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This study presents a system-level optimization of spectroscopic photoacoustic (PA) imaging for prostate cancer
(PCa) detection in three folds. First, we present a spectral unmixing model to segregate spectral system error
(SSE). We constructed two noise models (NMs) for the laser spectrotemporal fluctuation and the ultrasound
system noise. We used these NMs in linear spectral unmixing to denoise and to achieve high temporal resolution.
Second, we employed a simulation-aided wavelength optimization to select the most effective subset of wave-
lengths. NMs again were considered so that selected wavelengths were not only robust to the collinearity of
optical absorbance, but also to noise. Third, we quantified the effect of frame averaging on improving spectral
unmixing accuracy through theoretical analysis and numerical validation. To validate the whole framework, we
performed comprehensive studies in simulation and an in vivo experiment which evaluated prostate-specific
membrane antigen (PSMA) expression in PCa on a mice model. Both simulation analysis and in vivo studies
confirmed that the proposed framework significantly enhances image signal-to-noise ratio (SNR) and spectral
unmixing accuracy. It enabled more sensitive and faster PCa detection. Moreover, the proposed framework can
be generalized to other spectroscopic PA imaging studies for noise reduction, wavelength optimization, and
higher temporal resolution.

frequent surveillance of PCa patients. Another modality, optical imag-
ing, has also brought opportunities for precise PSMA detection by
employing contrast agents that binds to PSMA-positive (PSMA1) PCa [9,
10]. However, such agents only provide superficial imaging depth. Thus,

1. Introduction

Prostate-specific membrane antigen (PSMA) is a type-II integral
membrane protein. PSMA has been widely studied for molecular and

functional imaging of prostate cancer (PCa) due to its higher expression
on the cell surface of aggressive PCa than in healthy prostate tissue and
indolent malignancies [1-5]. PSMA expression correlates well with
staging and aggressiveness of PCa. Thus, it has been leveraged as an
important molecular target for PCa management. Among several im-
aging modalities for PSMA detection, radionuclide imaging, e.g., posi-
tron emission tomography and single-photon emission computed
tomography, enables whole-body imaging to detect primary PCa and
metastatic lesions using affinity agents that link radionuclides to the
PSMA [6-8]. Nevertheless, radionuclide imaging exposes patients to
radiation and necessitates expensive infrastructure, hindering it from

optical imaging of PSMA is strictly confined to providing intraoperative
guidance rather than being comprehensively useful in prostate cancer
care. Hence, there is an urgent need for noninvasive, high-contrast im-
aging of PSMA expression in deep prostate tissues.

Photoacoustic (PA) imaging is an emerging molecular imaging mo-
dality that caters to the above requirements. It provides rich optical
contrast at sub-millimeter spatial resolution and acoustic imaging depth
over several centimeters [11,12]. In PA signal formation, electromag-
netic energy absorbed by the biological tissue converts to thermal en-
ergy, inducing a localized pressure increase due to the thermal-elastic
expansion of the tissues. The pressure then propagates as acoustic waves

Abbreviations: CV, coefficient of variance; LMM, linear mixed model; MB, metric-based; NM, noise model; OLS, ordinary least squares; PA, photoacoustic; PCa,
prostate cancer; PSMA, prostate-specific membrane antigen; SNR, signal to noise ratio; SSE, spectral system error; UNI, uniform.
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and is recorded by acoustic detectors to form PA signals. Because most
biological tissues possess unique optical absorption spectra, they can be
unmixed by spectroscopic PA imaging presented in several novel clinical
and scientific applications [13-19]. We recently validated the spectro-
scopic PA imaging of PSMA expression in vivo for the first time, using a
PSMA-targeted agent [20], where spectral unmixing with ordinary least
squares (OLS) discerned absorptive contrast of the agent specifically
bounded to PSMA expressing PCa. However, there underline opportu-
nities for significant improvements in the system level.

Here we focus on several challenges in our system-level optimization
of the spectroscopic PA imaging frameworks. (1) The OLS method, the
most common approach for spectral unmixing, suffers from many sys-
tem noise sources that may annul the essential hypothesis of the flawless
design matrix and zero-mean measurement noise. For example,
normalizing the fluctuating pulse-to-pulse laser energy makes the sys-
tem electronic noise dependent to the laser spectrum, therefore engen-
ders spectral system error (SSE) and deteriorates spectral unmixing
accuracy. (2) The redundant amount of spectral data ranging from 700
nm to 900 nm in 10 nm intervals in our previous study was still inef-
fective to show false contrast before the injection of the PSMA-targeted
agent. Also, it suffers from low temporal resolution by using Nd:YAG
pulsed laser equipped with optical parametric oscillator (OPO)
commonly applied in the PA imaging research operating only at 10-20
Hz for sequential spectral tuning. Several wavelength selection algo-
rithms were developed to reduce the computational complexity
[21-23], but spectrotemporal instability of the tunable laser system
were not considered, where the varying SSE at different wavelengths
may affect spectral unmixing accuracy. (3) Frame averaging is a con-
ventional method to improve the signal-to-noise ratio (SNR) in PA im-
aging, but another layer of analysis is still needed to understand how
such SNR enhancement will improve the accuracy of spectral unmixing.
Herein, we present a simulation-aided system-level optimization of the
spectroscopic PA imaging of PSMA expression to achieve robust spectral
unmixing accuracy and enhanced temporal resolution.

2. Methods
2.1. Conventional spectroscopic PA unmixing

The initial pressure po generated by PA effect can be equated using
the following equation [24].

po = TurF, e))
where T is the PA efficiency based on the Griineisen parameter, Uq is the
optical absorbance (m’l), and F is the optical fluence (J/m?). In this
work, the insignificant spatial variance of T is omitted. Therefore, pg is
directly proportional to the optical energy (u,F) absorbed by a target.

