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Abstract—Existing controllers for functional electrical stim-
ulation (FES) of upper-limb muscles were initially designed to
assist unilateral movements and may not be readily applicable to
assist antagonistic muscle movements. Further, it is yet unclear if
electromechanical delays (EMD) are present during co-activation
of muscles. In this paper, a robust controller is designed to
facilitate FES of an antagonistic muscle pair during elbow
flexion and extension. The controller uses a continuous switching
law that maps a joint angle error to control the antagonistic
muscle pair. Further, the controller compensates for EMDs in
the antagonistic muscle pair. A Lyapunov stability analysis yields
uniformly ultimately bounded tracking for the human limb joint.
The experimental results on four participants without disabilities
indicate that the controller is robust and effective in switching
between antagonistic muscles. A separate set of experiments also
showed that EMDs are indeed present in the co-activated muscle
pair. The designed controller compensates for the EMDs and
statistically improves root mean square error, compared to a
traditional linear controller with no EMD compensation. The
proposed controller can be generalized to assist FES-elicited tasks
that involve a weak antagonistic muscle pair.

Index Terms—Neuromuscular stimulation, Delay systems

I. INTRODUCTION

Spinal cord injury (SCI) results in loss of muscle strength

at and below the level of the spinal lesion. About 17,730

new SCI cases are reported each year in the US since 2019

[1]. Approximately 60% of these cases resulted in incomplete

or complete tetraplegia from SCI. Functional electrical stim-

ulation (FES), which is an external application of electrical

currents via surface or invasive electrodes to elicit desired

muscle contractions, is commonly prescribed to recover lost

muscle function and/or strength in individuals who have such

conditions [2]. FES enables grasping and reaching motions

in people with tetraplegia who may have completely absent

arm function [3], [4]. Furthermore, due to its ability to effect

neuroplasticity, it promotes functional recovery in people

undergoing an FES-based rehabilitation therapy [5].
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The main objective of closed-loop control of FES is to

accurately deliver desired assistance or provide precise dosage

of rehabilitative training. However, due to nonlinear and un-

certain muscle dynamics, it is often difficult to obtain robust

performance with linear or simple control methods [6]–[8].

Nonlinear control methods have also been shown to provide

a superior performance [4], [9]–[11], robustness to parametric

uncertainties [9], [10], and the ability to compensate for time-

varying phenomena such as muscle fatigue [12]. More re-

cently, the issue of electromechanical delay (EMD) during FES

control has been addressed to improve control performance

and ensure stability during FES control [13]–[15].

EMD is the time lag between the electrical excitation and

the force development in a muscle. and is often modeled as

an input delay in the musculoskeletal dynamics [14], [16]–

[19] Unlike deadzone, which is a recruitment characteristic

[20], EMD is a characteristic of temporal dynamics of the

recruited motor units. EMD is mainly due to the delays

from the chemical reactions and calcium release and finite

conduction velocities of the action potential in the membrane

system [16]. A deadzone would also cause a delayed muscle

response, especially if the stimulation intensity is below a

deadzone threshold but increasing. However, when stimulation

is chosen above the threshold that recruits the first motor

units, EMD effects can also be observed. Because input delays

can cause performance degradation and system instability

[21], compensating for EMD is relevant for high-performance

closed-loop control design.

Recently, a robust compensation control method was de-

veloped for an uncertain input delayed system with additive

disturbances [14]. The control method suggests a PD/PID

controller can be augmented with a delay compensation term

that contains a finite integral of past control values to transform

the delayed system into a delay-free system. These modified

PD/PID controllers were extended to compensate for a known

EMD during FES [13], [14], [18]. Further improvements

of these control designs in [15], [22] provided a capability

to compensate for unknown varying EMD. However, these

controllers facilitate unidirectional limb movements; i.e., only

quadriceps muscles were stimulated through a single FES

channel to extend the knee. The antagonist muscles (ham-

strings in this case) were not stimulated. Instead the leg was

lowered by a controlled reduction in FES of the quadriceps

muscles, allowing gravity to help bring the leg back towards

the equilibrium position. However, in a standing position or

during a gait cycle, producing knee flexion and extension



would require controlled stimulation of both hamstrings and

quadriceps (antagonistic pair).

Similarly, upper-limb movements such as elbow or wrist

flexion and extension would require FES of antagonistic

muscle pairs (e.g., biceps and triceps). Usually, persons with

C5/C6 SCI have a weak to strong voluntary control of elbow

flexion control but lack the ability to control elbow extension

[23]. In an akin study on persons with stroke, the stimulation

was applied to triceps and anterior-deltoids muscles to assist

elbow extension [24]–[27]. However, FES controllers to assist

people with SCI who lack the ability to voluntarily control

both the elbow flexion and extension do not exist. Because

the controllers in [24]–[27] were originally designed to assist

unilateral movements and may not be easily applicable to as-

sist in bilateral elbow movements, we were motivated to design

an FES controller capable of antagonistic muscle control.

In general, antagonistic muscle control employs co-

contraction of the muscles. Choosing co-contraction of an-

tagonistic muscles is certainly useful in some applications

as it could be used to induce desired joint impedance via

FES. In [11], [28], [29] co-activating stimulation strategies

were mainly designed to modulate joint impedance during

regulation of wrist or elbow angle. However, using a co-

activation strategy may cause an early onset of muscle fatigue.

A low stimulation intensity level co-contraction strategy may

sustain long duration of limb regulation but its use during

high performance limb tracking is unclear. Instead, a switched

strategy that alternates between antagonistic muscles may be

more beneficial for limb tracking. In [30], an ad-hoc ON/OFF

switching signal was designed to control the quadriceps based

on a switching curve that is a function of the knee angle.

