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Abstract

Robotic assistive or rehabilitative devices are promising aids for people with neurological disorders as they help

regain normative functions for both upper and lower limbs. However, it remains challenging to accurately estimate

human intent or residual efforts non-invasively when using these robotic devices. In this article, we propose a deep

learning approach that uses a brightness mode, that is, B-mode, of ultrasound (US) imaging from skeletal muscles to

predict the ankle joint net plantarflexion moment while walking. The designed structure of customized deep

convolutional neural networks (CNNs) guarantees the convergence and robustness of the deep learning approach.

We investigated the influence of the US imaging’s region of interest (ROI) on the net plantarflexion moment

prediction performance.We also compared theCNN-basedmoment prediction performance utilizingB-modeUS and

sEMG spectrum imaging with the same ROI size. Experimental results from eight young participants walking on a

treadmill at multiple speeds verified an improved accuracy by using the proposed US imaging þ deep learning

approach for net joint moment prediction. With the same CNN structure, compared to the prediction performance by

using sEMG spectrum imaging, US imaging significantly reduced the normalized prediction root mean square error

by 37.55% (p < .001) and increased the prediction coefficient of determination by 20.13% (p < .001). The findings

show that the US imaging þ deep learning approach personalizes the assessment of human joint voluntary effort,

which can be incorporated with assistive or rehabilitative devices to improve clinical performance based on the assist-

as-needed control strategy.

1. Introduction

The human ankle plantarflexor muscles play an essential role in the lower limbs’ activities of daily living.

For example, they provide primary mechanical propulsion force in both forward and upward directions

during walking, which is referred to as the “push-off” during the late stance phase of the gait cycle (Huang

et al., 2015b; Zhang et al., 2022b). Weakened function or dysfunction of human ankle plantarflexor

muscles due to neurological disorders and injuries such as stroke, multiple sclerosis, and spinal cord

injury, can cause significant impairment of normal walking function, like decreased plantarflexion

propulsion force, inefficient ankle mechanical power production, and reduced walking efficiency
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(Nuckols et al., 2020). Traditional treatment for ankle plantarflexion weakness primarily depends on

physical therapy, which is labor-intensive and limited by the availability of clinical professionals

(Kirshblum et al., 2007; Langhorne et al., 2011; Deng et al., 2018).

Current technological advancements to combat loss of lower limb joint function include neuroreh-

abilitative treatments such as powered exoskeletons (Ferris et al., 2005; Jamwal et al., 2012; Huo et al.,

2014; Murray et al., 2014; Jackson and Collins, 2015; Meng et al., 2016; Young and Ferris, 2016;

Esquenazi et al., 2017; Zhang et al., 2017), functional electrical stimulation (Bajd et al., 1999;Mushahwar

et al., 2007; Sharma et al., 2009; Kirsch et al., 2017; Alibeji et al., 2018b), soft exosuits (Bae et al., 2015;

Awad et al., 2017; Siviy et al., 2020), and hybrid neuroprosthesis (Ha et al., 2016; Alibeji et al., 2018a;

Kirsch et al., 2018; Tamburella et al., 2020; Molazadeh et al., 2021). Although these advancements have

gained promising progress in helping people regain or enhance the lower limb’s joint functionalities, most

of these approaches did not consider the wearers’ volitional effort or motion intent. However, a reliable

estimation of volitional effort or motion intent is essential for more intuitive and transparent control

method design, like assist-as-need (AAN) control (Pehlivan et al., 2016; Shahbazi et al., 2016). The AAN

control-based rehabilitationmethods often require the continuous estimation of humanmuscle force, joint

moment, or human-machine interaction through measuring or combining modalities such as neural

signals of the central nervous system (CNS), muscle contraction activities, joint kinematics, and joint

kinetics (Lobo-Prat et al., 2014; Zhang et al., 2020a).

Existing continuous motion intent or volitional effort prediction approaches can roughly be divided

into two categories: mechanical-type and biological-type. Mechanical-type approaches usually directly

measure the physical interaction between the human and machine through force or torque sensors

(Veneman et al., 2007; Huang et al., 2015a; Losey et al., 2018), or measure the motion intent based on

IMU sensors (Baghdadi et al., 2018; Su et al., 2019). However, the susceptibility to undesired interaction

is inevitable because of the misalignment between the human joint rotation center and the sensor’s fixture

rotation center (Zanotto et al., 2015; Gopura et al., 2016). In addition, mechanical-type approaches cannot

reveal the physiological changes in vivo. In contrast, biological-type non-invasive approaches, like

surface electromyography (sEMG) and ultrasound (US) signals, are capable of assessing the generated

neuromuscular force or joint torque. Given the fact that 30–150 ms prior to the corresponding motion is

generated, neuromuscular signals can reflect human intent or volitional effort without any information

delay or loss (Huo et al., 2014; Ding et al., 2016; Zhang et al., 2021). The continuous motion intent or

volitional effort prediction by using neuromuscular signals usually depends on nonlinear dynamic

models, like Hill-type neuromuscular model (HNM) (Lloyd and Besier, 2003; Besier et al., 2009; Sartori

et al., 2012; Sartori et al., 2014; Ao et al., 2017; Dick et al., 2017; Zhang et al., 2020a, b), that builds the

correlated mapping between the input neuromuscular signals and the output muscle force, joint moment,

or joint motion. However, the nonlinear model consists of many physiological parameters that need to be

referred from literature or determined from complex system identification, which limits the prediction

accuracy and efficiency when used for assistive or rehabilitative device control.

In recent years,machine learningmethods have beenwidely applied to achieve promising performance

in building themapping between neuromuscular signals and human joint mechanical functions, including

discrete motion pattern recognition based on sEMG signals (Bitzer and Van Der Smagt, 2006; Du et al.,

2010; Khokhar et al., 2010; Huang et al., 2011; Duan et al., 2015; Atzori et al., 2016; Hu et al., 2018;

Simao et al., 2019; Too et al., 2019; Chen et al., 2020; Coskun et al., 2021) and US signals (Sikdar et al.,

2013; Akhlaghi et al., 2016; Huang et al., 2017; McIntosh et al., 2017; Dhawan et al., 2019; Yang et al.,

2019; Rabe et al., 2020), as well as continuous kinematics or kinetics prediction (also known as regression

problems) based on sEMG signals (Zhang et al., 2012; Zhou et al., 2019; Zhang et al., 2020a; Wang et al.,

2021; Yu et al., 2021; Zhang et al., 2022a) and US signals (Guo et al., 2013; Cunningham and Loram,

2020; Zhang et al., 2020a; Jahanandish et al., 2021; Zhang et al., 2022a). Most of the conventional

machine learning methods above relied on manually selected low-dimensional explicit features from

either sEMG or US signals. For example, the most common time domain and frequency domain features

of sEMG signals include mean absolute value, wavelength, root mean square, zero crossing, slope sign

change, mean frequency, medial frequency, mean power, and frequency ratio (Phinyomark et al. 2012),
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while most common architectural and functional features of US signals include pennation angle, fascicle

length, muscle thickness, fascicle orientation, tissue displacement, tissue strain, and echogenicity

(Hodges et al., 2003; Arampatzis et al., 2006; Shi et al., 2008; Guo et al., 2010; Damiano et al., 2013;

Strasser et al., 2013; Hodson-Tole and Lai, 2019; Sheng et al., 2019; Zhang et al., 2020b).

