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Abstract—Ultrasound-based state assessment of the human
muscle during rehabilitation and its integration into a hybrid
exoskeleton comprising an functional electrical stimulation (FES)
system and a powered orthosis are emerging research areas. This
paper presents results from the first experimental demonstration
of a hybrid knee exoskeleton that uses ultrasound-derived muscle
state feedback to coordinate electrical motors and FES. A
significant contribution of the paper is to integrate a real-time
ultrasound image acquisition and processing framework into a
recently derived switching-based feedback control of the hybrid
knee exoskeleton. As a result, the contractility response of the
quadriceps muscle to the FES input can be monitored in vivo
in real-time and estimate FES-induced muscle fatigue changes in
the muscle. The switched controller’s decision-making process
can then use the estimated muscle fatigue to compensate or
replace the FES-stimulated muscle power with an electrical
motor, thus avoiding extensive stimulation of the fatigued muscle.
The experimental results suggest a potential application in the
rehabilitation of neurological disorders like spinal cord injuries
and stroke.

I. INTRODUCTION

Functional electrical stimulation (FES) is a rehabilitative
technique that may assist impaired motor functions such as
hand grasping, trunk movement, and gait in individuals with a
neurological injury such as spinal cord injury, stroke, multiple
sclerosis, etc. [1]–[10]. Despite its significant potential, the
rapid onset of FES-induced muscle fatigue hinders its use
in clinics and in activities of daily living. Recently, the
addition of a powered orthosis to FES improved its control
performance despite FES-caused adverse fatigue effects [11]–
[18]. Arguably, the powered orthosis can also be used for
assistance solely [19], [20] and may have a competitive edge
over FES due to its unrestrained and robust power gener-
ation. However, replacing FES with powered orthosis may
prove disadvantageous because incorporating FES exercises
the muscle and brings many potential training/therapeutic
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effects [21] [22], [23]. Therefore, a combined FES system and
a powered exoskeleton is a promising rehabilitation system
for individuals with mobility disorders. However, the design
and control of a hybrid exoskeleton being a new and emerging
research area, numerous challenges in their design and control
hinder their clinical implementation.

First, the hybrid exoskeleton must compensate for the
declining muscle force due to that rapid onset of FES-
induced muscle fatigue. The muscle fatigue results from non-
physiological recruitment of muscle motor units, i.e., recruit-
ment is asynchronous and spatially fixed [24]. The fatigued
muscle cannot maintain the same muscle power output to ac-
tuate the limb joints. Thus, the muscle output cannot maintain
desired limb tracking, constraining functional tasks to short pe-
riods. Therefore, a specifically designed control strategy must
maintain a long operation given the decreasing contribution of
FES-recruited muscle power. The hybrid exoskeleton control
scheme may use cooperation or a switched strategy to allocate
control inputs among external actuators and FES.

Further, it should be capable of completely replacing the
FES-elicited muscle power with the powered orthosis when
the muscle potentially experiences an acute fatigue condition
while guaranteeing the system stability. Recent control al-
gorithms for a hybrid exoskeleton facilitate cooperative use
of FES and the exoskeleton [11]–[14]. However, a control
approach that automates exoskeleton assistance during acute
FES-caused muscle failure due to the fatigue and turns-on
the FES use when the muscle recovers from the fatigue
is lacking. Our recent work proposed a generic theoretical
framework [25] for FES-elicited muscles in closed-loop with
a wearable robotic system that considers the FES-evoked
muscle’s fatigue and recovery cycle. The designed switch
criteria coordinate FES-elicited muscle power and external
actuators while ensuring the hybrid exoskeleton’s stability
despite nonlinearity, uncertainty, and electromechanical delay
(EMD) in the musculoskeletal system.

Another challenge is that the lack of sensors to measure
muscle fatigue during FES limits effective control of the
hybrid exoskeleton. Advanced switched control techniques
for hybrid exoskeleton monitor different switch criteria [25]
among multiple actuators to ensure system stability and con-
trol performance. The switching criteria need measures or
estimates of the system state that include the joint angle,
joint velocity, and FES-induced changes in muscle condition.
Predictive mathematical models [26]–[30] have been used to
estimate changes in muscle condition. Compared to those
model-only approaches, we believe that introducing real-time
direct measurements can better assist controller’s decision



making because the direct measurements provide feedback
of the most updated muscle condition, which can then mit-
igate the estimate errors (due to signal processing noise and
modeling uncertainties) accumulated over time. However, the
direct and real-time measurement of the muscle condition due
to the induced fatigue is infeasible with the typically used
sensors in robotic devices (e.g., encoder, strain gauge, inertia
measurement units, etc.). To address this challenge, we sought
a new sensing modality to characterize and monitor FES-
induced muscle contractility changes in vivo.