By exploiting different optical absorbance characteristics of different
tissue types, spectroscopic PA imaging enables quantification of bio-
logical tissues. If the PA effects of the tissues are assumed to be inde-
pendent, then a linear mixed model (LMM) can be applied [24,25]. By
convention, we hereafter refer the tissues of interest as endmembers,
and we assume the optical fluence has been compensated. Consequently,
if there are N endmembers and M different wavelengths (M > N), the
inverse problem of LMM is given as

y = Ax+eg, (2)
where A € R™*V is the design matrix, A(m,n) = T'ftg,(An)F, An is the
m-th wavelength, y € RM is the measured PA spectrum, x € RY is the
unknown concentrations of the endmembers, and £ € R is additive
measurement noises. Since x is non-negative, we solve the problem by
non-negative least squares (NNLS) using quadratic programming tech-
niques [26], which is given by
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arg min (%XTATAX - yTAx> . 3)

x>0

Columns of A must be linearly independent to achieve a unique solution,
i.e., the optical absorbance of any endmember cannot be expressed as a
linear combination of the others. And & must be zero-mean to make the
least-squares problem valid.

2.2. Spectral system error in spectroscopic PA imaging

The assumption of a linear relationship between the PA spectrum y
and the unknown concentration x does not always hold in practice due
to the presence of system-dependent noise sources [25]. We herein
conclude them with two system noise models (NMs).

e NM 1. Laser-dependent noise model. The emitted laser energy is
heteroscedastic from wavelength to wavelength in the spectral
domain (NM 1a) and varies from pulse to pulse in the temporal
domain (NM 1b), which altogether makes F fluctuate in the spec-
trotemporal domain. To illustrate, the coefficient of variance (CVs) of
F in the near-infrared band (700 — 900 nm) on our Nd:YAG laser
equipped with a tunable optical parametric oscillator (OPO) (Phocus
Inline, Opotek Inc., USA) ranges from 3.65% (709 nm) to 9.85%
(751 nm).

e NM 2. Ultrasound system noise model. A PA imaging system for
PCa imaging may resemble clinical ultrasound imaging systems
[27-30]. The Johnson-Nyquist noise is dominant in the ultrasound
imaging systems among various other electronic noises such as
flicker noise and Poisson noise. Generally, Johnson-Nyquist noise
follows Gaussian distribution in a finite positive bandwidth. It is
independent of either the optical source (NM 1) or the anatomy [31].

Given that po and F are proportional, a conventional optimization of
spectroscopic PA imaging tackles NM 1 by normalizing the acquired PA
signal to the correspondent laser pulse energy. However, such
straightforward compensation makes NM 2 no longer independent of
NM 1 - It endows the NM 2 with spectral signature of the inverted laser
spectrum and heteroscedasticity. In other words, spectral unmixing ac-
curacy now becomes wavelength-dependent because the statistics of
ultrasound system noise such as mean and standard deviation (STD) also
becomes wavelength-dependent after the compensation. It annuls the
assumption of least squares that the additive noise € must be zero-mean
and homoscedastic [33,34] Here we entitle the combination of these
noise models as ‘spectral system error (SSE)’.

2.3. System-level optimization framework of PA spectral unmixing

2.3.1. Spectral system error (SSE) segregation scheme

Fig. 1 shows the overall framework of the optimized spectral
unmixing for effective spectroscopic PA imaging. Here we incorporate
the individual NMs into the spectral unmixing problem. The direct
measured spectroscopic PA signal can be compensated to denoise NM 1:

y=Wly, 4

where W € R™*M is a diagonal matrix with Wy, = wy, form =1,..., M,
and wy, is the pulse energy at each wavelength 1,. Once weighted, y
becomes proportional to the optical absorbance as in Eq. (1), legiti-
mizing the least-squares model [32].

We also denote the distribution of the electronic noise in NM 2 as
A'(x.1,X), where x, is the mean value (x, > 0), [ € RM is a vector with all
ones, and X is the covariance matrix with all its elements on the diagonal
being o2. Equivalently, we can decompose NM 2 into a constant offset
and a zero-mean Gaussian component such that € ~ x.I + N(0,X). Once
the spectrotemporal fluctuation in NM 1 is compensated, the distribu-
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Fig. 1. The proposed framework of optimal spectral unmixing for effective spectroscopic PA imaging of PSMA expression. Noise models (NM) for the laser-dependent
noise (NM1) and ultrasound system noise (NM2) are constructed and denoised in spectral unmixing. Oxyhemoglobin (HbO,), deoxyhemoglobin (Hb), and a PSMA-
targeted agent [33] are spectrally unmixed. Simulation-aided wavelength selection and frame averaging are also considered in the framework for further

enhancement of temporal resolution and precision.

tion of the electronic noise becomes ¢~ x,v +.7°(0,X), where

v = diag(W™) (5)
and
T =W?2I. (6)

diag(e) converts the diagonal of a matrix into a vector. By taking the
weighted offset as one of the endmembers and rearranging the least-
squares equation, we get

7= [Alv] H 1E=QX+E, %)

Xe
where Q € R™*™*) s the new design matrix, x € R¥?, and & ~
(0, ). We name this modification as ‘SSE segregation’ because it
segregates SSE from primary endmembers by spectral unmixing. To
convert the overall problem into an NNLS model solved by quadratic
programming technique, we have
1

argming.., (EXTQTQX 7iTQi) . ®

2.3.2. Frame averaging scheme
Frame averaging scheme can be an additional strategy for further
SSE suppression, but more theoretical description is needed to under-

stand its impact to the spectral unmixing accuracy. Assume P subsequent
frames are acquired at wavelength A, for all m, such that the measure-

ment now becomes y € R™". To denoise NM1, we normalize the frames

by W € RMPMP where the diagonal of W constitutes the recorded en-
ergy wn, of the pth frame at 4,,, p = 1,...,P. Then in frame averaging, P
frames are averaged to form y € R¥ and v € RM. The revised covariance
of NM2 becomes
T —daetl L hew s ©
= ey 1) @ .
g PP P

Moreover, the design matrix Q is not always perfect. For perturba-
tion analysis, we assume there is a small and additive Gaussian pertur-
bation to Q and denote it by B, where each entry of B is independent and
identically distributed and satisfies B; ~.#(0,0%), Vi, j, ./" represents
Gaussian distribution. Then after averaging P frames, we have
o 1

_12
O0p = 550p

P (10)

It is well known that frame averaging enhances image SNR by /P
times in raw PA data [34,35], but how the SNR improvement affects the
spectral unmixing accuracy is nontrivial. To analyze the unmixing ac-
curacy with respective to P, we first analyze the sensitivity of the least
squares. Suppose 6X = ||x —Xo|| is a small perturbation in X, the sensi-
tivity of least squares is given by [32]:

[[ox]

