms (Evans et al. 2011; D’Antonio

et al. 2019) and designing gene therapies (Paques‘and

Duchateau 2007; Hanawa et al. 2004). We‘also adjust for patients’ clinical and

environmental characteristics listed in Table' 6, which gives a total of p=2, 011

predictors.

We apply Fused-HDCQR to compute.the point estimates (3) and the variance
estimates (6). We set the quantile-interval to be [0.2,0.7], which is wide enough
to cover high- and low-risk groups and, in the meantime, ensures the quantile

parameters be estimable in,the presence of censoring (Zheng et al. 2015). We

choose the lower bound 7, = v=0.1 to circumvent the singularity problem with
CQR at 7= 0, because few (< 2% ) observations are censored below the 0.1-th
quantile. With, ¢, =0.01, we form the rgrid I, of length m=61. We set B= 750
as the number of re-samples, which is sufficiently large and comparable to the
sample size. To determine the tuning parameter A, in L-HDCQR for selection, we

use 5-fold cross-validation as specified in Remark 3.

For ease of presentation, we summarize the results evaluated at 6 quantile

levels, 7=0.2,0.3,...,0.7, instead of the whole grid I"». To highlight the findings of



the high-risk group, we rank all SNPs based on their p-values at 7=0.2. In
particular, after Bonferroni correction for multiple testing, there are 83 significant
SNPs for 7=0.2 with the overall type | error of & =0.05. Our method estimates
the coefficients and the p-values for a// predictors, and we only present the
results for the patient characteristics, the top 10 significant SNPs, and the 3 least
significant SNPs in Figure 2 and Table 7. The estimated coefficient of active
smoking drops from -0.42 (p = 0.0011) to -0.53 (p = 0.0005) as rchanges,from
0.2 to 0.5, and then increases to -0.31 (p = 0.038) as rchanges to 0.7,
suggesting that active smoking might be more harmful to the high- and median-
risk groups than the low-risk group of patients. The most significant SNP at
7=0.2 is AX.37793583_T, which remains significant throughout'z=0.2 to
7=0.7. However, its estimated coefficient decreases from2.75/( 7 =0.2) to 1.39 (
7=0.7), indicating its heterogeneous impacts on survival,.i:e., stronger protective

effect at lower quantiles and vice versa.

The effects of some SNPs are nearly zero for higher quantiles. For example, the
estimated coefficient of AX.15207405_G decreases from 2.03 (z=0.2; p=10"*)
to -0.05 (r=0.7; p=0.92), with the estimated standard error increasing from
0.20 to 0.48. Similarly, the estimated coefficient of AX.40182999_A decreases
from1.5(7=02; p=9.6x10:")t0 -0.01 (r=0.7; p= 0.96). The results again
hint at heterogeneous SNP effects in various risk groups, which cannot be

detected using traditional Cox models.

Finally, our results shed light on the roles of SNPs in the high-risk group (i.e.,
lower quantiles). Specifically, we map the 83 SNPs with significant effects at the
0.2-th quantile by Fused-HDCQR to the corresponding genes and rank the genes
by the number of significant SNPs (over total number of SNPs for each gene in
the parenthesis), which are TP53 (14/321), RRM1 (14/174), ERCC1 (10/167),
BRCA1 (10/114), ALK (8/163), ROS1 (5/294), EGFR (5/261), ERBB2 (4/167),
and 6 other genes with numbers of significant SNPs less than 4. While these

genes were reported to be associated with lung cancer (Toyooka



et al. 2003; Takeuchi et al. 2012; Rosell et al. 2011; Lord et al. 2002; Zheng

et al. 2007; Sasaki et al. 2006; Brose et al. 2002), our analysis provides more

detailed information as to which SNPs and locations of the genes are jointly
associated with the lung cancer survival, as well as the estimated effects and
uncertainties. Analysis of heterogeneous SNP effects has been gaining
increasing research attention in lung cancer research (McKay et al. 2017; Dong
et al. 2012; Huang et al. 2009), and beyond it (Garcia-Closas et al. 2008; Cheng
et al. 2010; Gulati et al. 2014).