In [31], [32], cadence-based switching control algorithms

were designed for quadriceps, hamstrings, and gluteal muscles

during FES cycling. While both co-activation and switched

strategies have respective advantages, neither of these designs

have considered EMD in the design.

This paper, for the first time, develops and validates a

continuously switched strategy to alternately stimulate the

biceps and triceps muscles for elbow regulation and tracking.

The key contribution of this paper is the design of a continuous

switched mapping between the antagonistic muscle stimulation

and position tracking error. Further, a proportional derivative

(PD)-type closed-loop controller with a delay compensation

(DC) term deals with EMDs in the antagonistic muscle pair.

Unlike previous controllers that produce joint flexion with

the help of gravity [13], [14], [33] or controlled by correc-

tional forces such as robot arms [24], [27], the developed

controller will flex and extend a joint by stimulating agonist

and antagonist muscles. The controller is designed to smoothly

transition between the stimulation of the antagonist muscles

and can be made arbitrarily fast or slow by adjusting the

control gains. The work substantially extends our preliminary

work in [34] with an improved switching signal design and

addition of experimental validation on four human participants

without disabilities. The proposed controller is also com-

pared with a classical PD controller with an adhoc switching

law. Parametric uncertainty and additive bounded disturbance

were included in the dynamics for the control development

and subsequent stability analysis. Lyapunov Krasovskii (LK)

functionals were constructed to cancel the delay terms. The

associated Lyapunov-based stability analysis proved semi-

global uniformly ultimately bounded tracking.

II. DYNAMIC MODEL OF UPPER LIMB WITH GRAVITY

COMPENSATION

The uncertain nonlinear musculoskeletal dynamics are mod-

eled similar to [9], and are defined as

MI(q̈)+Me(q)+Mv(q̇)+d(t) = T1 (t− τ)−T2 (t− τ) (1)

where MI(q̈) ∈ R denotes the inertial force about the joint,

and Me(q) ∈ R denotes the elastic effects due to joint

stiffness. Mv(q̇) ∈ R denotes the viscous effects from damping

in the musculoskeletal system. In (1), d(t) ∈ R represents any

bounded unknown disturbance and/or unmodeled dynamics,

and T1 (t− τ) ∈ R denotes torque produced due to joint

extension while T2 (t− τ) ∈ R denotes torque produced due

to joint flexion. τ ∈ R
+ denotes the constant EMD value.

The inertial effects in (1) are modeled as

MI(q̈) , Jq̈, (2)

where J ∈ R
+ is the moment of inertia of the limb. The elastic

effects due to joint stiffness are modeled as

Me(q) , k1 (exp (−k2q)) (q − k3) , (3)

where k1, k2, k3 ∈ R
+ are unknown parameters.

Mv(q̇) , B1 tanh (−B2q̇) +B3q̇, (4)

B1, B2,B3 ∈ R
+are unknown coefficients and q, q̇, q̈ ∈ R

are the respective angular position, velocity, and acceleration

of the limb.

The torque produced for extension/flexion is related to the

musculotendon force generated by FES and is defined as

Ti (t− τ) , ςi(q)FT,i(q, q̇, ui), i = 1, 2, (5)

where ςi(q) ∈ R is the positive moment arm for the corre-

sponding muscle of the limb and FT,i(q, q̇, ui) ∈ R is the

musculotendon force generated by the stimulated muscle. The

musculotendon force FT,i ∈ R in (5) is defined as

FT,i(q, q̇, ui) , ηi(q, q̇)ui (t− τ) , i = 1, 2, (6)

where ηi(q, q̇) ∈ R
+, i = 1, 2 denotes an unknown nonlinear

function of the force-length/force-velocity relationship, and

ui (t− τ) ∈ R is the normalized stimulation input with EMD.

The unknown functions in the active dynamics of the muscles

are grouped in Ωi ∈ R as

Ωi , ςi(q)ηi(q, q̇), i = 1, 2. (7)

The normalized stimulation input, ui(t), is represented by a

piecewise linear muscle recruitment function [16], defined as



ui(t) =











0, vi(t) ≤ Vithresh
vi(t)

Visat−Vithresh
, Vithresh < vi(t) < Visat

1, vi(t) ≥ Visat

, (8)

where Vithresh, Visat ∈ R
+, i = 1, 2 are the threshold

and saturation constants. As both stimulation intensity and

pulse width can be used to increase the muscle recruitment,

the stimulation input is generalized to represent either the

stimulation intensity (i.e. voltage in the voltage modulation

case or current amplitude in the current modulation case) or

the pulse width.

The following assumptions and notation were made for the

control development and stability analysis.

Assumption 1: Signals q and q̇ denote the generalized

position and velocity and are measurable.

Assumption 2: The nonlinear functions ηi (q, q̇) and mo-

ment arm ςi (q) are non-zero, positive, bounded functions,

and their first time derivatives exist and are continuous and

bounded based on the data. As defined in [35], the moment

arm is a continuously differentiable, positive, and bounded

function of q(t) with a bounded first time derivative. The

uncertain nonlinear function ηi(q, q̇) represents the muscle

force–length and muscle force-velocity relationships. Based on

the definitions of these relationships in [9], [12], [36], [37],

ηi (q, q̇) can be assumed as continuously differentiable, non-

zero, positive, and bounded functions. Thus Ωi in (7) is also

non-zero, positive bounded and its first time derivative exists,

is bounded and continuous. It can be bounded as

Ωi ≤ ζΩi
, i = 1, 2 (9)

where ζΩi
∈ R

+ is a constant.

