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AbstractÐOpen-loop or closed-loop functional electrical stim-
ulation (FES) has been widely investigated to treat drop foot
syndrome, which is typically caused by weakness or paralysis
of ankle dorsiflexors. However, conventional closed-loop FES
control mainly uses kinematic feedback, which does not directly
capture time-varying changes in muscle activation. In this study,
we explored the use of ultrasound (US) echogenicity as an
indicator of FES-evoked muscle activation and hypothesized
that including US-derived muscle activation, in addition to
kinematic feedback, would improve the closed-loop FES control
performance compared to the closed-loop control that relies only
on the kinematic feedback. A sampled-data observer (SDO) was
derived to continuously estimate FES-evoked muscle activations
from low-sampled US echogenicity signals. Additionally, a
dynamic surface controller (DSC) and a delay compensation
(DC) term were incorporated with the SDO, noted as the US-
based DSC-DC, to drive the actual ankle dorsiflexion trajectory
to a desired profile. The trajectory tracking error convergence
of the closed-loop system was proven to be uniformly ulti-
mately bounded based on the Lyapunov-Krasovskii stability
analysis. The US-based DSC-DC controller was validated on
five participants with no disabilities to control their ankle
dorsiflexion during walking on a treadmill. The US-based
DSC-DC controller significantly reduced the root mean square
error of the ankle joint trajectory tracking by 46.52%±7.99%
(p<0.001) compared to the traditional DSC-DC controller with
only kinematic feedback but no US measurements. The results
also verified the disturbance rejection performance of the US-
based DSC-DC controller when a plantarflexion disturbance
was added. Our control design, for the first time, provides a
methodology to integrate US in an FES control framework,
which will likely benefit persons with drop foot and those with
other mobility disorders.

Index TermsÐFunctional electrical stimulation, Ankle dorsi-
flexion, Drop foot, Ultrasound imaging, Sampled-data observer,
Nonlinear control

I. INTRODUCTION

Drop foot is a typical symptom of weakened ankle dorsi-

flexion after stroke [1], [2] and other neurological disorders

such as multiple sclerosis [3], incomplete spinal cord lesions
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[4], etc. Affected persons are unable to exhibit normal

foot ground clearance during the swing phase, resulting in

unnatural steppage gait to avoid tripping/falls [5]. To correct

drop foot, functional electrical stimulation (FES), which is

an artificial technique to apply electrical potentials across

skeletal muscles, can be placed over the peroneal nerve and

the tibialis anterior (TA) muscle to induce orthotic effects at

the ankle joint. Since the earlier demonstrations of FES to

correct drop foot by Kantrowitz [6] and Liberson [7], recent

studies [8]–[10] have concurred with its effective orthotic

effects on a larger clinical population.

Traditionally, the TA muscle is activated during the swing

phase using discrete sensors that detect either heel contact

or leg inclination [9]. Here, FES is applied through an

open-loop or a trigger-based control method. The stimulation

amplitude is fixed or uses a pre-determined trapezoidal shape

[7]. Thus, given the nonlinear and time-varying nature of

the FES-activated neuromuscular system, current commercial

drop foot stimulators’ inability to automatically modulate the

stimulation intensity is a major drawback. Furthermore, with

the open-loop FES control mode, the users may be tempted

to choose a higher intensity than necessary to reach enough

dorsiflexion for the ground clearance, which would likely

aggravate FES-induced muscle fatigue, and thus reduce the

effectiveness of open-loop FES control [11], [12].

Time-varying physiological changes in affected muscles

and the requirement to track a desired limb angle tra-

jectory necessitate closed-loop FES control. Feedback can

provide robust performance and recreate precise and ac-

curate functional joint movements. The major challenges

that implement closed-loop FES include highly nonlinear,

time-varying properties of electrically stimulated muscle,

electromechanical delay (EMD), muscle fatigue, spasticity,

and day-to-day variations. To address these challenges, a

range of advanced control strategies have been developed

to achieve a satisfactory trajectory tracking performance for

either knee joint or ankle joint. For example, the high-gain

robust nonlinear control [13], input delay compensation (DC)

[14]–[16], adaptive control [17], [18], and model predictive

control [19], [20] designs for the FES-elicited knee extension

tracking or cycling tasks have been thoroughly investigated.

For FES-elicited ankle joint motion control, especially for

drop foot correction, the adaptive control [21], [22], iterative

learning control [11], [12] and repetitive control [23] designs



have been proposed in recently years. However, as yet, FES

control designs mostly use joint kinematic data as feedback

to address the regulation or tracking problem. Apart from

the kinematic data, other solutions have also been applied to

the closed-loop FES control on different joints, which could

be explored for drop foot correction. These solutions include

the force prediction modeling of the elbow joint with the

consideration of co-activation [24], the pedal force prediction

modeling of FES-elicited cycling [25], and the ankle joint

torque estimation based on the FES-evoked EMG [26].