B Izl
— 1 < (x(Q)*tan(6) + x(Q) ) 1~ + x(Q)sec(6) 1.
[ < (@ 1n(®)+x(Q)) g+ (@l

Here (Q) = Smax/Smin is the 2-norm condition number of Q, s, and
Smin are the largest and smallest non-zero singular values of Q,tan(d) =

an
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|Qx ~¥1/l1QxIl, and sec(6) = |y]|/[|QX|l. For brevity, we use o | and
omit the “2” in the subscript to represent the Euclidean norm
throughout. From the definition, the sensitivity is proportional to RMSE
by a factor of ||xo||/v/N. An effective way to lower the bound of the
sensitivity is to minimize the noise-related term ||B| and |€|| by frame
averaging. See Supplemental Information for the proof that the expec-
tation and the STD of ||g||* are proportional to 1/P. Nonetheless, having
closed-form expression of the distribution of ||€|| and the distribution of
|B|| with respect to P is intractable. Therefore, we validate this proof
with a numerical evaluation.

2.3.3. Iterative wavelength optimization scheme

A wavelength optimization allows us to use fewer wavelengths to
enhance temporal resolution meanwhile preserve spectral unmixing
accuracy. Mathematically, the problem is defined as: given the number
of rows of Q, find the best permutation of rows which minimizes the
least-squares error. The optimization essentially minimizes the collin-
earity among endmember absorption spectrums, at the same time
keeping wavelengths that suffer less from SSE.

A brute-force search is combinatorial in exponential computation
time. To avoid such high time complexity, we propose an iterative
searching scheme in two stages. In the first stage, the best N wavelengths
that are minimally required for unmixing are included in set S; then, in
the second stage, one best wavelength is searched and added to S at a
time until the user-defined number of wavelengths (denoted as t) is
reached. A detailed workflow is as follows, and a pseudo-code is pro-
vided in the supplementary information.

e Input: number of endmembers N, the total number of wavelengths
M, user-defined number of wavelengths t, design matrix A, weight v,
covariance ¥, number of iterations K.

e Output: the optimal wavelength subset S.

o First stage: Find S that contains N wavelengths.

(1) Initialize a counter with (M choose N) bins where each bin is
attributed to a permutation.

(2) Initialize a random fraction of endmembers xo. Generate PA
signal ¥ with noises, such thaty = [A | v] [xie] +€ =0Qxp +&

(3) Solve x = NNLS(Q",y*) and calculate the root mean squared
error (RMSE) for all permutations that have N out of M wave-
lengths, where Q* and y* contain N out of M rows of Q and ¥,
respectively.

(4) Find the permutation with the smallest RMSE and count one to its
bin, where

1
RMSE = \/NfoXOHZ 12)

(5) Iterate steps (2) — (4) K times, the permutation with the highest
counts is reported as S, which is the optimal subset found in this
stage.

e Second stage: Update S one wavelength at a time.

(1) Initialize a counter with |S¢| bins, where | o | is the cardinality of a
set, and S¢ is the complementary set of S (i.e, SUS* =
{1,2,...,M}).

(2) Generate a random PA signal y = Qx¢ + €.

(3) For each element m € S°, solve x = NNLS(Q",y*) and calculate
RMSE, where Q" and y* contain the rows of Q and y indexed by
S U {m}, respectively.

(4) Find the element that yields the smallest RMSE and count one to
its bin.
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(5) Iterate steps (2) — (4) K times, then select the element with the
highest count and include it into S.

(6) Iterate (1) — (5) until |S| = t, where t is the desired number of
wavelengths.

The proposed approach is significantly lower in computational
complexity than exhaustively searching all M choose t permutations.
The number of NNLS operations is reduced from O((M choose t) * K) to
O(((M choose N) + M? ) * K))).

2.4. Evaluations of the spectroscopic PA imaging framework

2.4.1. Calibration of the system noise models

The SSE due to NMs 1 and 2 was calibrated on our research platform.
The spectral and temporal laser fluctuations in NM 1 were calibrated on
a tunable Nd:YAG OPO pulsed laser system, where the laser was set in
fast-scanning mode with 20-Hz pumping frequency, and each pulse
energy was recorded by an energy meter (PESOBF-DIF-V2, Ophir Pho-
tonics, USA) in real-time. Five thousand sequential emissions at 720 nm
were acquired to characterize the temporal laser fluctuation. Probability
distribution of the PA intensity of the sequential emissions was repre-
sented as a histogram, and its similarity to a Gaussian distribution was
compared. On the other hand, 512 sequential emissions per wavelength
were recorded at wavelengths from 700 nm to 900 nm in 10 nm in-
tervals to characterize the spectral laser fluctuation. The change in the
mean and the STD of the pulse energy for the wavelengths were
calculated.

NM 2 was calibrated from an L7-4 transducer connected to the
Verasonics research package, where 1344 subsequent frames of PA im-
ages (in the size of 256 by 128, axial by lateral) were acquired to contain
only electronic noise signals without any ultrasound or laser trans-
mission. The mean and STD of all 44,040,192 pixels were calculated,
and the intensity distribution was represented as a histogram and fitted
to a Gaussian function. The spectral signature of the electronic noise (v)
and the covariance of € were derived from the NM 2.

2.4.2. Optimization of wavelength subset and SSE segregation

To optimize the wavelength selection, we implemented the algo-
rithm in Section 2.3.3. We set the number of iterations K = 100, 000 to
ensure statistical significance. The random spectroscopic PA signals
were generated in a single pixel in the k-Wave simulator [36]. Several
hyperparameters were defined for PA signal generation: (1) The
ground-truth design matrix [A|v] was comprised of the absorbance sig-
natures of four endmembers: Oxyhemoglobin (HbO3) and deoxy-
hemoglobin (Hb) obtained from [37], a polyamidoamine (PAMAM)
dendrimer-based PSMA-targeted contrast agent [33], and the SSE
derived in Section 2.4.1. Specifically, the contrast agent absorption was
calibrated by spectrophotometry in the near-infrared (NIR) range
(700 nm to 900 nm) using a SpectraMax i3x multi-mode system (Mo-
lecular Devices, LLC, USA). (2) Fractions of all endmembers were ran-
domized such that x; ~ U(0,1),i = {1,2,3,4}, where U represents
uniform distribution. Afterward, they were normalized to sum to one.
(3) The covariance X of € was obtained by calibration in Section 2.4.1.