Ultrasound has been an essential and valuable tool in
clinical diagnosis, rehabilitation, and research investigation of
human skeletal muscle [31]–[39]. Researchers have recently
started developing ultrasound image processing algorithms
that enable real-time ultrasound imaging into robotics and
prosthetic devices for human augmentation and rehabilitation.
Castellini et al. [40] and González et al. [41] proposed an
ultrasound-based human-machine interface that predicts finger
positions and forces from processed ultrasound images. Sikdar
et al. [42] developed a wearable ultrasonic system that can
classify and predict dexterous individual finger movements.
In our previous studies [43], [44], we used ultrasound speckle
tracking algorithm [45] for tissue motion estimation. The
estimated muscle displacement was then used to compute the
strain tensor to capture the quadriceps muscle contractility
change that was hypothesized as an effect of FES-induced
fatigue. The approach was validated on several human partic-
ipants and demonstrated that the ultrasound-based technique
can estimate FES-induced muscle fatigue.

Compared to other sensor modalities such as dynamometers,
surface electromyography (sEMG), and mechanomyogram
(MMG), ultrasound imaging provides both anatomical and
functional information, and thus a potential sensing solution
for effective hybrid exoskeleton control. Ultrasound imag-
ing is relatively low cost and facilitates a real-time setup,
compared to other clinical imaging modalities like magnetic
resonance imaging (MRI). In addition, recent advancements in
portable ultrasound devices [46]–[48] promise its integration
in a compact wearable robotic system. However, to enable
ultrasound-based feedback control, the capability of real-time
data acquisition is critical because the controller relies on
the acquired and most updated information to make control
decisions. The real-time characteristic of ultrasound imaging
noted in the literature mainly refers to the image acquisition
and reconstruction without further image processing for tissue
motion estimation. However, the tissue motion estimation is
vital to derive muscle contractility-related changes for fatigue
estimation. Implementation of this process is a non-trivial
problem. It entails accelerating the computation of a tremen-
dous amount of image data to perform the ultrasound speckle
tracking algorithm, the primary computation-consuming part.

Nevertheless, a graphic processor unit (GPU) offers a po-
tential resource to accelerate the computation. Primarily, the
core structure of the speckle tracking algorithm is a kernel-
based similarity matching, which allows simultaneous parallel
computation at different independent local image coordinates.
As a result, conceptually, the processing time is unlikely to
increase when the data size grows apparently. Several works

in the literature [49], [50] have implemented this idea in dif-
ferent GPU-based platforms. In our current study, considering
the requirement of up-sampling the images to capture small
local displacements, the available memory size of the current
generation of GPUs is another limitation. Therefore, we tried
finding a trade-off between the total computation time and the
image quality to overcome this challenge. We implemented
our algorithm in a semi-parallel structure, dividing every single
image into several pieces of sub-image and loading them on
the GPU consecutively. The parallel computation was then
performed on each loaded sub-images, and the processed
results were assembled at the end.

After achieving the real-time ultrasound speckle tracking
algorithm, the imaging processing procedure can be deployed
in feedback control of a hybrid exoskeleton to estimate
muscle’s fatigue state and assist the controller’s decision-
making. As a result, in this paper, we first model and design
a 1-degree-of-freedom (1-DOF) hybrid knee exoskeleton that
collaboratively uses an electrical motor at the knee joint and
applies FES to the quadriceps-hamstring muscle group. We
then implement a newly derived switched control method. The
control objective uses different control modes to track desired
knee joint movements. The first mode collaboratively uses
FES-activated muscle power and an electrical motor, while
the second mode only uses all electrical motor power. The
two modes are switched and are active in turns, subject to
switch criteria determined by the stability constraints and the
muscle fatigue state. The control design is robust to modeling
uncertainties and compensates for the EMD. We finally inte-
grated the hybrid knee exoskeleton with the developed real-
time ultrasound image acquisition and processing platform. To
the best of our knowledge, the presented results for the first
time experimentally demonstrate real-time measurement of the
muscle state due to the induced muscle fatigue via ultrasound-
derived strain measures and its integration into feedback for
the hybrid exoskeleton controller’s decision-making.