Assumption 3: The EMD, denoted by τ , is assumed to be a

known constant. Factors that may cause it to be a time-varying

phenomenon such as fatigue [38] are ignored. Similarly, the

EMD in the opposing muscles could be different, but upper

bounded. For easing the control development and the stability

analysis of the proposed controller, we assume that the EMD

values in the antagonistic muscles are same. Also see Remark

1.

Assumption 4: The desired trajectory and its time deriva-

tives qd, q̇d, q̈d ∈ R are bounded and continuous.

Notation: A delayed state in the subsequent control devel-

opment and analysis is denoted as x (t− τ) or as xτ while a

non-delayed state is denoted as x(t) or as x. Any term, X ,

multiplied by the inverse of another term, B, is denoted as a

subscript (i.e., XB).

The dynamic model in Eqs. (1)-(8) is represented by an

input delayed piecewise linear muscle recruitment curve whose

normalized stimulation variable drives the second order mus-

culoskeletal differential equation. Instead of an input delayed

piecewise linear muscle recruitment curve, other models also

exist for mapping static muscle recruitment curve; e.g., mod-

ified Hill Huxley models [39], [40], Hammerstein models

[26], and recently logistic function [11]. The piecewise linear

function used in the paper indeed captures the static muscle

recruitment and allows one to design a controller that accounts

for stimulation threshold and EMD.

Usually, the muscle recruitment function is cascaded to a

first order muscle activation dynamics. In the above model,

we neglected the first order muscle activation dynamics that

cascades to the second order musculoskeletal dynamics. How-

ever, in our recent work [18] we presented a control design

of a single muscle actuated FES control that considers both

the first order muscle activation dynamics and the second-

order musculoskeletal dynamics. The approach in [18] uses

dynamic surface control design to compensate for EMD for

the third order musculoskeletal dynamics. For the sake of a less

complex control development, the muscle activation dynamics

was neglected and the control design follows second-order

musculoskeletal dynamics of the input delayed antagonistic

muscles. Please note that muscle activation dynamics has

been ignored in earlier works as well; e.g., see work in [41],

where direct muscle activation levels (ignored the first order

dynamics) were designed for optimal control formulation.

Overall, our model representation allows control develop-

ment and analysis using the Lyapunov stability approach, and

especially enable the use of LK functionals to design an input

delay compensation term. We also feel that using the approach

in our previous work [18], the results in our current work can

be extended in the future for a third order muscle model.

III. CONTROL DEVELOPMENT

A. Control objective

The control objective is to force the limb angle, q(t), to track

a bounded desired trajectory, qd(t). Therefore, the position

tracking error, e1(t) ∈ R, and auxiliary tracking error, e2(t) ∈
R, are defined as

e1(t) , qd − q, (10)

e2(t) , ė1 + αe1 − βez, (11)

where α, β ∈ R
+ are control gains. The auxiliary signal,

ez ∈ R, for the EMD compensation is defined as

ez(t) =

∫ t

t−τ

v (θ) dθ, (12)

Based on these tracking error signals, below we introduce

the controller for the EMD compensation and continuous

switched control between the antagonistic muscles.

B. Controller and Switched Mapping

The controller denoted by v(t) ∈ R is defined as

v(t) = Ke2, (13)

where K ∈ R
+ is a known constant control gain and is

decomposed by

K = K1 +K2 +K3 (14)

where K1, K2, K3 ∈ R
+ are positive constants designed for

the stability analysis.

Next, we introduce two switching signal operators to

smoothly transition between the stimulation of the flexor and

extensor muscles. The switching operators S1(e2) : R →



[ 0, 1 ] and S2(e2) : R → [ −1, 0 ] that map the input

error signal e2(t) to the muscle choice are defined as

S1(e2) ,
1+tanh(κe2)

2 ,

S2(e2) , − 1−tanh(κe2)
2 , (15)

where κ ∈ R
+ is a control gain that determines the transition

rate.

To ease in the control development, we introduce following

definitions to consider the stimulation input and the recruit-

ment characteristic in (8). The stimulation inputs to the triceps

muscle v1(t) ∈ R
+ and the biceps muscle v2(t) ∈ R

+ are

allocated via the switching signals as

v1, S1v + V1thresh,

v2, S2v + V2thresh, (16)

Thus, using the definition of the normalized simulation (8),

ui ∈ R
+, i = 1, 2, can be expressed as

ui =











0, vi ≤ Vithresh
Sivi

Visat−Vithresh
, Vithresh < vi < Visat

1, vi ≥ Visat

, (17)

The control block diagram is shown in Fig.1.

Figure 1. Block diagram of control algorithm. The PD-DC controller gives
a control input v(t) in (13) and it is allocated to biceps (as v2 in (16)) and
triceps (as v1 in (16)) muscles based on the switching function S1 and S2.

C. Open Loop Error Development

After multiplying the time derivative of (11) with the

moment of inertia, J , in (2), substituting the dynamics in

(1), and using (6) and (7), the open loop error dynamics is

expressed as

Jė2 =Jq̈d +Me +Mv −Ω1u1τ +Ω2u2τ (18)

+ d+ Jαė1 − Jβ (v − vτ ) .

By substituting (17), the (18) can be written as

Jė2 = Jq̈d +Me +Mv + d− vτΩ

+Jαė1 − Jβ (v − vτ ) (19)

where Ω ∈ R
+ is defined as

Ω ,
Ω1S1τ

V1sat − V1thresh
− Ω2S2τ

V2sat − V2thresh
, (20)

and can be bounded as 0 < Ω < Ω̄. Thus, dividing the open

loop error dynamics by Ω,

JΩė2 =JΩq̈d +MeΩ +MvΩ + dΩ − vτ (21)

+ JΩαė1 − JΩβ (v − vτ )

where

JΩ =
J

Ω
, MeΩ =

Me

Ω
, MvΩ =

Mv

Ω
, dΩ =

d

Ω
.