Motivation exists to use measurements of FES-evoked

muscle activation and thus enable FES control based on more

accurate (third-order) musculoskeletal dynamics. Alibeji et al.

[15] developed a proportional-integral-derivative (PID) type

controller that used a dynamic surface control (DSC) error

structure along with a DC term to account for the muscle

activation dynamics and EMD. The FES-evoked muscle

activation was estimated based on an identified first-order

activation dynamic model, which was parameterized by us-

ing off-line system identification [27]. Reasonably, real-time

physiological muscle state measurements, if available, would

be more favorable than an offline identified muscle activation

estimator to capture the time-varying muscle’s physiological

changes. Surface electromyography (sEMG) is indeed one

traditional tool that is employed to measure FES-induced

or volitional muscle activation levels. However, sEMG is

extremely sensitive to electrical interference [28] because

sEMG records electrical activity during muscle contraction

via electrodes placed on the skin, which are by necessity

near the electrodes used in FES. During the stimulation,

FES impulses can severely corrupt the sEMG signals with

artifacts [29]. For example, FES can deliver impulses on

the order of 100 V while sEMG attempts to record muscle

electrical signals that are on the order of <100 mV with

an inherently low signal-to-noise ratio (SNR). Therefore, the

advanced electrical filter circuits or filtering algorithms are

necessary to incorporate sEMG into FES control [30]–[36].

Recently, ultrasound (US) imaging has been proposed as

an alternative non-invasive technology to directly visualize

skeletal muscle contractility and assess muscle activation

levels under both voluntary and FES-elicited joint movement

[37]–[41]. Compared to sEMG, US imaging is unaffected by

stimulation artifacts during FES. Further, due to its ability to

directly visualize the muscle, the derived signals are devoid

of interference from the adjacent muscles. However, US

imaging is yet to be shown as a feasible real-time sensing

modality that can be integrated into closed-loop FES control.

In this paper, for the first time, we show the feasibility of

deploying US imaging to detect FES-elicited muscle activa-

tion levels and incorporate the US imaging-derived signal

in an FES control design. The US imaging-based control

framework is validated to track an ankle dorsiflexion trajec-

tory during a treadmill walking task. The main challenge to

incorporate US imaging-derived signals in the closed-loop

FES control is the low sampling rate of the US imaging-

derived feedback signal. The low sampling rate mainly stems

from computationally intensive US image generation and its

processing. So far, previous US imaging studies processed

and derived volitional [38], [39], [41] or FES-evoked [40],

[42] muscle activation data in an offline manner. Thus, to the

best of our knowledge, the real-time use of US imaging data

to monitor FES-evoked muscle activation and aid its control

performance remains unexplored. Specifically, we use the US

imaging-derived echogenicity signal for measuring muscle

activation, although at a much lower sampling frequency

compared to kinematic measurements from inertial mea-

surement units (IMU) or angular encoders, and integrate it

with a continuous FES closed-loop control approach. Unlike

architectural features that are extracted from US imaging, like

pennation angle, fascicle length, muscle thickness, and tissue

displacement, US echogenicity refers to the ability to reflect

US waves in the context of surrounding tissues [43], which

can be visualized as the brightness and darkness of the region

of interest (ROI) and calculated as the average brightness of

the ROI in each image frame. US echogenicity calculation

does not rely on complex and time-consuming dynamic pixel

displacement tracking algorithms, which brings potential

computational benefits to save processing time in the real-

time application. Previous offline studies have demonstrated

a good correlation between echogenicity and muscle contrac-

tility/activation [41], [42], [44], [45].

To address the challenge of assimilating the lower-sampled

US imaging-derived signals, a sampled-measurement data-

based observer (SDO) is derived to estimate muscle activation

levels in a continuous manner. Due to gait-to-gait and person-

to-person variations, a pre-defined time-dependent desired

trajectory needs to be compressed or stretched online to adapt

to the walking conditions, which can easily cause a mismatch

between gait phases and affect control performance. There-

fore, in this study, inspired by virtual constraints in [46], we

propose to generate a time-independent desired ankle joint

trajectory in joint space based on the portraits of thigh and

shank segments from normal gait data obtained from walking

on a treadmill. Compared to the preliminary simulation study

in [47], in this work, we conducted walking experiments with

the US-based DSC-DC control method on a treadmill. The

main innovations and contributions of this paper include: 1)

derivation of an US-based DSC-DC control framework to

handle low-sampled US signals and EMD in FES, 2) tra-

jectory tracking error convergence analysis of the combined

observer and controller based on a Lyapunov-Krasovskii

functional, 3) time-independent ankle joint desired trajectory

generation based on virtual constraints given the portraits of

thigh and shank segments, 4) experiments comparing the US-

based DSC-DC control method and traditional DSC-DC con-

trol method, as well as ankle trajectories comparison between

FES-on and FES-off conditions during the swing phase, and

5) evaluation of the disturbance rejection performance during

the swing by adding plantarflexion disturbance.

