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A B S T R A C T   

This study presents a system-level optimization of spectroscopic photoacoustic (PA) imaging for prostate cancer 
(PCa) detection in three folds. First, we present a spectral unmixing model to segregate spectral system error 
(SSE). We constructed two noise models (NMs) for the laser spectrotemporal fluctuation and the ultrasound 
system noise. We used these NMs in linear spectral unmixing to denoise and to achieve high temporal resolution. 
Second, we employed a simulation-aided wavelength optimization to select the most effective subset of wave
lengths. NMs again were considered so that selected wavelengths were not only robust to the collinearity of 
optical absorbance, but also to noise. Third, we quantified the effect of frame averaging on improving spectral 
unmixing accuracy through theoretical analysis and numerical validation. To validate the whole framework, we 
performed comprehensive studies in simulation and an in vivo experiment which evaluated prostate-specific 
membrane antigen (PSMA) expression in PCa on a mice model. Both simulation analysis and in vivo studies 
confirmed that the proposed framework significantly enhances image signal-to-noise ratio (SNR) and spectral 
unmixing accuracy. It enabled more sensitive and faster PCa detection. Moreover, the proposed framework can 
be generalized to other spectroscopic PA imaging studies for noise reduction, wavelength optimization, and 
higher temporal resolution.   

1. Introduction 

Prostate-specific membrane antigen (PSMA) is a type-II integral 
membrane protein. PSMA has been widely studied for molecular and 
functional imaging of prostate cancer (PCa) due to its higher expression 
on the cell surface of aggressive PCa than in healthy prostate tissue and 
indolent malignancies [1–5]. PSMA expression correlates well with 
staging and aggressiveness of PCa. Thus, it has been leveraged as an 
important molecular target for PCa management. Among several im
aging modalities for PSMA detection, radionuclide imaging, e.g., posi
tron emission tomography and single-photon emission computed 
tomography, enables whole-body imaging to detect primary PCa and 
metastatic lesions using affinity agents that link radionuclides to the 
PSMA [6–8]. Nevertheless, radionuclide imaging exposes patients to 
radiation and necessitates expensive infrastructure, hindering it from 

frequent surveillance of PCa patients. Another modality, optical imag
ing, has also brought opportunities for precise PSMA detection by 
employing contrast agents that binds to PSMA-positive (PSMA+) PCa [9, 
10]. However, such agents only provide superficial imaging depth. Thus, 
optical imaging of PSMA is strictly confined to providing intraoperative 
guidance rather than being comprehensively useful in prostate cancer 
care. Hence, there is an urgent need for noninvasive, high-contrast im
aging of PSMA expression in deep prostate tissues. 

Photoacoustic (PA) imaging is an emerging molecular imaging mo
dality that caters to the above requirements. It provides rich optical 
contrast at sub-millimeter spatial resolution and acoustic imaging depth 
over several centimeters [11,12]. In PA signal formation, electromag
netic energy absorbed by the biological tissue converts to thermal en
ergy, inducing a localized pressure increase due to the thermal-elastic 
expansion of the tissues. The pressure then propagates as acoustic waves 
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and is recorded by acoustic detectors to form PA signals. Because most 
biological tissues possess unique optical absorption spectra, they can be 
unmixed by spectroscopic PA imaging presented in several novel clinical 
and scientific applications [13–19]. We recently validated the spectro
scopic PA imaging of PSMA expression in vivo for the first time, using a 
PSMA-targeted agent [20], where spectral unmixing with ordinary least 
squares (OLS) discerned absorptive contrast of the agent specifically 
bounded to PSMA expressing PCa. However, there underline opportu
nities for significant improvements in the system level. 

Here we focus on several challenges in our system-level optimization 
of the spectroscopic PA imaging frameworks. (1) The OLS method, the 
most common approach for spectral unmixing, suffers from many sys
tem noise sources that may annul the essential hypothesis of the flawless 
design matrix and zero-mean measurement noise. For example, 
normalizing the fluctuating pulse-to-pulse laser energy makes the sys
tem electronic noise dependent to the laser spectrum, therefore engen
ders spectral system error (SSE) and deteriorates spectral unmixing 
accuracy. (2) The redundant amount of spectral data ranging from 700 
nm to 900 nm in 10 nm intervals in our previous study was still inef
fective to show false contrast before the injection of the PSMA-targeted 
agent. Also, it suffers from low temporal resolution by using Nd:YAG 
pulsed laser equipped with optical parametric oscillator (OPO) 
commonly applied in the PA imaging research operating only at 10–20 
Hz for sequential spectral tuning. Several wavelength selection algo
rithms were developed to reduce the computational complexity 
[21–23], but spectrotemporal instability of the tunable laser system 
were not considered, where the varying SSE at different wavelengths 
may affect spectral unmixing accuracy. (3) Frame averaging is a con
ventional method to improve the signal-to-noise ratio (SNR) in PA im
aging, but another layer of analysis is still needed to understand how 
such SNR enhancement will improve the accuracy of spectral unmixing. 
Herein, we present a simulation-aided system-level optimization of the 
spectroscopic PA imaging of PSMA expression to achieve robust spectral 
unmixing accuracy and enhanced temporal resolution. 

2. Methods 

2.1. Conventional spectroscopic PA unmixing 

The initial pressure p0 generated by PA effect can be equated using 
the following equation [24]. 

p0 = Γ̂μaF, (1)  

where Γ̂ is the PA efficiency based on the Grüneisen parameter, μa is the 
optical absorbance (m−1), and F is the optical fluence (J/m2). In this 
work, the insignificant spatial variance of Γ̂ is omitted. Therefore, p0 is 
directly proportional to the optical energy (μaF) absorbed by a target. 

By exploiting different optical absorbance characteristics of different 
tissue types, spectroscopic PA imaging enables quantification of bio
logical tissues. If the PA effects of the tissues are assumed to be inde
pendent, then a linear mixed model (LMM) can be applied [24,25]. By 
convention, we hereafter refer the tissues of interest as endmembers, 
and we assume the optical fluence has been compensated. Consequently, 
if there are N endmembers and M different wavelengths (M ≥ N), the 
inverse problem of LMM is given as 

y = Ax + ε, (2)  

where A ∈ RM×N is the design matrix, A(m, n) = Γ̂μa,n(λm)F, λm is the 
m-th wavelength, y ∈ RM is the measured PA spectrum, x ∈ RN is the 
unknown concentrations of the endmembers, and ε ∈ RM is additive 
measurement noises. Since x is non-negative, we solve the problem by 
non-negative least squares (NNLS) using quadratic programming tech
niques [26], which is given by 

arg min
x≥0

(
1
2

xTATAx − yTAx
)

. (3)  

Columns of A must be linearly independent to achieve a unique solution, 
i.e., the optical absorbance of any endmember cannot be expressed as a 
linear combination of the others. And ε must be zero-mean to make the 
least-squares problem valid. 