II. METHODS

A. Modeling and Switched Control Design of the 1-DOF

Hybrid Knee Exoskeleton

A generalized theoretical framework for an N-degree of
freedom wearable robot was proposed in [25]. Here we adapt
the framework for a 1-DOF hybrid knee exoskeleton that can
be modeled as

Jq̈ +MglCOM sin (q + q0) +Mev(q, q̇) +W = τt (1)

where, q ∈ R denotes the knee joint angle as illustrated
in Fig. 1. The constant, q0 ∈ R, is an initial offset angle
with respect to the vertical direction. The constant, J ∈ R>0,
denotes the moment of inertia of the lower leg with respect
to the fixed axis, which the knee joint rotates around. The
constants, M ∈ R>0, lCOM ∈ R>0 are the mass of the lower
leg and the distance between the knee joint and the center
of mass (COM) of the lower leg, respectively. Mev(q, q̇) ∈
R expresses a bounded unknown passive moment due to the
elastic-viscous effect at the knee joint, as well as the viscous
friction of the exoskeleton assembly. W ∈ R represents a



Figure 1. Experimental setup of the 1-DOF hybrid knee exoskeleton ex-
periments. The dashed-dotted red lines illustrate the horizontal and vertical
directions. q0, as illustrated by the solid orange line, is the initial offset angle
and is approximately 45°. The encoder registered knee joint angle, q, as
illustrated by the solid yellow line. It is defined as the angle with respect to q0.
The knee joint is actuated by the electrical motor, which contains an internal
encoder, and also on the application of FES to the quadriceps muscle. A pair
of large electrode pads placed on the thigh and the other pair to stimulate the
hamstring (cannot be seen in the presented photo) apply electrical current to
the muscles. A clinical ultrasound imaging transducer is attached to the thigh
in a longitudinal direction, where the lateral direction of the ultrasound image
aligns with the direction of muscle fibers, by using a lab-built probe holder.

bounded unknown disturbance term and τt ∈ R is the total
torque input to the system from both FES and motors. The
total torque can be further specified as

τt =
1 + ξτ (1)
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where Km ∈ R>0 is the motor constant while umI
(t) ∈ R and

umII
(t) ∈ R are control inputs to the electric motors under

control mode I and II, respectively.
Control mode I uses a PD-based delay compensation con-

troller to facilitate the existence of EMDs when both FES
and the electrical motor are active to drive the knee joint.
Control mode II uses a variable structure control (VSC) when
only the electrical motor is active. η(j)(q, q̇) ∈ R>0 is a
lumped bounded unknown nonlinear function that maps a
positive input delayed FES control signal (current, in mA),
u
(j)

a,τ (j) = u
(j)
a (t − τ (j)) ∈ R>0, where t ∈ R is the time and

the superscript j = 1 refers to the quadriceps muscle while
j = 2 refers to the hamstring muscle. τ (j) ∈ R>0 are the
corresponding EMDs associated with the two muscle groups.
K

(j)
a ∈ R>0 is a control gain to modulate u

(j)
s . ξ(t) ∈ {−1, 1}

is a switch signal. ξ = 1 indicates control mode I and ξ = −1
indicates control mode II. ξτ (j) , j = 1, 2 is the delayed
signal similar to the definition of u

(j)

a,τ (j) . The value of the

switch signal is determined by µ̂(j)(t) ∈ [ς(j), 1], which is the
estimate of the FES-induced muscle fatigue, where ς(j) ∈ R

is the lower bound of µ̂(j).

B. Feedback Controller for Switched Modes

The feedback control law that determines the FES inputs to
the quadriceps and hamstrings of the system in (1) and (2), is
given by
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the motor input in mode I is

umI = Kuρmr, (4)

and the motor input in mode II is
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where, the control error signal, r(t) ∈ R, is defined as

r = ė+ αe−
ξ + 1

2
βec. (6)

where, e = qd − q ∈ R is the tracking error between the
actual and desired knee joint angle, q and qd, respectively.
ec =

