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Abstract

Classical data-driven control typically follows the
learn-then-stabilize scheme where first a model of the
system of interest is identified from data and then a
controller is constructed based on the learned model.
However, learning a model from data is challenging
since it can incur high training costs and the model
quality critically depends on the available data. In
this work, we address how well one needs to learn a
model to derive a controller by formalizing the trade
off between learning error and controller performance
in the specific setting of robust H., control. We pro-
pose a bound on the stability radius of a robust con-
troller with respect to the error of the learned model.
The proposed analysis suggests that tolerating an in-
creased learning error leads to a small decrease in the
performance objective of the controller. Numerical
experiments with systems from aerospace engineer-
ing demonstrate that judiciously balancing learning
error and control performance can indeed reduce the
number of data points by one order of magnitude with
less than 5% decrease in control performance as mea-
sured with the H ., stability radius.

1 Introduction

With a deluge of data and a lack of models, learn-
ing controllers from data is becoming an ever more
important challenge in computational science and en-
gineering. Typically, data-driven control consists of
two steps: First, a model of the system of interest
is learned from data, which is a process referred to
as system identification. Second, a controller is con-
structed based on the learned model. The learned
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controller is then applied to the system of interest.

Intuitively, one expects that the quality of the con-
troller depends on how well the learned model ap-
proximates the system dynamics. In this work, we
formalize this intuition: We consider H., control and
measure the quality of a learned controller by its sta-
bility radius when applied to the system. We present
an analysis that bounds the stability radius with re-
spect to the error of the learned model. Our bound
gives rise to a trade off between stability radius and
model error that allows relaxing model accuracy in
favor of a lower stability radius (poorer control per-
formance); this might be beneficial in cases where
learning a model is challenging in terms of data re-
quirements and training costs. Understanding how
model-learning errors influence controller quality is
an important step towards context-aware learning for
control, where models are learned explicitly for de-
riving controllers. Context-aware learning has previ-
ously been developed for uncertainty quantification
[19, 1].

Our contributions are: (1) We prove that under
certain conditions, the model-learning error can be
compensated by specific disturbance signals. (2) We
establish a trade off between model-learning error
and stability radius in He, control. (3) We balance
model-learning error and stability radius when learn-
ing a model with least-squares regression and show
that in our numerical example tolerating a small de-
crease in the stability radius can lead to one order of
magnitude reduction in the required number of data
points.

Literature review: There is a large body of litera-
ture on constructing reduced models for control; see
the surveys [6, 23, 7, 13]. However, classical model
reduction methods motivated by control, such as bal-
anced truncation, are intrusive in the sense that a
model of the system must be available. Only re-
cently have works started exploring novel reformu-



lations of balanced truncation to learn models from
data [12]. Other non-intrusive model reduction meth-
ods are, e.g., the Loewner framework [2, 17, 5, 11],
sparse methods [8], dynamic mode decomposition
and operator inference [24, 26, 20], lift & learn [21],
and methods based on regressing reduced coeflicients
[4, 15, 25]. However, they are all generic data-
driven modeling techniques independent of the con-
trol task. There are also works on reducing con-
trollers after they have been derived [28] and theo-
retical studies on the control performance of intercon-
nected systems with reduced components [22]. None
of these works explicitly studies the trade off between
model-learning error and controller quality. From
the machine learning community, there have been
works on balancing training and performance metrics
such as the error in the Ho, norm for finite-impulse-
response filter models for single-input-single-output
systems [27]. In contrast, our results are applica-
ble to broader data-driven modeling methods. In [9],
the authors establish an end-to-end linear-quadratic-
controller framework with probabilistic error bounds,
whereas we focus on robust control in Hxe.