7 Conclusions

Our proposed procedure involves repeated estimates from low dimensional
CQRs, which are computationally straightforward and canbe efficiently
implemented with parallel computing. We require thesvariable selection to
possess a sure screening property as in condition, (A4). This seems to be
supported by our simulations, which find ouriprocedure works well when the
variable selection method can select a'superset of the true model with high
probability. Our condition is much weaker than a condition of selection

consistency as specified in Fei et al. (2019).

For the selection of B, we recommend B to be in the same order of the sample
size n. Smaller B might'not affect coefficient estimation much; but it might yield
inaccurate estimated.standard errors, leading to incorrect inferences. In addition,
we opt to define [, by setting the grid as n/log p equally spaced points between
1o and _7u. This may cover the quantile interval well, with reasonable computation

efficiency:

There are open questions to be addressed. First, substantial work is needed for
handling highly correlated predictors as the performance of our method, like the
other competing methods, deteriorates when correlations among predictors
become stronger. Second, it is of interest to investigate an alternative method

when the sparsity condition fails. For example, it is challenging to find an



effective strategy to draw inference when a non-negligible portion of predictors

have small but non-zero effects. We will pursue them elsewhere.
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Fig. 1 I%d heterogeneous effects and confidence intervals of Fused-

HDCQR using Example 3: S,(-) (left panel) and S;(-) (right panel). From the top
to the bottom are the plots for (, p) =(300,1000),(700,1000) and (700, 2000),

respectively.
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Fig.2E ated quantile-specific coefficients of the predictors in Table 7.



Table 1 Summary of variable selection results based on the simulated datasets.

| TP FP

(n, o) crldL-Hocar|mos| Fos|L-HDCaR|Mog| Foo

Example 1](300,1000)[0.25(3] 2.67|12.12/1.64 7.95(0.00|/0.19
(700,1000)[0.25(3} 2.98/12.78(2.27|  13.08]0.01/0.34

Example 2[(300,1000)0.22]4] 3.60||3.58(2.22]  12.45(0.00/(0.22
(700,1000)]0.23]4| 3.99|3.99(3.54|  11.29(0.00/0.64

Example 3](300,1000)[0.20[5] 3.82(3.63||1.91 10.00(0:00//0.17
(700,1000)[0.20[5] 4.81|14.77|4.35|  1173]0.01{0.54
(700,2000)[0.19]5 4.784.764.17| « 16:34][0.00(0.47

Note: CR, average censoring rate; ¢ =|.S”|; TP, average true positives; FP,
average false positives; M09, Meinshausen et al. (2009); F09, Fan et al. (2009);
L-HDCQR, Zheng et al. (2018).




Table 2 Results of Example 1 based on the simulated datasets.

Bias EmpSD| SE|Cov| Power
Oracle||Fused| Z18| F14| W12 Fused Fused|M09
n =300, p =1000

£, =0.5| 0.02| 0.02|-0.38|-0.50|-0.48| 0.14|/0.13||0.93| 0.97|/0.06
0.02| 0.01|-0.24|-0.49|-0.48|| 0.12/0.13|0.95| 0.98/0.04

0.01| 0.01|-0.13|-0.50|-0.48|| 0.12/|0.13|/0.96|| 1.00/0:02

B, =1 -0.01|| -0.01(-0.02||-0.91||-0.33||  0.14|[0.13||0.92 1.:00(0.99
-0.00|| -0.00(-0.03||-0.68||-0.32||  0.14|(0.12]|0.92| 1.00{/0.98

0.02| 0.01|-0.01|]-0.70|-0.30| 0.17||0.14{{0.93} 1.00(|0.94

B, =1.5| -0.00| 0.01| 0.00|-0.92||-0.24| 0.12]|0.13]|0.92| 1.00||1.00
0.00| 0.01{ 0.01|-0.64|-0.25|| ¢,,0.11/0.43|0.97| 1.00/1.00

0.02| 0.01| 0.02||-0.70|-0.25}+,. '0.13|0.14|/0.95| 1.00(|1.00

n =700, p =1000

5, =0.5| -0.02|| -0.01(-0.01|-0:47110.23|| 0.09|(0.08/0.92| 1.00|0.56
-0.01|| -0.01(-0.01|-0:39||-0.22|  0.08|(0.08||0.89| 1.00|/0.65

