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Abstract—Open-loop or closed-loop functional electrical stim-
ulation (FES) has been widely investigated to treat drop foot
syndrome, which is typically caused by weakness or paralysis
of ankle dorsiflexors. However, conventional closed-loop FES
control mainly uses kinematic feedback, which does not directly
capture time-varying changes in muscle activation. In this study,
we explored the use of ultrasound (US) echogenicity as an
indicator of FES-evoked muscle activation and hypothesized
that including US-derived muscle activation, in addition to
kinematic feedback, would improve the closed-loop FES control
performance compared to the closed-loop control that relies only
on the kinematic feedback. A sampled-data observer (SDO) was
derived to continuously estimate FES-evoked muscle activations
from low-sampled US echogenicity signals. Additionally, a
dynamic surface controller (DSC) and a delay compensation
(DC) term were incorporated with the SDO, noted as the US-
based DSC-DC, to drive the actual ankle dorsiflexion trajectory
to a desired profile. The trajectory tracking error convergence
of the closed-loop system was proven to be uniformly ulti-
mately bounded based on the Lyapunov-Krasovskii stability
analysis. The US-based DSC-DC controller was validated on
five participants with no disabilities to control their ankle
dorsiflexion during walking on a treadmill. The US-based
DSC-DC controller significantly reduced the root mean square
error of the ankle joint trajectory tracking by 46.52% +7.99 %
(p<0.001) compared to the traditional DSC-DC controller with
only kinematic feedback but no US measurements. The results
also verified the disturbance rejection performance of the US-
based DSC-DC controller when a plantarflexion disturbance
was added. Our control design, for the first time, provides a
methodology to integrate US in an FES control framework,
which will likely benefit persons with drop foot and those with
other mobility disorders.

Index Terms—Functional electrical stimulation, Ankle dorsi-
flexion, Drop foot, Ultrasound imaging, Sampled-data observer,
Nonlinear control

I. INTRODUCTION

Drop foot is a typical symptom of weakened ankle dorsi-
flexion after stroke [1], [2] and other neurological disorders
such as multiple sclerosis [3], incomplete spinal cord lesions
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[4], etc. Affected persons are unable to exhibit normal
foot ground clearance during the swing phase, resulting in
unnatural steppage gait to avoid tripping/falls [5]. To correct
drop foot, functional electrical stimulation (FES), which is
an artificial technique to apply electrical potentials across
skeletal muscles, can be placed over the peroneal nerve and
the tibialis anterior (TA) muscle to induce orthotic effects at
the ankle joint. Since the earlier demonstrations of FES to
correct drop foot by Kantrowitz [6] and Liberson [7], recent
studies [8]-[10] have concurred with its effective orthotic
effects on a larger clinical population.

Traditionally, the TA muscle is activated during the swing
phase using discrete sensors that detect either heel contact
or leg inclination [9]. Here, FES is applied through an
open-loop or a trigger-based control method. The stimulation
amplitude is fixed or uses a pre-determined trapezoidal shape
[7]. Thus, given the nonlinear and time-varying nature of
the FES-activated neuromuscular system, current commercial
drop foot stimulators’ inability to automatically modulate the
stimulation intensity is a major drawback. Furthermore, with
the open-loop FES control mode, the users may be tempted
to choose a higher intensity than necessary to reach enough
dorsiflexion for the ground clearance, which would likely
aggravate FES-induced muscle fatigue, and thus reduce the
effectiveness of open-loop FES control [11], [12].

Time-varying physiological changes in affected muscles
and the requirement to track a desired limb angle tra-
jectory necessitate closed-loop FES control. Feedback can
provide robust performance and recreate precise and ac-
curate functional joint movements. The major challenges
that implement closed-loop FES include highly nonlinear,
time-varying properties of electrically stimulated muscle,
electromechanical delay (EMD), muscle fatigue, spasticity,
and day-to-day variations. To address these challenges, a
range of advanced control strategies have been developed
to achieve a satisfactory trajectory tracking performance for
either knee joint or ankle joint. For example, the high-gain
robust nonlinear control [13], input delay compensation (DC)
[14]-[16], adaptive control [17], [18], and model predictive
control [19], [20] designs for the FES-elicited knee extension
tracking or cycling tasks have been thoroughly investigated.
For FES-elicited ankle joint motion control, especially for
drop foot correction, the adaptive control [21], [22], iterative
learning control [11], [12] and repetitive control [23] designs



have been proposed in recently years. However, as yet, FES
control designs mostly use joint kinematic data as feedback
to address the regulation or tracking problem. Apart from
the kinematic data, other solutions have also been applied to
the closed-loop FES control on different joints, which could
be explored for drop foot correction. These solutions include
the force prediction modeling of the elbow joint with the
consideration of co-activation [24], the pedal force prediction
modeling of FES-elicited cycling [25], and the ankle joint
torque estimation based on the FES-evoked EMG [26].
Motivation exists to use measurements of FES-evoked
muscle activation and thus enable FES control based on more
accurate (third-order) musculoskeletal dynamics. Alibeji et al.
[15] developed a proportional-integral-derivative (PID) type
controller that used a dynamic surface control (DSC) error
structure along with a DC term to account for the muscle
activation dynamics and EMD. The FES-evoked muscle
activation was estimated based on an identified first-order
activation dynamic model, which was parameterized by us-
ing off-line system identification [27]. Reasonably, real-time
physiological muscle state measurements, if available, would
be more favorable than an offline identified muscle activation
estimator to capture the time-varying muscle’s physiological
changes. Surface electromyography (sEMG) is indeed one
traditional tool that is employed to measure FES-induced
or volitional muscle activation levels. However, SEMG is
extremely sensitive to electrical interference [28] because
SEMG records electrical activity during muscle contraction
via electrodes placed on the skin, which are by necessity
near the electrodes used in FES. During the stimulation,
FES impulses can severely corrupt the SEMG signals with
artifacts [29]. For example, FES can deliver impulses on
the order of 100 V while sEMG attempts to record muscle
electrical signals that are on the order of <100 mV with
an inherently low signal-to-noise ratio (SNR). Therefore, the
advanced electrical filter circuits or filtering algorithms are
necessary to incorporate SEMG into FES control [30]-[36].
Recently, ultrasound (US) imaging has been proposed as
an alternative non-invasive technology to directly visualize
skeletal muscle contractility and assess muscle activation
levels under both voluntary and FES-elicited joint movement
[37]-[41]. Compared to sSEMG, US imaging is unaffected by
stimulation artifacts during FES. Further, due to its ability to
directly visualize the muscle, the derived signals are devoid
of interference from the adjacent muscles. However, US
imaging is yet to be shown as a feasible real-time sensing
modality that can be integrated into closed-loop FES control.
In this paper, for the first time, we show the feasibility of
deploying US imaging to detect FES-elicited muscle activa-
tion levels and incorporate the US imaging-derived signal
in an FES control design. The US imaging-based control
framework is validated to track an ankle dorsiflexion trajec-
tory during a treadmill walking task. The main challenge to
incorporate US imaging-derived signals in the closed-loop
FES control is the low sampling rate of the US imaging-
derived feedback signal. The low sampling rate mainly stems
from computationally intensive US image generation and its
processing. So far, previous US imaging studies processed

and derived volitional [38], [39], [41] or FES-evoked [40],
[42] muscle activation data in an offline manner. Thus, to the
best of our knowledge, the real-time use of US imaging data
to monitor FES-evoked muscle activation and aid its control
performance remains unexplored. Specifically, we use the US
imaging-derived echogenicity signal for measuring muscle
activation, although at a much lower sampling frequency
compared to kinematic measurements from inertial mea-
surement units (IMU) or angular encoders, and integrate it
with a continuous FES closed-loop control approach. Unlike
architectural features that are extracted from US imaging, like
pennation angle, fascicle length, muscle thickness, and tissue
displacement, US echogenicity refers to the ability to reflect
US waves in the context of surrounding tissues [43], which
can be visualized as the brightness and darkness of the region
of interest (ROI) and calculated as the average brightness of
the ROI in each image frame. US echogenicity calculation
does not rely on complex and time-consuming dynamic pixel
displacement tracking algorithms, which brings potential
computational benefits to save processing time in the real-
time application. Previous offline studies have demonstrated
a good correlation between echogenicity and muscle contrac-
tility/activation [41], [42], [44], [45].