∫ t

t−τ (1) u
(1)
s (θ)dθ −
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compensation term. Ku, ρs, ρm, rc, Kv , α and β are control
gains. δΦ′(
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) is a positive globally invertible non-

decreasing function of the norm of the tracking error signal,
and is appropriately selected to bound the state dependent
uncertainties. Ψ′ is a constant used to bound all the other
disturbance or uncertainties. The choice and tuning of all these
control gains and parameters follow Theorem 1 and Theorem
2 in [25]. The switch signal, ξ, follows almost the same
switch criteria as given by Theorem 3 in [25]. The only
two modifications are that: 1) In this paper, we only consider
the knee joint and the muscle fatigue of the quadriceps
muscle in the implementation of this very first experiment;
2) In experiments of this paper, the stability constraints in
the general switch criteria (as given by [25]) would be
trivially satisfied in practice because the fatigue/recovery time
constants are much longer compared to the convergence time
of the designed control mode umI and umII . The switch criteria
is therefore dominated by the estimated fatigue state. As a
result, control umI is active to use both electrical motors and
FES when muscle is non-fatigued while control umII is active
to use only electrical motors when muscle is fatigued and
needs recovery. Whether a muscle is fatigued or non-fatigued
is determined by comparing the estimated fatigue state with
the user-selected threshold values, µ and µ. µ is the lower
threshold and µ̂ < µ is considered fatigued. µ is the upper
threshold and µ̂ > µ means that muscle recovers to a non-
fatigued status. Note that it is always required to make µ > µ
to avoid the Zeno behavior [51] in a switch system.

The stability of the feedback control law in (3),(4),and (5)is
proven by a Lyapunov stability analysis in [25]. The conse-
quent closed-loop control system is able to drive the 1-DOF
hybrid knee exoskeleton to generate a desired knee movements
(knee extension and flexion), which is a pre-defined time-
dependent trajectory, qd(t), of the knee joint angle. During
the experiments in real time, the entire integrated system is
described by the block diagram in Fig. 2.



Figure 2. The block diagram that illustrates the design of the entire closed-loop system when feedback control and real-time ultrasound imaging are integrated.
See the text for a detailed description. Radio frequency (RF) data refers to the raw ultrasound data before beamforming. VSC represents the variable structure
control. UDP refers to the user datagram protocol used for data communication among the ultrasound imaging system, the image processing platform and the
feedback controller.

C. Muscle Fatigue Estimation

Muscle fatigue in this study refers to the force generating
efficiency that is a ratio of force produced by the current
muscle contraction with respect to its maximum capability.
Therefore, in (2), muscle fatigue is modeled by a time variant
multiplier, µ̂, which modulates the control inputs contributed
from FES-stimulated muscle contractions. The estimate of
the FES-induced muscle fatigue, µ̂, combines the muscle
contractility assessment from real-time processed ultrasound
strain images and a modified first order predictive fatigue
model [52], as

˙̂µ(j) = ŵ
(j)
f (ς(j) − µ̂(j))K(j)

a u
(j)

s,τ (j) (7)

+ŵ(j)
r (1− µ̂(j))(1−K(j)

a u
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s,τ (j)),

where, ŵ
(j)
f ∈ R>0 and ŵ

(j)
r ∈ R>0 with the superscript

j = 1, 2, are the estimated reciprocal of the fatigue constant
and the recovery time constant, respectively. The parameters,
ŵ

(j)
f and ŵ

(j)
r can be calculated by using a system identifi-

cation procedure [12]. Note that, for any finite time interval,
the evolution of µ̂ according to (7) relies on a known initial
condition. Therefore, the role of the ultrasound imaging is
to re-initialize the predictive fatigue model, (7), by providing
the most updated initial condition when a new ultrasound
measurement sample is available. The ultrasound imaging

estimates muscle’s strain tensor, which reflects the muscle
deformation during contraction. According to the results in
our previous studies [43], [44], there exists a potential corre-
lation between the strain measure and the force produced by
muscle contraction. Considering the aforementioned definition
of µ̂ that is the the force generating efficiency, we can then
estimate the percentage drop of µ̂ from the initial value of
1 by the percentage drop of the strain value. Considering
the online computation speed with the current parameters
used for real-time ultrasound image processing, the ultrasound
imaging measurements are available every 20 seconds during
the experiments.