-0.01|| -0.01(-0.01||-0.40||-0.23]  0.10}{0.09||0.89| 1.00|/0.44

B =1 0.00}+0.00}/0.04(-0.53|-0.17||  0.090.08/0.91|| 1.00/1.00
-0700|| ~0-00| 0.03|-0.49|-0.19||  0.09||0.080.90| 1.00/1.00

=0.01| -0.01| 0.01|-0.53|-0.18|| 0.08||0.10(0.87| 1.00/1.00

L, =15 0.01] 0.01| 0.06(-0.54|]-0.21 0.10//0.090.93|| 1.00//1.00
0.01| 0.01{ 0.03|-0.62||-0.21 0.08/0.08//0.93|| 1.00//1.00

-0.00|| 0.00( 0.03||-0.71|]-0.21 0.07(0.09]|0.94|| 1.00||1.00




Note: Each g has three rows corresponding to 7=.25,.5,.75 from the top to
bottom; EmpSD, empirical standard deviation; SE, average standard error; Cov,
coverage probability; Oracle, Oracle estimator; Z18, Zheng et al. (2018).F14, Fan
et al. (2014); W12, Wang et al. (2012); M09, Meinshausen et al. (2009).

Table 3 Results of Example 2 based on the simulated datasets.

Bias EmpSD| SE|Cov|Freq| Power
Oracle||Fused| Z18 Fused Fused|M09
n =300, p =1000

£, =150.(7)|| 0.01| 0.13|0.29] 0.32/0.31(0.88||0.73| +0:82||0:16
-0.05|| -0.07| 0.06| 0.33(0.29||0.90 0:11]/0.00

0.01| -0.14|-0.05| 0.31{/0.34/0.82 0.62/|0.10

S =1 -0.01|| -0.01-0.01 0.14/0.13}0/904{0.69| 1.00||0.88
-0.03|| -0.01|-0.05|  0:12{0.12//0.91 1.00|/0.92

-0.01|| -0.00(-0.02| ,0.14(0.13|/0.92 1.00(0.84

B, =15 0.01| 0.01{ 0.03{ ,.0.13|/0.13/0.90(0.99]| 1.00/1.00
-0.01|| 0.01}).0.08}" 0.12]|0.13||0.93 1.00(1.00

-0.00| 0.02(-0.02| 0.13|0.14|/0.93 1.00{[1.00

B, =2 -0.03||"-0.03|'0.04| 0.13|0.13]|0.91|{1.00( 1.00|{1.00
-0:.03|| -0.02| 0.03|] 0.11(0.13]|0.92 1.00(1.00

<0.01|| -0.01|-0.00| 0.12||0.15||0.95 1.00(1.00

n =700, p =1000

£, =150.(7)| 0.03| 0.08| 0.19]] 0.19]0.21/0.92|/0.89| 0.99/0.61
0.02| 0.03|0.14| 0.18]0.19]0.89 0.11]/0.00

0.04| -0.03||-0.01 0.21/0.23(0.92 0.97/|0.56

S =1 0.01| 0.01| 0.05] 0.09/0.08/0.94(0.99| 1.00/1.00




Bias EmpSD| SE|Cov|Freq| Power
0.01]| 0.01|/0.01| 0.08/|0.08||0.87 1.00/[1.00
0.01|| 0.01|/0.05| 0.10]0.09|/0.89 1.00/[1.00

B, =15 -0.01| 0.00| 0.08] 0.08(0.08/0.94(1.00| 1.00||1.00
-0.00| 0.00( 0.05] 0.09(0.08/0.92 1.00/[1.00
0.00| 0.01]/0.04| 0.09]0.09|0.95 1.00/[1.00

B =2 -0.01| -0.01| 0.10]f  0.08(0.09|0.93|1.00| 1.00||1.00
-0.01|| -0.01) 0.06|f 0.08/0.090.91 1.00(11.00
-0.00|| -0.00( 0.07| 0.09(0.10}|0.90 1.00(11.00

Note: See the footnote of Table 2; Freq, average selection frequency in B splits.



Table 4 Results of Example 3 based on the simulated datasets.