To address the challenge of assimilating the lower-sampled
US imaging-derived signals, a sampled-measurement data-
based observer (SDO) is derived to estimate muscle activation
levels in a continuous manner. Due to gait-to-gait and person-
to-person variations, a pre-defined time-dependent desired
trajectory needs to be compressed or stretched online to adapt
to the walking conditions, which can easily cause a mismatch
between gait phases and affect control performance. There-
fore, in this study, inspired by virtual constraints in [46], we
propose to generate a time-independent desired ankle joint
trajectory in joint space based on the portraits of thigh and
shank segments from normal gait data obtained from walking
on a treadmill. Compared to the preliminary simulation study
in [47], in this work, we conducted walking experiments with
the US-based DSC-DC control method on a treadmill. The
main innovations and contributions of this paper include: 1)
derivation of an US-based DSC-DC control framework to
handle low-sampled US signals and EMD in FES, 2) tra-
jectory tracking error convergence analysis of the combined
observer and controller based on a Lyapunov-Krasovskii
functional, 3) time-independent ankle joint desired trajectory
generation based on virtual constraints given the portraits of
thigh and shank segments, 4) experiments comparing the US-
based DSC-DC control method and traditional DSC-DC con-
trol method, as well as ankle trajectories comparison between
FES-on and FES-off conditions during the swing phase, and
5) evaluation of the disturbance rejection performance during
the swing by adding plantarflexion disturbance.

II. ANKLE JOINT MUSCULOSKELETAL MODEL
A. Ankle joint dorsiflexion motion dynamics
The dynamic model of the FES-actuated limb movement,
as shown in Fig. 1, is given as

JO(t) + My + M, + My + Doy = 7(1), 1)



where J € R* is the unknown inertia term of the foot along
the dorsiflexion axis of rotation, and 6(t), 6(t), and 0(t) € R
denote the angular position, angular velocity, and angular ac-
celeration, respectively. The constant limb equilibrium point
is represented as 6., € R™, which represents the joint’s
posture when the limb is completely relaxed. The passive
moment MU(G) € R is a term to represent musculoskeletal
viscosity, M. () € R is a term to represent musculoskeletal
elasticity, and M (0) = mglsin(F + 0 + 0.y) € R is the
gravitational term acting on the ankle. The mass of the limb
and the length from the limb’s center of mass to its rotation
center in the sagittal plane are denoted as m € R* and
I € RT, respectively. The explicit definitions of the functions
Mv(é) and M. (0) can be obtained from [13], [17]. The term
related to external disturbance and unmodeled effects in the
neuromusculoskeletal system is denoted as D, (t) € R.
The limb torque elicited by FES is given as

7(t) £ 1(6) Fn (0)n2(0) cos(a)a, 2)

where each term on the right hand side is defined in the
following properties:

Property 1: The variable r(§) € R represents the moment
arm for the muscle tendon force, which is a function of the
joint position, and is given as r(6) = —0.013(0.,—6)+0.035
[48]. So the moment arm is a continuously differentiable,
positive, and bounded function with a bounded first-order
time derivative.

Property 2: The variable F,,, € R represents the constant
maximum isometric muscle contraction force at the equilib-
rium position.

Property 3: Variables 7, () and 7, (0) denote the nonlinear
relationships of force-fascicle length and force-fascicle ve-
locity [49], and both of them are continuously differentiable,
non-zero, positive, and bounded functions.

Property 4: The pennation angle between the muscle
fascicle and deep aponeurosis, denoted by «(f) € RT,
increases monotonically within the approximate range 0-30°
as the muscle contracts [50].

Property 5: The variable a(t) € [0, 1] denotes the muscle
activation level whose ideal dynamics is represented by the
following continuous first-order differential equation [51]:

a(t) _ a(t) +71f(t T]W) ) (3)

In (3), the EMD caused by FES is denoted as 737 € RT
and assumed to be known, and 7, € R* is the muscle
activation decay constant. The normalized non-delayed FES
input u(t) € [0, 1] is due to the boundedness of the muscle
stimulation. From [51], the input u(t) is modeled by a
piecewise linear function

07 u < Umin,
U(t)—Um;i _
u(t) = u( ! —, Umin < U < Upax 4)
max min
17 U > Umax

where wmin and umax€ R>( are the stimulation threshold
and stimulation saturation, respectively, and @(t) € R>q is
the modulated parameter (current, pulse width, or frequency)
applied on the TA muscle.
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Figure 1: The neuromusculoskeletal schematic of the FES-
induced ankle dorsiflexion dynamic system. Notice that only
the tibialis anterior muscle is being stimulated, meaning that
FES can only produce ankle dorsiflexion and gravity is relied
upon to move the foot back to the equilibrium point 0,.

To facilitate the controller development and stability analy-
sis, the following assumptions are made throughout the paper:

Assumption 1: The angular position and velocity signals
9, 0 are continuously measurable.

Assumption 2: The muscle activation signal a is mea-
sured by normalizing the US imaging-derived echogenicity
signal [41] in a real-time manner, but with a much lower
sampling frequency compared to the sampling frequency
of the angular position and velocity. The normalized US
echogenicity signal is used as muscle activation feedback
only at discrete time instant ¢, (k = 0, 1, 2,...,00), and
{tx} is a monotonically increasing sequence and satisfies
limy_ o tr = co. The sampling interval is set as a constant
value T', namely T' = tj4; — . Due to the data transmission
delay, the sampled activation signal is available at instants
tr + Tk, where 7 > 0 denotes the unknown and time-
varying transmission delay with an upper bound 7. Thus, the
maximum time duration between two successively available
muscle activation measurements is 7 + 7, denoted as 7.

Assumption 3: The desired ankle trajectory 6,€ R and its
time derivatives, éd € R and éd € R, are bounded.

B. Sampled-data observer design

Define a state variable « = {G(t)7 0(t), a(t)
all continuous neuromusculoskeletal system can be expressed
in state-space form as

T
. The over-

x'l T2

.’ﬁz = Tlp (_fl"(xla x2) - Deztl" + ng) 5 (5)

i3 —x3tu(t—7ar)
where fr(z) = M”(z2)+]\4lf((f)l)+Mg(m), I'(z) =
r(x1) Fnmi (z1)n2(22) cos(a),  Jr T, and
Deyir = ?“;3. Hereafter, the following assumptions
are also made t<hr0 ghout the paper:

Assumption 4: Based on the properties in (2), the function
I'(z) is continuously differentiable, positive, and bounded.



Also, the first-order derivatives of I'(z) and F(lx)

are bounded.