2.2. Spectral system error in spectroscopic PA imaging 

The assumption of a linear relationship between the PA spectrum y 
and the unknown concentration x does not always hold in practice due 
to the presence of system-dependent noise sources [25]. We herein 
conclude them with two system noise models (NMs).  

• NM 1. Laser-dependent noise model. The emitted laser energy is 
heteroscedastic from wavelength to wavelength in the spectral 
domain (NM 1a) and varies from pulse to pulse in the temporal 
domain (NM 1b), which altogether makes F fluctuate in the spec
trotemporal domain. To illustrate, the coefficient of variance (CVs) of 
F in the near-infrared band (700 – 900 nm) on our Nd:YAG laser 
equipped with a tunable optical parametric oscillator (OPO) (Phocus 
Inline, Opotek Inc., USA) ranges from 3.65% (709 nm) to 9.85% 
(751 nm).  

• NM 2. Ultrasound system noise model. A PA imaging system for 
PCa imaging may resemble clinical ultrasound imaging systems 
[27–30]. The Johnson-Nyquist noise is dominant in the ultrasound 
imaging systems among various other electronic noises such as 
flicker noise and Poisson noise. Generally, Johnson-Nyquist noise 
follows Gaussian distribution in a finite positive bandwidth. It is 
independent of either the optical source (NM 1) or the anatomy [31]. 

Given that p0 and F are proportional, a conventional optimization of 
spectroscopic PA imaging tackles NM 1 by normalizing the acquired PA 
signal to the correspondent laser pulse energy. However, such 
straightforward compensation makes NM 2 no longer independent of 
NM 1 – It endows the NM 2 with spectral signature of the inverted laser 
spectrum and heteroscedasticity. In other words, spectral unmixing ac
curacy now becomes wavelength-dependent because the statistics of 
ultrasound system noise such as mean and standard deviation (STD) also 
becomes wavelength-dependent after the compensation. It annuls the 
assumption of least squares that the additive noise ε must be zero-mean 
and homoscedastic [33,34] Here we entitle the combination of these 
noise models as ‘spectral system error (SSE)’. 

2.3. System-level optimization framework of PA spectral unmixing 

2.3.1. Spectral system error (SSE) segregation scheme 
Fig. 1 shows the overall framework of the optimized spectral 

unmixing for effective spectroscopic PA imaging. Here we incorporate 
the individual NMs into the spectral unmixing problem. The direct 
measured spectroscopic PA signal can be compensated to denoise NM 1: 

y = W−1y, (4)  

where W ∈ RM×M is a diagonal matrix with Wm,m = wm for m = 1,…,M, 
and wm is the pulse energy at each wavelength λm. Once weighted, y 
becomes proportional to the optical absorbance as in Eq. (1), legiti
mizing the least-squares model [32]. 

We also denote the distribution of the electronic noise in NM 2 as 
N (xeI,Σ), where xe is the mean value (xe > 0), I ∈ ℝM is a vector with all 
ones, and Σ is the covariance matrix with all its elements on the diagonal 
being σ2

e . Equivalently, we can decompose NM 2 into a constant offset 
and a zero-mean Gaussian component such that ε ∼ xeI + N(0,Σ). Once 
the spectrotemporal fluctuation in NM 1 is compensated, the distribu
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tion of the electronic noise becomes ε ∼ xev + N (0, Σ), where 

v = diag(W−1) (5)  

and 

Σ = W−2Σ. (6) 

diag(•) converts the diagonal of a matrix into a vector. By taking the 
weighted offset as one of the endmembers and rearranging the least- 
squares equation, we get 

y = [A|v]

[
x
xe

]

+ ε = Qx + ε, (7)  

where Q ∈ ℝM×(N+1) is the new design matrix, x ∈ ℝN+1, and ε ∼

N (0, Σ). We name this modification as ‘SSE segregation’ because it 
segregates SSE from primary endmembers by spectral unmixing. To 
convert the overall problem into an NNLS model solved by quadratic 
programming technique, we have 

argminx≥0

(
1
2
xTQTQx − yTQx

)

. (8)  

2.3.2. Frame averaging scheme 
Frame averaging scheme can be an additional strategy for further 

SSE suppression, but more theoretical description is needed to under
stand its impact to the spectral unmixing accuracy. Assume P subsequent 
frames are acquired at wavelength λm for all m, such that the measure

ment now becomes y ∈ RMP. To denoise NM1, we normalize the frames 
by Ŵ ∈ RMP×MP, where the diagonal of Ŵ constitutes the recorded en
ergy ŵm,p of the pth frame at λm, p = 1,…,P. Then in frame averaging, P 
frames are averaged to form y ∈ RM and v ∈ RM. The revised covariance 
of NM2 becomes 

Σ = diag(
1
P

,
1
P

, …,
1
P

) • Ŵ
−2

Σ. (9) 

Moreover, the design matrix Q is not always perfect. For perturba
tion analysis, we assume there is a small and additive Gaussian pertur
bation to Q and denote it by B, where each entry of B is independent and 
identically distributed and satisfies Bij ∼ N

(
0, σ2

B
)
, ∀i, j, N represents 

Gaussian distribution. Then after averaging P frames, we have 

σ2
B =

1
P

σ2
B (10) 

It is well known that frame averaging enhances image SNR by 
̅̅̅
P

√

times in raw PA data [34,35], but how the SNR improvement affects the 
spectral unmixing accuracy is nontrivial. To analyze the unmixing ac
curacy with respective to P, we first analyze the sensitivity of the least 
squares. Suppose δx = ‖x −x0‖ is a small perturbation in x, the sensi
tivity of least squares is given by [32]: 

‖δx‖

‖x‖
≤

(
κ(Q)

2tan(θ) + κ(Q)
) ‖B‖

‖Q‖
+ κ(Q)sec(θ)

‖ε‖

‖y‖
. (11) 

Here κ(Q) = smax/smin is the 2-norm condition number of Q, smax and 
smin are the largest and smallest non-zero singular values of Q,tan(θ) =

Fig. 1. The proposed framework of optimal spectral unmixing for effective spectroscopic PA imaging of PSMA expression. Noise models (NM) for the laser-dependent 
noise (NM1) and ultrasound system noise (NM2) are constructed and denoised in spectral unmixing. Oxyhemoglobin (HbO2), deoxyhemoglobin (Hb), and a PSMA- 
targeted agent [33] are spectrally unmixed. Simulation-aided wavelength selection and frame averaging are also considered in the framework for further 
enhancement of temporal resolution and precision. 
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‖Qx −y‖/‖Qx‖, and sec(θ) = ‖y‖/‖Qx‖. For brevity, we use ‖ • ‖ and 
omit the “2” in the subscript to represent the Euclidean norm 
throughout. From the definition, the sensitivity is proportional to RMSE 
by a factor of ‖x0‖/

̅̅̅̅
N

√
. An effective way to lower the bound of the 

sensitivity is to minimize the noise-related term ‖B‖ and ‖ε‖ by frame 
averaging. See Supplemental Information for the proof that the expec
tation and the STD of ‖ε‖

2 are proportional to 1/P. Nonetheless, having 
closed-form expression of the distribution of ‖ε‖ and the distribution of 
‖B‖ with respect to P is intractable. Therefore, we validate this proof 
with a numerical evaluation. 