However, the aforementioned low-dimensional explicit features are either too presumptuous or lack

meaningful information, which usually causes non-comprehensive sampling of the state-function space on

the targeted joint. In addition, as mentioned by Saxby et al. (2020), the processing of US imaging data to

derive the aforementioned explicit features is relatively subjective, time-consuming, and tedious. Therefore,

more advanced deep learning approaches have been developed to deal with the high-dimensional explicit

and/or implicit features from either sEMG or US signals for continuous joint kinematics and/or kinetics

estimation (indicating humanmotion intent or volitional effort) (Cunningham et al., 2017b; Liu et al., 2019;

Cunningham and Loram, 2020; Ma et al., 2020; Xu et al., 2020; Yu et al., 2020; Pancholi et al., 2021). For

example, in Xu et al. (2020), parallel convolutional neural networks (CNNs) were used to continuously

predict an individual finger’s force in real-time based on the temporal energy heatmap and frequency

spectrummap fromhigh-density sEMGsignals, which outperformed the prediction performance by using a

motor unit decomposition method and a conventional sEMG amplitude-based method. Yu et al. (2020)

proposed a stacked autoencoder-based deep neural network to continuously estimate wrist kinetics from

multiple degrees of freedom with the high-density sEMG signals, where the estimation performance was

better than linear regression and support vector regressionmethods. In Cunningham and Loram (2020), the

CNNs-based deep learning approach was implemented to map individual US image frames with a

contextual reference frame (prior) to absolute (drift-free) muscle states, including ankle joint angle, joint

moment, and sEMG signals from plantarflexor muscles.

The majority of aforementioned contributions by using deep learning methods focused on sEMG-

based upper limb kinematics or kinetics estimation problem, and few studies investigated a similar topic

for lower limb functional tasks. Although sEMGhas beenwidely implemented to non-invasivelymeasure

muscle contraction and thus estimate the volitional effort or motion intent, some inherent challenges still

exist, including high noise, cross-talk between adjacent muscles, the inability to measure deep muscle,

and sensitivity to the electrode position. In contrast, US imaging provides the direct visualization of the

targeted muscle with a high signal-to-noise ratio and can be used to measure muscles in different depths,

which would be potentially promising when used for the closed-loop control of rehabilitative or assistive

devices. Therefore, the motivation of this work is to investigate the continuous joint volitional effort

prediction for lower limb joint functionalities by using high-dimensional features from US imaging and a

deep learning method. To the best of our knowledge, only a few recent studies have investigated deep

learning approaches for continuous ankle joint kinematics, kinetics, and muscle state estimation

(Cunningham et al., 2017b; Cunningham and Loram, 2020). However, they only focused on the active

and passive ankle joint movement tasks at the standing posture, and no functional dynamic locomotion

tasks were discussed.

In this article, we investigate the feasibility of using high-dimensional US imaging signals and a deep

CNN approach to predict the continuous ankle joint net plantarflexion moment during versatile walking

tasks. The focus is to verify the robustness of the proposed approach when incorporating new data from

various walking scenarios for the personalized prediction of net plantarflexion moment. Unlike features

extraction methods in our previous studies (Zhang et al., 2020a,b; Zhang et al., 2021; Zhang et al., 2022a,

b), this deep CNN approach does not require the extraction of conventional explicit features for establish-

ing the mapping between skeletal muscle’s US imaging signals and human joint mechanical functions.

The implicit features would significantly increase the dimension of the neuromuscular features, which is

beneficial for bridging the mapping relationship without losing a large quantity of necessary information.

This article is organized into five sections. Section 2 presents the basic CNN-based deep learning

background, the experimental setup for treadmill walking tasks, data collection, deep CNN construction,

and statistical analysis. The results of the deep CNN approach-based human ankle joint net plantarflexion

moment prediction and its comparison between sEMG and US imaging are presented in Section 3,
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followed by an interpretation of results, discussion, and potential implementations in Section 4. The

conclusion is given in Section 5.

2. Methods

2.1. Basic background of CNN-based deep learning

In the past decade, CNNhas had significant innovations and results in amultitude of fields, such as pattern

recognition, classification, and regression problems, from image processing to voice recognition (O’Shea

and Nash, 2015). One prominent property that CNN possesses is that it can simplify the input by utilizing

various kernel filters for quick processing while maintaining or even amplifying crucial information

necessary for recognition. Compared to the traditional artificial neural network (ANN), CNN specializes

in learning significant patterns frommassive data with fewer parameters. This encouraged researchers and

developers to employ CNN to solve complex tasks with larger models that are unable to be properly

addressed with classic ANNs.

The design of the training network is a crucial factor in determining CNN’s prediction power. The

training network takes input data, interprets it in the hidden layers, and outputs the prediction value

through a fully-connected output layer. The CNN output will be compared with the ground truth, and the

discrepancy would drive the CNN to adjust the layer parameters to minimize the discrepancy. The filters

embedded in CNN can reduce the processing time but still ensure key features of the image aremaintained

for accurate prediction. The layer types in CNN are usually categorized into convolution, pooling,

rectified linear activation (ReLU), batch normalization, dropout, and fully connected (FC) layers. Layer

types are briefly discussed below.

The kernel functions, embedded in the convolution layer, filter the pixels in the original image to get

various key features/patterns to obtain a tensor-shaped input (Yamashita et al., 2018). In this way, a

correlation between the output (i.e., the joint moment) and features of the image is established through

CNN. The kernel may move more than one pixel per step when it scans the original image, and the step

size is called stride. The selection of the stride value should consider the trade-off between the fineness of

the features and the size of the input tensor, which is proportional to the complexity of the designed CNN.

A padding operation may be applied within the convolution layer’s parameters to alter the size of the

output image by adding rows and columns of zeros on each side of the input (Yamashita et al., 2018). In

this way, the data point on the borders can also be taken into consideration. The pooling layer, similar to

the convolution layer, extracts significant features but reduces the size and computational power required

for data processing (O’Shea and Nash, 2015). The pooling layer can be implemented as an average

pooling layer or max pooling layer. Average pooling, themethod used in this article, returns the average of

all the pixels within the kernel.Max pooling returns themaximum value of all the pixels within the kernel.

With more layers, more features are extracted at the expense of extra computational time (O’Shea and

Nash, 2015). The ReLU layer replaces negative values with zeros to remove non-linearities and allow for

sparsity. Sparsity reduces the time required for training the model and ensures that the neurons are more

specialized. Batch normalization reduces the time of the neural network initialization. This process

functions by normalizing the mean and variance of the layers, reducing the dependence of gradients, and

allowing higher learning rates. A higher learning rate correlates to reduced processing time (Ioffe and

Szegedy, 2015). The dropout layer, which is placed after the final ReLU layer, sets input elements to zero

at randomwith a designated probability. The purpose of this layer is to prevent themodel from overfitting.

The FC is the final layer, which takes the information from the prior layer and turns it into a vector for

classification or regression problems.