Assumption 5: Based on Assumption 4, the term Jr is
bounded, and its first-order time derivative exists and is
bounded. In addition, Jp satisfies the inequality ay [|©]> <
OTJrO < ay ||O|*, VO € R™, for some known positive
constants aj, as € RT.

Assumption 6: The external disturbance in the system D,
in (1) is bounded. Therefore, based on Assumption 4, D, s
is also bounded.

According to (5), the state element x3 is independent from
z1 and x2, so the overall system could be considered as
a cascade system, and the SDO will be designed for the
subsystem related to x3. Based on the sampled and delayed
muscle activation from US imaging, the continuous-time
observer for muscle activation is given as [52]-[54]

exist and

Ea(t) = — 5+ D ey (1)
t S [tk:_’_Tkatk)-‘rl +Tk+l)7k:Oa 1a 27"'500 7
(6)

where v € RT is the observation gain used for updating the
observer which will be subsequently constrained in stability
analysis section. The variable e3(t;) = Z3(tg) — z3(tx)
represents a constant value (a zero-order hold) during the
time interval ¢ € [ty + Tk, tk+1 + Th+1), is updated at the
time point when the US echogenicity is available, and is
assumed to be upper bounded by & € R*. Therefore, the
observer model is of a hybrid nature with continuous and
discrete variables. The continuous observation error is defined
as e3(t) = &3(t) — x3(¢), and by taking its time derivative
and substituting (5) and (6), the observation error dynamics
is given as

—%(;) +ves(te) .
[tk + Tk, tpg1 + Tk—&-l), k= 0,1,2,..,00
@)

es(t) =
t S

III. CONTROL DEVELOPMENT

A. Desired joint trajectory planning - high-level control

During human locomotion, overground or on the treadmill,
a time-dependent pre-defined desired ankle dorsiflexion tra-
jectory needs to be compressed or stretched to adapt to gait-
to-gait and person-to-person variations, which is a cumber-
some design process. Therefore, we use a time-independent
trajectory generation profile based on virtual constraints [46].
The desired ankle dorsiflexion trajectory was generated on-
line given the orientations and angular velocities of the thigh
and shank segments during the locomotion. Consider the term
hd(’U(Q)) €eR (q = [gshanka eshank» 9thigh7 gthigh}TL a
desired virtual constraint function that is represented with
the Bezier polynomial as

_ . _ M! k(1 _ . \M—k
hd(v(q»—ng,—c,(M_,—{),v (L=o)™*  ®
L !

where M € RT is an integer equal to the number of Bezier
polynomial terms, gz € R represents the parameters that are

determined through the optimization mentioned in [55], [56],
and v € R is calculated as

0(q)— 0"

v(q) = y ©))

where 0T and 6~ are the maximum and minimum values of
the function 6(q), respectively, and 6(q) = (o + (10shank +
EQeshank: + 530thigh + 640thigh represents the apphed phase
variable. (; € R (i = 1, 2, 3, 4) is selected such that 6(q) is
monotonically increasing or decreasing. Finally, the desired
ankle trajectory 6, during the swing phase is set as hq(v(q)).

To obtain the optimal solution of gz in the Bezier polyno-
mial (8), a genetic algorithm-based particle swarm optimiza-
tion (GAPSO) [57] was used to minimize the cost function:

N
. i i \2
min R =3 (ki(v(@) — )" (10)
where NN represents the number of data samples used in
the optimization, and h’ and h{, represent the Bezier
polynomial-computed and measured ankle dorsiflexion mo-
tion values at the ‘" time instant, respectively. The GAPSO
utilizes kinematics data that were collected from participants
with no disabilities at the walking speed of 0.6 m/s. We
preferred designing desired ankle trajectories based on Bezier
polynomials, compared to other splines, due to their useful
properties that are amenable [55] for numerical stability

during the optimization.

B. Low-level control

The control objective is to develop a trajectory track-
ing controller for an FES-evoked limb motion that takes
both kinematic and muscle activation feedback during the
controlled motion. Here, we use US imaging-derived mus-
cle activation as feedback in the control design. Due to
the computationally intensive US signal beamforming and
imaging process, the real-time feedback of a US imaging-
derived signal may be sampled at a low rate, compared to
a higher sampled kinematic signal. Therefore, an SDO that
combines muscle activation dynamics and sparse US imaging
measurements is proposed to continuously estimate FES-
evoked muscle activation. With the feedback from the SDO
and joint kinematics, a PID-type DSC controller plus a DC
term is proposed to achieve the trajectory tracking task. The
diagram of the proposed framework is shown in Fig. 2 (a).

Remark 1. Compared to the traditional integrator backstep-
ping method, the benefit of the DSC method is to approxi-
mate the derivative of the control input with the dynamics of
a low-pass filter. Consequently, this approach avoids taking
another time derivative, which otherwise would result in an
acceleration signal-based control law [15].

The details of the low-level control design are given below.

1) Open-loop error development: The trajectory tracking
error for the ankle neuromusculoskeletal system is given as

e(t) = wa(t) — 21 (t), (11)

where z4(t) € R is the desired differentiable ankle dorsi-
flexion trajectory, which is generated online based on the
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Figure 2: (a) The block diagram of the proposed US-based DSC-DC control framework for the ankle neuromusculoskeletal
system during walking on an instrumented treadmill. Virtual constraints were used to generate the desired ankle joint trajectory
online during the walking swing phase. The finite state machine was used to differentiate the swing phase and stance phase
during walking based on the ground reaction force. Black lines and arrows represent the flows after the intermediate data
processing, red solid lines and arrows represent the direct measurements from the treadmill walking experiments, the red
dashed line represents the binary state of the swing or stance phase, and blue lines and arrows represent the non-delayed
control signals (FES pulse width modulation) to the ankle neuromusculoskeletal system, respectively. The diagram could be
shifted to the DSC-DC control framework by changing the “SDO” part to the “No-US” part (shown to the right of the green
arrow). (b) The block diagram of the treadmill walking tasks sequence on each participant.

aforementioned virtual constraints. For facilitating control
design and stability analysis, the following auxiliary error
signal e;(t) € R is defined as

€1 (t) = éo(t) + ap€o (t),

where oy € R is a control gain and eg(t) is a designed
term to incorporate integral control, which is defined as

t
eo(t) = / e(s)ds.
0
Another auxiliary error signal ex(t) € R is defined as
eg(t) = el(t) + 04161(75),

where a; € RT is a control gain. After taking the time
derivative of eq(t), multiplying with Jr, and using (5), (11)-
(13), we get the open-loop error dynamics

(12)

13)

(14)

Jriq + fr + Degir — 23
+Jr(ap + a1)é + Jragase.

Jrés
15)

2) Backstepping design and dynamic surface control: By
introducing a desired virtual control input signal as x3q €
R>q, the filtered desired signal, denoted as w3y, is obtained
by passing z34 through a low-pass filter such that

x3q = (33 + w35, ©34(0) = 23£(0), (16)

where (3 € RT is the low-pass filter time constant. By
defining the filtering error as yy = x3q — 3f, the time
derivative of the filtered intermediate signal is a continuously
differentiable function and expressed as @3y Zé.—g By
defining the surface error as S = x35 — &3, and adding and
subtracting x34 and 23, the open-loop error dynamics (15)
can also be written as

Jriq+ez+S+yr — T30 + Deger
+fr + Jr(ao + a1)é + Jragaze.