J1 ≤ JΩ ≤ J2. (22)

To facilitate the subsequent stability analysis, the error be-

tween β and J−1
Ω is defined by

ξ = β − Ω

J
, (23)

where ξ ∈ R
+ satisfies the following:

|ξ| ≤ ξ̄ (24)

and ξ̄ ∈ R
+ is a known constant. (21) can be expressed as

JΩė2 = JΩq̈d+MeΩ+MvΩ+dΩ−v+JΩαė1−JΩξ (v − vτ )
(25)

D. Closed Loop Error Development

After using the control input (13), the closed loop error

system can be written as

JΩė2 =− 1

2
J̇Ωe2 + ψ̄ + ψ̃ − e1 −KJΩξ (e2 − e2τ )−Ke2,

(26)

where the following auxiliary signals as ψ̃ (e1, e2, t, τ),
ψ̄ (q, q̇, qd, q̇d, q̈d, t) ∈ R are used

ψ̃ = ψ − ψd, ψ̄ , ψd + dΩ. (27)

ψ ,
1

2
J̇Ωe2 + JΩq̈d +MeΩ +MvΩ + JΩαė1 + e1,

ψd , JΩq̈d +MeΩ +MvΩ, (28)

By applying the Mean Value Theorem, ψ̃ (e1, e2, , t, τ) can

be upper bounded by state-dependent terms as

∣

∣

∣
ψ̃
∣

∣

∣
≤ ρ (‖z‖) ‖z‖ , (29)

and ρ (‖z‖) ∈ R is a positive, globally invertible non-

decreasing function and z ∈ R
3 is defined as

z(t) , [e1, e2, ez]
T
. (30)

The second auxiliary signal, ψ̄ (q, q̇, qd, q̇d, q̈d, t), can be

upper bounded as
∣

∣ψ̄
∣

∣ ≤ ζS , (31)

where ζS ∈ R
+ is a constant.



IV. STABILITY ANALYSIS

To perform stability analysis, we define y(t) ∈ D ⊂ R
4 as

y ,

[

e1, e2,
√
P ,

√

Q
]T

, (32)

where e1 and e2 are the error terms defined in (10) and (11),

P (v, t, τ) ∈ R and Q (e2, t, τ) ∈ R are LK functionals that

were designed based on the subsequent stability analysis

P = ω

∫ t

t−τ

(
∫ t

s

v (θ) 2dθ

)

ds, (33)

Q =
ξ̄J2K

2

∫ t

t−τ

e2 (θ)
2dθ, (34)

where ω ∈ R
+ is a known constant. These LK functionals

are designed for delay compensation analysis and similar

functional have been used in our previous studies [13], [14],

[18], [42].

Theorem 1. The controller given in (13) ensures semi-global

uniformly ultimately bounded (UUB) tracking

|y (t)| ≤ ǫ0 exp (−ǫ1t) + ǫ2, (35)

ǫ0, ǫ1, ǫ2 ∈ R
+ denotes constants, provided the control

gains α, β, and K introduced in (11) and (13) are selected

according to the sufficient conditions

α >
β2γ2

4
, (36)

K3 > ωK2τ + 2ξ̄J2K,

where the known positive constants β, ξ̄, J2, K, K3, ω are

defined in (11), (24), (22), (13), (14) and (33), respectively,

τ is the input delay, and γ ∈ R
+ is a subsequently defined

constant.

Proof: A positive definite Lyapunov functional candidate

V (y, t) : D×[0 ∞) → R is defined as

V ,
1

2
e21 +

1

2
JΩe

2
2 + P +Q, (37)

and satisfies the following inequalities

λ1 ‖y‖2 ≤ V ≤ λ2 ‖y‖2 , (38)

where λ1, λ2 ∈ R
+ are known constants.

Taking the time derivative of (37) and using the Leibniz

integral rule to differentiate P and Q in (33) and (34), we get

V̇ = e1ė1 +
1

2
J̇Ωe

2
2 + JΩe2ė2 +

ξ̄J2K

2

(

e22 − e22τ
)

(39)

+ωτv2 − ω

∫ t

t−τ

v (θ) 2dθ

= −αe21 + βeze1 + e2

[

ψ̄ + ψ̃ −KJΩξ (e2 − e2τ )

−Ke2] +
ξ̄J2K

2

(

e22 − e22τ
)

+ ωτv2

−ω
∫ t

t−τ

v (θ) 2dθ

≤ −αe21 − (K +KJΩξ) e
2
2 + |e2| ρ (‖z‖) ‖z‖ (40)

+|e2|ζs + β|e1||ez|+KJΩξ|e2τ ||e2|

+
ξ̄J2K

2

(

e22 − e22τ
)

+ ωτv2 − ω

∫ t

t−τ

v (θ) 2dθ.