2.2. Subjects for experimental walking study

The study was approved by the Institutional Review Board (IRB) at North Carolina State University

(Approval number: 20602). Eight young participants (5 M/3 F) without any neurological disorders or

orthopedic impairments, were recruited in this study. The details of anthropometric characteristics for
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each participant are shown in Table 1. Every participant was familiarized with the experimental pro-

cedures and signed an informed consent form before participating in the experiments.

2.3. Experimental protocol, data acquisition and pre-processing

Figure 1(a) shows the demonstration of the experimental setup. The treadmill walking data collection

process involved the participants walking at speeds of 0.50, 0.75, 1.00, 1.25, and 1.50 m/s. The

experiment consisted of an instrumented treadmill (Bertec Corp., Columbus, OH) with two separate

belts, and each belt was mounted with a force plate (AMTI, Watertown, MA) to measure the ground

reaction force (GRF) signals. Prior to the experiment, 39 retro-reflective markers were placed on the

participant’s lower extremities and pelvis to track the movement of each segment. The movements of

retro-reflective markers were captured by 12 motion capture cameras (Vicon Motion Systems Ltd, Los

Angeles, CA). To measure electrical and architectural muscle activities of plantarflexors, both sEMG

sensors (SX230, Biometrics Ltd, Newport, UK) and a US transducer (L7.5SC Prodigy Probe, 6.4 MHz

center frequency, S-Sharp, Taiwan) were placed on the surface of plantarflexors of the right leg. We used

Table 1. Anthropometric characteristics (mean and one standard deviation [SD]) of eight young participants

Participant Sub01 Sub02 Sub03 Sub04 Sub05 Sub06 Sub07 Sub08 Mean SD

Height (m) 1.93 1.64 1.76 1.77 1.77 1.79 1.72 1.80 1.77 0.08

Mass (kg) 108.0 54.0 84.0 82.0 62.0 70.0 72.0 77.0 76.13 16.29

Age (Years) 24 24 30 27 22 25 26 29 25.87 2.69

Figure 1. Experimental setup of treadmill walking. (a) Illustration of treadmill walking experimental

setup. The walking was performed at speeds of 0.50, 0.75, 1.00, 1.25, and 1.50 m/s. (1) Instrumented

treadmill containing two split belts and in-ground force plates. (2) Participants’ lower body with 39 retro-

reflective markers attached for kinematics measurements. (3) Three sEMG channels to measure activities

of LGS, MGS, and SOL muscles. (4) An ultrasound transducer for imaging of both the LGS and SOL

muscles within the same plane. (5) The ultrasound imaging machine for collection of the ultra-fast radio

frequency data. (6) A computer screen to show brightness mode (B-mode) US imaging. (7) Computer

screen to show live markers and segment links of the participant. (8) 12 motion capture cameras to track

markers’ trajectories. (b) A representative B-mode US image with both LGS and SOL muscle in the same

plane, as indicated within the upper and lower polygons. The lateral direction is the distance away from

the US transducer longitudinal center, and the axial direction is the depth from the skin surface. Three red

dashed square areas represent the three regions of interest with a size of 100 � 100, 200 � 200, and

300 � 300 pixels.
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three channels to measure the sEMG signals from the shank muscles. One channel each was designated

for the lateral gastrocnemius (LGS), medial gastrocnemius (MGS), and soleus (SOL) muscles. Close to

the placement of sEMG sensors on LGS, theUS transducer with awidth of 38mmwas attached to the skin

through a 3D-printed holder integrated with velcro straps. The transducer was positioned longitudinally

and adjusted by observing the brightness mode (B-mode) muscle images on the USmachine screen until a

clear image that included both LGS and MGS muscles in the same plane was observed. An example of a

representative US image in the longitudinal direction that contains both superficial LGSmuscle and deep

SOLmuscle can be seen in Figure 1(b). The US imaging depth was set as 50 mm to include both muscles

across all participants.

Under each walking speed, a 3-min walking trial was conducted on each participant, and data within the

middle 20 s were collected for processing and analysis. The two channels GRF signals and three channels

sEMG signals were sampled and collected at 1,000 Hz by using Nexus 2.9. Also, the 3D coordinates of

reflective markers were synchronized and collected at 100 Hz by using Nexus 2.9. For US imaging data

acquisition, we applied an ultra-fast frame rate to capture tiny deformation of the targeted muscles’

architecture and facilitate the synchronization with other sensing channels. A trigger signal of 1,000 Hz

was sent to the US machine to synchronize the data collection with GRF and sEMG signals, so the plane-

wave raw radio frequency (RF) data of the targetedmuscleswere collected at 1,000 frames per second (FPS).

After data collection, pre-processing procedures were performed before the deep CNNmodel structure

construction, as shown on the left side of Figure 2. To process 3D markers’ coordinates data, the gap-

filling was executed in Nexus 2.9, which was followed by inputting both markers’ coordinates and GRF

signals to Visual3D (C-Motion, Rockville, MD) for inverse kinematics and dynamics calculation. Raw

US RF data were beamformed by using the delay-and-sum (DAS) method (Lu et al., 1994; Thomenius,

1996) to generate the temporal B-modeUS image sequence presented in Figures 1(b) and 2. Three regions

of interest (ROIs) were selected with a size of 100 � 100 (ROI1), 200 � 200 (ROI2), and 300 � 300

(ROI3) pixels and with the center position at the 0 mm laterally and 20 mm in depth to evaluate the net

plantarflexion moment prediction performance by applying the deep CNN model.

In this study, we did not focus on the high-density sEMG singles since only three channels of sEMG

signals were collected. First, sEMG signals were run through a band-pass filter between 20–450 Hz. To

access the high-dimensional sEMG features, we applied a similar data processing method as mentioned

by Chen et al. (2020) to create the sEMG spectrum image sequence for each channel that was
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Figure 2. Data collection, pre-processing, and schematic illustration of the proposed deep CNN model

calibration. The input to the CNN model includes either the time sequence data of cropped US imaging

with different regions of interest or the time sequence data of sEMG spectrum imaging. Thirty-one layers

were created in the designed CNN model, including one image input layer at the beginning, one fully

connected layer, one regression output layer at the end, and seven sets of intermediate layers. Each

intermediate set contained one convolution 2D layer, one batch normalization layer, one rectified linear

unit (ReLU) layer, and one average pooling 2D layer.
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synchronized with the US image sequence. To get the comparative ROI as the US image (take ROI1 as the

example in this study), data points were segmented in series with a moving window length of 100 points

(n�99, n�98, …, n) and a moving step size of 1 point. The data points were then processed through a

continuous wavelet transformation (CWT). After CWT, the signals were organized into scale components

that contained the frequency-domain information of the time sequence sEMG data. The CWT was

calculated with 50 scales obtaining a 50 � 100 matrix at each time point of individual sEMG channels.

To have a fair match with the US image, two 50 � 100 matrices from LGS and SOL muscles sEMG

channels were merged to get a 100 � 100 matrix at each time instant. The compiled frames from all the

data segmentation represent the sEMG spectrum image sequence.