Jrés

a7

By adding and subtracting %Jpeg and a DC term, ey €
R, multiplied by a constant gain § € RT, where e;(t)
/. :_TM u(s)ds, the rearranged format of (17) can be given as

1. -
Jrég = —§JF€2+S+yf—5€[+E3+H+O—$3d—81, (18)

where the auxiliary signals H (e, e1, ea, e, Tq, Tq, Tq, t) €
R and O (x4, &4, 4, ', t) € R are defined as

H = H—Hsy O=Dewr+Ha
H = %jF€2+JFi3d+fr+5€1+€1 (19)
+Jr(ag + ai)é + Jragare
Hae = Jraitq + fr(zq,q)
where  Jpyg = ﬁ and  fr(z4,2q) =
My (@a)+Me(za)+ Mg(Za) Furthermore,  according to

I'(za)



Assumptions 1, 2, 4, and 5, the two auxiliary signals
‘H and O can be bounded as

RN E eSS (20)

where ( € RT is a known constant, p(||z]) € RT is a
positive globally invertible non-decreasing bounded function,
and z is defined as

z = leg, €1, €2, GI]T (21

In the expression (18), the desired intermediate signal is
defined as [15]

g;3d:K62:Ké—i—(ozo—i—oq)Ke-i-KaoOqem (22)

where K = K| + K, + K3 € RT, which implies a PID type
signal with three different control gains, and the correspond-
ing coefficients are defined as K, = (ag + a1)K, Kg = K,
and K; = Kaga;.

By using the definition in (22), (18) can be rewritten as

1. y
Jréy = —sdres+ Sutyrtes+H+O—Key—er, (23)

where S,, = S — de;, which is the augmented surface error
that contains the DC term de;. By substituting the surface
error and (6), the time derivative of .S,, is given as

Spo= Y4 I —Su(t) - yes (tr)

+(0-&)ult-m) &4

The DC term e is proposed to replace the delayed input
in the muscle activation dynamics with a non-delayed input.
By manipulating the non-delayed input, which is defined as
the control law u(t) as

1
u(t) = [BSn + yf] : 25)
0 Gs
where 3 € RT is a control gain, we can get the closed-loop
surface error dynamics as below

. T 1
Sp = —BSn+ % + (6 - T) u(t—7a) —es (t) - (26)

C. Stability Analysis

Lemma 1. For any given positive definite matrix M &
R™ "™ a positive scalar «, and a vector function v, the
following Cauchy Schwarz inequality always holds as

[0

The proof for this Lemma can be found in [58].

Theorem 1. Consider the neuromusculoskeletal system in (5)
with a known EMD Ty, by using the TA muscle activation
estimation from the SDO with sparse US imaging-derived
muscle activation update in (6) and control law in (25), the
FES-elicited ankle dorsiflexion trajectory tracking error is
ensured to be semi-globally uniformly ultimately bounded
(SGUUB) in a sense that

T

le] < ogexp(—o1t) + o2, 27)

M [/Oa V(s)ds} <a an uT(s)Mu(s)ds} :

where o1, 03, 03 € RT are subsequently defined in the
stability analysis, provided that the observation gain ~ and
control gains ogy, oy, K1, Ko, B, 0, and (3 satisfy the
following sufficient conditions:

< = 2
a0 >t 25 K>3 >+ Ky > eED

0<y<@-T)TP (2T +1)"",

8> max{% (—19 + V12 + 4TM5*2) ,

% (lil’l']u(s2 + \/HiZTZ%I(s*LL + 4I€1TM(52<3_1> } s

where € is a arbitrary positive constant, and 7, £, ¥, and k
are positive constant values defined in the attached stability
analysis, which is detailed in the Appendix.

Proof: Please see the Appendix section.

IV. EXPERIMENTAL IMPLEMENTATION

As previously stated, it is hypothesized that the considera-
tion of US imaging-derived muscle activation updates would
result in a more accurate muscle activation estimation when
FES is applied, when compared with the muscle activation
that is calculated based on the pure dynamic model in (3).
Subsequently, the use of accurate muscle activation in the
closed-loop FES control and the DSC+DC would improve
the control performance. To validate this hypothesis and
demonstrate the efficacy of the newly developed US-based
DSC-DC controller, it was tested for an ankle dorsiflexion
trajectory tracking task during the walking swing phase
to deal with the drop foot problem. Furthermore, it was
compared with a traditional DSC-DC controller with the pure
offline identified muscle activation dynamics. In addition,
given that the ultimate goal of the controller is to improve
ground clearance due to drop foot, the ankle joint trajectories
during the walking swing phase with controlled FES and
without FES were also compared and analyzed.

A. Experimental apparatus and protocol

The study was approved by the Institutional Review Board
(IRB) at North Carolina State University (IRB number:
20602). Five young participants (identified as AO1, A02,...,
A0S, 3M/2F, age: 25.4 + 3.1 years, height: 1.77 + 0.10
m, mass: 78.0 = 21.1 kg) without any neuromuscular or
orthopedic disorders were recruited in this study. Every
participant was familiarized with the experimental procedures
and signed an informed consent form before participation.

To identify the individual muscle activation decay constant
T, and EMD 7, each participant was configured with
an isometric condition, as shown in previous studies [39],
[41], and a step FES input was applied to the TA muscle.
Three steps were conducted to extract parameters of T,
and 7); from the input FES signal and the dorsiflexion
torque measurements. Firstly, the EMD 7;, was determined
by measuring the time difference from the instant when
the FES was applied to the instance when the measured
torque began to increase. Secondly, the normalization of
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Figure 3: Illustration of the US equipment setup during the treadmill walking experiments and schematic diagram of US
echogenicity-derived muscle activation calculation during the walking swing phase. BF-beamforming, MC-maximum muscle
contraction at FES saturation, LCIS-logarithmically compressed imaging signal.

Table I: Results of muscle activation decay constant 7,
and EMD 7,; from the system identification testing under
isometric configuration on individual participants.

Participant A0l A02 AO03 A04 A05 | Mean SD
Ta [s] 026 041 033 024 030 | 031 0.07
Tar [ms] 103 121 108 118 95 109 10

the measured dorsiflexion torque was shifted to the left
by the EMD value to account for the input delay period.
Thirdly, under the assumption that the muscle activation
dynamic model is a first-order system, the activation decay
constant was identified by solving the time constant that
produced the minimal error between the normalized shifted
torque measurement and the normalized response of the first-
order system with a normalized step input signal. Results of
individual 7, and 7,; values from the above identification
steps are summarized in Table I.

The main experimental procedures are walking tasks at
0.6 m/s under different conditions on an instrumented tread-
mill (Bertec Corp., Columbus, OH, USA) with two split
belts. Two in-ground force plates (AMTI, Watertown, MA,
USA) mounted under two split belts were used to measure
ground reaction force (GRF), which was used to differentiate
stance phase and swing phase within a gait cycle. The
swing phase was triggered when the GRF’s z-axis value
was less than 5% of each participant’s body mass with a
unit of kg. Two low-cost 6-axis IMUs (MPU 9250, TDK
InvenSense Headquarters, CA, USA) were attached to the
right shank and right thigh to measure the 2-D motion in
the sagittal plane. The pitch orientations of the shank and
thigh segments were determined by using a complementary
filtering method, as detailed in [59]. An ankle brace with
an incremental encoder (1024 pulses per revolution, TRD-
MX1024BD, AutomationDirect, GA, USA) was attached
to the right ankle joint to measure the angular position
and velocity of dorsiflexion and plantarflexion. A pair of
electrodes (size: 2”x2”) were placed on the fibular head and
the distal belly of the TA muscle, respectively, to pass the
biphasic stimulation pulse trains generated by a commercial
stimulator (Rehastim 2, HASOMED GmbH, Germany). A

clinical linear US transducer (L7.5SC Prodigy Probe, S-
Sharp, Taiwan) with 128 channels was attached to the TA
muscle belly perpendicularly by a customized 3D printed
holder [39] to image the targeted region in a longitudinal
direction. The depth of US imaging was set as 40 mm to
include the entire TA muscle area.