II. ANKLE JOINT MUSCULOSKELETAL MODEL

A. Ankle joint dorsiflexion motion dynamics

The dynamic model of the FES-actuated limb movement,

as shown in Fig. 1, is given as

Jθ̈(t) +Mv +Me +Mg +Dext = τ(t), (1)



where J ∈ R
+ is the unknown inertia term of the foot along

the dorsiflexion axis of rotation, and θ(t), θ̇(t), and θ̈(t) ∈ R

denote the angular position, angular velocity, and angular ac-

celeration, respectively. The constant limb equilibrium point

is represented as θeq ∈ R
−, which represents the joint’s

posture when the limb is completely relaxed. The passive

moment Mv(θ̇) ∈ R is a term to represent musculoskeletal

viscosity, Me(θ) ∈ R is a term to represent musculoskeletal

elasticity, and Mg(θ) = mgl sin(π2 + θ + θeq) ∈ R is the

gravitational term acting on the ankle. The mass of the limb

and the length from the limb’s center of mass to its rotation

center in the sagittal plane are denoted as m ∈ R
+ and

l ∈ R
+, respectively. The explicit definitions of the functions

Mv(θ̇) and Me(θ) can be obtained from [13], [17]. The term

related to external disturbance and unmodeled effects in the

neuromusculoskeletal system is denoted as Dext(t) ∈ R.

The limb torque elicited by FES is given as

τ(t) ≜ r(θ)Fmη1(θ)η2(θ̇) cos(α)a, (2)

where each term on the right hand side is defined in the

following properties:

Property 1: The variable r(θ) ∈ R
+ represents the moment

arm for the muscle tendon force, which is a function of the

joint position, and is given as r(θ) = −0.013(θeq−θ)+0.035
[48]. So the moment arm is a continuously differentiable,

positive, and bounded function with a bounded first-order

time derivative.

Property 2: The variable Fm ∈ R
+ represents the constant

maximum isometric muscle contraction force at the equilib-

rium position.

Property 3: Variables η1(θ) and η2(θ̇) denote the nonlinear

relationships of force-fascicle length and force-fascicle ve-

locity [49], and both of them are continuously differentiable,

non-zero, positive, and bounded functions.

Property 4: The pennation angle between the muscle

fascicle and deep aponeurosis, denoted by α(θ) ∈ R
+,

increases monotonically within the approximate range 0-30°

as the muscle contracts [50].

Property 5: The variable a(t) ∈ [0, 1] denotes the muscle

activation level whose ideal dynamics is represented by the

following continuous first-order differential equation [51]:

ȧ(t) =
−a(t) + u(t− τM )

Ta
. (3)

In (3), the EMD caused by FES is denoted as τM ∈ R
+

and assumed to be known, and Ta ∈ R
+ is the muscle

activation decay constant. The normalized non-delayed FES

input u(t) ∈ [0, 1] is due to the boundedness of the muscle

stimulation. From [51], the input u(t) is modeled by a

piecewise linear function

u(t) =











0, ū < umin,
ū(t)−umin

umax−umin

, umin ≤ ū ≤ umax

1, ū > umax

, (4)

where umin and umax∈ R≥0 are the stimulation threshold

and stimulation saturation, respectively, and ū(t) ∈ R≥0 is

the modulated parameter (current, pulse width, or frequency)

applied on the TA muscle.

Figure 1: The neuromusculoskeletal schematic of the FES-

induced ankle dorsiflexion dynamic system. Notice that only

the tibialis anterior muscle is being stimulated, meaning that

FES can only produce ankle dorsiflexion and gravity is relied

upon to move the foot back to the equilibrium point θeq .

To facilitate the controller development and stability analy-

sis, the following assumptions are made throughout the paper:

Assumption 1: The angular position and velocity signals

θ, θ̇ are continuously measurable.

Assumption 2: The muscle activation signal a is mea-

sured by normalizing the US imaging-derived echogenicity

signal [41] in a real-time manner, but with a much lower

sampling frequency compared to the sampling frequency

of the angular position and velocity. The normalized US

echogenicity signal is used as muscle activation feedback

only at discrete time instant tk (k = 0, 1, 2, ...,∞), and

{tk} is a monotonically increasing sequence and satisfies

limk→∞ tk = ∞. The sampling interval is set as a constant

value T , namely T = tk+1−tk. Due to the data transmission

delay, the sampled activation signal is available at instants

tk + τk, where τk > 0 denotes the unknown and time-

varying transmission delay with an upper bound τ̄ . Thus, the

maximum time duration between two successively available

muscle activation measurements is T + τ̄ , denoted as T̄ .

Assumption 3: The desired ankle trajectory θd∈ R and its

time derivatives, θ̇d ∈ R and θ̈d ∈ R, are bounded.