2.4. CNN construction and training

This study focused on the stance phase of the gait cycle, where the GRF signals were used to distinguish

the heel-strike and toe-off instances during eachwalking trial with a threshold of 5%bodymass. As shown

in Figure 2, the input of the CNN is either a US image sequence or an sEMG spectrum image sequence

within the stance phase. In the data set used for deepCNN training, a 4:1 ratiowas assigned for the training

and validation networks. The designed deep CNN model with 31 layers in total was created utilizing

Matlab (R2020a, MathWorks, MA). In this study, a customized mini-batch datastore approach was

implemented to increase the CNN training efficiency due to the out-of-memory US image data. The mini-

batch size was set as 128 for both training and validation procedures on each participant’s data set. At the

beginning of each training, the weight parameters of the CNN layers were randomly generated. Then, the

parameters were optimized and updated iteratively based on the stochastic gradient descent with a

momentum optimizer (Sutskever et al., 2013) and the randomly selected mini-batch size of data points

(128) from the training database. Other parameters settings are given as: a maximum number of epochs as

30, initial learning rate as 0.001 and down to 0.0001 after 20 epochs, and validation frequency as training

data length/mini-batch. In addition, the training data were shuffled before each training epoch, and the

validation data were shuffled before each network validation.

The deep CNNmodel begins with an image input layer. Then, there are seven sets of layers that contain

a convolution, batch normalization, ReLU, and average pooling layer (except for set 7) in respective order,

as shown in Figure 3, where an example ROI with the size of 300�300�1 (width� height� depth) was

input to the beginning layer. The detailed settings are given below.

Figure 3. The architecture of the designed deep CNN for the US image and sEMG spectrum image

processing. The output size of each layer is based on the input US image’s ROI size of 300� 300 pixels.
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The convolution layers across seven sets have different filter numbers of size 3�3. The filter numbers

in set 1 and set 2 are selected as 8 and 16, respectively, and the remaining sets have 32 filters. Each

convolution layer has a stride of [1 1] and ‘same’ padding. Each average pooling filter has a filter of size

2�2, a stride of [2 2], and no padding work throughout the layer sets.

In set 1, the weight and bias of the convolution layer are 3�3�1�8 and 1�1�8, respectively. The

batch normalization layer has an offset and scale of 1�1�8. The size of the layers in set 1 remains 300�

300�8 until the average pooling layer where the size shifts to 150�150�8.

In set 2, the weight and bias of the convolution layer are 3�3�8�16 and 1�1�16, respectively.

The batch normalization layer has an offset and scale of 1�1�16. The size of the layers in set 2 remains

150�150�16 until the average pooling layer where the size shifts to 75�75�16.

In set 3, the weight and bias of the convolution layer are 3�3�16�32 and 1�1�32, respectively.

The batch normalization layer has an offset and scale of 1�1�32. The size of the layers in set 3 remains

75�75�32 until the average pooling layer where the size shifts to 75�75�32.

In set 4, the weight and bias of the convolution layer are 3�3�32�32 and 1�1�32, respectively.

The batch normalization layer has an offset and scale of 1�1�32. The size of the layer in set 4 remains

37�37�32 until the average pooling layer where the size shifts to 18�18�32.

In sets 5, 6, and 7, the weight and bias of the convolution layer, the offset, and the scale of the batch

normalization are all same as in set 4. Finally, the output size of the ReLU layer in set

7 remains 4�4�32. However, instead of an average pooling layer, set 7 contains a dropout layer

with a dropout probability of 20% to prevent overfitting, a fully connected layer with the weight and

bias of size 1�512 and 1�1, and a regression output layer in respective order. The output of each

layer for an exampled US image with an ROI of 300�300�1 can be found in the Supplementary

Material.

Under each walking speed, eight gait cycles were randomly selected from the 20 s of collected data.

The first five stance cycles were segmented for the deep CNN model training and the last three stance

cycles were for prediction analysis. Considering the high difference in plantarflexor muscles’ US

imaging among different participants, we focused on the personalized CNN model instead of a generic

CNN model across all participants in this study. Therefore, the trained CNN model was not intended to

be universal across different participants and walking speeds, but universal across different walking

speeds on the same participant. Furthermore, we applied a leave-one-speed-out cross-validation

approach to avoid the overfitting issue in the training procedure. Therefore, there were five training

models for each participant, and each model contained data in 20 stance cycles (5 out of 8 cycles each

speed� 4 speeds) from randomly selected four speeds as the training set, data in five stance cycles (5 out

of 8 cycles each speed � 1 speed) from the remaining speed as the validation set, and data in 15 stance

cycles (other 3 out of 8 cycles each speed� 5 speeds) as the prediction set. The total US imaging frames

that were used in training, validation, and prediction procedures varied for each participant. This is

because each participant kept his/her preferred walking cadence on the treadmill at each speed, which is

presented in Figure 4. Overall, around 62.5% of the selected data samples were used in the CNN model

training and validation while 37.5% were used for the CNN-based prediction of each participant.

2.5. CNN performance evaluation and statistical analysis

To evaluate the performance of the CNN approach in terms of modeling the given US imaging data, the

regression loss/quadratic loss/L2 loss, root mean square error (RMSE), and coefficient of determination

(R2) metrics were calculated for both training and prediction procedures, which are formulated as

Loss =

P

N

i=1

T i� T̂ i

� �2

2N
, (1)
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RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P

N

i=1

T i� T̂ i

� �2

N

v

u

u

u

t

, (2)

R
2
=

P

N

i=1

T i�T
� �

T̂ i� T̂

� �

� �2

P

N

i=1

T i�T
� �2P

N

i=1

T̂ i� T̂

� �2
, (3)

whereN represents the number of training/prediction data samples, i represents the ith training/prediction

sample in a data set, T i and T̂ i represent the ground truth label and CNN-based calculation for the ith

training/prediction sample that is obtained from inverse dynamics, respectively. T and T̂ represent the

average of the ground truth labels and the average of the CNN-based calculations, respectively. The

regression loss is only concernedwith the averagemagnitude of error irrespective of their direction, which

has nice mathematical properties that make it easier to calculate gradients. However, due to squaring,

calculations that are far away from actual values are penalized heavily in comparison to less deviated

calculations. The RMSE serves to aggregate the magnitudes of the errors in calculations for various times

into a single measure. RMSE depicts the CNN model’s accuracy and helps in comparing forecasting

errors. In the prediction, RMSE values were normalized to individual peak net plantarflexion moment

from ground truth labels, noted as N-RMSE.

The normality of the prediction N-RMSE, R2, and time cost per image data sets across all participants

was tested based on the Shapiro–Wilk parametric hypothesis test (SW test). According to the results from

the SW test, a one-way repeated-measure analysis of variance (ANOVA for normal distribution) or

Friedman’s tests (for not normal distribution) followed by Tukey’s honestly significant difference tests

(Tukey’s HSD) was applied to evaluate the CNN-based prediction performance across all speeds but with

different ROIs. Similarly, to evaluate if there was a significant difference between deep CNN-based

predictions with US imaging data and sEMG spectrum imaging data with the same ROI size, a paired t-

test (normal distribution) or a Wilcoxon signed rank test (not normal distribution) was applied. The

significant difference level was chosen as p < .05 for all statistical tests.