We performed six walking tasks on each participant at a
speed of 0.6 m/s. The details are given below and also shown
in Fig. 2 (b):

Task 1: This task was used for determining the parameters
of the Bezier polynomial, via the GAPSO method, to generate
the desired ankle joint trajectory online in Tasks (3-5). Here,
we asked each participant to walk normally (with preferred
ankle dorsiflexion and plantarflexion during the swing and
stance phases) on the treadmill for five minutes.

Task 2: Here the task was to imitate the drop foot pat-
tern during the walking swing phase on unimpaired partic-
ipants.We asked each participant to walk with an imitated
drop foot (without voluntary TA muscle contraction during
the swing phase) on the treadmill for five minutes. This task
might be repeated if there was no significant difference in
the ankle joint trajectories during the swing phase in Task 1.

Task 3: In this task we verified the drop foot correction
performance by using the proposed US-based DSC-DC con-
trol framework.We asked each participant to keep the same
walking pattern as in Task 2 while the proposed US-based
DSC-DC control framework was applied during the swing
phase to assist ankle dorsiflexion by stimulating only the TA
muscle and tracking the online generated desired trajectory
(the virtual constraint model was optimized by using data
collected from Task 1).

Task 4: In Task 4, we compared the drop foot correction
performance of 7Task 3 with that of the DSC-DC control
framework without US feedback. Similar experimental pro-
cedures as in Task 3 were used, but a traditional DSC-DC
controller without US echogenicity-derived muscle activation
update was used.

Task 5: This task evaluated the disturbance rejection per-
formance by using the proposed US-based DSC-DC control
framework.Similar experimental procedures as in Task 3,



but the lateral and medial gastrocnemius muscles were also
stimulated with a relatively low constant stimulation intensity
during the swing phase.

Task 6: Here we re-evaluated the imitated drop foot pattern
during the walking swing phase after removing all FES
intervention. The experimental procedures in Task 2 were
repeated.

During the experiments, Task 1, Task 2, and Task 6 were
always performed in the same order, whereas the order
of control Tasks (3-5) was randomly selected. During the
experimental procedures from Task 2 to Task 6, the partici-
pants were not allowed to view the online generated desired
trajectory or the ankle joint performance in real-time. A
minimum 10-minute rest period was provided for participants
between two successive tasks to avoid muscle fatigue. For
Task 1, Task 2, and Task 6, only the measurements data
within the middle two minutes were collected for analysis,
while for Task 3, Task 4, and Task 5, to avoid FES-induced
muscle fatigue, each walking trial lasted two minutes, and
data throughout the trial were collected for analysis. A real-
time target machine (Speedgoat Inc., Liebefeld, Switzerland)
and analog and digital data acquisition boards IO 101 and
10 306 were used to record GRF, IMUs, and encoder signals
at 1000 Hz. The controllers in Tasks 3-5 were programmed
in Simulink (R2019b, MathWorks Inc., MA, USA) and
implemented on the target machine with a frequency of 1000
Hz. The control Tasks required the EMD value and the acti-
vation decay constant for the activation state estimators with
and without the US imaging-derived update. These values
were determined using a system identification experiment
conducted on a different day before the treadmill walking
experiments under the isometric dorsiflexion condition, which
is detailed in [20]. The biphasic stimulation pulse trains had a
frequency of 33 Hz, and the current amplitude was set as 20
mA for all participants, while the pulse width was modulated
between the subjective threshold and saturation automatically
by the controllers. Also, the threshold and saturation of the
stimulation pulse width were determined using the same
isometric dorsiflexion experiment [20].

B. US echogenicity-derived muscle activation calculation

Figure 3 presents the illustrative diagram for the US
imaging-derived low-sampled muscle activation measure-
ments. Offline studies [41], [42] have shown that US
echogenicity has a promising performance regarding voli-
tional and FES-evoked ankle dorsiflexion effort prediction,
indicating a good correlation between the US echogenicity
and the muscle activation. Therefore, in this study, US
echogenicity is used as a measurement of FES-induced
muscle activation. The radio frequency data from the US
machine were online beamformed based on a line-by-line
beamforming method [60]. The echogenicity value from the
US image at time instant t; is calculated as

Na Np

- ﬁzzltk(l" y)7

rz=1y=1

Echoy, (28)

where N4, Ni, € RT represent the pixel numbers along axial
and lateral directions, respectively. The term I3, (z, y) € R
represents the US intensity information at the pixel location
(z, y) on the image at t; instant from the logarithmically
compressed imaging signals after the beamforming proce-
dure. Therefore, the 2D map time sequence is transferred
to a 1D signal time sequence. Visually, if the individual
pixel intensity information is normalized to the gray-scale
value (between 0 and 255), it will present the brightness of
each pixel on the 2D map. Thus, the calculated echogenicity
signal represents the overall brightness within the region of
interest. Our previous studies showed that there is a strong
negative correlation between the echogenicity change and the
muscle contraction level (known as muscle activation here)
[41]. Therefore, here, the US echogenicity-derived muscle
activation is calculated as the following piecewise function

1, Echot, < Echomin
_ EchomaxfEchot,c
atk - Echomax—Echomin ’ EChOmm S EChOtk < EChOmax
0, Echoy, > Echomax
(29)

where Echomax and Echop;, are the individual upper and
lower bounds of echogenicity signals that are determined
under the muscle rest condition and the maximum stimulation
condition (with individual FES saturation). The prior testings
showed the real-time US echogenicity data was transferred
from the US machine to the FES control system at a rate
of 7.8 frames per second, which indicates the US imaging-
derived muscle activation measurement is sampled at 7.8 Hz.

V. RESULTS AND DISCUSSION
A. Results of online desired trajectory generation

The ankle joint’s angular position measurements and the
shank’s and thigh’s orientations and angular velocities during
the swing phases of 30 stabilized walking gait cycles were
collected in Task 1 across five participants. The data were
used to optimize the parameters oy in the Bezier polynomial
(8), which generated the desired ankle joint trajectory for
each participant in control Tasks 3-5. The joint kinematic
patterns (shank’s and thigh’s orientations and angular veloci-
ties) during the swing phase across gait cycles facilitated the
generation of the desired ankle joint trajectory via GAPSO.
In Fig. 4, the time-independent desired trajectories generated
based on the virtual constraints and the measured trajectories
during 10 exampled gait cycles in Task 1 are depicted for
each participant. Given the current study only focused on
the swing phase, the desired ankle joint trajectories only
exist in the gray areas and are represented by the red curves
in Fig. 4 while the measured trajectories are represented
by the blue curves. The accuracy of the online trajectory
generation based on the virtual constraints was evaluated
by calculating the averaged root mean square error (RMSE)
values between the virtual constraint-calculated trajectories
and measured trajectories during the 30 gait cycles in Task 1
for each participant. These averaged RMSE values are 1.49°,
1.26°, 2.12°, 1.83°, and 1.78° of participant AO1, A02,...,
A0S, respectively. The mean and standard deviation (SD) of