Bias EmpSD| SE|Cov|Freq| Power

Oracle|Fused| Z18 Fused Fused|MO09
n =300, p =1000

L =¢(r)| 0.08| 0.06( 0.59| 0.34(0.36|(0.94(0.71| 0.06|0.00

0.34| 0.37|[1.01 0.52/0.51(0.89 0.20/|0.00

0.08| -0.20|-0.05|| 0.80|/0.72/|0.89 0.87/|0.06

L =¢,(0)| 0.10]| 0.14) 0.27| 0.65(0.50/0.90]0.67|| 0.77||0:36

-0.16|| -0.20|-0.36| 0.62(0.51(0.91 0.190.00

0.02|| 0.06|-0.03|| 0.56|0.52/0.90 0.10/[0.00

B, =15 0.02|| 0.03| 0.04| 0.25]|0.23|0.95|0.65|[%1.00|0.77

B =2 0.01| -0.00| 0.02||  0.23|/0.25|0.93//0.93|| 1.00//0.99

L, =25 | -0.02| 0.07||0.19] 0.21}0:26]/0.94(0.99| 1.00/|1.00
n=700, p=1000

L =¢(7)| 0.01] 0.04| 0.27|=, 0:21(0.23|(0.94(0.96| 0.06/0.00

0.13|| 0.30| 0.79| +0.37/0.40||0.88 0.27)/0.01

0.00| 0.08}.0.35| 0.51]0.51/0.90 1.00|0.77

L=¢,(r)| 0.06))» 0.09( 0.18| 0.33]0.33||0.91|/0.92| 0.99|0.92

<0.09}}=0.19|-0.23|| 0.35|0.34(0.85 0.21(0.00

-0.01| -0.04|-0.08|| 0.37|[0.31(0.94 0.06/0.00

S, =157 -0.00| 0.00( 0.04| 0.16|0.17|(0.97|/0.98| 1.00||1.00

B =2 0.01| -0.02||-0.01 0.15//0.18(/0.95||1.00| 1.00|(1.00

B, =25 0.01| 0.00| 0.07| 0.18/0.18|0.94|1.00] 1.00/1.00
n =700, p = 2000

B =¢(r)| -0.01| 0.05|0.13| 0.32]|0.32||0.93|/0.93| 0.07//0.00




Bias EmpSD| SE||Cov|Freq| Power

0.10| 0.26| 0.59|] 0.46|0.44(0.91 0.09|0.02

0.05| -0.07|| 0.15|  0.53||0.46|0.87 0.74(0.58

B=¢,(r)| 0.10]| 0.10) 0.25] 0.45||0.35||0.84||0.90| 1.00||0.83

-0.03|| -0.18|-0.31 0.41(0.36|/0.89 0.76||0.01

-0.00| -0.01|-0.13|| 0.36||0.34/0.85 0.15|0.00

B, =15 0.01|| 0.010.03| 0.18/|0.21/0.98//0.98|| 1.00/1.00

By =2 0.01| 0.02||-0.07|  0.22]|0.20/0.91]/0.99| 1.00j|0.98

B, =25 | -0.01 -0.01/-0.05| 0.25|0.20]0.94((1.00| 1.00j/0.98

Note: See the footnote of Tables 2 and 3; For £ and Gs,'the numbers are shown
at £=.25,.5,.75 from the top to the bottom and, for the other £s, at r=0.5.



Table 5 Comparisons of computing time (on average per dataset in seconds)
when performing Example 1.

Fused| Z18| W12| F14/ M09

(n, p)=(300,1000)|| 888| 853 509| 390|170

(n, p) = (700,1000) || 3,108||1,812|2,230| 1,231/ 440

Note: see the footnote of Table 2.



Table 6 Patients’ characteristics in the BLCSC samples. (n=674)

Mean (SD)

Age 60 (10.8)
Count (%)

Female 259 (38)
Education level||< High school 264 (39)
> High school 410 (61)

Smoking Non-active 418 (62)
Active 256 (38)

Cancer type ||[Adenocarcinoma|| 283 (42)

Squamous cell 110 (16)
Other 281 (42)
Cancer stage |1 283 (42)
2 110 (16)
3 256 (38)
4 25 (4)




Table 7 Analysis of the BLCSC data with Fused-HDCQR. The SNPs are sorted by

their p-values at r=0.2, corresponding to the high-risk groups. Results for the

top 10 and the bottom 3 are presented.