2 Preliminaries and problem
formulation

2.1 True and learned system

Consider a linear time-invariant (LTT) dynamical sys-
tem ¥ with control input w(t) € R™ and control
output y(¢) € R™. The system X also has a distur-
bance input w(t) € R™ and a disturbance output
z(t) € R™. We want to control the system ¥ via
the control input w and control output y; however,
a model for ¥ is unavailable. Therefore, we learn a
system 3 using data collected from the system ¥. A
state-space model of this learned system X is

(t)
)| =
t

(t)

with state &(t) € R™=.
From the learned system 3, we derive a controller
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with state &.(¢) of dimension n.. The special case
of a zero order controller consists of a static output
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feedback control system described by w(t) = K pY(t)
(ne = 0). The learned system ¥ connected to the
controller K results in the controlled learned system

5 - { a'z(t)] :[A}( By [ww] o

z(t) éf( 0 w(t)
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EI? = |:B;)1] , and 6';{ = [6’1 O} . (5)

With linear feedback w(t) = Az(t) between the
disturbance input w(t) and the disturbance output
z(t), we obtain the closed-loop learned system x(t) =

A (A)xz(t) with system matrix

(6)

The stability radius of the closed-loop learned system
is

¥ = sgp {’y D |All2 < v with « (Ag(A)) < 0} ,
(7)

where «(-) is the spectral abscissa, which is the
largest of the real parts of the eigenvalues of the ma-
trix argument.

2.2 Robust H, control

Let H 7 be the transfer function of the controlled
learned system X z. An H.o-optimal controller min-
imizes the objective K € infg |Hg||%_, , with norm

HﬁKH _ ) subuer Jmax(ﬁ[{(iw)), if o (AVK) <0,
Hoo 0, else ,

where the imaginary unit is i = v/—1 and opax(+) is
the largest singular value of the argument.

2.3 Problem Formulation

Classical learn-then-stabilize approaches learn ¥ and
then compute K using . The learned controller K
is then applied to the true system X, resulting in the
controlled true system X 7. We explore two questions
about such learn-then-stabilize approaches: (1) How
can we trade learning error in S for stability when
our stated goal is a stable true system ¥ z7 (2) What
system properties characterize how easy it is to trade
stability for learning error?



3 Bounding stability of con-
trolled system

3.1 Equivalence of learning error and
feedback disturbance

We start our analysis by modeling the error of the
state-space model (1) of the learned system as addi-
tive perturbations. Let

Cl 0 0 'LU(t) )
y(t) c| 0 O

be an—in practice unknown—state-space model of
the true system with state x(t) € R"* that is realized
in the same coordinate system as the learned model.
We assume that the state space model corresponds to
the minimal realization of the true system. The state-
space model of the true system ¥ and the learned
system X are related as A = A+ 4, B = B + 0,
C=C+6éc, B = Bl+531, and Cy = C1+6017
where d4, dp, 6c, 0p, and d¢, are perturbations of
appropriate sizes that represent the learning errors.

Lemma 1. Consider a zero order controller K (2)
derived from the learned system 3. Set

5 = (SA + EKDé — BKDC c R X7
and assume the following two conditions hold:

(a) The vector vec(€) is in the column span of CT @
Bl ;

(b) span(CT @ By) C span(CT @ By).

Then, for any feedback matriz A € R"=*"=  there
exists a matric A € R™*"= gych that
A~

#(A)=Az(A), (8)

where XR(A) is the system matriz of the closed-loop

learned system (6) with feedback A and Az(A) is
the system matriz of the closed-loop true system with
learned controller K and feedback A. Furthermore,

the feedback matriv A can be decomposed as A =
A() + Al with

Ay =—-Bf¢CH and A, = BfB,AC,C, (9)

where the superscript © denotes the Moore-Penrose
inverse of the corresponding matriz.