B. Sampled-data observer design

Define a state variable x =
[

θ(t), θ̇(t), a(t)
]T

. The over-

all continuous neuromusculoskeletal system can be expressed

in state-space form as





ẋ1
ẋ2
ẋ3



 =





x2
1
JΓ

(−fΓ (x1, x2)−DextΓ + x3)
−x3+u(t−τM )

Ta



 , (5)

where fΓ (x) =
Mv(x2)+Me(x1)+Mg(x1)

Γ (x) , Γ (x) =

r(x1)Fmη1(x1)η2(x2) cos(α), JΓ = J
Γ (x) , and

DextΓ = Dext

Γ (x) . Hereafter, the following assumptions

are also made throughout the paper:

Assumption 4: Based on the properties in (2), the function

Γ (x) is continuously differentiable, positive, and bounded.



Also, the first-order derivatives of Γ (x) and 1
Γ (x) exist and

are bounded.

Assumption 5: Based on Assumption 4, the term JΓ is

bounded, and its first-order time derivative exists and is

bounded. In addition, JΓ satisfies the inequality a1 ∥Θ∥2 ≤
ΘTJΓΘ ≤ a2 ∥Θ∥2 , ∀Θ ∈ R

n, for some known positive

constants a1, a2 ∈ R
+.

Assumption 6: The external disturbance in the system Dext

in (1) is bounded. Therefore, based on Assumption 4, DextΓ

is also bounded.

According to (5), the state element x3 is independent from

x1 and x2, so the overall system could be considered as

a cascade system, and the SDO will be designed for the

subsystem related to x3. Based on the sampled and delayed

muscle activation from US imaging, the continuous-time

observer for muscle activation is given as [52]–[54]

˙̂x3(t) = − x̂3(t)
Ta

+ u(t−τM )
Ta

+ γε3(tk)

t ∈ [tk + τk, tk+1 + τk+1), k = 0, 1, 2, ...,∞ ,

(6)

where γ ∈ R
+ is the observation gain used for updating the

observer which will be subsequently constrained in stability

analysis section. The variable ε3(tk) = x̂3(tk) − x3(tk)
represents a constant value (a zero-order hold) during the

time interval t ∈ [tk + τk, tk+1 + τk+1), is updated at the

time point when the US echogenicity is available, and is

assumed to be upper bounded by ε̄k3 ∈ R
+. Therefore, the

observer model is of a hybrid nature with continuous and

discrete variables. The continuous observation error is defined

as ε3(t) = x̂3(t) − x3(t), and by taking its time derivative

and substituting (5) and (6), the observation error dynamics

is given as

ε̇3(t) = − ε3(t)
Ta

+ γε3(tk)

t ∈ [tk + τk, tk+1 + τk+1), k = 0, 1, 2, ...,∞ .

(7)

III. CONTROL DEVELOPMENT

A. Desired joint trajectory planning - high-level control

During human locomotion, overground or on the treadmill,

a time-dependent pre-defined desired ankle dorsiflexion tra-

jectory needs to be compressed or stretched to adapt to gait-

to-gait and person-to-person variations, which is a cumber-

some design process. Therefore, we use a time-independent

trajectory generation profile based on virtual constraints [46].

The desired ankle dorsiflexion trajectory was generated on-

line given the orientations and angular velocities of the thigh

and shank segments during the locomotion. Consider the term

hd(v(q)) ∈ R (q = [θshank, θ̇shank, θthigh, θ̇thigh]
T ), a

desired virtual constraint function that is represented with

the Bezier polynomial as

hd(v(q)) =

M
∑

k̄=0

ϱk̄
M !

k̄!(M − k̄)!
vk̄(1− v)M−k̄, (8)

where M ∈ R
+ is an integer equal to the number of Bezier

polynomial terms, ϱk̄ ∈ R represents the parameters that are

determined through the optimization mentioned in [55], [56],

and v ∈ R≥0 is calculated as

v(q) =
θ(q)− θ

θ− − θ+

+

, (9)

where θ+ and θ− are the maximum and minimum values of

the function θ(q), respectively, and θ(q) = ζ̄0 + ζ̄1θshank +
ζ̄2θ̇shank + ζ̄3θthigh + ζ̄4θ̇thigh represents the applied phase

variable. ζ̄i ∈ R (i = 1, 2, 3, 4) is selected such that θ(q) is

monotonically increasing or decreasing. Finally, the desired

ankle trajectory θd during the swing phase is set as hd(v(q)).
To obtain the optimal solution of ϱk̄ in the Bezier polyno-

mial (8), a genetic algorithm-based particle swarm optimiza-

tion (GAPSO) [57] was used to minimize the cost function:

min
ϱk̄

R =

N
∑

i=1

(

hid(v(q))− him
)2
, (10)

where N represents the number of data samples used in

the optimization, and hid and him represent the Bezier

polynomial-computed and measured ankle dorsiflexion mo-

tion values at the ith time instant, respectively. The GAPSO

utilizes kinematics data that were collected from participants

with no disabilities at the walking speed of 0.6 m/s. We

preferred designing desired ankle trajectories based on Bezier

polynomials, compared to other splines, due to their useful

properties that are amenable [55] for numerical stability

during the optimization.