Once the wavelength subset was optimized, another 1000 random
spectroscopic PA signals were generated for testing. The mean and STD
of the RMSE of all test signals were compared between four methods:
proposed two-stage searching method, a metric-based method (MB) in
[23] using product of singular values, randomized selection method, and
a determined method selecting wavelengths based on uniform (UNI)
interval within the given range (t wavelengths in the interval of
10 x [(M—-1)/(t—1)] (nm), counting down from 900 nm).

To randomize the endmember composition, we set the upper bound
of the fraction of the SSE as a such that x, ~ U(0,a), and fractions of all
the other endmembers as x; ~ U(0,1),i = {1, 2, 3}. Once all fractions of
endmember were generated, x was normalized so that x; + x2 + x3 +
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x. = 1. To test the effectiveness of SSE segregation, we compared
spectral unmixing accuracy with and without SSE segregation. We
further varied « in different values to investigate the impact of different
levels of SSE to the spectral unmixing accuracy, which corresponds to
the highly spatially variant SNR in the imaging field-of-view due to
absorber distribution. In the evaluation of different wavelength selec-
tion methods, a was fixed to 1.

2.4.3. Numerical analysis of frame averaging scheme on spectral unmixing
accuracy

We conducted a numerical experiment to validate that the expecta-
tion and STD of ||g|| and ||B|| are proportional to 1/+/P, as mentioned in
Section 2.3.2. The mean and STD of ||B|| and ||€|, and the unmixing
RMSE were calculated from 10,000 randomized spectroscopic PA sig-
nals. Ten values of P were tested, i.e., 1, 4, 9, 16, 25, 36, 49, 64, 81, and
100. No frame averaging was deliberately implemented. Instead, we
equivalently set the variance of B and the covariance of € as 62/P and
diag(},1, ..., 3)T to generate test signals from the numerical simulation,
we show that if not strictly, it is highly approximated that the expecta-
tion and the standard deviation of ||B|| and |[€|| are all proportional to
1/+/P, such that the sensitivity of least squares is also proportional to

1/V/P.

2.4.4. In vivo imaging of PSMA expression

In vivo experiments were set up using the same ultrasound research
package and Nd:YAG OPO laser system as described in 2.4.1. Bifurcated
outlets of a fiberoptic bundle with rectangular apertures
(0.88 mm x 40.00 mm x 2) were attached on the sides of an L7-4 linear
ultrasound imaging transducer and co-registered in-plane, which con-
formed to conventional linear TRUS imaging configuration. Xenografts
with isogenic PSMA-positive (PSMA') PC3-PIP and PSMA-negative
(PSMA") PC3-flu cells were prepared on the lower back of five 6-to-8-
week-old male mice. Note that a small amount of PSMA-targeted
contrast was expected from the PSMA™ PC3-flu (control) [20] which is
a human-engineered PCa cell line having negligible PSMA expression.
Validation of contrast agent uptake by PSMA™ PC3-PIP and PSMA
PC3-flu through tumor sectioning followed by fluorescence imaging was
reported in [33]. Both tumors were imaged axially at around 2 cm deep
identical to the ultrasound transducer’s elevation focus. Pre-injection
data and 24-h post-injection data were analyzed. Because columns of
A, i.e., the characteristic spectrums of endmembers are in very different
magnitudes, to enhance the numerical sensitivity and stability, we
normalized column 1 (the contrast agent), column 2 (Hb), and column 4
(electronic noise) of A with respect to that column’s maximum value. As
for column 3 (HbO,), we normalized it with respect to the maximum of
column 2, so that Hb and HbO; can be visualized in the same dynamic
range.

In this study, the spectral unmixing in vivo was evaluated by two
metrics. (1) The first metric is the SNR of the PSMA-targeted contrast
over the background, which is given by

o = DAL 13)
BG

where Ipsmat and Igg denote the mean PA intensities in the region of

interest (ROI) of PSMA' PC3 PIP tumor and the background ROI,

respectively. (2) The second metric is the ratio of PSMA-targeted

contrast agent intensity of PSMA" PC3 PIP vs PSMA™ PC3 flu tumor,

given by

I
CpSMA = pSMA+; 14

where Ipsya— denotes the mean PSMA-targeted contrast agent intensity
in the ROI of PSMA™ PC3 flu tumor. In the pre-injection phase, ground
truth Ipsmar, Ipsma—, and Igg are all 0. However, due to the spatially
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uniform SSE, Ipsma-+, Ipsma—, and Igg are expected to be a constant.
Hence, csng and cpsya are expected to be 1 in pre-injection. In the post-
injection phase, ground-truth Igg is 0, but ground truth Ipsva; and
Ipsma— are not quantifiable in biological tissues. Ipg is expected to be a
small constant due to SSE, and Ipsma and Ipsya - are expected to be high
and low, respectively, such that cpsma and csyg are expected to be large
values in post-injection. Higher csng in post-injection especially in-
dicates better spectral unmixing sensitivity.

3. Results
3.1. Calibration of the noise models

The system-dependent NMs calibrated on our imaging system are
shown in Fig. 2. Fig. 2a is an exemplary character of the laser instability
(NM 1), where the heteroscedasticity, spectral fluctuation, and temporal
fluctuation are reflected by varied CVs, mean values, and STDs. Partic-
ularly, energy of laser pulses at 710, 720, 800, 810, 850, 870, and
880 nm is relatively more stable (CV < 5%). Fig. 2b further explains the
pulse-to-pulse temporal fluctuation, where a histogram of the energy of
5000 sequential pulses at 720 nm is demonstrated. The fitting curve in
blue suggests that Gaussian distribution is a good approximation to the
probability distribution (R? = 0.930). Fig. 2c shows the calibration
result of the background noise in NM 2. A histogram of image intensity
in 44,040,192 pixels (256 by 128 per frame, 1344 sequential frames) is
delineated, where the mean + STD of all pixels is 2825 + 1528. The
fitting curve in blue also suggests that Gaussian distribution is a good
approximation (R2 = 0.982).