2.3.3. Iterative wavelength optimization scheme 
A wavelength optimization allows us to use fewer wavelengths to 

enhance temporal resolution meanwhile preserve spectral unmixing 
accuracy. Mathematically, the problem is defined as: given the number 
of rows of Q, find the best permutation of rows which minimizes the 
least-squares error. The optimization essentially minimizes the collin
earity among endmember absorption spectrums, at the same time 
keeping wavelengths that suffer less from SSE. 

A brute-force search is combinatorial in exponential computation 
time. To avoid such high time complexity, we propose an iterative 
searching scheme in two stages. In the first stage, the best N wavelengths 
that are minimally required for unmixing are included in set S; then, in 
the second stage, one best wavelength is searched and added to S at a 
time until the user-defined number of wavelengths (denoted as t) is 
reached. A detailed workflow is as follows, and a pseudo-code is pro
vided in the supplementary information.  

• Input: number of endmembers N, the total number of wavelengths 
M, user-defined number of wavelengths t, design matrix A, weight v, 
covariance Σ, number of iterations K.  

• Output: the optimal wavelength subset S.  
• First stage: Find S that contains N wavelengths.  

(1) Initialize a counter with (M choose N) bins where each bin is 
attributed to a permutation.  

(2) Initialize a random fraction of endmembers x0. Generate PA 

signal y with noises, such that y = [A | v]
[

x
xe

]
+ ε = Qx0 + ε.  

(3) Solve x = NNLS(Q∗, y∗) and calculate the root mean squared 
error (RMSE) for all permutations that have N out of M wave
lengths, where Q∗ and y∗ contain N out of M rows of Q and y, 
respectively.  

(4) Find the permutation with the smallest RMSE and count one to its 
bin, where 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
N

‖x − x0‖
2

√

(12)    

(5) Iterate steps (2) – (4) K times, the permutation with the highest 
counts is reported as S, which is the optimal subset found in this 
stage.  

• Second stage: Update S one wavelength at a time.  

(1) Initialize a counter with |Sc| bins, where | • | is the cardinality of a 
set, and Sc is the complementary set of S (i.e., S ∪ Sc =

{1, 2, …, M}).  
(2) Generate a random PA signal y = Qx0 + ε.  
(3) For each element m ∈ Sc, solve x = NNLS(Q∗, y∗) and calculate 

RMSE, where Q∗ and y∗ contain the rows of Q and y indexed by 
S ∪ {m}, respectively.  

(4) Find the element that yields the smallest RMSE and count one to 
its bin.  

(5) Iterate steps (2) – (4) K times, then select the element with the 
highest count and include it into S.  

(6) Iterate (1) – (5) until |S| = t, where t is the desired number of 
wavelengths. 

The proposed approach is significantly lower in computational 
complexity than exhaustively searching all M choose t permutations. 
The number of NNLS operations is reduced from O((M choose t) ∗ K) to 
O

(
((M choose N) + M2 )

∗ K))). 

2.4. Evaluations of the spectroscopic PA imaging framework 

2.4.1. Calibration of the system noise models 
The SSE due to NMs 1 and 2 was calibrated on our research platform. 

The spectral and temporal laser fluctuations in NM 1 were calibrated on 
a tunable Nd:YAG OPO pulsed laser system, where the laser was set in 
fast-scanning mode with 20-Hz pumping frequency, and each pulse 
energy was recorded by an energy meter (PE50BF-DIF-V2, Ophir Pho
tonics, USA) in real-time. Five thousand sequential emissions at 720 nm 
were acquired to characterize the temporal laser fluctuation. Probability 
distribution of the PA intensity of the sequential emissions was repre
sented as a histogram, and its similarity to a Gaussian distribution was 
compared. On the other hand, 512 sequential emissions per wavelength 
were recorded at wavelengths from 700 nm to 900 nm in 10 nm in
tervals to characterize the spectral laser fluctuation. The change in the 
mean and the STD of the pulse energy for the wavelengths were 
calculated. 

NM 2 was calibrated from an L7–4 transducer connected to the 
Verasonics research package, where 1344 subsequent frames of PA im
ages (in the size of 256 by 128, axial by lateral) were acquired to contain 
only electronic noise signals without any ultrasound or laser trans
mission. The mean and STD of all 44,040,192 pixels were calculated, 
and the intensity distribution was represented as a histogram and fitted 
to a Gaussian function. The spectral signature of the electronic noise (v) 
and the covariance of ε were derived from the NM 2. 

2.4.2. Optimization of wavelength subset and SSE segregation 
To optimize the wavelength selection, we implemented the algo

rithm in Section 2.3.3. We set the number of iterations K = 100, 000 to 
ensure statistical significance. The random spectroscopic PA signals 
were generated in a single pixel in the k-Wave simulator [36]. Several 
hyperparameters were defined for PA signal generation: (1) The 
ground-truth design matrix [A|v] was comprised of the absorbance sig
natures of four endmembers: Oxyhemoglobin (HbO2) and deoxy
hemoglobin (Hb) obtained from [37], a polyamidoamine (PAMAM) 
dendrimer-based PSMA-targeted contrast agent [33], and the SSE 
derived in Section 2.4.1. Specifically, the contrast agent absorption was 
calibrated by spectrophotometry in the near-infrared (NIR) range 
(700 nm to 900 nm) using a SpectraMax i3x multi-mode system (Mo
lecular Devices, LLC, USA). (2) Fractions of all endmembers were ran
domized such that xi ∼ U(0, 1), i = {1, 2, 3, 4}, where U represents 
uniform distribution. Afterward, they were normalized to sum to one. 
(3) The covariance Σ of ε was obtained by calibration in Section 2.4.1. 

Once the wavelength subset was optimized, another 1000 random 
spectroscopic PA signals were generated for testing. The mean and STD 
of the RMSE of all test signals were compared between four methods: 
proposed two-stage searching method, a metric-based method (MB) in 
[23] using product of singular values, randomized selection method, and 
a determined method selecting wavelengths based on uniform (UNI) 
interval within the given range (t wavelengths in the interval of 
10 × ⌊(M −1)/(t −1)⌋ (nm), counting down from 900 nm). 

To randomize the endmember composition, we set the upper bound 
of the fraction of the SSE as α such that xe ∼ U(0,α), and fractions of all 
the other endmembers as xi ∼ U(0, 1),i = {1, 2, 3}. Once all fractions of 
endmember were generated, x was normalized so that x1 + x2 + x3 +
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xe = 1. To test the effectiveness of SSE segregation, we compared 
spectral unmixing accuracy with and without SSE segregation. We 
further varied α in different values to investigate the impact of different 
levels of SSE to the spectral unmixing accuracy, which corresponds to 
the highly spatially variant SNR in the imaging field-of-view due to 
absorber distribution. In the evaluation of different wavelength selec
tion methods, α was fixed to 1. 