B. Low-level control

The control objective is to develop a trajectory track-

ing controller for an FES-evoked limb motion that takes

both kinematic and muscle activation feedback during the

controlled motion. Here, we use US imaging-derived mus-

cle activation as feedback in the control design. Due to

the computationally intensive US signal beamforming and

imaging process, the real-time feedback of a US imaging-

derived signal may be sampled at a low rate, compared to

a higher sampled kinematic signal. Therefore, an SDO that

combines muscle activation dynamics and sparse US imaging

measurements is proposed to continuously estimate FES-

evoked muscle activation. With the feedback from the SDO

and joint kinematics, a PID-type DSC controller plus a DC

term is proposed to achieve the trajectory tracking task. The

diagram of the proposed framework is shown in Fig. 2 (a).

Remark 1. Compared to the traditional integrator backstep-

ping method, the benefit of the DSC method is to approxi-

mate the derivative of the control input with the dynamics of

a low-pass filter. Consequently, this approach avoids taking

another time derivative, which otherwise would result in an

acceleration signal-based control law [15].

The details of the low-level control design are given below.

1) Open-loop error development: The trajectory tracking

error for the ankle neuromusculoskeletal system is given as

e(t) = xd(t)− x1(t), (11)

where xd(t) ∈ R is the desired differentiable ankle dorsi-

flexion trajectory, which is generated online based on the



(a)

(b)

Figure 2: (a) The block diagram of the proposed US-based DSC-DC control framework for the ankle neuromusculoskeletal

system during walking on an instrumented treadmill. Virtual constraints were used to generate the desired ankle joint trajectory

online during the walking swing phase. The finite state machine was used to differentiate the swing phase and stance phase

during walking based on the ground reaction force. Black lines and arrows represent the flows after the intermediate data

processing, red solid lines and arrows represent the direct measurements from the treadmill walking experiments, the red

dashed line represents the binary state of the swing or stance phase, and blue lines and arrows represent the non-delayed

control signals (FES pulse width modulation) to the ankle neuromusculoskeletal system, respectively. The diagram could be

shifted to the DSC-DC control framework by changing the ªSDOº part to the ªNo-USº part (shown to the right of the green

arrow). (b) The block diagram of the treadmill walking tasks sequence on each participant.

aforementioned virtual constraints. For facilitating control

design and stability analysis, the following auxiliary error

signal e1(t) ∈ R is defined as

e1(t) = ė0(t) + α0e0(t), (12)

where α0 ∈ R
+ is a control gain and e0(t) is a designed

term to incorporate integral control, which is defined as

e0(t) =

∫ t

0

e(s)ds. (13)

Another auxiliary error signal e2(t) ∈ R is defined as

e2(t) = ė1(t) + α1e1(t), (14)

where α1 ∈ R
+ is a control gain. After taking the time

derivative of e2(t), multiplying with JΓ, and using (5), (11)-

(13), we get the open-loop error dynamics

JΓė2 = JΓẍd + fΓ +DextΓ − x3

+JΓ(α0 + α1)ė+ JΓα0α1e. (15)

2) Backstepping design and dynamic surface control: By

introducing a desired virtual control input signal as x3d ∈
R≥0, the filtered desired signal, denoted as x3f , is obtained

by passing x3d through a low-pass filter such that

x3d = ζ3ẋ3f + x3f , x3d(0) = x3f (0), (16)

where ζ3 ∈ R
+ is the low-pass filter time constant. By

defining the filtering error as yf = x3d − x3f , the time

derivative of the filtered intermediate signal is a continuously

differentiable function and expressed as ẋ3f =
yf
ζ3

. By

defining the surface error as S = x3f − x̂3, and adding and

subtracting x3d and x̂3, the open-loop error dynamics (15)

can also be written as

JΓė2 = JΓẍd + ε3 + S + yf − x3d +DextΓ

+fΓ + JΓ(α0 + α1)ė+ JΓα0α1e.
(17)

By adding and subtracting 1
2 J̇Γe2 and a DC term, eI ∈

R, multiplied by a constant gain δ ∈ R
+, where eI(t) =

∫ t

t−τM
u(s)ds, the rearranged format of (17) can be given as

JΓė2 = −1

2
J̇Γe2+S+yf−δeI+ε3+H̃+O−x3d−e1, (18)

where the auxiliary signals H̃ (e, e1, e2, eI , xd, ẋd, ẍd, t) ∈
R and O (xd, ẋd, ẍd, Γ, t) ∈ R are defined as

H̃ = H−Hd, O = DextΓ +Hd

H = 1
2 J̇Γe2 + JΓẍd + fΓ + δeI + e1
+JΓ(α0 + α1)ė+ JΓα0α1e

Hd = JΓdẍd + fΓ (xd, ẋd)