Data from Participant A01

0
ankle[]
CIUN
[slelele)
—TTT

IS N I | al

75 80 85 90
Data from Participant A02

0
Hankle [ ]
CIEN
[=lelele)

—TTT

.| | I | | |

75 80 85 90
Data from Participant A03

&

i

4

=

©

< 1 1 L L 1 0 1 | . 1 1 1 1 1

70 75 80 85 90
Data from Participant A04

5k &
oooco

T T T

> [E— ——
75 80 85 90
Data from Participant A05
& 101
o OF
£-10F
qzm -20 L L 1 A 1 1 1 1 | - 1 1 1 1
75 80 85 90
time [sec]

Figure 4: Ankle joint trajectory measurements and results
from the GAPSO during the walking swing phase for each
participant in Task 1. The gray and non-gray areas represent
the swing phase and stance phase, respectively. The red and
blue curves represent the online generated desired trajectories
based on the virtual constraint and the measured trajectories
by using the incremental encoder, respectively.

averaged RMSE values across participants are 1.7010.33°.
The small averaged RMSE value across gait cycles and
participants indicates the high robustness of the designed
virtual constraints.

B. Results of control performance

Figure 5 demonstrates the snapshots of one swing phase
during Task 3 on Participant A03, where (A) - (H) represent
every 12.5% of the swing phase in the current gait cycle.
Visually, the ankle joint’s angular position is improved in
the clockwise direction, especially from (E) to (H), when
compared to results from Task 2. In Fig. 6, the quantitative
results of ankle joint real trajectories from 30 swing phases in
Task 1, Task 2, and Task 3 on each participant are presented,
where the black, blue, and red solid curves represent the
mean value from 30 selected swing phases, while the black,
blue, and red shadowed areas represent the SD in Task 1,
Task 2, and Task 3, respectively. It is not surprising that
the individual TA muscle had different response and the
individual ankle joint had different trajectories due to three
main reasons. First, in the current study, we only focused
on the treadmill walking swing phase, where the ankle joint
was in the air. According to the subjective walking habit,
it is reasonable that each participant has a preferred and

comfortable ankle joint trajectory during his or her walking
swing phase even though the participant was asked to avoid
volitional TA muscle contraction (make the ankle joint at
rest) during each walking swing phase. Second, to get the
measurements of angular position and velocity on the ankle
joint, we attached an ankle-foot brace with an incremental
encoder (same for all participants) in the experimental setup.
The stabilization of the ankle-foot brace during the walking
swing phase depended on many factors, including the size
of individual shoes, the tightness of individual shoes, the
stiffness and damping parameters of individual ankle joint
with the ankle-foot brace, and so on. Third, due to the
person-to-person variations, the threshold and saturation of
FES pulse width were different between participants, and
the control output FES pulse width were time-varying and
different between participants. For each swing phase in Fig.
6, the averaged 6,,x. is calculated, denoted as O unicie, then
the mean and SD values of 30 0,8 on each participant
is calculated and shown in Table II. The results show that
the right ankle joint real dorsiflexion motion is significantly
improved by using the proposed US-based DSC-DC control
framework in Task 3 compared to the dorsiflexion motion
with imitated drop foot in Task 2. However, compared to
the normal gait in Task 1, some inconsistencies still existed
even the proposed control framework was applied in Task
3, especially during the first half of the swing phase on
Participant AO1, A02, and A04.

Table II: Mean and SD values of ankle joint real trajectories
in 30 swing phases in Task 1, Task 2, and Task 3 on each
participant. (Unit: ©)

Condition Task 1 Task 2 Task 3

Participant | Mean SD Mean SD Mean SD
A01 416 596 -19.80 2.19 -11.57 4.69
A02 <176 477 -17.36  5.62 -8.32 7.67
A03 -7.09 2,67 -1455 544 27162 4775
A04 -3.73 374 -23.61 5.67 -5.38 5.21
A05 -0.74 401 -11.12  3.26 -1.66 441
Mean -470 423 -17.28 443 -6.91 5.35

By taking Participant A03 as an example, the results
of the sparse US echogenicity measurements and the US
echogenicity-derived muscle activation levels in tasks 1, 2,
and 3 are presented in Fig. 7 (a) and (b), respectively. Among
these three tasks, FES was applied only in 7ask 3, so the input
(normalized FES pulse width from the US-based DSC-DC
control framework) and output signals (continuous muscle
activation estimation given 7, = 0.33 s for this participant
and v = 20) of the SDO are presented in Fig. 7 (c) and
(d), respectively. In each subplot, the mean and SD of each
signal from 30 swing phases are normalized proportionally
to the swing phase cycle (0-100%). Results in Fig. 7 (a) and
(b) indicate that muscle activation levels in T'ask 2 are much
lower when compared to those in T'ask 1 and Task 3.

The experimental results for the trajectory tracking per-
formance from a representative participant are presented in
Fig. 8, where data were obtained from 10 gait cycles in
both Task 3 and Task 4. The dashed red and solid blue
curves respectively represent the desired (generated online
based on the virtual constraints) and actual (measured by the
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Figure 6: The mean and SD values of ankle joint real trajectories from 30 swing phases of each participant in 7ask 1 (black
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Figure 7: Results of the sparse US echogenicity measure-
ments (a) and the US echogenicity-derived muscle acti-
vation levels (b) in Tasks 1, 2, and 3, the non-delayed
FES normalization from the US-based DSC-DC controller
(c) and the continuous estimation of TA muscle activation
from the proposed SDO (d) on Participant A03. Each solid
curve and shadowed area represent the mean and SD of the
corresponding data from 30 swing phases and are normalized
proportionally to the swing phase cycle (0 - 100%).

encoder) trajectories. When the US-based DSC-DC controller
was applied, the best 10 successive gait cycles from this
participant result in the RMSE of 3.394+0.57°, while when
the traditional DSC-DC controller was applied, the best
10 successive gait cycles from this participant result in
the RMSE of 4.55+1.42°. For the RMSE values from the
corresponding 10 gait cycles shown in Fig. 8, a two-sample

ed areas), and Task 3 (red curves and shadowed areas).
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Figure 8: Experimental results of the trajectory tracking
performance from 10 gait cycles by using both the US-based
DSC-DC and traditional DSC-DC controllers on Participant
AO03. Results show the desired (dashed red curves) and actual
(solid blue curves) trajectories during the swing phases.

paired t-test was performed to determine if the differences in
the criteria were statistically significant at a 95% confidence
level. The statistical analysis determined that the US-based
DSC-DC controller statistically outperformed the traditional
DSC-DC controller in the RMSE values (p < 0.001).

To further evaluate the controller performance throughout
the 2-minute walking experiments in both Task 3 and Task 4,
results of swing phases in the first and last 20 gait cycles
within each 2-minute trial were compared and analyzed,
denoted as single-task evaluation. As shown in Fig. 9 (a)
and (b), the mean and SD values of the ankle joint trajectory
tracking RMSE and the mean and SD values of the root
mean square pulse width (RMSPW) across the first and last
20 swing phases in Task 3 and Task 4 on each participant
are depicted, respectively. When either the US-based DSC-
DC or the traditional DSC-DC control framework was used,
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Figure 9: The mean and SD values of the dorsiflexion
trajectory tracking RMSE and the FES RMSPW on the TA
muscle when the US-based DSC-DC and traditional DSC-DC
control frameworks were applied for each participant. (a) &
(b) Results from the first 20 and last 20 swing phases in Task
3 and Task 4, respectively.

the trajectory tracking RMSE’s mean value across the first
20 swing phases was lower than that across the last 20
swing phases for each participant, indicating the average
ankle joint trajectory tracking performance in the first 20
gait cycles was better than the average of the last 20 gait
cycles. Meanwhile, the RMSPW’s mean value across the last
20 swing phases was higher than that across the first 20 swing
phases for each participant, which implies that at the end of
the 2-minute walking period, the FES-elicited muscle fatigue
resulted in higher stimulation intensity but deteriorated the
joint trajectory tracking performance.