Proof. Consider the least-squares problem

arg min ||AI~((£) - Az(A)|E
vec(A)

with the loss matrix

A (RN A _[en@d) L
£=AzA) AK(A)_{ P BT
_ €+§15§1*31AC1 6BR/C (11)
Kgéc 0

In the loss matrix £ only the block £1; depends on
A and thus to find A that minimizes ||Az(A) —
Az (A)]%, it is sufficient to consider

axg min [[£11 (A)][3. (12)
vec(A)

Rewriting £,;(A) as a vector gives

vec(L11(A)) = Pvec (3)
- ((Cf ® By) vec(A) — vec(£)) , (13)

~ T ~
with P = C; ® B;. Then, the linear least-squares
problem (12) has solution

vec (5*) =pt (C’IT ® Bl) vec(A) — PT vec(€),
(14)

where PT is the Moore-Penrose inverse of P. Be-
cause of assumption (a), vec(&) is in the column span
of P and thus there exists z; such that vec(§) = Pzq;
similarly, because of assumption (b) there exists a z9
such that (C{ @ Bj)vec(A) = Pzy. Thus, condi-
tions (a) and (b) imply the existence of a vector z
such that (C{ ® Bj)vec(A) — vec(§) = Pz (where
z = zo — z1). Therefore, the solution A* achieves
|£11(A%)|%2 = 0. Notice that A* is the minimal
norm solution if the least-squares problem is under-
determined.

The off-diagonal block matrices £12 and Lg; are
zero because we assumed that K has order zero, and
finally, the decomposition (9) of A* follows from (14).

O

Equation (8) shows that under the assumptions of
Lemma 1, there exists a feedback matrix A such that
the closed-loop learned system behaves as the closed-
loop true system, which will allow us to draw con-
clusions about the true system based on the learned



system; see Section 3.2. The decomposition (9) shows
that the feedback matrix A is a sum of a matrix that
depends on the learning error & and another matrix
that depends on the feedback A applied to the true
system.

Corollary 1. Consider a controller K as in (2) (not
necessarily a zero order controller) derived from the
learned system Y. Assume that 0p and 6c are both
0; and that conditions (a) and (b) in Lemma 1 hold.
Then, for any feedback matriz A € R"w*"=  there
exists a matric A € R™ X" gych that (8) holds with
the decomposition (9).

Proof. The proof of Corollary 1 follows the same
steps in the proof of Lemma 1, except for the final
step involving the off diagonal block matrices L1
and Lo; from (10). However, since 5 and d¢ are
0, the off diagonal terms £15 and Lo are also 0. [

Remark 1. Conditions (a) and (b) of Lemma 1 hold

if B, and C; of the learned system 3 are square full-
rank matrices.

3.2 Bounding the stability radius

Theorem 1. Assume that either K is a zero order
controller and the conditions of Lemma 1 hold or that
K has a higher order and Corollary 1 applies. Then,
the stability radius vy of the controlled true system Xz
is lower bounded as v > v with

1 ~ 1
v

= ¥ — €l | .
S IBLIGk " 5] e ’
2

2

where 7 is the stability radius of the controlled learned
systems Xz as defined in (7).

Proof. Since either the conditions of Lemma 1 or
Corollary 1 hold, the closed-loop true system and
closed-loop learned system are equivalent in the sense
that A (A) = Az(A) with A = Ay + A =
fogcf + BfBlAclcf. The quantities A and
A, are defined in (9). Thus, the closed-loop learned
system matrix gf((ﬁ) is stable if and only if the
closed-loop true system matrix Az (A) is also sta-
ble.

The stability radius of the controlled learned sys-
tem EK is 7, so we require || Ay <7 for Az 7(A) to
be stable. By the equivalency of the closed- 100p true

system and closed-loop learned system, additionally
substituting Ag and A; as defined in (9), we obtain

IAll2 < |BYECT |2 + | Bf BIACICY |2

Thus, to have ||Allz < 7, we want to derive A such
that

1B 2€l2MC 2+ By [l B[l All2l C 12 CY Il < 7,

which is satisfied if | A||z < with v defined in (15).
This means, if ||Al| < v holds, then the closed-loop
true system is stable bggause the closed-loop learned
system with feedback A is stable and it is equivalent

to the closed-loop true systems.
O

If B; has more rows than columns and C4 has more
columns than rows, i.e., the dimension of of inputs
and outputs is smaller than the state dimension, then
a left and right, respectively, pseudo inverse exist.
If further dp,6¢,05,,0¢, are zero matrices, then A
with the decomposition (9) simplifies to A= AO +A
and avoids the matrix-matrix multiplication Bl+ By
and C,C;.