, (19)

where JΓd = J
Γ(xd)

and fΓ (xd, ẋd) =
Mv(ẋd)+Me(xd)+Mg(xd)

Γ(xd)
. Furthermore, according to



Assumptions 1, 2, 4, and 5, the two auxiliary signals

H̃ and O can be bounded as
∣

∣

∣
H̃
∣

∣

∣
≤ ρ (∥z∥) ∥z∥ , |O| ≤ ζ, (20)

where ζ ∈ R
+ is a known constant, ρ (∥z∥) ∈ R

+ is a

positive globally invertible non-decreasing bounded function,

and z is defined as

z = [e0, e1, e2, eI ]
T
. (21)

In the expression (18), the desired intermediate signal is

defined as [15]

x3d = Ke2 = Kė+ (α0 + α1)Ke+Kα0α1e0, (22)

where K = K1+K2+K3 ∈ R
+, which implies a PID type

signal with three different control gains, and the correspond-

ing coefficients are defined as Kp = (α0 + α1)K, Kd = K,

and Ki = Kα0α1.

By using the definition in (22), (18) can be rewritten as

JΓė2 = −1

2
J̇Γe2+Sn+yf +ε3+ H̃+O−Ke2−e1, (23)

where Sn = S − δeI , which is the augmented surface error

that contains the DC term δeI . By substituting the surface

error and (6), the time derivative of Sn is given as

Ṡn =
yf
ζ3

+ x̂3

Ta
− δu(t)− γε3 (tk)

+
(

δ − 1
Ta

)

u(t− τM )
, (24)

The DC term eI is proposed to replace the delayed input

in the muscle activation dynamics with a non-delayed input.

By manipulating the non-delayed input, which is defined as

the control law u(t) as

u(t) =
1

δ

[

βSn +
yf

ζ3

]

, (25)

where β ∈ R
+ is a control gain, we can get the closed-loop

surface error dynamics as below

Ṡn = −βSn+
x̂3

Ta
+

(

δ − 1

Ta

)

u(t− τM )−γε3 (tk) . (26)

C. Stability Analysis

Lemma 1. For any given positive definite matrix M ∈
R
n×n, a positive scalar α, and a vector function ν, the

following Cauchy Schwarz inequality always holds as

[
∫ α

0

ν(s)ds

]T

M

[
∫ α

0

ν(s)ds

]

≤ α

[
∫ α

0

νT (s)Mν(s)ds

]

.

The proof for this Lemma can be found in [58].

Theorem 1. Consider the neuromusculoskeletal system in (5)

with a known EMD τM , by using the TA muscle activation

estimation from the SDO with sparse US imaging-derived

muscle activation update in (6) and control law in (25), the

FES-elicited ankle dorsiflexion trajectory tracking error is

ensured to be semi-globally uniformly ultimately bounded

(SGUUB) in a sense that

|e| ≤ σ0 exp(−σ1t) + σ2, (27)

where σ1, σ2, σ3 ∈ R
+ are subsequently defined in the

stability analysis, provided that the observation gain γ and

control gains α0, α1, K1, K2, β, δ, and ζ3 satisfy the

following sufficient conditions:

α0 ≥ 1
2 , α1 ≥ 1

2 , K1 ≥ 3
2 ,

1
ζ3

≥ 1
2 + η̄2

2ϵ , K2 ≥ ρ2(∥z∥)
4ξ ,

0 < γ ≤ (2− Ta)T
−1
a

(

2T̄ + 1
)−1

,

β ≥ max
{

1
2

(

−ϑ+
√
ϑ2 + 4τMδ−2

)

,

1
2

(

κ−1τMδ
−2 +

√

κ−2τ2Mδ
−4 + 4κ−1τMδ−2ζ−1

3

)}

,

where ϵ is a arbitrary positive constant, and η̄, ξ, ϑ, and κ

are positive constant values defined in the attached stability

analysis, which is detailed in the Appendix.

Proof: Please see the Appendix section.

IV. EXPERIMENTAL IMPLEMENTATION

As previously stated, it is hypothesized that the considera-

tion of US imaging-derived muscle activation updates would

result in a more accurate muscle activation estimation when

FES is applied, when compared with the muscle activation

that is calculated based on the pure dynamic model in (3).

Subsequently, the use of accurate muscle activation in the

closed-loop FES control and the DSC+DC would improve

the control performance. To validate this hypothesis and

demonstrate the efficacy of the newly developed US-based

DSC-DC controller, it was tested for an ankle dorsiflexion

trajectory tracking task during the walking swing phase

to deal with the drop foot problem. Furthermore, it was

compared with a traditional DSC-DC controller with the pure

offline identified muscle activation dynamics. In addition,

given that the ultimate goal of the controller is to improve

ground clearance due to drop foot, the ankle joint trajectories

during the walking swing phase with controlled FES and

without FES were also compared and analyzed.