To demonstrate the advantages of the proposed US-based
DSC-DC control framework over the traditional DSC-DC
control framework, results of the ankle joint trajectory track-
ing RMSE and TA muscle stimulation RMSPW on the same
participant with different controllers were compared. Given
that the FES-evoked muscle fatigue is not the focus of the
current study, only results from the first 20 gait cycles in Fig.
9 were compared. Fig. 10 shows the mean trajectory tracking
RMSE and mean FES RMSPW across those 20 swing cycles
in Task 3 and Task 4 for each participant. A paired t-test
was used to determine if the differences between Task 3 and
Task 4 were statistically significant at a 95% confidence level
across the five participants. The results in Fig. 10 (a) show
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Figure 10: Comparison results of the ankle dorsiflexion
trajectory tracking RMSE and FES RMSPW between Task 3
and Task 4. Each data point represents the mean value of the
tracking RMSE or FES RMSPW across the first 20 swing
cycles in each task on each individual participant. Asterisk *
represents the significant difference level at p < 0.001.

that the trajectory tracking RMSE values were significantly
reduced by 46.52%=+7.99% (p<0.001) when the US-based
DSC-DC controller was applied, compared to those when
the traditional DSC-DC controller was applied. Similarly,
comparison results of the TA muscle stimulation RMSPW
are also presented in Fig. 10 (b). However, no statistically
significant difference was observed for the RMSPW values
between Task 3 and Task 4 across the five participants.
The US-based DSC-DC controller thus improves tracking
performance without the need for increased FES intensity.
Lastly, the robustness of the proposed US-based DSC-DC
controller was evaluated by comparing the control perfor-
mance in Task 3 and Task 5. To avoid the effect of FES-
elicited muscle fatigue, we only focused on data from the
first 20 gait cycles of both tasks. Fig. 11 shows the results
of plantarflexion stimulation disturbance rejection using the
proposed US-based DSC-DC controller in the first 10 swing
phases out of 20. During the treadmill walking in Task 5,
with the motivation of the co-contraction characteristic in the
drop foot syndrome, we simulated the ankle joint plantarflex-
ion disturbance by applying a step FES input (frequency of
33 Hz, current amplitude of 25 mA, and pulse width of
100 ps) of 500 ms on the medial and lateral gastrocnemius
muscles every time when the gait cycle entered the swing
phase. It is observed that an effective disturbance rejection
is obtained through the proposed controller in Fig. 11 (b),
where the trajectory tracking RMSE values (3.61£0.69°)
are comparable to the situation without any disturbance
(3.594+0.99°) in Fig. 11 (a). However, the RMSPW val-
ues (268.764+25.29 us) when applying the disturbance are
significantly higher than the situation (232.05+21.82 us)
without any disturbance (p < 0.001). Similarly, the mean
and SD values of RMSE and RMSPW across the first 20
gait cycles with and without the plantarflexion disturbance
on each participant are summarized in Table III. Overall,
the proposed US-based DSC-DC controller still achieved a
comparative ankle joint trajectory tracking performance even
though a plantarflexion disturbance was added, which implied
an effective disturbance rejection of the proposed control
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Figure 11: The effect of disturbance rejection using the
proposed US-based DSC-DC controller on Participant A03.
Data come from the first 10 swing phases, and a constant
plantarflexion stimulation on gastrocnemius muscles was
applied throughout each swing phase as a disturbance. These
plots show the desired (dashed red curves) and actual (solid
blue curves) trajectories during the swing phases.

framework across these five participants.

C. Discussion

The purpose of using US imaging in the current study
was to measure the TA muscle activation level during FES,
and this measurement was used as a feedback signal for the
closed-loop control of the FES-elicited ankle joint neuro-
muscular system. US imaging directly visualizes the muscle
contraction during FES and thus can monitor the muscle
activation levels. It would thus act as a robust alternative to
SEMG, which is often poorly suited due to interference from
stimulation artifacts and cross-talk from adjacent muscles.
However, US imaging for FES control is yet to be clinically
translated and its advantages over SEMG must be validated in
the future. That said, the real focus of the paper was not really
to show an improvement of US over sSEMG but to show given
the potential advantages of US, how can one integrate US in
closed-loop FES system control. It is true that the current US
systems are more expensive and bulky than an SEMG system,
and the portability of the US transducer will be critical for
clinical translation of US-based drop foot technology. During
the walking experiments on the treadmill, the experimental
results showed that the US transducer was stabilized onto the
targeted muscle steadily throughout the walking tasks (as can
be seen in the newly added video demonstrations). In recently
years, efforts are being made to make US imaging devices
wearable [45], [61], [62], which may allow their viable

integration in FES systems. Nevertheless, the comparison
between the use of US imaging and SEMG signals in the
closed-loop FES control problem is fairly important to further
evaluate the contributions of using our proposed control
framework, which will be an interesting research direction in
future work. Indeed, EMG offers muscle activation at a higher
frequency and our recent research [39], [41], [59] has even
shown a benefit of combining US imaging, which provides
mechanical information (muscle contractility) with sEMG
during ankle dorsiflexion, where its electrical information
can be complementary to US signals. Similar opportunity
exists to combine SEMG and US for FES control and will
be pursued in our future work.

The treadmill walking speed in the current study was
selected as 0.6 m/s, and we have not done any testing
for walking with faster speeds due to the targeted clinical
population being those with drop foot syndrome who usually
have slower walking speeds. We would like to infer the
following implications based on the current experimental
study. Firstly, the faster speeds will change the normal gait
patterns, including the shank and thigh orientations and
angular velocities, as well as the ankle joint trajectory during
the swing phases, so the parameters need to be re-determined
by using GAPSO in the virtual constraints. Secondly, given
that the current US echogenicity measurement is sampled
at 7.8 Hz, the faster walking speeds will shorten the time
duration of the swing phase, thus reducing the available US
echogenicity samples during the swing phase. These issues
need to be addressed in the future US-based FES control
design for faster walking speeds.

Although the two-dimensional US imaging applied in
this study could visualize the skeletal muscle’s architectural
features from the superficial to the deep layers, it only
provides information from a single plane, which might be
prone to visualization errors for the targeted region of interest
due to the lack of muscle depth information in the third
dimension [63]. In particular, dynamic muscle contraction,
including concentric and eccentric contraction, could easily
cause squeeze, stretch, or overlap of muscle fascicles, and the
capture of these deformations are very challenging by using
two-dimensional US imaging. To address this challenge,
three-dimensional US imaging has been investigated in recent
years [64]. However, to our best knowledge, few studies have
assessed the efficacy of real-time two-dimensional US imag-
ing in the closed-loop control of FES systems, not to mention
the real-time three-dimensional US imaging. Actually, this
sort of problem is very common even for recently developed
high-density SEMG (HD-sEMG) technology, where a plane
of electrical information (a plane of length and width) at
each time instant is provided, but HD-sEMG cannot be used
to measure deeply located muscles.