2.4.3. Numerical analysis of frame averaging scheme on spectral unmixing 
accuracy 

We conducted a numerical experiment to validate that the expecta
tion and STD of ‖ε‖ and ‖B‖ are proportional to 1/

̅̅̅
P

√
, as mentioned in 

Section 2.3.2. The mean and STD of ‖B‖ and ‖ε‖, and the unmixing 
RMSE were calculated from 10,000 randomized spectroscopic PA sig
nals. Ten values of P were tested, i.e., 1, 4, 9, 16, 25, 36, 49, 64, 81, and 
100. No frame averaging was deliberately implemented. Instead, we 
equivalently set the variance of B and the covariance of ε as σ2

B/P and 
diag(1

P, 1
P, …, 1

P)Σ to generate test signals from the numerical simulation, 
we show that if not strictly, it is highly approximated that the expecta
tion and the standard deviation of ‖B‖ and ‖ε‖ are all proportional to 
1/

̅̅̅
P

√
, such that the sensitivity of least squares is also proportional to 

1/
̅̅̅
P

√
. 

2.4.4. In vivo imaging of PSMA expression 
In vivo experiments were set up using the same ultrasound research 

package and Nd:YAG OPO laser system as described in 2.4.1. Bifurcated 
outlets of a fiberoptic bundle with rectangular apertures 
(0.88 mm × 40.00 mm × 2) were attached on the sides of an L7–4 linear 
ultrasound imaging transducer and co-registered in-plane, which con
formed to conventional linear TRUS imaging configuration. Xenografts 
with isogenic PSMA-positive (PSMA+) PC3-PIP and PSMA-negative 
(PSMA-) PC3-flu cells were prepared on the lower back of five 6-to-8- 
week-old male mice. Note that a small amount of PSMA-targeted 
contrast was expected from the PSMA- PC3-flu (control) [20] which is 
a human-engineered PCa cell line having negligible PSMA expression. 
Validation of contrast agent uptake by PSMA+ PC3-PIP and PSMA- 

PC3-flu through tumor sectioning followed by fluorescence imaging was 
reported in [33]. Both tumors were imaged axially at around 2 cm deep 
identical to the ultrasound transducer’s elevation focus. Pre-injection 
data and 24-h post-injection data were analyzed. Because columns of 
A, i.e., the characteristic spectrums of endmembers are in very different 
magnitudes, to enhance the numerical sensitivity and stability, we 
normalized column 1 (the contrast agent), column 2 (Hb), and column 4 
(electronic noise) of A with respect to that column’s maximum value. As 
for column 3 (HbO2), we normalized it with respect to the maximum of 
column 2, so that Hb and HbO2 can be visualized in the same dynamic 
range. 

In this study, the spectral unmixing in vivo was evaluated by two 
metrics. (1) The first metric is the SNR of the PSMA-targeted contrast 
over the background, which is given by 

cSNR =
IPSMA+

IBG
, (13)  

where IPSMA+ and IBG denote the mean PA intensities in the region of 
interest (ROI) of PSMA+ PC3 PIP tumor and the background ROI, 
respectively. (2) The second metric is the ratio of PSMA-targeted 
contrast agent intensity of PSMA+ PC3 PIP vs PSMA- PC3 flu tumor, 
given by 

cPSMA =
IPSMA+

IPSMA−

, (14)  

where IPSMA− denotes the mean PSMA-targeted contrast agent intensity 
in the ROI of PSMA- PC3 flu tumor. In the pre-injection phase, ground 
truth IPSMA+, IPSMA−, and IBG are all 0. However, due to the spatially 

uniform SSE, IPSMA+, IPSMA−, and IBG are expected to be a constant. 
Hence, cSNR and cPSMA are expected to be 1 in pre-injection. In the post- 
injection phase, ground-truth IBG is 0, but ground truth IPSMA+ and 
IPSMA− are not quantifiable in biological tissues. IBG is expected to be a 
small constant due to SSE, and IPSMA+ and IPSMA− are expected to be high 
and low, respectively, such that cPSMA and cSNR are expected to be large 
values in post-injection. Higher cSNR in post-injection especially in
dicates better spectral unmixing sensitivity. 

3. Results 

3.1. Calibration of the noise models 

The system-dependent NMs calibrated on our imaging system are 
shown in Fig. 2. Fig. 2a is an exemplary character of the laser instability 
(NM 1), where the heteroscedasticity, spectral fluctuation, and temporal 
fluctuation are reflected by varied CVs, mean values, and STDs. Partic
ularly, energy of laser pulses at 710, 720, 800, 810, 850, 870, and 
880 nm is relatively more stable (CV < 5%). Fig. 2b further explains the 
pulse-to-pulse temporal fluctuation, where a histogram of the energy of 
5000 sequential pulses at 720 nm is demonstrated. The fitting curve in 
blue suggests that Gaussian distribution is a good approximation to the 
probability distribution (R2 = 0.930). Fig. 2c shows the calibration 
result of the background noise in NM 2. A histogram of image intensity 
in 44,040,192 pixels (256 by 128 per frame, 1344 sequential frames) is 
delineated, where the mean ± STD of all pixels is 2825 ± 1528. The 
fitting curve in blue also suggests that Gaussian distribution is a good 
approximation (R2 = 0.982). 

3.2. Simulation-aided optimization of wavelength subset and SSE 
segregation 

3.2.1. Wavelength optimization considering system factors 
In this section, a simulation-aided wavelength optimization incor

porating system-dependent NMs is presented. In the first stage where 
only minimally required number of wavelengths were selected, the 
proposed method found S as {700, 710, 800, 880} (nm) with 115 counts 
and {700, 780, 800} (nm) with 3125 counts out of 100,000 iterations for 
the SSE segregation scheme and the conventional scheme, respectively. 
In either scheme, the selected wavelength subsets had significantly more 
counts than the other permutations, as indicated in Fig. S2. In compar
ison, MB method reported S = {700, 710, 800, 900} (nm) and S = {700, 
800, 900} (nm), respectively. In the second stage, the proposed method 
in the SSE segregation scheme sequentially included the following 
wavelengths into S: 760, 830, 870, 900, 790, 720, 770, 820, 780, 740, 
850, 730, 810, 860, 750, 890, 840 (nm). The whole process of the 
proposed method took 24.9 and 5.6 h respectively for the SSE segrega
tion and the conventional scheme in MATLAB running on a laptop with 
Intel Core i7-8550U CPU with 16.0 GB RAM. If all permutations were 
searched brute-force in the same setup, the whole process would take 
around 352 days on the same machine, considering that a single per
mutation took 145 ± 26 µs. 