3.2. Simulation-aided optimization of wavelength subset and SSE
segregation

3.2.1. Wavelength optimization considering system factors

In this section, a simulation-aided wavelength optimization incor-
porating system-dependent NMs is presented. In the first stage where
only minimally required number of wavelengths were selected, the
proposed method found S as {700, 710, 800, 880} (nm) with 115 counts
and {700, 780, 800} (nm) with 3125 counts out of 100,000 iterations for
the SSE segregation scheme and the conventional scheme, respectively.
In either scheme, the selected wavelength subsets had significantly more
counts than the other permutations, as indicated in Fig. S2. In compar-
ison, MB method reported S = {700, 710, 800, 900} (nm) and S = {700,
800, 900} (nm), respectively. In the second stage, the proposed method
in the SSE segregation scheme sequentially included the following
wavelengths into S: 760, 830, 870, 900, 790, 720, 770, 820, 780, 740,
850, 730, 810, 860, 750, 890, 840 (nm). The whole process of the
proposed method took 24.9 and 5.6 h respectively for the SSE segrega-
tion and the conventional scheme in MATLAB running on a laptop with
Intel Core i7-8550U CPU with 16.0 GB RAM. If all permutations were
searched brute-force in the same setup, the whole process would take
around 352 days on the same machine, considering that a single per-
mutation took 145 + 26 ps.

We performed the comprehensive performance evaluation of four-
wavelength selection methods (the proposed algorithm, MB method,
random wavelength selection, and UNI selection) at different number of
wavelengths with and without the SSE segregation scheme. Fig. 3 shows
the mean spectral unmixing accuracy in RMSE of 1000 test signals.

As indicated in Fig. 3, a whole-wavelength spectral unmixing yielded
0.040 &+ 0.029 and 0.096 + 0.047 of RMSE with and without the SSE
segregation, suggesting 58.7% enhancement due to the SSE segregation
scheme. In reference to the whole-wavelength result, we specifically
analyzed the scenarios under two user preferences: (1) having the
highest temporal resolution with the most compact wavelength subset or
(2) securing a specific RMSE regardless of the size of wavelength subset.

In the first scenario, by using the most compact wavelength subset
with the SSE segregation (4 wavelengths), the proposed wavelength
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Fig. 3. Mean spectral unmixing accuracy as a function of the number of wavelengths. One thousand signals were tested using the proposed method, MB method,
random selection, and UNI selection with and without the SSE segregation scheme.

optimization method yielded RMSE at 0.070 + 0.049, which indicated
more precise unmixing than other methods: 0.073 £+ 0.053, 0.150
=+ 0.094, 0.150 + 0.091 for MB method, randomized, and UNI selection,
respectively. Whereas in conventional scheme without the SSE segre-
gation (3 wavelengths), the proposed method yielded RMSE at 0.113
+ 0.055 and still outperformed other methods: 0.119 + 0.059, 0.215
+ 0.126, 0.122 4 0.061 for MB method, randomized, and UNI selection,
respectively. Collectively, in terms of the wavelength optimization, the
proposed method showed the highest spectral unmixing accuracy
compared with other methods in statistical significance (p < 0.0001). In
addition, the SSE segregation scheme provided further fractional im-
provements at 38.6%, 38.6%, 30.1%, and — 23.9% over the conven-
tional spectral unmixing cases without the SSE segregation. When the
number of wavelengths is greater than four, SSE segregation shows
lower spectral unmixing accuracy than the conventional scheme in UNI
selection, which indicates the significance of a proper wavelength se-
lection especially when the desired number of wavelengths is minimum.
Nevertheless, SSE segregation scheme improves the accuracy in all other
cases, and it only requires one more wavelength which decreases the
temporal resolution from 6.67 scanning sequences per second to 5
scanning sequences per second at 20-Hz spectral tuning frequency.

In the second scenario, we consider the SSE segregation and set a
specific RMSE threshold as the criterion for wavelength selection. When

the expected RMSE is no larger than 120% of full-wavelength selection’s
(21 wavelengths), at least 9, 10, 17, and 16 wavelengths were required
by the proposed method, MB method, random selection, and UNI se-
lection. Thus, the proposed method would yield 11.1%, 88.9%, and
77.8% higher temporal resolution than the MB, randomized, and UNI
selection methods at a comparable spectral unmixing accuracy.

3.2.2. Robustness of wavelength selection and SSE segregation

In this section, we evaluate the sensitivity of spectral unmixing to &.
The level of € denoted by a was tuned into different values to simulate its
nonuniform spatial distribution: 0.01, 0.05, 0.1, 0.2, 0.3, 0.5, 1, 2, and 4.
The purpose is to test the robustness of SSE segregation toward spatially
variant endmember composition, where in absorber-abundant tissue
regions, € takes up a low portion so «a is small and in background regions
€ takes up a high portion so « is large. Note again that the fractions of all
other endmembers were randomized (i.e., x; ~ U(0,1),i = {1,2,3}),
and x was normalized afterwards to sum to one. Each a was tested by
1000 randomly generated signals with and without the SSE segregation
scheme in different wavelength selection methods, as demonstrated in
Fig. 4a.

Vertical comparison of the curves in Fig. 4a reveals the effectiveness
of SSE segregation, where the first row (noise segregation scheme)
showed significantly-less change of RMSE than the second row
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(conventional scheme) as a varies. Ratios of RMSE between the con-
ventional and the SSE segregation schemes under different a are given in
Fig. 4b. Overall, the SSE segregation scheme becomes more effective as &
increases. However, when « is negligible (e.g. a < 0.1, which corre-
sponds to a fraction of 0.1/(0.1 +1 + 1 + 1) = 3.2%), the conventional
scheme outperforms the SSE segregation scheme mainly due to the
sensitivity of least-squares. SSE segregation scheme is more effective at
most of the numbers of wavelengths whena > 0.2, @ > 0.3, a > 0.5, and
a > 0.5 for the proposed method, MB method, random selection and UNI
selection, respectively, which corresponds to fractions of the electronic
noise at 6.3%, 9.1%, 14.3%, and 14.3%.

Horizontal comparison of the curves in Fig. 4a reveals the robustness
of different wavelength selection methods to a. Each data point repre-
sents average RMSE of 1000 test signals given the number of wave-
lengths and a. Fig. 4c further quantifies the how spectral unmixing
accuracy varies as a changes, which indicates the robustness of different
wavelength selection methods toward the spatial variance of €. The
proposed method showed smaller STDs than the other methods
regardless of the number of wavelengths, which implies higher robust-
ness to the spatial variance of &.