Applying Young’s Inequality the following terms in (40) can

be bounded as

β|e1||ez| ≤
β2γ2

4
e21 +

1

γ2
e2z, (41)

|e2τ ||e2| ≤
1

2
e22τ +

1

2
e22, (42)

where γ ∈ R
+ is a known constant that is selected as

γ >

√

2τ

ω
. (43)

Further, by using the Cauchy Schwartz inequality, the follow-

ing term in (41) can be bounded as

e2z ≤ τ

∫ t

t−τ

v (θ) 2dθ. (44)

After adding and subtracting τ
γ2

∫ t

t−τ
v (θ) 2dθ to (40) and

utilizing (41), (42) and (44), (40) can be expressed as

V̇ ≤−
(

α− β2γ2

4

)

e21 −
(

K − 2KJ2ξ̄ − ωK2τ
)

e22

− 1

τ

(

ω − 2τ

γ2

)

e2z + |e2|ρ (‖z‖) ‖z‖+ ζS |e2|

− τ
γ2

∫ t

t−τ

v (θ) 2dθ. (45)

By using (14), (30) and completing the squares, the inequality

in (45) can be further upper bounded as

V̇ ≤−
(

α− β2γ2

4

)

e21 −
(

K3 − 2KJ2ξ̄ − ωK2τ
)

e22

− 1

τ

(

ω − 2τ

γ2

)

e2z +
(

|e2|ρ (‖z‖) ‖z‖ −K1e
2
2

)

− τ
γ2

∫ t

t−τ

v (θ) 2dθ +
(

ζS |e2| −K2e
2
2

)

≤−
{

Λ− ρ2 (‖z‖)
4K1

}

‖z‖2 − τ
γ2

∫ t

t−τ

v (θ) 2dθ +
ζ2S
4K2

,

(46)

where

Λ ,min

[

α− β2γ2

4
, K3 − ωK2τ − 2ξ̄J2K,

1

τ

(

ω − 2τ

γ2

)]

. (47)

Because
∫ t

t−τ

(
∫ t

s

v(θ)2dθ

)

ds ≤ τ

∫ t

t−τ

v (θ) 2dθ, (48)

after utilizing (33), (34) and (13)

− τ

2γ2

∫ t

t−τ

v (θ) 2dθ ≤ − P

ωγ2

− τ

2γ2

∫ t

t−τ

v (θ) 2dθ ≤ − Kτ

γ2ξ̄J2
Q (49)



the inequality in (46) can be rewritten as

V̇ ≤−
(

Λ− ρ2 (‖z‖)
4K1

)

‖z‖2 − Kτ

γ2ξ̄J2
Q (50)

− 1

2ωγ2
P +

ζ2S
4K2

.

Using the definition of z(t) in (30) and y(t) in (32), the

expression in (50) can be upper bounded as

V̇ ≤ −µ̄ ‖y‖2 −
(

Λ− ρ2 (‖z‖)
4K1

)

‖ez‖2 +
ζ2S
4K2

, (51)

where µ̄(||z||) ∈ R
+ is

ϑ ≤ µ̄ , min

[

Λ− ρ2 (‖z‖)
4K1

,
Kτ

γ2ξ̄J2
,

1

2ωγ2

]

for some ϑ ∈ R
+. In order to further bound (51), Λ− ρ2(‖z‖)

4K1

>

0 is required, which gives ‖z‖2 < ρ−2
(

2
√
ΛK1

)

. Consider a

set S defined as

S ,















y (t) ∈ R4| ‖y(0)‖ <

√

λ1

λ2
min

{

1,
2Kτ

ξ̄J2

}

ρ−2
(

2
√

ΛK1

)

− ζ2S
4K2ϑ















,

(52)

By further utilizing (38), the inequality in (51) can be ex-

pressed as

V̇ ≤ − ϑ

λ2
V +

ζ2S
4K2

. (53)

The linear differential equation in (53) can be solved as

V ≤ V (0) e−
ϑ
λ2

t +
ζ2Sλ2

4K2ϑ

[

1− e
− ϑ

λ2
t
]

, (54)

provided the control gains satisfied the sufficient conditions

(36), the results (35) can be obtained from (54). Based on the

definition of y(t), the results in (54) indicates that e1, e2 ∈ L∞

in S.

Remark 1. EMD of antagonist muscles are generally different.

The above stability analysis was performed using Assumption

3 that EMD of the antagonist muscles is known and the

same. In our previous result, we have shown a PID-type delay

compensating controller to be robust to an unknown delay

value [43]. Using a similar stability analysis in [43], sufficient

gain conditions can be derived to show that the proposed delay

compensating controller in this paper is robust to different

EMD values in the antagonistic muscles.

For implementation, the best way to apply the sufficient gain

conditions is to use a known upper bound of the EMD if the

delay value is uncertain. The control gain α performs like a

proportional gain. α is related to γ, which is a known constant

that can be selected based on the upper bound of EMD.

V. EXPERIMENTS

This study was approved by the Institutional Review Board

(IRB) at the North Carolina State University (IRB approval

number: 20575). Four participants without disabilities signed

informed consent forms to participate. The study inclusion

criteria were: 1) age of 18 - 40 years, 2) able to perform upper

limb movements, and 3) able to perform movements with

FES. The study exclusion criteria were: 1) persons with heart

conditions, 2) absent sensation in upper limbs, 3) history of

a neurological or an orthopedic condition that impairs normal

upper limb movement, and 4) pregnant females.

The effectiveness of the switching controller was validated

by controlling the FES input to the biceps and triceps of the

four participants. A single joint one-degree of freedom elbow

flexion and extension motion was performed in the horizontal

plane, which can be seen in Fig. 1. The gravitational force was

compensated by the SaeboMas Mini arm supporter. The par-

ticipant was equipped with a wearable orthosis. The structure

of the test bed is shown in Fig. 2. An incremental optical

encoder (Hengxiang, CN) with 1024 pulses per revolution

resolution was equipped onto the joint that measured the angle

during the testing period. The control law was based on the

error between the measured angle and the desired angle. A

RehaStim 8-channel stimulator (Hasomed GmbH) was used

to generate the current that was applied to the muscles.

The current was set with 35 Hz and varying pulse widths

for different participants. During the process, the participants

were instructed to relax and avoid voluntary movement during

the electrical stimulation. To avoid voluntary force by the

participants, they were not allowed to view the desired and

real trajectory at any time.