Estimat Estimat Estimat

or|| SE|| p-value|jor SE || p-value or|| SE|| p-value
7 0.2 0.3 0.4

0.2 1.4E- 0.2 ||4.3E- 02]| 3.2E-

Int 6.90| 5 165||7.48 8 |157 7.94| 4 241
0.1 0.1 0.1

Adeno 0.20| 6|2.1E-01|0.14 8 |4.5E-01 0.02| 3||8.7E-01
0.1 0.1 0.1

Squamous|| -0.16| 6||3.0E-01||-0.20 |6 {2.1E=01 -0.34| 3||1.0E-02
0.2 0.2 0.2

Stage2|| -0.82| 4|6.3E-04{-0:99 ".|5. |6.0E-05]| -0.98| 4|3.2E-05
0.1 0.2 0.1

Stage3| -0.97| 7|1.6E-08|-1:04 |0 |2.0E-07|| -1.13| 4|2.0E-15
01 0.2 0.1

Staged| -1.54| 7|3.0E-20-1.77 |0 |[1.7E-19|| -1.86| 4|2.2E-42
0.0 0.0 0.0

Age|( -0.01| 1||1.5E-02||-0.01 |1 |3.0E-02| -0.02| 1||1.0E-02
0.1 0.1 0.1

Edu 0.08| 4||6.0E-01/[0.06 5 ||6.9E-01 0.07|| 3||5.8E-01
0.1 0.1 0.1

Female| -0.30]| 3||2.2E-02-0.35 |4 |1.0E-02| -0.37| 2/|1.6E-03
0.1 0.1 0.1

Smoke|| -0.42| 3|1.1E-03|-0.48 |4 |5.0E-04| -0.52| 1|3.4E-06

AX.37793583 2.75|| 0.2||3.0E-36|]2.61 0.2 |4.6E-39 2.39|| 0.2||3.7E-33




Estimat Estimat Estimat
or|| SE|| p-value|jor SE || p-value or|| SE|| p-value
_T 2 0 0
AX.83104700 0.2 0.1 0.1
_A 2.32| 0||4.0E-31||1.91 9 |6.3E-24 1.54| 9||1.5E-15
AX.15207405 0.2 0.2 0.2
G 2.03|| 0j|1.0E-24|/1.59 2 |9.8E-13 1.17|  1)|3.7E-08
AX.16619495 0.2 0.2 0.2
_T 1.79| 0]|3.3E-19||1.36 0 |1.3E-11 0:97|, 0||1.2E-06
AX.13920550 0.2 0.2 0.2
G 1.93| 3||2.5E-17|/1.41 8 |5.3E-07 0.87|| 7||1.6E-03
AX.83444620 0.1 0.1 0.2
_C 1.39| 7|7.4E-17)|1.05 9 ||6.6E-08 0.71| 1||8.8E-04
AX.82902859 0.2 0.1 0.1
_T 1.58| 0||8.7E-16|/1.19 8 |2.0E-11 0.90| 2||3.4E-14
AX.40182999 0.2 0.2 0.1
_A 1.50( 1||9:6E-13//1.01 5 ||3.9E-05 0.64| 4(6.5E-06
AX.82976133 0:3 0.3 0.3
_A 2.32|[%. 3|/3.8E-12|[2.02 5 ||6.7E-09 1.58|| 5|6.1E-06
AX.82900605 0.3 0.2 0.3
G 2.21| 5||1.6E-10(|1.91 9 |9.1E-11 1.54| 3|2.9E-06
AX.41828883 0.3 -3.2E- (0.4 -5.7E-/ 0.5
_G||1.4E-03|| 4 1.00j|02 2 ]0.94 02| 4| 0.92
AX.11293250| -3.6E-|| 0.1 0.1 0.1
_T 04| 4 1.00|6.2E-02|5 |0.67 5.0E-02| 2| 0.68
AX.37863475|| -3.1E-| 0.2 -1.1E- |0.2 -1.8E-| 0.2
C 04| 6 1.00//01 5 10.68 01| 4| 0.46