3.2.3. Effect of frame averaging to spectral unmixing accuracy

In Section 2.3.2, we provided numerical analysis on ||g]|* with respect
to P. Given that it is hard to express the expectation and the STD of ||B||
and ||€|| in closed form, we herewith implemented numerical simulations
to find how these values changes with respect to P.

In simulation, we set B; ~ N(O,O-le), ic{1,2,..21}), je{1,23,

4}, and € ~ ../Zr"”(O,%f). Ten values of P (i.e., 1, 4, 9, 16, 25, 36, 49, 64, 81,

and 100) were tested by 10,000 data. Fig. 5a demonstrates line plots
with error bars of ||B|| and |||, and 5b shows the line plot with error bars
of spectral unmixing accuracy in RMSE. The linear fittings included an

extra datapoint at (0, 0), for the expectations it yielded
E[|[B||] = 0.001(58.48/+/P +0.02) with R? = 1.000,
E[|[]] = 0.001(23.42/v/P+0.08)  with R?  =1.000, and

E[RMSE] = 0.001(18.57/+/P +3.65) with R?> = 0.997. As for the STDs,
the linear fitting yielded that STDI[||B| ] = 0.001(5.71/+/P —0.09) with
R% =1.000, STD[||g]|] = 0.001(4.99/v/P+0.11) with R2 = 1.000, and
STD[RMSE] = 0.001(9.64/+/P+2.41) with R?> = 0.996, respectively.
The fitting lines indicated a proportional relation of the mean and STD of
|B|| and |||, and a highly approximated proportional relation of the
mean and the STD of the spectral unmixing accuracy with respect to
1/+/P. Therefore, by assuming € and B are zero-mean Gaussian vector/
matrix, the frame averaging scheme is expected to improve spectral
unmixing accuracy by /P times.

Since both the number of wavelengths and the frame averaging
determine imaging speed, we are interested in which one of them en-
hances spectral unmixing accuracy more with given temporal resolu-
tion. Fig. 6 demonstrates a comparison tested on 1000 random signals in
simulation, where wavelength selection adds more wavelengths as the
given temporal resolution decreases, and frame averaging employs
minimally required number of wavelengths but increases the number of
frames for averaging. Fig. 6 indicates that when selected wavelengths
were optimal (proposed algorithm), wavelength selection slightly out-
performed frame averaging. Otherwise, wavelength selection signifi-
cantly outperformed frame averaging (random and UNI). This
emphasizes the importance of selecting proper wavelengths prior to
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frame averaging. In addition, the gap of RMSE between wavelength
selection and frame averaging was consistent in conventional scheme
and SSE segregation scheme in all wavelength selection methods.

3.3. In vivo experiment

3.3.1. Spectral system error (SSE) segregation scheme

We first evaluated the effectiveness of the SSE segregation in in vivo
data collected before and after injection of the PSMA-targeted contrast
agent. Whole wavelengths were applied for both the conventional
scheme (three endmembers) and the SSE segregation scheme (four
endmembers) to preclude the impact of the wavelength selection
methods. Fig. 7a demonstrates representative spectral unmixing out-
comes of the PSMA-targeted contrast agent in vivo for both before and
24-h after injection. Compared with the contrast agent maps obtained
from the conventional scheme, those by the SSE segregation scheme
exceptionally suppressed background noises. Meanwhile, they revealed
notably fewer artifacts in the tumor ROIs before injection, and preserved
remarkable image contrast in the PSMA" PC3 PIP tumor 24-h after

injection. These observations confirmed that a substantial amount of
SSE could be segregated from the primary endmembers (i.e., contrast
agent, Hb, and HbO,). Due to the sensitivity of least squares, the
segregated SSE map presented a highly uniform spatial variance outside
the body but less uniform inside the body where its fraction was negli-
gible, which well agrees with our simulation results in Section 3.3.

A quantitative analysis was performed to evaluate the effectiveness
of the SSE segregation scheme in different ROIs, where cpsma and csng in
conventional scheme and SSE segregation scheme were calculated using
data acquired before and after injection of the PSMA-targeted contrast
agent (n=5). As shown in Fig. 7b, in pre-injection, the mean and
standard error of csyg in conventional scheme and SSE segregation
scheme are 0.29 + 0.06 and 1.56 + 0.51, respectively. In conventional
scheme, csnr is lower than 1 because in some pixels system noise was
more decomposed into other endmember maps (Hb and HbO,) than the
contrast agent map, so that intensity in the body region is lower than the
background region, as revealed in Fig. 7a. Contrarily, in SSE segregation
scheme, cgnr is close but greater than 1 because system noise can be
effectively segregated in the background region, but less effectively
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Fig. 7. In vivo evaluation of the SSE
segregation scheme in the whole-
wavelength method utilizing a spectral
range from 700-900 nm in 10 nm in-
terval in NOD-SCID mice bearing sub-
cutaneous PSMA™* PC3 PIP and PSMA"
PC3 flu in the lower back right and left
posterior flanks, respectively. (a)
Representative in vivo ultrasound and
spectral unmixed map of PSMA-targeted
contrast agent in conventional and SSE
segregation schemes, pre-injection and
post-injection phases; Dashed white
lines represent ROIs in PSMA™ PC3 PIP
and PSMA™ PC3 flu tumors. (b) and (c)
are mean and standard error of csng and
cpsma, respectively, in conventional
(CON) and SSE segregation schemes,
pre-injection and post-injection phases
(n = 5). Red dashed lines are baselines
at 1.
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when strong optical absorber exists in the body region. In these body
regions, the fraction of system noise is too low to be unmixed by spectral
unmixing due to the sensitivity of least squares, as indicated in the noise
map in Fig. 7a. In post-injection, the mean and standard error of cgyg in
conventional scheme and SSE segregation scheme are 2.07 + 0.30 and
9.12 + 1.99, respectively. The mean csng in SSE segregation is 4.43
times of the one in conventional scheme, indicating that SSE segregation
is significantly effective in improving SNR. As shown in Fig. 7c, in pre-
injection, the mean and standard error of cpsya in conventional scheme
and SSE segregation scheme are 0.77 & 0.10 and 0.77 + 0.11, both of
which are slightly lower than 1. In post-injection, the mean and standard
error of cpsma in conventional scheme and SSE segregation scheme are
6.79 + 2.15 and 14.77 + 7.76, respectively. The mean cpsya in SSE
segregation is 2.18 times of the one in conventional scheme. The
enhancement of cpgya is not as high as csnr, possibly because Hb and
HbO; contributed false contrast or there was minor contrast agent up-
take in PSMA™ PC3 flu region. Nevertheless, it suggests that SSE segre-
gation can greatly improve sensitivity of prostate cancer detection. Note
that due to the lack of ground truth of Hb and HbO; in vivo, we only
conducted quantitative analysis on the unmixed contrast agent map.
However, SSE segregation works on all unmixed endmembers. It can
also effectively reduce background noise in the unmixed Hb and HbO,

Pre-inj

Post-inj

map as demonstrated in Fig. S2.