Figure 2. (a) An illustration of the test bed. The participants wore an arm
orthosis that comprises of an arm orthosis and a SaeboMas Mini arm system.
The arm orthosis spanned the elbow and had an encoder to measure the elbow
angle. The SaeboMas Mini arm system was used for gravity compensation
and for keeping the lower arm movement in the horizontal plane. (b) Zoomed
in illustration of electrodes placement on the biceps muscle. (c) Experimental
determination of an EMD value.

A. Experimental Determination of EMD Values

EMD values in the antagonist muscles were determined

prior to the experiments. To identify the EMD τ, each par-

ticipant wore the arm orthosis and was tested with a step

input stimulation. As is seen in Fig. 2 (c), the delay in the

arm movement was approximately assumed as the EMD. Each

participant had three trials on both biceps and triceps and EMD



values were averaged and used in the controller. We used the

pulse train with an amplitude of 10 mA, frequency of 20 Hz

and pulse width with 80% of each subject’s saturation level.

The stimulation was designed with 3 seconds on and 2 seconds

off repeated patterns, and we measured the EMD values by

averaging all the EMDs along the experiment.

For the sake of curiosity, we also measured EMD values

when an antagonistic muscle was co-activated. We performed

additional experiments to verify whether the EMD would

disappear during co-contraction. A stimulation intensity at

80% of the saturation value was chosen to stimulate the

biceps and triceps muscles under these two conditions: when

the antagonist muscle was not co-activated and when the

antagonist muscle was co-activated at low stimulation values.

Figure 3. The averaged EMD with standard deviations for the biceps and
triceps among the four participants.

EMD Values

Participant ID Muscle
EMD (ms)

Single Muscle Co-activation

S1

Biceps 118±11 125±7
Triceps 131±14 142±13

S2

Biceps 113±15 155±19
Triceps 102±11 102±10

S3

Biceps 103±7 110±9
Triceps 103±8 100±13

S4

Biceps 103±14 122±17
Triceps 97±5 101±9

Threshold and Saturation Values

Participant ID Muscle Threshold (µs) Saturation (µs)

S1

Biceps 160 420
Triceps 170 450

S2

Biceps 150 430
Triceps 200 450

S3

Biceps 100 450
Triceps 120 450

S4

Biceps 100 410
Triceps 90 390

Table I
THE AVERAGED EMD WITH STANDARD DEVIATIONS, SATURATION AND

THRESHOLD PULSE WIDTH FOR THE BICEPS AND TRICEPS AMONG THE

FOUR PARTICIPANTS.

We measured EMD values in both conditions. The antago-

nist muscle was stimulated at a constant level that is the sum

of 10% of its saturation level and its stimulation threshold.

Contrary to our hypothesis that EMD would disappear due to

co-activation, we found the delay in the co-activation cases

to be similar and even bigger than the no co-activation cases.

The averaged EMD values with their standard deviations for

the four participants are shown in Figure 3 and Table I.

Our results show that EMD is indeed present even during

co-contraction. Therefore, it would be important to consider

during FES control of antagonistic muscles.

Remark 2. A common EMD value during FES-elicited stim-

ulation could range between 60-150 ms [38], [44], [45].

Literature usually report different methods to measure delay

such as FES-invoked EMG onset. Unlike in the EMG-based

approach we used the time difference between the stimulation

trigger and an observable finite angle change from the encoder.

The methods employed to measure delay are more relevant for

the control objective. The EMD values from our measurements

are in the range of 97-131 ms for a single muscle, which are

similar to the values reported in our previous papers [13], [14].

B. FES Threshold and Saturation Identification

As is shown in (17), a normalized input was used in the

controller. Therefore, the saturation and threshold stimulation

levels were identified for the participants. The threshold is the

minimum current pulse width required to produce an increase

in the muscle force and the saturation is the minimum current

pulse width at which there is no considerable increase in force

or a desired maximum force is achieved [12]. To identify the

threshold and saturation values, a pulse train of FES with

increasing pulse widths was applied to biceps and triceps

separately. The elbow joint angle and filtered acceleration from

the encoder were measured. The filtered acceleration was used

as the surrogate of the generated force to identify the threshold

and saturation values. The identification results are given in

Table I.

C. Tracking Performance Results

After the identification of EMD and the threshold and satu-

ration value for the biceps and triceps of different participants,

the switching controller was tested on the participants. The

control objective was to track a desired sinusoidal trajectory.

The controller’s performance was tested for a desired trajec-

tory with a constant 4 second period and was repeated eight

times during each test. Each participant was provided a rest

time of 5 seconds between two testing cycles. The range

of angle movement was between 0° to 60° and the testing

duration of each trial was 32 seconds. Each participant had a

one minute break between two adjacent trials. To compare the

performance of the new switching controller, the same tests

were performed on a classical PD controller with an ad hoc

switched mapping (PD-A).

The PD-A control was designed as:

v = K(αe1 + ė1)
△
= KeII

where e1 is in (10). An ad hoc switching function was designed

based on the sign of eII .

S1 (eII) =

{

1, eII > 0

0, eII < 0
, S2 (eII) =

{

0, eII > 0

−1, eII < 0



It follows the same stimulation normalization rules as in (16)

and (17), but it did not consider the EMD.

A limitation of the experiments with FES on human par-

ticipants is that the gain tuning procedure takes time and

can be different from person to person. It may cause muscle

fatigue and discomfort for participants during this procedure.

To mitigate this issue, the controller was tuned on a separate

day to find initial control gains that gave acceptable results.

Then on a separate day, the experiments started with the

identified initial gains, and the gains needed only minor tuning.

There are three control gains to be tuned: K is related to

both proportional and differential gain, α is related to the

proportional gain and β is related to the delay compensation.