4 Sample complexity of learn-
ing a controller from a system
identified with least-squares
regression

We now study a least-squares regression procedure
for learning a model of the state transition dynam-
ics. We assume knowledge of the relationship be-
tween states and inputs/outputs: we have the matri-
ces B, B1,C,C; of a realization of the true system
and so obtain a state-space model in the form (1) of
the learned system Y with 6p = 0,0p, = 0,6¢c =
0,9c, = 0.

First, excite the true system X% at normally dis-
tributed disturbances w™®, ..., w®™) ~ N(0, S,,), in-
puts uM, ... u®™ ~ N(0,S,), and initial condi-
tions ™1 (0),...,2™)(0) ~ N(0,S,) with covari-
ance matrices S,, € R"w*"w § ¢ R™ X" and
S, € R"=*"= regpectively. The corresponding ve-
locities are &()(0),...,2™)(0), which we measure
to obtain the observed velocities a:( ) ...,d:EN) with
measurement error

:i:ﬁ“ — dg(i)(o) + @ ,



where eV, ... e(N) are independent zero mean Gaus-
sian random vectors with covariance matrix S, €
R™=*"=_If the velocities cannot be observed directly,
then they can be approximated by simulating the true
system, recording states, and approximating the time
derivatives. Note that rather than simulating a sin-
gle trajectory, we collect information from the initial
step of NV independent trajectories.

We obtain matrices X, X., U, W by concate-
nating the N samples as X, = [:'cgl), cey (bEN)]
X = [zM(0),...,2™M0)], W = [w®,...,w®)]
U=[u®, . . . uM and e = [eM,... e™)]. The
system matrix A of the learned system % is then the
least-squares estimator

)
)

A— (X -BU-BW)X"(XX")"", (16)

which is a random matrix. Consequently, the learning
error d4 is a random matrix too.

Theorem 2. Suppose every realization of the learn-
ing error 84 satisfies vec(d4) € span(CY ® By).
Let the number of samples N satisfy N > 8n, +
16log(2/7), where T € (0,1) is a failure probability.
Then, the stability radius v of Xz (the controlled true
system with the learned controller) is lower bounded
as y > v with probability at least 1 — 7, where

Y= @l B B log (18/7)
= Kk(B1)k(C1) || Bi]2]|C1ll2 N

, (17)

with B = 16v/2||S. |1/ *(1S% /% |la/7iz, 7 the stability
radius of the controlled learned system if(, and k(+)
denoting the condition number in the || - |2 norm of
the matriz argument.

Proof. We derive the stated bound for + by bound-
ing [|6.4]|2, then substituting the bound directly into
the result of Theorem 1. Consider the least squares
estimator A defined in (16). By the definition of the
model,

X.— BU - BiJW = AX +¢,

so the learning error §4 is given by d4 = A—A=
eXT(XXT)~!. Note that since X is a random ma-
trix of column vectors from N(0,S;) and because
N > n,, the matrix X X7 is invertible with prob-
ability 1. Lemma 3 in [9] states the following: If
™ (0) ~ N(0,S,) (and S, invertible), e € R**N
with € € N(0,8.) for i = 1,...,N and if N >
8ny + 161og (2/7) then

2n, log(18/7)

1/2 —
1Y 12 < 16]1Sc 1,155/ 5

with probability at least 1 — §, where Y =
(XXT)"1XeT. Thus, the lemma applies for Y =
5T

It was assumed that vec(d4) € span(CY @ By),
which implies condition (a) of Lemma 1. Condition
(b) of Lemma 1 holds since El = B; and C~'1 =C.
Furthermore d5 = 0 and 8¢ = 0 and thus Corollary 1
applies too, meaning that Theorem 1 applies inde-
pendent of whether we have a zero or higher-order
controller. Now let 8 = 16|/S.|15*|1Sz /*|2v/2na
and substitute the bound for [|d4]/2 into the result
of Theorem 1, additionally noting that ﬁl = B; and
C, = C] to obtain the stated bound v in (17). O

Remark 2. In case of a single-input-single-output
system, the condition numbers k(B1) and x(C4) in
(17) are 1.