3. Results

3.1. Progress during CNN training

With the designed CNN layer number and structure of each layer, the training procedures with different

US image’s ROIs converged to a small loss threshold for each participant. By taking Participant Sub08 as

Sub01 Sub02 Sub03 Sub04 Sub05 Sub06 Sub07 Sub08

Participants

0

0.5

1

1.5

2

U
S

 i
m

a
g

in
g

 f
ra

m
e

s

104
In training In validation In prediction

Figure 4. Individual US imaging frames in CNN training, validation, and prediction procedures across

five walking speeds.
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an example, the upper two plots and lower two plots in Figure 5 show the loss and RMSE convergence

results during the CNN training and validation procedures. It can be observed that after around

300 iterations, the training loss reached a very small value and it did not decrease significantly even

though the iteration number increased. It is also observed that a larger ROI resulted in faster convergence

speed as well as a smaller steady threshold. Ultimately, the validation RMSE values converged to 13.75,

12.93, and 11.96 Nm, with the ROIs of 100� 100, 200� 200, and 300� 300 pixels, respectively. These

results indicate that the larger ROI would be beneficial for better net plantarflexion moment prediction

performance. Correspondingly, with the same US imaging frame number, the time cost for the CNN

training varies significantly due to the selection of different ROIs. With the aforementioned US imaging

frame numbers, as shown in Figure 4, across eight participants, the CNN training times are

3.82 � 1.30 min, 8.47 � 2.46 min, and 17.70 � 3.77 min for ROIs of 100 � 100, 200 � 200, and

300 � 300 pixels, respectively.

3.2. Personalized CNN-based net plantarflexion moment prediction performance

Once the personalized CNN model was trained with data sets from all five walking speeds for each

participant, new data sets from each walking speed not involved in the training procedure were used to

verify the effectiveness and robustness of the personalized CNN model, known as the inter-speed

prediction performance. Figure 6 shows the continuous CNN-based prediction with the ROI of

100 � 100 pixels and the ground truth from inverse dynamics individually, represented by blue dashed

and red solid curves, respectively. From left to right, every three ramp-up-down curves are from one

walking speed out of the five. As the walking speed increased, the peak net plantarflexion moment

increased, but the sampling points that were used in the prediction decreased. Therefore, the curves for

both ground truth and CNN-based prediction become denser temporally. After separating the prediction

performance under each walking speed and normalizing the sampling points throughout each walking

stance cycle, the net plantarflexion moment prediction performance corresponding to Figure 6 is

demonstrated in Figure 7, where the red and blue center curves and shadowed areas represent the mean

and standard deviation values (three stance cycles for each curve) of the ground truth and CNN model-
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Figure 5. The convergence performance of US imaging-based net plantarflexion moment RMSE and loss

with the increase of iteration number during the CNN training and validation procedures. The data set

shown here is from Participant Sub08.
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Figure 6.Ankle joint net plantarflexionmoment prediction time sequence on each participant by usingUS

images with ROI of 100 � 100 pixels and the deep learning approach. The red solid and blue dashed

curves represent the measurements from inverse dynamics and prediction from the CNNmodel. For each

walking speed, three walking stance cycles are included for prediction, therefore, 15 periodic curves are

shown for each participant (with the speed order of 0.50, 0.75, 1.00, 1.25, and 1.50 m/s).
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based prediction, respectively. Each row subplots represent data from individual participant while each

column subplots represent individual walking speed out of five. Taking results from Sub01 as an example,

with the three ROIs, the scatter plots between the ground truth and the CNN-based prediction are shown in

Figure 8, where the red dashed line on each plot represents the 45-degree (y = x) line. It is observed that all

data points are distributed along the 45-degree line, indicating a highly linear relationship between the

CNN-based prediction and ground truth. A linear regression model was conducted for each ROI, and the

coefficients of slope and y-intercept are labeled on each plot. Promisingly, all slope values are very close

to 1 (p< :001) while all y-intercept values are very close to 0 (p< :01). The R2 values between the

prediction and ground truth are 0.923, 0.948, and 0.965, respectively. Similar results are also observed

from data analysis on other participants across multiple walking speeds.

Figure 7. Ankle joint net plantarflexion moment prediction as a percentage of the stance cycle (0% for

heel-strike and 100% for toe-off) by using US images with ROI of 100� 100 pixels and the deep learning

approach. The red and blue center curves and shadowed areas represent themean and standard deviation

values (three stance cycles for each curve) of the ground truth and CNN model-based prediction,

respectively. Each row subplots represent data from individual participant while each column subplots

represent individual walking speed out of five.
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Table 2 summarizes the linear regression results between the CNN-based net plantarflexion moment

prediction and the ground truth from each participant with different ROIs. All standard errors of the slope

coefficients are less than .005 with the p-value from the F-statistic less than 0.001. All standard errors of

the y-intercept coefficients are less than 0.32 but with a higher variation of p-value from the F-statistic.

The goodness of the linear regression is verified with pretty high R2 values (0.835–0.965) for all

participants. Expect for Sub04 with all three ROIs, Sub05, Sub06, and Sub07 with ROI1, all R2 values

between the CNN-based prediction and ground truth are higher than 0.9.

For eachROI, one predictionRMSEvaluewas calculated across 15 stance cycles used in the prediction

procedure on each participant to quantitatively assess the accuracy and robustness of the CNN-based net

plantarflexion moment prediction by using B-mode US imaging regardless of walking speeds, and the

results are presented in Figure 9(a). It is observed that, for the same participant, the increase of the ROI size
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Figure 8. Scatter plots between the net plantarflexion moment benchmark and CNN-based prediction

from Sub01 by using ROIs of 100 � 100 (left), 200 � 200 (middle), and 300 � 300 (right) pixels.

Table 2. Results of linear regression analysis between net plantarflexion moment CNN-based prediction and ground truth with

different ROIs, including mean, standard error (SE), and p-value of slope and y-intercept coefficients, as well as R2 values

Slope y-intercept

R2Participants ROI Estimate SE p-value Estimate SE p-value

Sub01 1 1.021 0.003 <0.001 �3.214 0.316 <0.001 0.923

2 0.994 0.002 <0.001 0.347 0.224 0.240 0.948

3 1.022 0.002 <0.001 �0.659 0.147 <0.001 0.965

Sub02 1 1.011 0.003 <0.001 0.321 0.132 0.043 0.913

2 1.021 0.003 <0.001 0.530 0.129 0.051 0.934

3 1.016 0.003 <0.001 0.158 0.159 0.628 0.947

Sub03 1 0.992 0.002 <0.001 0.409 0.182 0.227 0.926

2 0.987 0.002 <0.001 1.225 0.120 <0.001 0.949

3 0.993 0.002 <0.001 1.198 0.139 <0.001 0.957

Sub04 1 1.001 0.004 <0.001 3.524 0.290 <0.001 0.835

2 0.993 0.003 <0.001 5.627 0.211 <0.001 0.868

3 0.988 0.003 <0.001 3.223 0.284 <0.001 0.896

Sub05 1 1.021 0.003 <0.001 0.269 0.142 0.111 0.855

2 1.012 0.003 <0.001 1.153 0.165 <0.001 0.908

3 1.036 0.003 <0.001 1.182 0.175 <0.001 0.921

Sub06 1 1.009 0.003 <0.001 �0.395 0.132 0.571 0.870

2 1.012 0.003 <0.001 2.647 0.144 <0.001 0.936

3 0.998 0.002 <0.001 2.157 0.171 <0.001 0.943

Sub07 1 0.986 0.003 <0.001 1.797 0.155 <0.001 0.883

2 0.964 0.002 <0.001 2.216 0.069 <0.001 0.911

3 0.993 0.002 <0.001 2.783 0.076 <0.001 0.931

Sub08 1 1.008 0.002 <0.001 0.469 0.120 0.005 0.928

2 1.019 0.002 <0.001 0.674 0.112 <0.001 0.936

3 0.993 0.002 <0.001 0.643 0.176 0.002 0.942
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can moderately decrease the prediction RMSE, although the decrease is minor between ROI 200 � 200