A. Experimental apparatus and protocol

The study was approved by the Institutional Review Board

(IRB) at North Carolina State University (IRB number:

20602). Five young participants (identified as A01, A02,...,

A05, 3M/2F, age: 25.4 ± 3.1 years, height: 1.77 ± 0.10

m, mass: 78.0 ± 21.1 kg) without any neuromuscular or

orthopedic disorders were recruited in this study. Every

participant was familiarized with the experimental procedures

and signed an informed consent form before participation.

To identify the individual muscle activation decay constant

Ta and EMD τM , each participant was configured with

an isometric condition, as shown in previous studies [39],

[41], and a step FES input was applied to the TA muscle.

Three steps were conducted to extract parameters of Ta
and τM from the input FES signal and the dorsiflexion

torque measurements. Firstly, the EMD τM was determined

by measuring the time difference from the instant when

the FES was applied to the instance when the measured

torque began to increase. Secondly, the normalization of



Figure 3: Illustration of the US equipment setup during the treadmill walking experiments and schematic diagram of US

echogenicity-derived muscle activation calculation during the walking swing phase. BF-beamforming, MC-maximum muscle

contraction at FES saturation, LCIS-logarithmically compressed imaging signal.

Table I: Results of muscle activation decay constant Ta
and EMD τM from the system identification testing under

isometric configuration on individual participants.

Participant A01 A02 A03 A04 A05 Mean SD

Ta [s] 0.26 0.41 0.33 0.24 0.30 0.31 0.07
τM [ms] 103 121 108 118 95 109 10

the measured dorsiflexion torque was shifted to the left

by the EMD value to account for the input delay period.

Thirdly, under the assumption that the muscle activation

dynamic model is a first-order system, the activation decay

constant was identified by solving the time constant that

produced the minimal error between the normalized shifted

torque measurement and the normalized response of the first-

order system with a normalized step input signal. Results of

individual Ta and τM values from the above identification

steps are summarized in Table I.

The main experimental procedures are walking tasks at

0.6 m/s under different conditions on an instrumented tread-

mill (Bertec Corp., Columbus, OH, USA) with two split

belts. Two in-ground force plates (AMTI, Watertown, MA,

USA) mounted under two split belts were used to measure

ground reaction force (GRF), which was used to differentiate

stance phase and swing phase within a gait cycle. The

swing phase was triggered when the GRF’s z-axis value

was less than 5% of each participant’s body mass with a

unit of kg. Two low-cost 6-axis IMUs (MPU 9250, TDK

InvenSense Headquarters, CA, USA) were attached to the

right shank and right thigh to measure the 2-D motion in

the sagittal plane. The pitch orientations of the shank and

thigh segments were determined by using a complementary

filtering method, as detailed in [59]. An ankle brace with

an incremental encoder (1024 pulses per revolution, TRD-

MX1024BD, AutomationDirect, GA, USA) was attached

to the right ankle joint to measure the angular position

and velocity of dorsiflexion and plantarflexion. A pair of

electrodes (size: 2º×2º) were placed on the fibular head and

the distal belly of the TA muscle, respectively, to pass the

biphasic stimulation pulse trains generated by a commercial

stimulator (Rehastim 2, HASOMED GmbH, Germany). A

clinical linear US transducer (L7.5SC Prodigy Probe, S-

Sharp, Taiwan) with 128 channels was attached to the TA

muscle belly perpendicularly by a customized 3D printed

holder [39] to image the targeted region in a longitudinal

direction. The depth of US imaging was set as 40 mm to

include the entire TA muscle area.

We performed six walking tasks on each participant at a

speed of 0.6 m/s. The details are given below and also shown

in Fig. 2 (b):

Task 1: This task was used for determining the parameters

of the Bezier polynomial, via the GAPSO method, to generate

the desired ankle joint trajectory online in Tasks (3-5). Here,

we asked each participant to walk normally (with preferred

ankle dorsiflexion and plantarflexion during the swing and

stance phases) on the treadmill for five minutes.

Task 2: Here the task was to imitate the drop foot pat-

tern during the walking swing phase on unimpaired partic-

ipants.We asked each participant to walk with an imitated

drop foot (without voluntary TA muscle contraction during

the swing phase) on the treadmill for five minutes. This task

might be repeated if there was no significant difference in

the ankle joint trajectories during the swing phase in Task 1.

Task 3: In this task we verified the drop foot correction

performance by using the proposed US-based DSC-DC con-

trol framework.We asked each participant to keep the same

walking pattern as in Task 2 while the proposed US-based

DSC-DC control framework was applied during the swing

phase to assist ankle dorsiflexion by stimulating only the TA

muscle and tracking the online generated desired trajectory

(the virtual constraint model was optimized by using data

collected from Task 1).

Task 4: In Task 4, we compared the drop foot correction

performance of Task 3 with that of the DSC-DC control

framework without US feedback. Similar experimental pro-

cedures as in Task 3 were used, but a traditional DSC-DC

controller without US echogenicity-derived muscle activation

update was used.