To tune the PD-A controller, K and β were firstly set to

be zero and α was increased until the output elbow angle

oscillated. Then K was gradually increased until the output

was acceptably near its reference. For PD-A controller, the

control gain β was not included. Then we tuned the PD-DC

controller starting with the previous control gains. We grad-

ually increased α to make the output oscillate and increased

the delay compensation gain β to lower the overshoot. Finally

gain K was increased to achieve a good tracking result. The

overall gain tuning process lasted approximated 30 minutes.

The electrode placements may change during different vis-

its. To minimize this effect, the position of the electrode pads

were marked by a pen and the participants were asked not

to wash them off. The second visit was carried out shortly

after the first trial to make sure the markings were still

present. To further confirm the position, the old positions were

photographed and compared for the second visit.

Some experimental results can be found in Fig. 4. The re-

sults successfully illustrate the ability of the PD-DC switching

controller to track the desired trajectory. The root mean square

error (RMSE), the root mean square and the maximum steady

state errors and averaged input to two antagonistic muscles of

the four participants under two different control strategies are

listed in Table II.

The root mean square errors (RMSEs) of the four subjects

range from 6.31 degrees to 10.36 degrees. The steady-state

error is defined as the error that occurs after 8 seconds of

the trial. The maximum steady-state error is defined as the

maximum absolute value of error during that time periods.

The RMS steady-state errors range from 5.6 degrees to 9.58

degrees. Comparing to the PD-A controller, the RMSE, SSE

and the maximum SSE of the PD-DC controller were reduced

by 17.3%, 25.6% and 28.6%. A Shapiro-Wilk test demon-

strated that the tracking error data were normally distributed.

Therefore, we performed a paired Student’s t-test to compare

the PD-DC controller and classical PD controller. The p-value

was determined less than 1e − 5, which means the PD-DC

controller has a statistically significantly smaller tracking error

compared to the classical PD controller. Table II shows that

the PD-DC controller decreased the error both in transient

and steady state. This is an expected outcome that validates

the PD-DC control performance.

D. Disturbance Rejection and Fatigue Experimental Results

To further illustrate the performance of the developed con-

troller, experiments were also conducted to validate distur-

bance rejection. The elbow was first regulated to a desired an-

gle and an external disturbance was applied to the participant’s

hand. The disturbance was bidirectional to test the controller’s

ability to reject the disturbance in both directions. This test

result is shown in Fig. 5 and Table III. The disturbance was

applied twice for both tasks. The disturbance was applied to

the end effector, by an impulse torque from the tester to deviate

the elbow angle from the steady state. The averaged settling

time (5%) after disturbance is from 3.4 s to 4.2 s. In the

case of disturbances, due to its ability to continuously engage

both triceps and biceps muscles, the controller would enable

immediate return to the desired holding position, irrespective

of the direction of the disturbance. This bidirectional distur-

bance rejection ability is unlike a classical control design for

a single arm extension control that would not be able to reject

an extensor disturbance. This controller thus would allow a

superior task regulation like maintaining the elbow joint in a

certain pose; e.g., while holding an object.

We also extended the experimental time from 32 seconds to

2 minutes to test the control performance in muscle fatiguing

conditions. The tracking results and the inputs to the muscles

are shown in Fig. 6 and Table IV. From this figure, we can

see the controller can track the desired trajectory well for the

first 70 seconds. We consider that during this time duration,

the muscles may not have fatigued. The RMSE during this

time period is 6.68 degrees. The controller can be applied to

unfatigued muscles to generate continuous bidirectional mo-

tion with the ability to reject bidirectional impulse disturbance.

However, after 70 seconds, the maximum angle could not

reach the desired angle because of the muscle fatigue and

follows a decaying trend. Therefore, the input plot shows

that more stimulation was applied to the muscles to decrease

the error. After muscles became fatigue, the averaged biceps

and triceps muscle input was increased by 158% and 75%

respectively. The overall RMSE was increased by 130%. This

switching controller uses a high gain algorithm to obtain a fast

transition rate and less overshoot during the tracking. Thus,

the controller ineffectively deals the muscle fatigue-induced

effects.

Settling Time [s]
Mean Settling Time

After Disturbance [s]

No Disturbance 7.9 N/A

Flexor Disturbance 8.3 3.4

Extensor Disturbance 6.3 4.2

Table III
SETTLING TIME AFTER A DISTURBANCE TO THE SUBJECT’S HAND



Figure 4. This figure shows the control performance for subject 1 under two different controllers, PD-A controller (top plot) and the PD-DC switching
controller (bottom plot). The left two figures show the elbow angle during the control. (a) Tracking performance for PD-A; (d) Tracking performance for
PD-DC. The dashed blue curve is represented for the desired trajectory and the solid red curve is represented for the real trajectory. The middle two figures
show the tracking errors. (b) Tracking error for PD-A; (e) Tracking error for PD-DC. The two right figures are the FES pulse widths for biceps (red) and
triceps (blue) muscles. (c) FES input (pulse width) for PD-A; (f) FES input (pulse width) for PD-DC.

Subject ID
RMSE [Deg.] SSE [Deg.] Max SSE [Deg.]