and ROI 300 � 300 on Sub02 and Sub07. However, due to the high variance of subjective peak net

plantarflexion moment, using the CNN-based prediction RMSE values to directly evaluate the inter-

subject performance is not feasible. Therefore, the relative prediction error, defined as the ratio between

the prediction RMSE value and individual peak moment (N-RMSE), was calculated and shown in

Figure 9(b). Notably, among all inter-speed predictions, 95.8% (23 out of 24) cases exhibited less than

10% N-RMSE values regardless of the ROI size.

3.3. Influence of US imaging ROI size on CNN-based prediction

The inter-subject analysis of the US imaging ROI size’s effect on the CNN-based net plantarflexion

moment prediction is detailed in this subsection, including the prediction N-RMSE, predictionR2, and the

time cost per US image during prediction. Figure 10 depicts the inter-subject results of the above

evaluation metrics, where each point on the right side of each bar represents a data sample from each

participant. Results from the SW test showed that every data group followed a normal distribution with

different ROIs. All prediction N-RMSE values are less than 11.20% with these three ROIs, indicating a

successful prediction performance by using the deep learning approach. Compared to ROI1, ROI2 and

ROI3 significantly reduced the N-RMSE values by 18.17% (p = .024) and 22.97% (p = .004), respec-

tively. However, there was no significant difference between ROI2 and ROI3 (p = .727). As mentioned

before, all R2 values are higher than 0.9 except for Sub04 with all three ROIs, Sub05, Sub06, and Sub07

with ROI1. Compared to ROI1, ROI2 and ROI3 significantly increased theR2 values by 3.78% (p= .042)

and 5.14% (p = .009), respectively. However, no significant difference was observed between ROI2 and

ROI3 (p = .687). Except for the prediction accuracy and robustness, the prediction time cost per US
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Figure 9. The individual net plantarflexion moment prediction RMSE and N-RMSE values of 15 stance

cycles across five walking speeds by using the trained personalized CNN model with different ROIs.
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Figure 10. CNN-based net plantarflexion moment prediction results summary across eight participants.

Left – Prediction RMSE values normalized to corresponding peak plantarflexion moment, Middle – R2

values between net plantarflexion moment prediction and ground truth observation from inverse

dynamics, Right – Prediction time cost for each US image frame. Asterisks *, **, and *** represent the

statistically significant difference levels at p < .05, p < .01, and p < .001, respectively.
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imaging frame is essential for implementing the real-time control of robotic rehabilitative or assistive

devices. Results in Figure 10 show that the time cost per frame is less than 1.5 ms regardless of the ROI

size, which is potentially fast enough for closed-loop control of robotic devices. Furthermore, compared to

ROI1, ROI2, and ROI3 significantly increased the prediction time cost per image frame by 223.80%

(p= .009) and 461.97% (p< .001), respectively. In addition, ROI3 significantly increased the time cost by

206.42% (p < .001) when compared to ROI2. The results showed that the prediction efficiency was more

sensitive to the ROI size than the prediction accuracy.

3.4. Prediction performance comparison between US imaging and sEMG

The deepCNNmodel training and prediction procedures concerning the sEMG spectrum image sequence

were similar to the US image sequence with the ROI of 100� 100 pixels. Similar to the results presented

in Figure 8, the comparative scatter plots between the benchmark and predicted net plantarflexionmoment

values from two representative participants are shown in Figure 11. We found that with the same

constructed CNN architecture, the net plantarflexion moment prediction performance is superior to using

the US image than the sEMG spectrum image with the same ROI. The higher R2 values on these two

participants when using the US image indicate a stronger linear relationship between the net moment

benchmark and CNN-based net moment prediction. The individual and inter-subject prediction N-RMSE

andR2 values are presented in Figure 12. Except for Sub01, results from all other participants consistently

support the hypothesis that US image þ CNN significantly outperforms sEMG þ CNN regarding net

plantarflexion moment prediction across versatile walking speeds. Across eight participants, statistical

analysis shows that with the same ROI and the same CNN architecture, US images significantly reduced

the prediction N-RMSE values by 37.55% (p < .001) and increased the prediction R2 values by 20.13%

(p < .001) when compared to sEMG spectrum images.

Figure 11. Comparative results of scatter plots between the net plantarflexion moment benchmark and

CNN-based prediction: (a) with sEMG spectrum image on Sub01; (b) with US image on Sub01; (c) with

sEMG spectrum image on Sub02; (d) with US image on Sub02.
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Figure 12. Comparative results of the net plantarflexion moment prediction N-RMSE and R2 values by

using the proposed deep CNN architecture and the same ROI size US image and sEMG spectrum image.
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4. Discussions

During the past decade, deep learning and CNNs have revolutionized many fields of machine learning,

including speech/language recognition, computer vision, biological disease diagnosis, and robotics.

Thus, there is no doubt that they may improve the analysis of medical imaging and contribute to

incorporating medical imaging into the closed-loop control of biomedical robotic devices. From the

perspective of rehabilitation engineering, deep learning and CNNs will be beneficial to bridge the gap

between the rehabilitative or assistive device market (that requires intuitive and transparent control

methods based on human motion intent or volitional efforts prediction) and recent scientific research

results in exoskeletons and prostheses (that show that sEMG-based or US imaging-based proportional

control is possible).

4.1. Results interpretation

In this article, the investigation tested the hypothesis that the joint net moment is encoded instantaneously

with the 3D muscle collagenous structure and is observable using 2D B-mode US imaging. We used the

ultra-fast US imaging data collection to generate 26,570–35,838 US images from each of eight partic-

ipants (in a total of 244,753 images) containing dynamic architectural changes of LGS and SOL muscle

during walking at five different speeds. We introduced a framework for the application of CNN-based

deep learning to the continuous prediction of ankle joint net moment during treadmill walking at multiple

speeds by using those recorded US imaging, and we evaluated the performance of using different sizes of

ROI and compared the results with sEMG spectrum imaging with the same size of ROI. When the

proposed US imagingþ deep learning approach was used, ROI1, ROI2, and ROI3 displayed a prediction

RMSE range of 8.48–19.71 Nm (13.04� 3.85 Nm), 6.61–15.94 Nm (10.68� 3.17 Nm), and 6.57–14.52

(9.98 � 2.63 Nm), respectively, a prediction N-RMSE range of 0.068–0.112 (0.089 � 0.013), 0.063–

0.093 (0.073 � 0.011), and 0.059–0.084 (0.069 � 0.009), respectively, and a prediction R2 range of

0.835–0.928 (0.892 � 0.035), 0.868–0.949 (0.925 � 0.028), and 0.896–0.965 (0.938 � 0.022), respec-

tively. The results present that the joint net moment of human ankle plantarflexion can be well predicted

by the B-mode US imaging signals when people do treadmill walking at different speeds. The joint

moment prediction by using the deep CNNmodel illustrates a good performance across different sizes of

US imaging’s ROI, which implies the size of ROI does not play an essential role in the net plantarflexion

moment prediction performance, and the deep CNNmodel is relatively robust among different ROIs, thus

we believe that it is a good avenue to explore.