5 Numerical Results

We consider data generated from four dynamical sys-
tems, which are listed in Table 1. All these systems
are motivated by applications in aerospace engineer-
ing and can be obtained from the cited reference in
Table 1.

5.1 Efficiency of the proposed stabil-
ity bound

Let 3 be either the HE2, JE2, or BE747 system;
cf. Table 1. We consider learned systems X that are
obtained by perturbing the system matrices of the
true system Y. We select a random matrix d4 by
constructing an orthonormal basis for span(C{ ® B)
and selecting independent standard normal coeffi-
cients for forming a linear combination with the bases
vectors. The corresponding random matrix 84 is
then scaled to have magnitude in the range of 1075
to 2.6102, 107° to 1, and 10~° to 10° for systems
HE2, JE2, BET747, respectively. All other errors
0p,00,0p,,0¢, are 0. We then apply HIFOO [14, 3]
with the H,, routine to compute a controller K of
order max{n,,,n,}. We compute the stability radius
7 of the controlled learned system 5 7 and the bound
~v. We also compute the stability radius 7 of the con-
trolled true system % 7% as a benchmark.

Figure la shows the stability radii v and 4 as well
as the bound ~ versus the relative learning error
l€ll2/llAllz for the HE2 system. The learned HE2
system with a higher order controller satisfies the con-
ditions of Corollary 1. Hence, the results demonstrate



Name Description ‘ Ng | N ‘ Ty ‘ Naw ‘ ., ‘ HB;FH2 ‘ ||C’1Jr||2 |C1B1 |2
HE2 Apache AH-64 helicopter [16] 4 | 2 | 2| 4| 4 1 1 1
JE2 Rolls Royce Spey jet engine [16] | 21 | 3 | 3 | 3 | 3 | 2.5149 x 10% | 2.9347 x 10% | 1.5737 x 10~7

BE747 | Damaged Boeing 747 aircraft [18] | 5 | 5 | 5 | 2 | 2 10.5504 2.000 0
UAV Raptor 90 RC helicopter [10] 04|52 |5 2.7318 1 0.6529

Table 1: Systems used in the numerical experiments.
838 i ltmm(‘d S\]S lmrln(‘{i IC%I Yz le+02 Le+07 %Mrn(‘( 'S, lmrnog ] E
- rue sys, learned CUr L rue sys CEU ned ctr
0438 - - - boundV Theorem 1 _ B Le06 - bound, Thegl\eml ‘/
'7% 0.437 + —;: Le+01 _;; le405 ¢
0436 =  let04 ~
Z 0. pe! 2 Loro i le+03 ¢
7 8@ I " 1 1" learned ctrl 5 7 Lotz
4139 L t
0432 — loamed sys leamed el Sy |
0.430 . 1e-01 - bound, Theorem 1
le-05 le-04 le-03 le-05 1le-04 1e-03 1le-02 1le-01 1le400 le-10 1e-08 1e-06 1le-04 1e-02
[[€]|2/1|All2 (relative error) [1€l2/ 1 All2 (relative error) |[€]]2/1|All2 (relative error)
(a) HE2 (b) BE747 (c) JE2

Figure 1: Plot (a) shows for the HE2 system that the bound of Theorem 1 closely lower bounds the stability radius
corresponding to the learned controller: a relative error of 0.2% leads to an underestimate in the stability radius
of 1%. The efficiency of the lower bound (15) varies depending on system properties. For the BE747 system, plot
(b) shows that the bound is informative up to a relative error of 30%. In contrast, for JE2, the bound is no longer

informative after a relative error of just 10

Theorem 1 and that the bound 7 is efficient for a large
range of learning errors ||€]]2/||All2.