PD-A PD-DC PD-A PD-DC PD-A PD-DC

S1 8.28±1.96 6.31±0.99 7.72±1.68 5.6±0.87 23.81±2.77 15.31±1.01
S2 10.36±2.09 8.92±1.88 8.43±2.00 5.94±1.28 25.94±2.75 14.88±1.53
S3 9.93±1.01 9.59±0.81 8.78±1.78 6.53±1.26 27.46±3.22 22.83±3.75
S4 10.70±2.32 7.65±1.21 9.58±1.86 7.61±1.53 26.65±2.91 21.28±3.82

Average 9.81±1.85 8.11±1.22 8.63±1.83 6.42±1.23 26±2.91 18.57±2.53

Table II
THIS TABLE SHOWS THE RMSE, STEADY STATE ERROR (SSE) AND THE MAXIMUM SSE WITH STANDARD DEVIATIONS FOR EACH PARTICIPANT AS WELL

AS THE AVERAGED RESULTS. PD-A REFERS TO THE AD HOC PD CONTROLLER, AND PD-DC REFERS TO THE PD CONTROLLER WITH A DELAY

COMPENSATOR, WHICH IS DESIGNED IN THIS PAPER.

Figure 6. (a) Tracking performance and (b) the normalized FES input of the
2-minute test. The shaded area means that the muscles were not yet fatigued.

Before Fatigue During Fatigue Entire Duration

RMSE [Deg.] 6.68 27.4 15.34

Mean ue 0.12 0.21 0.16

Mean uf 0.14 0.33 0.22

Table IV
THE CONTROL PERFORMANCE IN THE 2-MINUTE EXPERIMENT

VI. DISCUSSION AND CONCLUSION

In this paper, a novel FES switching controller with input

delay compensation for antagonistic muscles was designed.

The controller provided an arbitrary short transition period

when two antagonistic muscles were simultaneously activated

to ensure that there were no discontinuities in muscle re-

sponse so that the elbow could flex and extend smoothly.

A Lyapunov-Krasovskii functional was used to prove that

the developed controller yields ultimately bounded tracking

of a desired trajectory provided the control gains satisfied

sufficient conditions. The experiments were conducted on four

participants without disabilities. Experimental results indicate

that the controller is robust and could switch between opposing

muscles without affecting the tracking performance and UUB

tracking was realized during the experiments. Comparing to

the ad-hoc switching controller, the new controller obtained a

statistically significant reduction in the tracking RMSE. The



Figure 5. This figure shows the controller’s ability to reject the disturbance from both directions. The desired trajectory (red dashed) is a step function with
an amplitude of 60°. The tracking performance is represented in solid blue curve. The red arrows show when the impulse disturbance was applied to the
subject. Figure (a) is the regulation task without disturbance. Figure (b) has a disturbance that flexed the elbow. Figure (c) has a disturbance that extended
the elbow. Figures (d) - (f) show the FES input of these three cases.

controller can thus be applied to horizontal reaching tasks. The

controller showed the ability to reject the disturbance from

both directions. This means it can be used in people with

paralyzed or weak antagonistic muscles. However, a limitation

of this controller is that if lower motor neurons that control a

particular joint are damaged for any reason, FES may not be a

feasible way to control the joint. Future work will explore new

analysis methods that allow for optimal adaptive controllers to

be included in the switching design and also compensate for

the muscle fatigue. We will also include the muscle fatigue

model and consider the fatigue effect in the muscle activation

function. FES control approaches in [12], [18], [43] can extend

the designed FES controller in this paper to compensate for

additional fatigue, muscle activation, and unknown EMD in

the dynamics. Separately, we also showed that EMD values

were not significantly reduced by adding co-activation to the

muscles compared to stimulating a single muscle during the

experiment. Notably, other works on co-activated muscles

[11], [28], [29], [46] did not explicitly determined if EMD

would disappear due to co-activation. Our study shows that

the EMDs are indeed present in the co-activated muscle

pair of people with no disabilities. However, people with

disabilities were not involved in our study. It is possible

that due to spastic muscles or impaired proprioception, co-

activated muscles of individuals with disabilities may have

additional or diminished effects of EMD. In the future, we

will investigate how in people with disabilities, co-activation

of muscles affects EMD. We also noted that EMD of two

different muscles may be slightly different in measurement or

may be time-varying during the experiments. Future work will

include compensation for time-varying unknown delays and

experiments will be performed on subjects with SCI. Further

we would consider including new muscle recruitment models,

e.g. in [11], and using the control methodology in [18] to

include the muscle activation dynamics in our future work on

antagonistic muscle control.
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“Optimal control of walking with functional electrical stimulation: a
computer simulation study,” IEEE Trans. Rehabil. Eng., vol. 7, no. 1,
pp. 69–79, 1999.

[42] N. Sharma, S. Bhasin, Q. Wang, and W. E. Dixon, “Predictor-based
control for an uncertain euler–lagrange system with input delay,” Auto-

matica, vol. 47, no. 11, pp. 2332–2342, 2011.
[43] N. Alibeji and N. Sharma, “A PID-type robust input delay compensation

method for uncertain euler–lagrange systems,” IEEE Trans. Control Syst.

Technol., vol. 25, no. 6, pp. 2235–2242, 2017.
[44] P. Cavanagh and P. Komi, “Electromechanical delay in human skeletal

muscle under concentric and eccentric contractions,” Eur. J. Appl.

Physiol. Occup. Physiol., vol. 42, no. 3, pp. 159–163, 1979.
[45] S. Zhou, D. L. Lawson, W. E. Morrison, and I. Fairweather, “Electrome-

chanical delay in isometric muscle contractions evoked by voluntary,
reflex and electrical stimulation,” Eur. J. Appl. Physiol. Occup. Physiol.,
vol. 70, no. 2, pp. 138–145, 1995.

[46] N. M. Oomen, N. P. Reeves, M. C. Priess, and J. H. van Dieën, “Trunk
muscle coactivation is tuned to changes in task dynamics to improve
responsiveness in a seated balance task,” Journal of Electromyography

and Kinesiology, vol. 25, no. 5, pp. 765–772, 2015.