A close look at the net plantarflexion moment prediction performance in Figure 6 presents the

subjective smoothness of the deep CNN-based prediction curves. Since an ultra-fast frame rate was

employed to collect rawUS imaging RF data, tiny muscle deformation was captured across frames, but in

themeanwhile, the resolution of each imagewould be reduced (more noise of each frame) given the center

frequency was fixed at 6.4 MHz. One advancement of using deep CNN is that no pre-defined explicit

features from US images are required, which usually depends on the high resolution of US images.

Therefore, moderate noise in US images due to the high collection frame rate did not impose a noticeable

influence on the prediction performance, including timings and peak values. The smoothness issue shown

in Figure 6 could be easily addressed by adding a low-pass filter for real-time implementations. One point

we would like to make is that the high gait-to-gait and person-to-person variations make it very

challenging to build a generalized deep CNN model for all participants. Therefore, in this study, a

personalized deep CNNmodel was trained for each participant and the individual CNNmodel presented

robustness across different walking speeds. The inter-subject analysis in the previous section was based

on the individual deep CNN models.

In deep CNNmodel training, the training accuracy was not sensitive to the increase of the ROI, but the

training time was sensitive to the increase of the ROI. When the size of ROI increased from 100� 100 to

300� 300 pixels, the average training time increased around 4.6 times (from 3.82 to 17.70min), although

the increase is not linearly related. Impressively, with the deep learning architecture and B-mode US

imaging signals, even a fairly small ROI could generate relatively high net moment prediction accuracy
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(with an average N-RMSE of 8.97%). Regarding the overall accuracy, in this article, the comparison

results between US images and sEMG spectrum images with the same size ROI and same deep CNN

structure demonstrated the superior net moment prediction performance when B-mode US images were

applied. In comparison to existing literature, it is fundamental to note that the results should be compared

onlywith analyses considering the continuous prediction/estimation of joint moment/torque or joint angle

by using neuromuscular signals, and the error should be normalized to the corresponding peak value. By

using machine learning methods, it is common to see in the literature estimation/prediction error of down

to 7–15% (Shi et al., 2008; Dick et al., 2017; Huang et al., 2017; Jahanandish et al., 2019; Zhou et al.,

2019; Ma et al., 2020; Jahanandish et al., 2021; Wang et al., 2021; Yu et al., 2021; Zhang et al.,

2022a,2022b). However, most of these studies consider using either sEMG or US signals for the upper

limb motion or moment estimation/prediction, while a few of them consider the lower limb applications

but with relatively simple tasks. Thus, an investigation of complex lower limb tasks, like walking at

different speeds, would be reasonable and necessary to justify the proposed B-mode US image þ deep

CNN approach.

In terms of the ankle joint net plantarflexion moment prediction accuracy, we compared the N-RMSE

values between the current study and these established methods in our previous studies (as shown in

Table 3), which indicates the superior net plantarflexion moment prediction accuracy by using the

proposed US image þ deep CNN approach. Compared to the traditional machine learning methods,

the deep CNN method achieved many improvements, such as estimation/prediction accuracy, dynamic

characteristic, robustness, less pre-processing effort, and more richness of features. In addition, as shown

in Figure 10, the time spent per frame during prediction was less than 1.5 ms, which would easily satisfy

the real-time application requirement. Compared to the deep CNN-based prediction time, the processing

time to obtain B-mode US images online is more significant. It takes around 20–30 ms to generate a

B-mode US image based on the build-in online beamforming algorithm, which theoretically indicates the

current prediction time is nearly negligible in real-time. As an ongoing project, the real-time implemen-

tation of the deep CNN-based net moment prediction is under development.

4.2. Scientific and clinical significance

The ultimate objective of using the deep CNN-based joint net moment prediction is to design more

intuitive and efficient control approaches for wearable assistive robotic devices when considering human

volitional contraction efforts. One typical control approach for lower-limb robotic devices to assist human

subjects is to measure interaction dynamics or estimate the joint moment from inverse dynamics.

However, the nature of interaction dynamics and inverse dynamics may not be appropriate in some

cases, as the user must produce a certain torque on the joints to initiate the motion before the devices can

generate assistance. If the users are not able to produce sufficient torques on their joints, the robotic

devices may not be successfully controlled. Fortunately, this disadvantage could be avoided by using

human intent-based control of robotic devices according to biological signals, like sEMG, that are sent

from the CNS to the functional motor units. One of the main advantages of using sEMG is the small time

difference (between 30–150 ms in Zhou et al. (1995), Lloyd and Besier (2003), and Blackburn et al.

Table 3. The comparison results of the normalized prediction N-RMSE values among different studies

Approaches HNM (Zhang et al., 2022b) SVR (Zhang et al., 2022a) FFNN (Zhang et al., 2022a)

N-RMSE [%] 9.48 � 1.51 8.49 � 2.74 10.13 � 3.44

R2 0.91 � 0.04 0.93 � 0.05 0.89 � 0.08

Approaches CNN–ROI1 CNN–ROI2 CNN–ROI3

N-RMSE [%] 8.97 � 1.33 7.34 � 1.09 6.91 � 0.95

R2 0.89 � 0.03 0.93 � 0.03 0.94 � 0.02

Note.Reported data are themean� standard deviation across conditions and participants, where previous studies applied data fusion between sEMG andUS

imaging signals.

Abbreviation: HNM, hill-type neuromuscular mode; SVR, support vector regression; FFNN, feedforward neural network.
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(2009)) between signal generation and motion execution, which enables the human intent-based control

of wearable robotic devices (the control command generation of the robotic devices advances the

generation of the human joint moment or limb motion). Therefore, sEMG signals have been successfully

applied in robotic devices control in the past, like examples in Kawamoto and Sankai (2002), Fleischer

and Hommel (2008), Lenzi et al. (2012), and Peternel et al. (2016). The crucial perspective of sEMG-

based control approaches is that even if the user is not capable of producing sufficient joint motion or joint

moment, the motion intent of the human user can still be detected and then the wearable robotic devices

can be controlled.