There are still some limitations in the current study. The
first one is that only participants without any neurological
disorders were included in this study. Although they were
asked to simulate the drop foot syndrome during the tread-
mill walking, they cannot completely avoid the volitional
dorsiflexion motion during the swing phase and fully relax
their foot, which was noticeable from the blue curves in



Table III: Summarized results of disturbance rejection performance by using the US-based DSC-DC controller. (Data are from
the first 20 swing cycles in Task 3 and Task 5, and Dis,, (Disysy) represents with (without) plantarflexion disturbance.)

A0l RMSE A02 RMSE A03 RMSE A04 RMSE A05 RMSE

Unit [°] Mean SD Mean SD Mean SD Mean SD Mean SD
Dison 3.61 1.38 3.15 1.66 4.07 0.74 3.38 1.26 4.18 1.89
Disgyy 2.92 1.15 2.63 0.74 3.61 0.86 3.21 0.92 3.32 1.43
A01 RMSPW A02 RMSPW A03 RMSPW A04 RMSPW A05 RMSPW

Unit [us] Mean SD Mean SD Mean SD Mean SD Mean SD
Dison 288.62 26.66 374.05 2997 240.23 42776 270.14 50.72 258.68  43.99
Disoryr 238.09 22,53 281.22 60.33 22543 2649 14455 5621 219.17 75.75

Fig. 6. Therefore, further evaluations of the proposed control
framework on individuals with drop foot impairments are
necessary in the next step. The second limitation of the
applying US imaging was the low sample rate of 7.8 Hz,
which was determined by the US machine in this study.
Different sampling frequency rates for US data and sSEMG
data are due to different data acquisition mechanisms. The
US data contains high dimensional signals (128 channels for
the US transducer used in this study), compared to a one di-
mensional EMG signal (one channel per sensor). Instead, we
need to transfer the raw radio frequency data (usually binary-
type data) to 2D images, known as beamforming approach
[60]. This beamforming procedure needs a large amount of
computation and is time-consuming, which is the main reason
that the US echogenicity signals can only be provided at a
low-frequency rate. Transmission delays due to the use of
the User Datagram Protocol (UDP) between two computer
systems, e..g, the US machine with graphics processing unit
(GPU) for online beamforming and US echogenicity calcula-
tion and the host computer running Simulink for the closed-
loop control, is another reason for low computation rates
for US imaging. As for the US echogenicity computation
on the US machine with GPU as mentioned in (28) and
the muscle activation measurement calculation in (29), they
are almost instantaneous with computation time less than 1
ms. Nevertheless, multiple options could be used to possibly
increase the US sample rate. Firstly, we used 128 channels
to image the TA muscle and got US echogenicity from
beamformed data that were collected from all 128 channels.
The reduction of the channel number would be helpful to
increase the US sample rate, but could result in lower SNR.
Secondly, we set the depth of US imaging as 40 mm to
capture the entire region of the TA muscle. The reduction of
the depth could be another option, but could result in cropped
region of the TA muscle. Thirdly, applying more advanced
and time-efficient beamforming algorithms or more powerful
graphics processing unit could also be helpful.

VI. CONCLUSION

In this paper, we proposed to use a US imaging-derived
signal (echogenicity) as an indicator of the FES-induced
muscle activation and designed an FES controller that in-
cludes both the continuous kinematic and the lower-sampled
US imaging-derived activation measurements. An SDO was
proposed to continuously estimate the US imaging-derived
muscle activation levels during the stimulation, while a DC
term was used to deal with the input delay in the mus-
cle activation dynamics. The Lyapunov-Krasovskii stability

analysis was performed to prove the convergence of the
trajectory tracking error was SGUUB. This is the first study
that integrates the real-time US imaging in the closed-loop
FES control. The proposed US-based DSC-DC controller was
experimentally validated during the walking swing phase on a
treadmill. Experimental results showed that the dorsiflexion
trajectory tracking performance was significantly improved
by incorporating the US-imaging signals. Future work will
focus on investigation and evaluation of the proposed con-
troller on persons with drop foot disorders, as well as the
comparison between the use of US imaging and sEMG
signals in the closed-loop FES control problem.
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APPENDIX

A Lyapunov-Krasovskii method-based stability analysis is
used to determine the sufficient conditions and guarantee the
closed-loop error system in (23) is SGUUB. To facilitate
the following analysis, three continuously differentiable, non-
negative, radially unbounded functions are defined as
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Proof: A Lyapunov-Krasovskii (LK) functional candi-
date V(x, t) : Lx[tg, 00) — RT is defined as
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and V (, t) can be lower and upper bounded as
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By taking the time derivative of (34), we can get
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where 5 = d3q — 3f = dzq — Zé—g To get the explicit

expressions of P and (), the Leibniz integral rule needs to
be applied. By denoting 7 = &34 as a continuous nonlinear
function and using (7), (12), (13), (14), (20), (23), (25), and
(26), the time-derivative of V' can be upper bounded as
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the inequalities in (38) to (37), the inequality can be further
simplified as
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R is a known constant in the compact set. Recall the control
gain K = K; + K3 + K3. After completing the squares to
compensate for |ez|¢ and p (||2]) ||z using (K2 + K3) €3,
the following inequality can be obtained
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and £ (||x]|) € € R+ is defined as

lixlh =

V

IA

V<- {5 (46)
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The expression (46) can, be further bounded when it
satisfies the condition & — (” D > 0, which is true if the
condition ||z||> < p~2 (2\/7 ) is satisfied, which implies
V< —¢ ||X||2+€. Given the boundary conditions in (35) and

the definition of z and Y, a set for the initial condition of the
augmented state vector x(¢) can be defined as

Fot {x® e = lIxo) =0 <
47)
fy s P o
where the compact set, = =
[eemiin < o= [ VP @]} st sy

IX(0)]] = o to ensure 7 € RT in (40) exists in the
defined compact set. Based on the conditions in Theorem 1,
¢ (|lx]]) > 0 always holds and it can be lower bounded by

a positive constant @ < £ (||x||) € R>o. Recall the upper
bound of V in (35), the inequality in (46) is rewritten as

V < —2V+s5. (48)

Therefore, for x(0) € JF, the solution of the linear
differential equation (48) is computed as

Vix®) < V(0)e X'+ xS (1 — %t) Lt € [to, 00).  (49)

Consider the lower and upper bounds of the LK functional
candidate in (35). The augmented state vector x(¢) can be
upper bounded as

@)l < \/ 2O - £)em 5425,

Given the definition of ||x(¢)|| and the relationship in (12),
the explicit boundary of the trajectory tracking error, defined
in (27), can be expressed as

le(®)] < (1 +a0) [\/ (I =)

From (49), by providing the control gains «gp, aj,
Ky, Ko, B, and §, as well as the observation gain
v according to the sufficient conditions in Theorem 1,
V(x(t)) decays exponentially to a boundary . Because
V € L., the state variables in the augmented vector
€0, €1, €2, Sn, €3, Y, VP, V/Q € Loo. From (50), the com-

== {x R [x(0)l =0, x = {“f VP, @T}

is invariant. This implies 7 € R¥, the maximum of 7 in
the compact set =, exists and thus @34 € L. Recalling the
lower bound of V in (35), further analysis can be done to

(50)

. X
e+ A;]

pact set

show the ultimate bound of ||x/|| is /\X—é, while the ultimate

bound of |e| is (1 + ag) /\X—; Therefore, we can conclude
that the closed-loop system is SGUUB. |