D. Real-Time Ultrasound Strain Imaging Implementation

1) Diagnostic Imaging Procedure: To imitate the method-
ology of ultrasound imaging-based muscle fatigue assessment
(as in [43], [44]) in the real-time control system, a “diagnosis-
imaging” procedure is designed. Specifically, as illustrated by
the sketch at the top of Fig. 2, when the desired motion
trajectory, qd(t) (chosen as a sinusoidal curve in the current
experiment), periodically reaches its minimum, two consec-
utive short pulses as trigger signals are generated accurately
at that time instance. The first pulse is used to interrupt the
controller-calculated error-modulated FES input and replace it



Figure 3. Workflow for parallel computation of the 2-D cross-correlation
used for real-time implementation. It is noted that the cross-correlation
computation at each point in the region of interest in (8) is independent.
The ultrasound images are loaded onto the GPU and the cross-correlation,
γ(x, y), is computed simultaneously at every point in the region of interest.

with a constant 1-second “diagnostic” FES input. The second
pulse is delayed for 100 ∼ 300 ms after the first pulse. It
is used to trigger a short time window when the ultrasound
image acquisition and processing are active to assess the
muscle’s response to the “diagnostic” FES input. The reason
for locating the trigger signals at the valley of a sinusoidal
is that, around that time, the actual knee movement under
the feedback control also reaches the valley, i.e., velocity is
zero and the quadriceps muscle is at a relaxed status. Then
the applied “diagnosis-imaging” procedure is similar to the
isometric knee extension experiment, as reported in [43], [44].

A triggering delay in the second pulse for ultrasound
imaging considers the EMD in muscle’s response after the
diagnostic FES. Thus, we can efficiently allocate the hardware
and computation resources and focus in a time window when
a dominant muscle contraction occurs. Due to the current
limitation of computation speed in ultrasound image process-
ing, the designed “diagnosis-imaging” procedure is repeated,
and ultrasound image measurements are available every 20
seconds.

When ultrasound image measurements are obtained, the
raw radio frequency (RF) data is passed to the GPU-based
image processing platform. The images are reconstructed by a
delay-and-sum (DAS) beamformer and the ultrasound speckle
tracking is performed to calculate muscle’s displacement field.
Strain images are then calculated based on the gradient of
the displacement field. Due to the force-strain correlation
discussed in [43], [44], the average of the strain image is
calculated and normalized to approximate the fatigue state,
µ̂, at the current time instant. This value is then passed to
the predictive fatigue model, (7), and used as the new initial
condition of the fatigue model during the time period when
ultrasound image measurements are not available. Then the
estimate of the fatigue state during this period (between two
consecutive available ultrasound image measurements) is cal-
culated by the re-initialized fatigue model. Finally, the fatigue
estimate is passed to the feedback controller to determine the
switches between control mode umI and umII .

2) GPU-Based Ultrasound Imaging Processing: The orig-
inal speckle tracking algorithm used for tissue motion esti-
mation in [43], [44] is based on exhaustively searching the

displacement vector candidate (from the reference frame to
the moving frame) that makes the normalized cross-correlation
coefficient the maximum. It has a good performance to esti-
mate tissue motion to the level of about 0.01 mm. However, it
is difficult to satisfy real-time capabilities required for closed-
loop control. This is due to that the computation cost increases
quadratically with the size of the kernel and search window in
the following 2D normalized cross-correlation computation,

γ(x, y) =

∑

Kx,y
(fm(a, b)− f̄m)(fn(a+ u, b+ v)− f̄n,u,v)

√

∑

Kx,y
(fm(a, b)− f̄m)2(fn(a+ u, b+ v)− f̄n,u,v)2

,

(8)
where, γ is the normalized correlation coefficient at location,
(x, y), fm and fn refer to magnitude of the ultrasound image
signal from frame number m and n, respectively. (a, b) ∈
Kx,y . Kx,y is the rectangular kernel centered at position (x, y).
Inside the kernel, signal magnitude at all the locations are
used to compute the similarity measure that is the normalized
cross-correlation, γ. For computing γ, f̄m, f̄n,u,v are mean
values of fm(a, b) and fn(a+ u, b+ v), respectively. u(x, y)
and v(x, y) are the offsets that form the displacement vector,
(u, v) at location (x, y).

According to the form of γ(x, y) that can be computed in-
dependently at different locations, (x, y), the speckle tracking
algorithm can be implemented using a GPU architecture that
enables parallel computing to accelerate the overall compu-
tation to achieve real-time strain measurements. By further
tuning the speckle tracking parameters, such as the size of the
region of interest and kernel, to balance the image processing
quality and the real-time requirement, the processing time
to compute the strain between two consecutive images was
eventually reduced to < 1 second when implemented on the
GPU. The workflow for the parallel computing implementation
is shown in Fig. 3.