We performed the comprehensive performance evaluation of four- 
wavelength selection methods (the proposed algorithm, MB method, 
random wavelength selection, and UNI selection) at different number of 
wavelengths with and without the SSE segregation scheme. Fig. 3 shows 
the mean spectral unmixing accuracy in RMSE of 1000 test signals. 

As indicated in Fig. 3, a whole-wavelength spectral unmixing yielded 
0.040 ± 0.029 and 0.096 ± 0.047 of RMSE with and without the SSE 
segregation, suggesting 58.7% enhancement due to the SSE segregation 
scheme. In reference to the whole-wavelength result, we specifically 
analyzed the scenarios under two user preferences: (1) having the 
highest temporal resolution with the most compact wavelength subset or 
(2) securing a specific RMSE regardless of the size of wavelength subset. 

In the first scenario, by using the most compact wavelength subset 
with the SSE segregation (4 wavelengths), the proposed wavelength 
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optimization method yielded RMSE at 0.070 ± 0.049, which indicated 
more precise unmixing than other methods: 0.073 ± 0.053, 0.150 
± 0.094, 0.150 ± 0.091 for MB method, randomized, and UNI selection, 
respectively. Whereas in conventional scheme without the SSE segre
gation (3 wavelengths), the proposed method yielded RMSE at 0.113 
± 0.055 and still outperformed other methods: 0.119 ± 0.059, 0.215 
± 0.126, 0.122 ± 0.061 for MB method, randomized, and UNI selection, 
respectively. Collectively, in terms of the wavelength optimization, the 
proposed method showed the highest spectral unmixing accuracy 
compared with other methods in statistical significance (p < 0.0001). In 
addition, the SSE segregation scheme provided further fractional im
provements at 38.6%, 38.6%, 30.1%, and − 23.9% over the conven
tional spectral unmixing cases without the SSE segregation. When the 
number of wavelengths is greater than four, SSE segregation shows 
lower spectral unmixing accuracy than the conventional scheme in UNI 
selection, which indicates the significance of a proper wavelength se
lection especially when the desired number of wavelengths is minimum. 
Nevertheless, SSE segregation scheme improves the accuracy in all other 
cases, and it only requires one more wavelength which decreases the 
temporal resolution from 6.67 scanning sequences per second to 5 
scanning sequences per second at 20-Hz spectral tuning frequency. 

In the second scenario, we consider the SSE segregation and set a 
specific RMSE threshold as the criterion for wavelength selection. When 

the expected RMSE is no larger than 120% of full-wavelength selection’s 
(21 wavelengths), at least 9, 10, 17, and 16 wavelengths were required 
by the proposed method, MB method, random selection, and UNI se
lection. Thus, the proposed method would yield 11.1%, 88.9%, and 
77.8% higher temporal resolution than the MB, randomized, and UNI 
selection methods at a comparable spectral unmixing accuracy. 

3.2.2. Robustness of wavelength selection and SSE segregation 
In this section, we evaluate the sensitivity of spectral unmixing to ε. 

The level of ε denoted by α was tuned into different values to simulate its 
nonuniform spatial distribution: 0.01, 0.05, 0.1, 0.2, 0.3, 0.5, 1, 2, and 4. 
The purpose is to test the robustness of SSE segregation toward spatially 
variant endmember composition, where in absorber-abundant tissue 
regions, ε takes up a low portion so α is small and in background regions 
ε takes up a high portion so α is large. Note again that the fractions of all 
other endmembers were randomized (i.e., xi ∼ U(0, 1), i = {1, 2, 3}), 
and x was normalized afterwards to sum to one. Each α was tested by 
1000 randomly generated signals with and without the SSE segregation 
scheme in different wavelength selection methods, as demonstrated in  
Fig. 4a. 

Vertical comparison of the curves in Fig. 4a reveals the effectiveness 
of SSE segregation, where the first row (noise segregation scheme) 
showed significantly-less change of RMSE than the second row 

Fig. 2. Characteristics of system NMs in the spectroscopic PA imaging. (a) Mean, STD, and the coefficient of variance (CV) of the Nd:YAG OPO laser at different 
wavelengths. (b) Energy distribution of 5000 sequential laser pulses emitted by an Nd:YAG OPO laser. (c) Background noise intensity histogram in the ultrasound 
imaging system. 

Fig. 3. Mean spectral unmixing accuracy as a function of the number of wavelengths. One thousand signals were tested using the proposed method, MB method, 
random selection, and UNI selection with and without the SSE segregation scheme. 
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(conventional scheme) as α varies. Ratios of RMSE between the con
ventional and the SSE segregation schemes under different α are given in 
Fig. 4b. Overall, the SSE segregation scheme becomes more effective as α 
increases. However, when α is negligible (e.g. α ≤ 0.1, which corre
sponds to a fraction of 0.1/(0.1 + 1 + 1 + 1) = 3.2%), the conventional 
scheme outperforms the SSE segregation scheme mainly due to the 
sensitivity of least-squares. SSE segregation scheme is more effective at 
most of the numbers of wavelengths when α ≥ 0.2, α ≥ 0.3, α ≥ 0.5, and 
α ≥ 0.5 for the proposed method, MB method, random selection and UNI 
selection, respectively, which corresponds to fractions of the electronic 
noise at 6.3%, 9.1%, 14.3%, and 14.3%. 

Horizontal comparison of the curves in Fig. 4a reveals the robustness 
of different wavelength selection methods to α. Each data point repre
sents average RMSE of 1000 test signals given the number of wave
lengths and α. Fig. 4c further quantifies the how spectral unmixing 
accuracy varies as α changes, which indicates the robustness of different 
wavelength selection methods toward the spatial variance of ε. The 
proposed method showed smaller STDs than the other methods 
regardless of the number of wavelengths, which implies higher robust
ness to the spatial variance of ε. 

3.2.3. Effect of frame averaging to spectral unmixing accuracy 
In Section 2.3.2, we provided numerical analysis on ‖ε‖

2 with respect 
to P. Given that it is hard to express the expectation and the STD of ‖B‖

and ‖ε‖ in closed form, we herewith implemented numerical simulations 
to find how these values changes with respect to P. 

In simulation, we set Bij ∼ N
(

0, 0.12

P

)
, i ∈ {1, 2, …, 21}, j ∈ {1,2,3,

4}, and ε ∼ N (0,1
PΣ). Ten values of P (i.e., 1, 4, 9, 16, 25, 36, 49, 64, 81, 

and 100) were tested by 10,000 data. Fig. 5a demonstrates line plots 
with error bars of ‖B‖ and ‖ε‖, and 5b shows the line plot with error bars 
of spectral unmixing accuracy in RMSE. The linear fittings included an 
extra datapoint at (0, 0), for the expectations it yielded 
E[‖B‖ ] = 0.001(58.48/

̅̅̅
P

√
+0.02) with R2 = 1.000, 

E[‖ε‖ ] = 0.001(23.42/
̅̅̅
P

√
+0.08) with R2 = 1.000, and 

E[RMSE] = 0.001(18.57/
̅̅̅
P

√
+3.65) with R2 = 0.997. As for the STDs, 

the linear fitting yielded that STD[‖B‖ ] = 0.001(5.71/
̅̅̅
P

√
−0.09) with 

R2 = 1.000, STD[‖ε‖ ] = 0.001(4.99/
̅̅̅
P

√
+0.11) with R2 = 1.000, and 

STD[RMSE] = 0.001(9.64/
̅̅̅
P

√
+2.41) with R2 = 0.996, respectively. 