Considering the potential limitations of using sEMG as mentioned in the introduction section, we

proposed to use the alternative modality, that is, US imaging, to estimate/predict human volitional/

residual joint torque. In our previous study Zhang et al. (2021), we assessed that US imaging-derived

signals of the tibialis anterior muscle preceded the ankle joint motion around 45–85 ms. Similarly, the

experimental observations from Begovic et al. (2014) showed that the time delay between the onset of

muscle fiber motion and the muscle contraction force generation was 49.7� 7.0 ms of the quadriceps

femoris muscle. Therefore, the time latency between the onset of US imaging-derived signals and the

onset of joint torque/motion indicates the comparative joint torque/motion prediction potentials as

using sEMG signals. While the CNNs have been applied to many fields as mentioned at the beginning

of this section, their application to B-mode US image data from skeletal muscles for a purpose of

biomechanics analysis is relatively novel. From the perspective of gait kinematics or kinetics

analysis, the standard way to measure the net joint moment depends on the measurement of 3D

coordinates of reflective markers via a motion capture system, GRF signals, and inverse dynamics

calculations. However, this traditional way encounters several shortcomings: 1) the limitation of

instrumental setup in a lab environment and not applicable for field testing, 2) the effort-consuming

data collection and post-processing, 3) the challenge of online data acquisition after inverse dynam-

ics, 4) no accessibility of muscle activities during functional tasks. The proposed US image þ deep

CNN approach provides a forward dynamics approach to estimate/predict net joint moment that has

more flexibility in terms of the experimental environment, data collection and analysis, and real-time

implementation. Furthermore, the US image þ deep CNN approach opens a new gate for sensing

volitional user intent and extracting proportional control signals for rehabilitative or assistive robotic

devices, including powered ankle-foot prosthesis or ankle exoskeleton, in response to muscle

deformations in the shank.

In terms of the control of the powered ankle-foot prosthesis, the net ankle joint moment predicted by

using the US image þ deep CNN approach could be used to modulate the impedance parameters for the

prosthesis, mainly including stiffness and damping coefficients, to imitate the biological ankle joint

impedance during the walking stance phase asmentioned in Rouse et al. (2014) and Lee et al. (2016). This

has the potential to benefit people with below-knee amputation walking on a treadmill or level ground,

such as the increase of gait symmetry, the realization of natural gait patterns, improvement of comfort, and

reduction of metabolic cost. In terms of the control of the powered ankle exoskeleton, the net ankle joint

moment prediction could be used to adjust the personalized assistance torque profile parameters from the

exoskeleton during the walking stance phase, including timings and amplitudes, known as biological

mechanism-based control (Nuckols et al., 2021) or proportional sonomyographic control (Dhawan et al.,

2019). This manipulation aims to reproduce an individualized assistance torque on the ankle joint that is

proportional to the biological torque prediction from the US image þ deep CNN approach, as so to

enhance the walking function for able-bodied persons, reduce human energy expenditure, or restore

normative gait pattern for persons with weakened ankle plantarflexion functions cause by stroke, spinal

cord injury, or multiple sclerosis.

Since we focus on the most common and relative complex locomotion tasks, that is, treadmill

walking with multiple speeds, and the ankle joint plantarflexion function is essential to provide “push-

off” effort during walking, both LGS and SOL muscles were investigated to understand the mapping

between the B-mode US images and net ankle joint moment. However, the significance of the current

investigation lies in the potential application to estimate/predict other joints’mechanical functions, as

e20-18 Qiang Zhang et al.

https://doi.org/10.1017/wtc.2022.18 Published online by Cambridge University Press



well as to estimate/predict states generally from individual muscles, given the fact that the information

is well encoded in skeletal muscles’ collagen structure and are observable by using US imaging

(Cunningham and Loram, 2020). Recent research studies have also applied US imaging þ deep

(machine) learning to estimate skeletal muscles’ activation levels (Cunningham et al., 2017b;

Cunningham and Loram, 2020; Feigin et al., 2020), fascicle length (Rosa et al., 2021), fascicle

orientation (Cunningham et al., 2017a), and muscle segmentation (Carneiro and Nascimento, 2013;

Zhou et al., 2020).

4.3. Limitation and future work

Although the proposed US image þ deep CNN approach showed promising performance in terms of

ankle joint net moment prediction accuracy and time efficiency, some limitations still exist in the current

study. First of all, raw US imaging RF data beamforming to B-mode US images, net architecture, and

hyperparameter settings seem to be fundamental for the analysis of US image data with deep CNNs, since

they can strongly change the final prediction accuracy in the testing image set, and time to converge.

However, the aforementioned aspects were pre-selected and no comparison studies between different

beamforming algorithms, different net architectures, or different hyperparameter settings were conducted

since the focus of the current study was to investigate the feasibility and effectiveness of the US

image þ deep CNN approach instead of a systematic analysis of various deep CNN models. Secondly,

the ultra-fast frame rate was applied to collect the raw US imaging RF data, but B-mode US images at

1,000 FPS were generated offline by using the DAS beamforming method for both deep CNN model

training and prediction. However, this ultra-fast frame rate is likely to be down-sampled to 1/30–1/20 for

real-time implementation according to the previous discussion. Thirdly, only the plantarflexor muscles

were involved in the net plantarflexion moment prediction without considering the effects of antagonistic

muscle groups. Lastly, only two sEMG channels were used to collect signals from LGS and SOLmuscles

and generate spectrum images for comparison with US images. It is hard to specify if the inferior

prediction performance of using sEMG spectrum images came from the small number of channels and the

noisy nature of sEMG signals.

Our future work will focus on 1) the effects of various hyperparameters in the deep CNNmodel on the

US images-based ankle joint net moment prediction performance; 2) the real-time implementation of the

proposed US image þ deep CNN approach for ankle joint net moment prediction during treadmill

walking at multiple speeds on both neurologically-unimpaired persons and incomplete spinal cord injury/

stroke patients; 3) the incorporation of the real-time ankle joint net moment with closed-loop assistance-

as-needed control for a cable-driven ankle exoskeleton as mentioned in Zhang (2021) on both subject

groups.

5. Conclusion

This article proposed the first comprehensive analysis of a novel computational method for estimating

human walking volitional effort on the ankle joint using US images of skeleton muscles. Specifically, we

investigated the effectiveness and robustness of the B-mode US imaging þ deep CNN approach for the

ankle joint net moment prediction during treadmill walking at multiple speeds.We evaluated the effects of

the US image’s ROI size on the net moment prediction performance and compared the deep CNN-based

prediction performance by using B-mode US image data and sEMG spectrum image data with the same

ROI size. Results from eight participants without any neurological disorders tested the hypothesis that the

joint net moment was encoded instantaneously with the 3D muscle collagenous structure and was

observable using 2DB-modeUS images. The proposed framework achieved a relatively high netmoment

prediction accuracy (with an average N-RMSE of 8.97%) even by using a small ROI of 100� 100 pixels.

The prediction time per image was less than 1.5 ms, which could easily satisfy the real-time implementa-

tions when incorporated with the closed-loop control of robotic devices. With the same deep CNN

structure, the comparison results showed that US images significantly reduced the prediction N-RMSE
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values by 37.55% (p < .001) and increased the predictionR2 values by 20.13% (p < .001), when compared

to sEMG spectrum images. Impressively, the proposed US image þ deep CNN approach produced

accurate results comparable or superior to the average classical machine learning methods, which

suggests that further studies may lead to the improvement of the overall field of US imaging-driven

control of the ankle-foot prosthesis or ankle exoskeleton.
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