III. EXPERIMENTS

The objective of the experiments in this study is to demon-
strate the feasibility of using real-time ultrasound imaging to
estimate muscle fatigue, which assists the decision-making of
control mode switches in the closed-loop feedback control
system. The Institutional Review Board of North Carolina
State University approved all the procedures and protocols of
the experiments. A male human participant with no disabilities
consented to participate in the experiments. Seven trials were
performed. As shown in Fig. 1, during each trial, the par-
ticipant wore the hybrid knee exoskeleton and the feedback
controller controls his knee joint to follow a pre-defined
200-second sinusoidal trajectory, qd(t) = 20 sin(πt/5). The
initial offset angle, q0, as illustrated in Fig. 1, is chosen
to be approximately 45°. The control mode of the feedback
controller switches between a PD-based delay compensation
controller (FES and motor) and a VSC controller (motor only)
according to the switch criteria. The upper (µ) and lower (µ)
threshold of the fatigue-based switch is set as 0.9 and 0.8,
respectively.

The knee joint is actuated by the torque produced by
stimulated contractions of a quadriceps-hamstring muscle pair,



as well as by an electric motor (Harmonic Drive LLC,
MA, USA). The stimulation is achieved using a commercial
stimulator (Rehastim 2, HASOMED GmbH, Germany) which
administered biphasic FES at a frequency of 33 Hz and a
pulse width 300 µs through electrode pads (PALS, 7.62 cm
by 10.16 cm, Axelgaard Manufacturing Co., Ltd., USA) placed
on both the quadriceps and hamstrings. The knee joint angle
is measured by the internal relative encoders of the electric
motors. The entire closed-loop system, as illustrated in Fig. 2,
is implemented and programmed in a real-time XPC target
(Speedgoat GmbH, Switzerland) using MATLAB/Simulink
(MathWorks, USA).

A clinical ultrasound linear transducer (L7.5SC Prodigy
Probe, S-Sharp, Taiwan) was placed longitudinally on the
thigh. It was fixed by a customized probe holder to image
the targeted quadriceps muscle. The ultrasound planewave
imaging, with a center frequency of 5 MHz and a sampling
frequency of 20 MHz, was implemented in the ultrasound
imaging system (Prodigy Research Platform, S-Sharp, Tai-
wan). Considering the trade-off between the computation
speed and the performance of the speckle tracking algorithm,
we tested different frame rates (250, 500, 800, 1000, 1600 Hz)
of ultrasound imaging in different experiment trials. The image
processing platform uses a GPU (Titan V, NVIDIA, USA).
Data exchange among the XPC target, the ultrasound imaging
system, and the image processing platform is achieved through
a user datagram protocol (UDP). The control gains along with
fatigue parameters and FES saturation and threshold are shown
in Table I.

IV. RESULTS AND DISCUSSION

Seven trials were performed to test the integration of real-
time ultrasound imaging into the closed-loop control system of
the 1-DOF hybrid knee exoskeleton. Table II summarizes the
experiment results while Fig. 4 is the graphic presentation of
trial 4. The RMSE is calculated between the encoder registered
knee joint angle (q, solid orange curve in the first row of
Fig. 4) and the desired knee joint angle (qd, dotted blue curve
in the first row of Fig. 4). The results show a good control
performance (error less than 2°) under the designed closed-
loop control system despite the occurrence of the fatigue-
based switches between different control modes, as well as
the “diagnostic” FES input (that acts as a disturbance from
the controller’s point of view). The switching behavior is
also successfully achieved according to the designed fatigue-
based switch criteria when the assessing FES-induced mus-
cle fatigue is based on real-time ultrasound imaging. The
shadowed region in Fig. 4 denotes the switch to the VSC
controller (motor only) when the estimated fatigue state is
below the chosen lower threshold (0.8). The second row of
Fig. 4 plots the time-variant value of the FES input to the
quadriceps muscle by the solid red curve. The baseline of this
curve (21 mA) reflects the threshold level of the participant’s
muscle, above which the FES input can generate a noticeable
muscle response (i.e., a noticeable force generation during
preliminary isometric muscle contraction experiments). The
periodically occurring squared pulses with a high peak (30