The fitting lines indicated a proportional relation of the mean and STD of 
‖B‖ and ‖ε‖, and a highly approximated proportional relation of the 
mean and the STD of the spectral unmixing accuracy with respect to 
1/

̅̅̅
P

√
. Therefore, by assuming ε and B are zero-mean Gaussian vector/ 

matrix, the frame averaging scheme is expected to improve spectral 
unmixing accuracy by 

̅̅̅
P

√
times. 

Since both the number of wavelengths and the frame averaging 
determine imaging speed, we are interested in which one of them en
hances spectral unmixing accuracy more with given temporal resolu
tion. Fig. 6 demonstrates a comparison tested on 1000 random signals in 
simulation, where wavelength selection adds more wavelengths as the 
given temporal resolution decreases, and frame averaging employs 
minimally required number of wavelengths but increases the number of 
frames for averaging. Fig. 6 indicates that when selected wavelengths 
were optimal (proposed algorithm), wavelength selection slightly out
performed frame averaging. Otherwise, wavelength selection signifi
cantly outperformed frame averaging (random and UNI). This 
emphasizes the importance of selecting proper wavelengths prior to 

Fig. 4. Spectral unmixing accuracy as the level of the fraction of the SSE changes. (a) RMSE of each wavelength selection method as a function of the number of 
wavelengths with and without the SSE segregation scheme. (b) The relative RMSE change of MB method, random, and UNI selection methods over what obtained 
with the proposed method. Gray lines indicate results given by different values of α. Red lines are the baselines at 1. (c) The relative RMSE change of MB method, 
random, and UNI selection methods between scenarios with and without the SSE segregation scheme. 
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frame averaging. In addition, the gap of RMSE between wavelength 
selection and frame averaging was consistent in conventional scheme 
and SSE segregation scheme in all wavelength selection methods. 

3.3. In vivo experiment 

3.3.1. Spectral system error (SSE) segregation scheme 
We first evaluated the effectiveness of the SSE segregation in in vivo 

data collected before and after injection of the PSMA-targeted contrast 
agent. Whole wavelengths were applied for both the conventional 
scheme (three endmembers) and the SSE segregation scheme (four 
endmembers) to preclude the impact of the wavelength selection 
methods. Fig. 7a demonstrates representative spectral unmixing out
comes of the PSMA-targeted contrast agent in vivo for both before and 
24-h after injection. Compared with the contrast agent maps obtained 
from the conventional scheme, those by the SSE segregation scheme 
exceptionally suppressed background noises. Meanwhile, they revealed 
notably fewer artifacts in the tumor ROIs before injection, and preserved 
remarkable image contrast in the PSMA+ PC3 PIP tumor 24-h after 

injection. These observations confirmed that a substantial amount of 
SSE could be segregated from the primary endmembers (i.e., contrast 
agent, Hb, and HbO2). Due to the sensitivity of least squares, the 
segregated SSE map presented a highly uniform spatial variance outside 
the body but less uniform inside the body where its fraction was negli
gible, which well agrees with our simulation results in Section 3.3. 

A quantitative analysis was performed to evaluate the effectiveness 
of the SSE segregation scheme in different ROIs, where cPSMA and cSNR in 
conventional scheme and SSE segregation scheme were calculated using 
data acquired before and after injection of the PSMA-targeted contrast 
agent (n = 5). As shown in Fig. 7b, in pre-injection, the mean and 
standard error of cSNR in conventional scheme and SSE segregation 
scheme are 0.29 ± 0.06 and 1.56 ± 0.51, respectively. In conventional 
scheme, cSNR is lower than 1 because in some pixels system noise was 
more decomposed into other endmember maps (Hb and HbO2) than the 
contrast agent map, so that intensity in the body region is lower than the 
background region, as revealed in Fig. 7a. Contrarily, in SSE segregation 
scheme, cSNR is close but greater than 1 because system noise can be 
effectively segregated in the background region, but less effectively 

Fig. 5. ‖B‖, ‖ε‖, and the spectral unmixing accuracy in RMSE as functions of 1/
̅̅̅
P

√
. Solid lines indicate the expectation of the values, error bars indicate the STD of 

the values, and dotted lines are the linear fittings. 

Fig. 6. Comparison of effectiveness of wavelength selection (wave sel) and frame averaging (frame avr) on spectral unmixing as the given temporal resolution 
changes. Each subfigure represents a wavelength selection method. Test results in conventional scheme (CON) and SSE segregation scheme were indicated by black 
and blue curves, respectively. 
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when strong optical absorber exists in the body region. In these body 
regions, the fraction of system noise is too low to be unmixed by spectral 
unmixing due to the sensitivity of least squares, as indicated in the noise 
map in Fig. 7a. In post-injection, the mean and standard error of cSNR in 
conventional scheme and SSE segregation scheme are 2.07 ± 0.30 and 
9.12 ± 1.99, respectively. The mean cSNR in SSE segregation is 4.43 
times of the one in conventional scheme, indicating that SSE segregation 
is significantly effective in improving SNR. As shown in Fig. 7c, in pre- 
injection, the mean and standard error of cPSMA in conventional scheme 
and SSE segregation scheme are 0.77 ± 0.10 and 0.77 ± 0.11, both of 
which are slightly lower than 1. In post-injection, the mean and standard 
error of cPSMA in conventional scheme and SSE segregation scheme are 
6.79 ± 2.15 and 14.77 ± 7.76, respectively. The mean cPSMA in SSE 
segregation is 2.18 times of the one in conventional scheme. The 
enhancement of cPSMA is not as high as cSNR, possibly because Hb and 
HbO2 contributed false contrast or there was minor contrast agent up
take in PSMA- PC3 flu region. Nevertheless, it suggests that SSE segre
gation can greatly improve sensitivity of prostate cancer detection. Note 
that due to the lack of ground truth of Hb and HbO2 in vivo, we only 
conducted quantitative analysis on the unmixed contrast agent map. 
However, SSE segregation works on all unmixed endmembers. It can 
also effectively reduce background noise in the unmixed Hb and HbO2 

map as demonstrated in Fig. S2. 

3.3.2. Wavelength optimization scheme 
We expanded our analysis to the wavelength optimization scheme 

using in vivo data before the injection of PSMA-targeted contrast agent 
(n = 5), given that ground truth of pre-injection data is known. In this 
section, proposed method, MB method, random selection, and UNI se
lection were analyzed in SSE segregation scheme. 