The stability radii and bounds corresponding to
systems BE747 and JE2 are shown in Figure 1b-
c. Both systems satisfy the assumptions of Corol-
lary 1. The proposed bound < is efficient for the
BE747 system for large errors of up to 1% and is
informative, i.e., positive, for errors up to 30%. In
contrast, the bound for the JE2 system does not pro-
vide an informative stability radius beyond a rela-
tive error of 1072, The proposed bound’s quality de-
pends on properties of the system and its realization.
For example, we use a realization of the JE2 sys-
tem that has large norms || B; ||z and ||Cy |2, which
means that in the proposed bound (15), the first term
/(1B l|2]IC7 ||2) is small so even a small error ||€]|
can make the lower bound negative and thus unin-
formative. This is in contrast to the BE747 and HE2
systems that have norms || B | and ||C; || orders of
magnitude smaller than the JE2 system.

Note that the realization independent Markov pa-
rameter ||Cy B2 appears to coincide with the qual-
ity of bound. For the HE2 system, the Markov pa-
rameter is 1 and the bound ~ closely bounds the true
stability radius. On the other hand, when the Markov
parameter is close to 0 for both the BE747 and JE2

~9 as shown in plot (c).

systems, the bound is of lower quality, as it under-
estimates by an order of magnitude for the BE747
system while it is only informative for the JE2 sys-
tem up to a relative error of 1072, It remains future
work to further analyze the dependence of the bound
on the specific realization (such as the norms || B ||
and ||C ) and derive the bound fully in terms of
system properties instead (such as the first Markov
parameter ||C1B;||2 as motivated by the numerical
results).

5.2 Learning model via least-squares
regression

We now apply the least-squares approach discussed
in Section 4 to the HE2 system to obtain the learned
system Y. The covariance matrices for sampling and
noise are set to be diagonal matrices with all diag-
onal entries a constant o, denoted S(c). The co-
variance matrices are then S, = S(2), S, = S(1),
S, = S(1/2), S. = S(1/5). Figure 2 shows a trade
off between number of samples N (learning costs) and
stability radius; one order of magnitude reduction in
the number of samples results in less than 5% re-
duction in stability radius in this example. In other
words, with a context-aware goal in mind, the learn-
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Number of Samples Number of Samples
(a) lower bounds from Theorems 1 and 2 (b) lower bound w.r.t. a3 — as/vV N

Figure 2: HE2: Plot (a) shows that the lower bound from Theorem 2 is close to the lower bound from Theorem 1,
which indicates that the bound of Theorem 2 based on the number of samples does not add additional conservatism
in this example. Plot (b) demonstrates that the bound of Theorem 2 behaves as expected as a3 — a2/\/ﬁ with

constants aq, a2 > 0.

le+02 le+02
~ ~
= let+01 } . 1 = le+01 ¢° 1
8 . 8
= . <
5} i s}
. — learned sys, learned controller E — learned sys, learned controller E
let00 b — true sys, learned controller X Le4-00 — true sys, learned controller X
e+00 b . bound from Thcomnl 1 ] e+00 . bound from Thcorom 2 ]
le+02 1le+03 le+04 1le4+05 le+06 1le+07 le+02 1le+03 le+04 1le4+05 1le+06 1le+07
Number of Samples Number of Samples

Figure 3: UAV: The results show that the bounds derived in Theorem 1 (left) and Theorem 2 (right) become efficient
indicators of the stability radius in this example when the assumptions of the theorems are not met. The indicators
underestimate the true stability radius by about 50% but are within the same order of magnitude.



ing costs could be reduced significantly without losing
substantial accuracy in the eventual control goal.

We now apply the same least-squares regression
procedure to the UAV system and show the stability
radius versus increasing samples. Unlike the systems
HE2, BE747, JE2, the UAV system violates condition
(b) in Lemma 1. However, Figure 3 suggests that the
bounds derived in Theorem 1 and Theorem 2 are still
efficient indicators in practice.
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