mA) reflect the “diagnostic” FES input. In contrast, the flat part
(approximately between 60 s and 80 s) reflects the deactivation
of FES when the muscle is considered as “fatigued” (below the
lower threshold, 0.8) and the alternative control mode (VSC,
motor only) is used. The FES input to the hamstring muscle
is omitted because its value is minimal (in the order of 10−1

mA above the baseline).
In addition, as is observed from the last row of Fig. 4, the

jumps on the model-based fatigue curve (solid black curve)
reflect the re-initialization of the predictive model when a
most updated measurement from real-time ultrasound imaging
(purple circle) is acquired. The first ultrasound measurement
is used as the baseline for strain normalization and is not used
to re-initialize the model. A small jump on the fatigue curve
indicates a relatively good agreement between the ultrasound-
assessed and the model-predicted fatigue state. In contrast, a
significant jump shows a considerable discrepancy between
the ultrasound measurement and the model prediction at the
specific time instance. However, at the current stage of our
study, it is difficult to determine which one is closer to
the absolute ground truth because multiple uncertainties exist
in both processes for identifying the fatigue model and the
strain-force correlation. In fact, for the predictive fatigue
model, due to its dependency on accurate model parameters
and the initial condition, the bias of fatigue estimation is
expected to accumulate over time. Thus, the model needs
re-initialization by the real-time ultrasound measurements.
However, the obtained ultrasound measurements themselves
have a noisy aspect and can sometimes have inconsistent
oscillations between samples on the time horizon. This is
because the ultrasound measurements are separate independent
data samples and do not constrain the temporal trend. This
potentially brings significant variance to and affects the fatigue
estimation when these samples are repeatedly used to re-
initialize the model, especially when the sampling rate of the
ultrasound assessment is low (every 20 s) due to the limitation
of computation speed. One potential solution is to optimize the
image processing platform further to increase the computation
speed to obtain ultrasound measurements more frequently. In
this way, when more consecutive data samples are available
during a specific time window, filtering techniques can be
applied to mitigate the noisy aspect of the signals. An al-
ternative solution is to combine the predictive fatigue model
and intermittently available ultrasound measurements in an
observer-like structure. In this way, due to the ultrasound
measurements, the predictive fatigue model no longer relies
on an accurately known initial condition, while the temporal
theoretical trend provided by the model can be used as a
temporal constraint to regularize the ultrasound measurements.

V. CONCLUSION

For the first time, this paper designs and implements a
closed-loop control system of a one-DOF hybrid knee ex-
oskeleton that integrates real-time ultrasound imaging for FES-
induced muscle fatigue assessment. The experiment results
show the feasibility of applying ultrasound imaging for tis-
sue strain estimation as an indicator of muscle fatigue and



Table I
LIST OF PARAMETERS USED IN EXPERIMENT

Parameter α β Ku Kv rc wf (s−1) wr (s−1) sat (mA) thresh (mA)

Value 80 2 2 2 0.05 1/11 1/25 50 21

Table II
RESULTS OF KNEE JOINT TRACKING USING THE DESIGNED CLOSED-LOOP CONTROL SYSTEM.

Trial number 1 2 3 4 5 6 7

RMSE (°) 1.60 1.84 1.48 1.85 1.75 1.98 1.89

Switch threshold
upper 0.9 0.9 0.9 0.9 0.9 0.9 0.9
lower 0.8 0.8 0.8 0.8 0.8 0.8 0.8

Ultrasound frame rate (Hz) 1600 250 500 500 1000 1000 800
Ultrasound trigger delay (ms) 100 100 100 160 160 160 160

Figure 4. Graphical presentation of the experiment trial 4. The first row presents the actual knee joint angle (solid orange curve) to track the desired sinusoidal
trajectory (dotted blue line). The second row presents the recorded FES input to the quadriceps muscle. The third row presents the recorded voltage input to
the electrical motor. The last row presents the fatigue estimation obtained by using the obtained ultrasound (US) measurements to re-initialize the predictive
fatigue model. The shadowed region indicates the switch to the VSC controller (motor only) when muscle is considered fatigued and FES is inactive.

subsequently facilitating the control system’s switch behavior.
The results show that FES and powered assistance can be
switched between different assistive modes when the muscle
undergoes a fatigue and recovery cycle while achieving a
good control performance. This study shows that ultrasound
imaging as a sensing modality in assistive devices helps
feedback controllers in decision-making and potentially en-
ables unrestrained, robust fatigue-resistant limb movements for
functional tasks.
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