Representative PSMA-targeted contrast agent maps and quantitative 
evaluation of cSNR and cPSMA are demonstrated in Fig. 8. In Fig. 8a, the 
contrast agent maps were unmixed by four and eleven wavelengths, 
which respectively represent scenarios aiming at the highest temporal 
resolution and twice the temporal resolution of using whole wave
lengths. In visual assessment, the proposed scheme demonstrated a 
substantial suppression of false contrast compared with random and UNI 
selection methods. Artifacts indicated by white arrows were found 
around the tumor regions even in whole-wavelength selection but not in 
the proposed method and MB method. Fig. 8b presents a quantitative 
evaluation of cSNR as a function of number of wavelengths, where the 
proposed method outperformed other methods in either accuracy or 
robustness. In particular, the mean and standard error of cSNR at four 
wavelengths were 1.20 ± 0.28, 2.19 ± 0.74, 4.80 ± 3.20, and 1.96 

Fig. 7. In vivo evaluation of the SSE 
segregation scheme in the whole- 
wavelength method utilizing a spectral 
range from 700–900 nm in 10 nm in
terval in NOD-SCID mice bearing sub
cutaneous PSMA+ PC3 PIP and PSMA- 

PC3 flu in the lower back right and left 
posterior flanks, respectively. (a) 
Representative in vivo ultrasound and 
spectral unmixed map of PSMA-targeted 
contrast agent in conventional and SSE 
segregation schemes, pre-injection and 
post-injection phases; Dashed white 
lines represent ROIs in PSMA+ PC3 PIP 
and PSMA- PC3 flu tumors. (b) and (c) 
are mean and standard error of cSNR and 
cPSMA, respectively, in conventional 
(CON) and SSE segregation schemes, 
pre-injection and post-injection phases 
(n = 5). Red dashed lines are baselines 
at 1.   
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± 0.62, for proposed method, MB method, random selection and UNI 
selection, respectively. Whole-wavelength selection yielded 1.33 

± 0.40. Fig. 8c reveals quantitative evaluation of cPSMA as a function of 
number of wavelengths. The proposed method had a comparable per
formance with MB method, while outperforming random selection and 
UNI selection methods. Specifically, mean and standard error of cSNR at 
four wavelengths were 1.07 ± 0.27, 0.94 ± 0.19, 1.11 ± 0.14, 1.20 

± 0.24, for proposed method, MB method, random selection and UNI 
selection, respectively. And whole-wavelength selection yielded 0.89 

± 0.14. In all, the proposed method provided less false contrast of 

PSMA-targeted contrast agent before the injection of the contrast agent 
in all ROIs regardless of the number of wavelengths. 

3.3.3. Frame averaging scheme 
We validated the impact of the frame averaging scheme on the 

spectral unmixing accuracy using in vivo data collected before injection 
of the PSMA-targeted contrast agent (n = 5). Note again that any in
tensity in the unmixed PSMA-targeted contrast map in the pre-injection 
phase is false and directly reflects absolute spectral unmixing error. A 
representative image is shown in Fig. 9a, where a PA image acquired at 
780 nm and averaged for 64 times is demonstrated, and different P 
values were tested for frame averaging: 1, 4, 9, 16, 25, 36, 49, and 64. In 
visual assessment, apparent trend of decreasing false intensity was found 
as P increases. 

Fig. 8. Comparison of the wavelength selection methods in data acquired before injection of the PSMA-targeted contrast agent in NOD-SCID mice bearing sub
cutaneous PSMA+ PC3 PIP and PSMA- PC3 flu in the lower back right and left posterior flanks, respectively. (a) Representative spectral unmixed contrast agent maps 
using four wavelengths and eleven wavelengths. (b) and (c) are cSNR and cPSMA as functions of the number of wavelengths. Red dashed lines are the baseline at 1. 

Y. Wu et al.                                                                                                                                                                                                                                      



Photoacoustics 27 (2022) 100378

11

Fig. 9. Evaluation of the relation between spectral unmixing accuracy and the number of frames for averaging (P) in vivo. (a) Representative contrast agent maps 
when 1, 4, 9, 16, 25, 36, 49, and 64 frames were averaged for spectral unmixing. (b) The mean and STD of false contrast in the ROIs of PSMA+ PC3 PIP, PSMA- PC3 
flu, and background as functions of 1/

̅̅̅
P

√
. The ROIs are indicated in (a) by dotted squares. 

Y. Wu et al.                                                                                                                                                                                                                                      



Photoacoustics 27 (2022) 100378

12

A quantitative analysis was further conducted. For 1, 4, 9, 16, 25, 36, 
49, 64 frames of averaging, respectively, cSNR are 0.77 ± 0.11, 0.71 ±
0.27, 0.80 ± 0.21, 0.84 ± 0.36, 0.94 ± 0.35, 1.07 ± 0.29, 1.08 ± 0.35, 
and 1.16 ± 0.32, and cPSMA are 0.98 ± 0.11, 0.96 ± 0.16, 0.91 ± 0.20, 
0.85 ± 0.19, 0.87 ± 0.31, 0.91 ± 0.34, 0.89 ± 0.34, and 0.92 ± 0.35. 
Two relations were further verified on the images shown in Fig. 9: 
proportion of expected spectral unmixing accuracy vs. 1/

̅̅̅
P

√
and pro

portion of STD of spectral unmixing vs. 1/
̅̅̅
P

√
. Square-shaped ROIs in the 

same size (3 × 3 mm2 containing 200 pixels) were selected from the 
PSMA+ PC3 PIP, PSMA- PC3 flu tumors, and background regions 
(Fig. 9a) to keep an identical sample size for the following statistics. The 
mean and STD of false intensity within each ROI were plotted as a 
function of 1/

̅̅̅
P

√
in Fig. 9b. The linear fitting of the mean false intensity 

suggested I = 100(9.69/
̅̅̅
P

√
−0.14) with R2 = 0.997 in PSMA+ PC3 PIP; 

I = 100(11.74/
̅̅̅
P

√
−0.21) with R2 = 0.994 in PSMA- PC3 flu; and I 

= 100(13.93/
̅̅̅
P

√
−0.32) with R2 = 0.986 in the background, respec

tively. The linear fitting of the STD of false intensity suggested I =

100(13.93/
̅̅̅
P

√
+ 0.60), R2 = 0.995 in PSMA+ PC3 PIP; I =

100(16.09/
̅̅̅
P

√
+ 0.63), R2 = 0.996 in PSMA- PC3 flu; and I =

100(18.67/
̅̅̅
P

√
+ 0.30), R2 = 0.990 in the background, respec

tively. The results suggest strong linear relationship between spectral 
unmixing accuracy to 1/

̅̅̅
P

√
with negligible bias in y-intercept. In 

addition, similar slopes at different ROIs indicated no substantial spatial 
variance of the spectral unmixing accuracy. 