Estimat Estimat Estimat
or|| SE|| p-value|jor SE || p-value or|| SE|| p-value
Analysis of the BLCSC data with Fused-HDCQR, continued.
Estimat Estimat Estimat

or|| SE|| p-value|jor SE ||p-value or|| SE[['p-value
T 0.5 0.6 07

0.2| 4.8E- 0.3 |[4.9E- 0.3]| 2.8E-

Int 8.30| 7 214/8.55 0 |180 8.69| 5 132
0.1 0.1 0.1

Adeno|| -0.09| 5|5.3E-01|-0.09 |3 {4.8E-01| -0.09|| 3|5.1E-01
0.1 0.4 0.1

Squamous| -0.50| 5|1.0E-03|-0:60 * (6> |2.1E-04| -0.50|| 9||7.1E-03
0.2 0.2 0.1

Stage2| -0.88|| 5|5.0E-04|-0:73 |4 |2.1E-03|] -0.57| 9|2.8E-03
01 0.1 0.1

Stage3|| -1.08|" 7|1.7E-10/-0.91 |5 |6.4E-10|] -0.68| 6|2.0E-05
01 0.1 0.1

Stage4|( -1.91| 5|7.0E-38|-1.93 |4 |[1.7E-44| -1.69| 6|2.1E-27
0.0 0.0 0.0

Age| -0.02| 0)3.3E-05-0.02 |1 |[1.3E-03| -0.02| 1/1.9E-03
0.1 0.1 0.1

Edu 0.15| 4/|2.7E-01|0.16 3 |2.2E-01 0.11|| 3||4.0E-01
0.1 0.1 0.1

Female| -0.44| 1||6.4E-05/-0.47 |2 |1.6E-04]| -0.38| 5|1.3E-02

Smoke|| -0.53| 0.1|4.9E-04|-0.36  |0.1|2.4E-02| -0.31| 0.1||3.8E-02




Estimat Estimat Estimat
or|| SE|| p-value|jor SE || p-value or|| SE|| p-value
5 6 5
AX.37793583 0.2 0.2 0.2
T 2.16|| 0||4.1E-28||1.84 8 |2.8E-11 1.39| 5|4.2E-08
AX.83104700 0.2 0.2 0.2
_A 1.15| 7|1.6E-05||0.58 7 |3.5E-02 0.13|| 5|6.0E-01
AX.15207405 0.2 0.3 0.4
G 0.75|| 5|2.3E-03|0.34 7 |3.5E-01|| -0:05}, 8||9.2E-01
AX.16619495 0.2 0.3 0.3
_T 0.66|| 2||3.1E-03|0.44 1 |1.5E-01 0.18|| 5|6.1E-01
AX.13920550 0.2 0.6 0.6
G 0.54|| 7|4.3E-02|0.26 0 ||6.7E-01 0.11| 0|\8.6E-01
AX.83444620 0.2 0.2 0.1
C 0.55| 3||2.0E-02/[0.29 2 |1.8E-01 0.01|| 8||9.7E-01
AX.82902859 0.1 0.3 0.4
_T 0.73|| 3||4:2E-08|/0.51 2 |1.1E-01 0.22| 6|/6.3E-01
AX.40182999 0.1 0.2 0.3
_A 0.41(1%,.8|12.6E-02|0.22 7 |4.1E-01]| -0.01| 0||9.6E-01
AX.82976133 0.4 0.5 0.4
A 1.17| 2||5.4E-03|/0.61 2 |2.4E-01 0.24| 6|/6.0E-01
AX.82900605 0.3 0.3 0.3
G 1.22|| 5||4.5E-04|/0.86 4 |1.1E-02 0.50 1|{1.0E-01
AX.41828883 0.6 0.5 0.6
_G 0.26| 0] 0.66/0.32 2 |0.54 0.12| 8| 0.86
AX.11293250 0.1 0.1 0.1
_T|| -0.00[ 2 1.00-0.09 |2 |0.44 -0.09| 5| 0.56




Estimat Estimat Estimat
or|| SE|| p-value|jor SE || p-value or|| SE|| p-value
AX.37863475 0.2 0.1 0.3
C| -0.24| O 0.23|-0.37 |7 ||0.03 -0.57| 2 0.08