3.3.2. Wavelength optimization scheme

We expanded our analysis to the wavelength optimization scheme
using in vivo data before the injection of PSMA-targeted contrast agent
(n =5), given that ground truth of pre-injection data is known. In this
section, proposed method, MB method, random selection, and UNI se-
lection were analyzed in SSE segregation scheme.

Representative PSMA-targeted contrast agent maps and quantitative
evaluation of csng and cpsya are demonstrated in Fig. 8. In Fig. 8a, the
contrast agent maps were unmixed by four and eleven wavelengths,
which respectively represent scenarios aiming at the highest temporal
resolution and twice the temporal resolution of using whole wave-
lengths. In visual assessment, the proposed scheme demonstrated a
substantial suppression of false contrast compared with random and UNI
selection methods. Artifacts indicated by white arrows were found
around the tumor regions even in whole-wavelength selection but not in
the proposed method and MB method. Fig. 8b presents a quantitative
evaluation of csnr as a function of number of wavelengths, where the
proposed method outperformed other methods in either accuracy or
robustness. In particular, the mean and standard error of csyg at four
wavelengths were 1.20 + 0.28, 2.19 + 0.74, 4.80 + 3.20, and 1.96
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Fig. 8. Comparison of the wavelength selection methods in data acquired before injection of the PSMA-targeted contrast agent in NOD-SCID mice bearing sub-
cutaneous PSMA™ PC3 PIP and PSMA™ PC3 flu in the lower back right and left posterior flanks, respectively. (a) Representative spectral unmixed contrast agent maps
using four wavelengths and eleven wavelengths. (b) and (c) are csng and cpsma as functions of the number of wavelengths. Red dashed lines are the baseline at 1.

+ 0.62, for proposed method, MB method, random selection and UNI
selection, respectively. Whole-wavelength selection yielded 1.33

+ 0.40. Fig. 8c reveals quantitative evaluation of cpsya as a function of

number of wavelengths. The proposed method had a comparable per-
formance with MB method, while outperforming random selection and
UNI selection methods. Specifically, mean and standard error of csngr at
four wavelengths were 1.07 + 0.27, 0.94 + 0.19, 1.11 + 0.14, 1.20

+ 0.24, for proposed method, MB method, random selection and UNI
selection, respectively. And whole-wavelength selection yielded 0.89

+ 0.14. In all, the proposed method provided less false contrast of

10

PSMA-targeted contrast agent before the injection of the contrast agent
in all ROIs regardless of the number of wavelengths.

3.3.3. Frame averaging scheme

We validated the impact of the frame averaging scheme on the
spectral unmixing accuracy using in vivo data collected before injection
of the PSMA-targeted contrast agent (n = 5). Note again that any in-
tensity in the unmixed PSMA-targeted contrast map in the pre-injection
phase is false and directly reflects absolute spectral unmixing error. A
representative image is shown in Fig. 9a, where a PA image acquired at
780 nm and averaged for 64 times is demonstrated, and different P
values were tested for frame averaging: 1, 4, 9, 16, 25, 36, 49, and 64. In
visual assessment, apparent trend of decreasing false intensity was found
as P increases.
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A quantitative analysis was further conducted. For 1, 4, 9, 16, 25, 36,
49, 64 frames of averaging, respectively, csyg are 0.77 + 0.11, 0.71 +
0.27, 0.80 + 0.21, 0.84 £+ 0.36, 0.94 + 0.35, 1.07 £ 0.29, 1.08 £ 0.35,
and 1.16 + 0.32, and cpsma are 0.98 + 0.11, 0.96 + 0.16, 0.91 + 0.20,
0.85 + 0.19, 0.87 + 0.31, 0.91 + 0.34, 0.89 + 0.34, and 0.92 + 0.35.
Two relations were further verified on the images shown in Fig. 9:
proportion of expected spectral unmixing accuracy vs. 1/+/P and pro-
portion of STD of spectral unmixing vs. 1/+/P. Square-shaped ROIs in the
same size (3 x 3 mm? containing 200 pixels) were selected from the
PSMA™ PC3 PIP, PSMA™ PC3 flu tumors, and background regions
(Fig. 9a) to keep an identical sample size for the following statistics. The
mean and STD of false intensity within each ROI were plotted as a
function of 1/+/P in Fig. 9b. The linear fitting of the mean false intensity
suggested I = 100(9.69/+/P —0.14) with R?> = 0.997 in PSMA™" PC3 PIP;
I=100(11.74/y/P —0.21) with R% = 0.994 in PSMA™ PC3 flu; and I
=100(13.93/+/P —0.32) with R? = 0.986 in the background, respec-
tively. The linear fitting of the STD of false intensity suggested I
100(13.93/vP 4+ 0.60), R>= 0.995 in PSMA" PC3 PIP; I
100(16.09/v/P 4+ 0.63), RZ = 0.996 in PSMA™ PC3 flu; and I
100(18.67/v/P 4+ 0.30), R> = 0.990 in the background, respec-
tively. The results suggest strong linear relationship between spectral
unmixing accuracy to 1/v/P with negligible bias in y-intercept. In
addition, similar slopes at different ROIs indicated no substantial spatial
variance of the spectral unmixing accuracy.

4. Discussion and conclusion

Here we presented a system-level optimization of the spectroscopic
PA imaging to detect aggressive PCa using PSMA-targeted agent. The
optimization framework consists of three schemes: SSE segregation,
wavelength optimization, and frame averaging. We first constructed
system-dependent NMs for laser and ultrasound systems, and incorpo-
rated the resultant ‘spectral system error’ into spectral unmixing. We
then considered these NMs in the wavelength optimization, where an
iterative searching method was proposed. We further analyzed the
relation between the spectral unmixing accuracy and the number of
frames for averaging.