4. Discussion and conclusion 

Here we presented a system-level optimization of the spectroscopic 
PA imaging to detect aggressive PCa using PSMA-targeted agent. The 
optimization framework consists of three schemes: SSE segregation, 
wavelength optimization, and frame averaging. We first constructed 
system-dependent NMs for laser and ultrasound systems, and incorpo
rated the resultant ‘spectral system error’ into spectral unmixing. We 
then considered these NMs in the wavelength optimization, where an 
iterative searching method was proposed. We further analyzed the 
relation between the spectral unmixing accuracy and the number of 
frames for averaging. 

To validate the framework, we first calibrated NMs on our imaging 
system. Gaussian distribution well described the temporal fluctuation of 
laser pulse energy in NM 1 and the electronic noise intensity distribution 
in NM 2. Even though the distribution of NM 2 was closer to a chi-square 
distribution, which is a sum of squares of two or more independent 
Gaussian variables, it was close enough to a single Gaussian such that the 
assumption of least squares was not annulled. 

The proposed wavelength selection method showed superior spectral 
unmixing accuracy and robustness in our simulation-aided optimization. 
It is worth mentioning that MB method indicated comparable accuracy 
in in vivo validation, and it was less computationally complex. However, 
it showed lower robustness than the proposed method as it does not 
consider system factors. Moreover, the computation time is not a pri
mary concern for wavelength selection if the algorithm’s complexity is 
reasonable (e.g., timed in hours), because wavelengths selection is 
predetermined and will not be performed on a daily basis by clinicians 
[41,42]. 

We are particularly encouraged by SSE segregation, which enhanced 
SNR and spectral unmixing accuracy by segregating background elec
tronic noise. The SSE segregation reduced spectral unmixing errors by 
58.7% in simulation (n = 1000) and enhanced the contrast between 
PSMA+ PC3 PIP and PSMA- PC3 flu tumors by 2.18 times, as well as the 
image SNR by 4.43 times in 24-h after injection in vivo data (n = 5). It 
suggests that the SSE segregation is efficacious in suppressing false 
contrast and improving specificity especially when detecting early 
lesion with low PSMA expression. In terms of SNR, note that one can 
possibly apply ultrasound-based delineation for co-registered PA images 

to get rid of background regions if the anatomy has a clear boundary in 
ultrasound images [38]. However, ultrasound-based delineation is not 
always applicable to clinical applications. For instance, standalone 
transrectal ultrasound provides low sensitivity (11–35%) and ambig
uous morphologic feature to localize prostate cancer due to poor 
contrast resolution [39]. Moreover, SSE segregation does not conflict 
but further supplement ultrasound-based delineation because it is part 
of spectral unmixing before any segmentation. What is more important 
is SSE segregation segregates the system noise from other endmembers 
to avoid false contrast from being unmixed to the ROI. Despite of en
hancements, profound analysis unveiled that SSE segregation is spatially 
variant. This is because in regions where the fraction of the unknown 
variable is too low, linear spectral unmixing is not capable to distinguish 
it from the additive noise in the measurement due to the sensitivity of 
least squares. Simulation suggested that SSE segregation instead low
ered spectral unmixing accuracy when the electronic noise fraction was 
less than around 3%. In vivo validation also confirmed the spatial vari
ance of SSE segregation, that intensity of segregated electronic noise was 
more uniform outside the body than inside. To tackle that challenge, one 
may consider an adaptive approach for spectral unmixing: the electronic 
noise would be included as an endmember in the initial spectral 
unmixing, but excluded afterwards if its unmixed fraction is lower than 
the threshold (e.g., 3%). Moreover, instead of implementing spectral 
unmixing pixelwise, spatial constraints such as total variation regulari
zation can be added to minimize the spatial variance. Nevertheless, a 
regularization will increase the time complexity and potentially impair 
temporal resolution. 

Finally, we quantified how frame averaging improves spectral 
unmixing accuracy in theoretical analysis and numerical validation. 
Assuming the system electronic noise is composed of a constant value 
plus a Gaussian noise ε, where ε is zero-mean and its entries are all in
dependent, our study suggested that by having P frames, frame aver
aging reduces spectral unmixing error by 

̅̅̅
P

√
times. Note that we were 

assuming the perturbation in the design matrix A and the measurement 
noise are all Gaussian noises, otherwise the quantitative relation be
tween the spectral unmixing accuracy and the frame averaging remains 
an open question. Nevertheless, this relation is very useful for the trade- 
off between the imaging precision and the imaging speed depending on 
the application. Specifically, if the temporal resolution is fixed, this 
relation can be applied in simulation to decide whether to have more 
frames per wavelength or fewer frames but more wavelengths for 
optimal spectral unmixing accuracy, as demonstrated in Section 3.2.3. It 
turns out given a fixed temporal resolution, a proper wavelength se
lection is critical to be combined with frame averaging. When selected 
wavelengths are optimal, adding more wavelengths is slightly more 
effective in enhancing spectral unmixing accuracy than having more 
frames for averaging. Also note that frame averaging improves the 
effectiveness of SSE segregation, because it narrows the probability 
distribution of ε as shown in Fig. 2c, so ε has a less varying spectrum and 
it can be better unmixed as an endmember. Nevertheless, in the in vivo 
validation, cSNR increases from 0.77 to 1.16 as the number of frames for 
averaging increases from 1 to 64, while cPSMA fluctuates around 0.9 and 
does not seem to have an obvious trend as the number of frames in
creases. This suggests that frame averaging is more effective for the 
background region, and again indicates the spatial variance of spectral 
unmixing due to the sensitivity of least squares. In background regions, 
SSE is the only composition, so after frame averaging it can be more 
easily unmixed. Whereas in the body region where Hb and HbO2 are the 
dominant contrast, SSE and the contrast agent may fall below the 
sensitivity threshold, thus they are less easily to be distinguished and 
frame averaging becomes less effective. 

In all, our system-level optimization of the spectroscopic PA imaging 
of aggressive PCa successfully segregated the SSE while optimizing the 
temporal resolution. Note that we here focused on the system-dependent 
noise sources, and did not consider tissue-dependent spectral error in 
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this study (e.g., spectral coloring, motion artifacts, etc. [24]). Including 
these factors in simulation-aided optimization may be time-consuming 
and arbitrary due to high anatomy-dependency. Nevertheless, for pre
cision purposes, one can consider depth-resolved and model-based flu
ence compensation [40–42] or hardware solutions [43]. We will also 
further investigate whether a more realistic covariance matrix of the 
Gaussian process can approximate the fluence distribution. Once thou
sands or more ground-truth images are generated, they can be used for 
data-driven methods such as deep learning [44] to further enhance 
wavelength optimization. The proposed wavelength selection is a pro
totype to deep learning methods – the best combination of wavelengths 
was first ‘learned’ from 100,000 one-dimensional signals, then tested on 
real images. Also, other nonlinear spectral unmixing approaches studied 
in hyperspectral imaging [45] may provide additional insights. 
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