To validate the framework, we first calibrated NMs on our imaging
system. Gaussian distribution well described the temporal fluctuation of
laser pulse energy in NM 1 and the electronic noise intensity distribution
in NM 2. Even though the distribution of NM 2 was closer to a chi-square
distribution, which is a sum of squares of two or more independent
Gaussian variables, it was close enough to a single Gaussian such that the
assumption of least squares was not annulled.

The proposed wavelength selection method showed superior spectral
unmixing accuracy and robustness in our simulation-aided optimization.
It is worth mentioning that MB method indicated comparable accuracy
in in vivo validation, and it was less computationally complex. However,
it showed lower robustness than the proposed method as it does not
consider system factors. Moreover, the computation time is not a pri-
mary concern for wavelength selection if the algorithm’s complexity is
reasonable (e.g., timed in hours), because wavelengths selection is
predetermined and will not be performed on a daily basis by clinicians
[41,42].

We are particularly encouraged by SSE segregation, which enhanced
SNR and spectral unmixing accuracy by segregating background elec-
tronic noise. The SSE segregation reduced spectral unmixing errors by
58.7% in simulation (n = 1000) and enhanced the contrast between
PSMA™ PC3 PIP and PSMA™ PC3 flu tumors by 2.18 times, as well as the
image SNR by 4.43 times in 24-h after injection in vivo data (n = 5). It
suggests that the SSE segregation is efficacious in suppressing false
contrast and improving specificity especially when detecting early
lesion with low PSMA expression. In terms of SNR, note that one can
possibly apply ultrasound-based delineation for co-registered PA images
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to get rid of background regions if the anatomy has a clear boundary in
ultrasound images [38]. However, ultrasound-based delineation is not
always applicable to clinical applications. For instance, standalone
transrectal ultrasound provides low sensitivity (11-35%) and ambig-
uous morphologic feature to localize prostate cancer due to poor
contrast resolution [39]. Moreover, SSE segregation does not conflict
but further supplement ultrasound-based delineation because it is part
of spectral unmixing before any segmentation. What is more important
is SSE segregation segregates the system noise from other endmembers
to avoid false contrast from being unmixed to the ROI. Despite of en-
hancements, profound analysis unveiled that SSE segregation is spatially
variant. This is because in regions where the fraction of the unknown
variable is too low, linear spectral unmixing is not capable to distinguish
it from the additive noise in the measurement due to the sensitivity of
least squares. Simulation suggested that SSE segregation instead low-
ered spectral unmixing accuracy when the electronic noise fraction was
less than around 3%. In vivo validation also confirmed the spatial vari-
ance of SSE segregation, that intensity of segregated electronic noise was
more uniform outside the body than inside. To tackle that challenge, one
may consider an adaptive approach for spectral unmixing: the electronic
noise would be included as an endmember in the initial spectral
unmixing, but excluded afterwards if its unmixed fraction is lower than
the threshold (e.g., 3%). Moreover, instead of implementing spectral
unmixing pixelwise, spatial constraints such as total variation regulari-
zation can be added to minimize the spatial variance. Nevertheless, a
regularization will increase the time complexity and potentially impair
temporal resolution.

Finally, we quantified how frame averaging improves spectral
unmixing accuracy in theoretical analysis and numerical validation.
Assuming the system electronic noise is composed of a constant value
plus a Gaussian noise €, where € is zero-mean and its entries are all in-
dependent, our study suggested that by having P frames, frame aver-
aging reduces spectral unmixing error by /P times. Note that we were
assuming the perturbation in the design matrix A and the measurement
noise are all Gaussian noises, otherwise the quantitative relation be-
tween the spectral unmixing accuracy and the frame averaging remains
an open question. Nevertheless, this relation is very useful for the trade-
off between the imaging precision and the imaging speed depending on
the application. Specifically, if the temporal resolution is fixed, this
relation can be applied in simulation to decide whether to have more
frames per wavelength or fewer frames but more wavelengths for
optimal spectral unmixing accuracy, as demonstrated in Section 3.2.3. It
turns out given a fixed temporal resolution, a proper wavelength se-
lection is critical to be combined with frame averaging. When selected
wavelengths are optimal, adding more wavelengths is slightly more
effective in enhancing spectral unmixing accuracy than having more
frames for averaging. Also note that frame averaging improves the
effectiveness of SSE segregation, because it narrows the probability
distribution of € as shown in Fig. 2c, so € has a less varying spectrum and
it can be better unmixed as an endmember. Nevertheless, in the in vivo
validation, csng increases from 0.77 to 1.16 as the number of frames for
averaging increases from 1 to 64, while cpsma fluctuates around 0.9 and
does not seem to have an obvious trend as the number of frames in-
creases. This suggests that frame averaging is more effective for the
background region, and again indicates the spatial variance of spectral
unmixing due to the sensitivity of least squares. In background regions,
SSE is the only composition, so after frame averaging it can be more
easily unmixed. Whereas in the body region where Hb and HbO; are the
dominant contrast, SSE and the contrast agent may fall below the
sensitivity threshold, thus they are less easily to be distinguished and
frame averaging becomes less effective.

In all, our system-level optimization of the spectroscopic PA imaging
of aggressive PCa successfully segregated the SSE while optimizing the
temporal resolution. Note that we here focused on the system-dependent
noise sources, and did not consider tissue-dependent spectral error in
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this study (e.g., spectral coloring, motion artifacts, etc. [24]). Including
these factors in simulation-aided optimization may be time-consuming
and arbitrary due to high anatomy-dependency. Nevertheless, for pre-
cision purposes, one can consider depth-resolved and model-based flu-
ence compensation [40-42] or hardware solutions [43]. We will also
further investigate whether a more realistic covariance matrix of the
Gaussian process can approximate the fluence distribution. Once thou-
sands or more ground-truth images are generated, they can be used for
data-driven methods such as deep learning [44] to further enhance
wavelength optimization. The proposed wavelength selection is a pro-
totype to deep learning methods — the best combination of wavelengths
was first ‘learned’ from 100,000 one-dimensional signals, then tested on
real images. Also, other nonlinear spectral unmixing approaches studied
in hyperspectral imaging [45] may provide additional insights.
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