Task 5: This task evaluated the disturbance rejection per-

formance by using the proposed US-based DSC-DC control

framework.Similar experimental procedures as in Task 3,



but the lateral and medial gastrocnemius muscles were also

stimulated with a relatively low constant stimulation intensity

during the swing phase.

Task 6: Here we re-evaluated the imitated drop foot pattern

during the walking swing phase after removing all FES

intervention. The experimental procedures in Task 2 were

repeated.

During the experiments, Task 1, Task 2, and Task 6 were

always performed in the same order, whereas the order

of control Tasks (3-5) was randomly selected. During the

experimental procedures from Task 2 to Task 6, the partici-

pants were not allowed to view the online generated desired

trajectory or the ankle joint performance in real-time. A

minimum 10-minute rest period was provided for participants

between two successive tasks to avoid muscle fatigue. For

Task 1, Task 2, and Task 6, only the measurements data

within the middle two minutes were collected for analysis,

while for Task 3, Task 4, and Task 5, to avoid FES-induced

muscle fatigue, each walking trial lasted two minutes, and

data throughout the trial were collected for analysis. A real-

time target machine (Speedgoat Inc., Liebefeld, Switzerland)

and analog and digital data acquisition boards IO 101 and

IO 306 were used to record GRF, IMUs, and encoder signals

at 1000 Hz. The controllers in Tasks 3-5 were programmed

in Simulink (R2019b, MathWorks Inc., MA, USA) and

implemented on the target machine with a frequency of 1000

Hz. The control Tasks required the EMD value and the acti-

vation decay constant for the activation state estimators with

and without the US imaging-derived update. These values

were determined using a system identification experiment

conducted on a different day before the treadmill walking

experiments under the isometric dorsiflexion condition, which

is detailed in [20]. The biphasic stimulation pulse trains had a

frequency of 33 Hz, and the current amplitude was set as 20

mA for all participants, while the pulse width was modulated

between the subjective threshold and saturation automatically

by the controllers. Also, the threshold and saturation of the

stimulation pulse width were determined using the same

isometric dorsiflexion experiment [20].

B. US echogenicity-derived muscle activation calculation

Figure 3 presents the illustrative diagram for the US

imaging-derived low-sampled muscle activation measure-

ments. Offline studies [41], [42] have shown that US

echogenicity has a promising performance regarding voli-

tional and FES-evoked ankle dorsiflexion effort prediction,

indicating a good correlation between the US echogenicity

and the muscle activation. Therefore, in this study, US

echogenicity is used as a measurement of FES-induced

muscle activation. The radio frequency data from the US

machine were online beamformed based on a line-by-line

beamforming method [60]. The echogenicity value from the

US image at time instant tk is calculated as

Echotk =
1

NANL

NA
∑

x=1

NL
∑

y=1

Itk(x, y), (28)

where NA, NL ∈ R
+ represent the pixel numbers along axial

and lateral directions, respectively. The term Itk(x, y) ∈ R

represents the US intensity information at the pixel location

(x, y) on the image at tk instant from the logarithmically

compressed imaging signals after the beamforming proce-

dure. Therefore, the 2D map time sequence is transferred

to a 1D signal time sequence. Visually, if the individual

pixel intensity information is normalized to the gray-scale

value (between 0 and 255), it will present the brightness of

each pixel on the 2D map. Thus, the calculated echogenicity

signal represents the overall brightness within the region of

interest. Our previous studies showed that there is a strong

negative correlation between the echogenicity change and the

muscle contraction level (known as muscle activation here)

[41]. Therefore, here, the US echogenicity-derived muscle

activation is calculated as the following piecewise function

atk =











1, Echotk < Echomin
Echomax−Echotk
Echomax−Echomin

, Echomin ≤ Echotk < Echomax

0, Echotk ≥ Echomax

(29)

where Echomax and Echomin are the individual upper and

lower bounds of echogenicity signals that are determined

under the muscle rest condition and the maximum stimulation

condition (with individual FES saturation). The prior testings

showed the real-time US echogenicity data was transferred

from the US machine to the FES control system at a rate

of 7.8 frames per second, which indicates the US imaging-

derived muscle activation measurement is sampled at 7.8 Hz.

V. RESULTS AND DISCUSSION

A. Results of online desired trajectory generation

The ankle joint’s angular position measurements and the

shank’s and thigh’s orientations and angular velocities during

the swing phases of 30 stabilized walking gait cycles were

collected in Task 1 across five participants. The data were

used to optimize the parameters ϱk in the Bezier polynomial

(8), which generated the desired ankle joint trajectory for

each participant in control Tasks 3-5. The joint kinematic

patterns (shank’s and thigh’s orientations and angular veloci-

ties) during the swing phase across gait cycles facilitated the

generation of the desired ankle joint trajectory via GAPSO.

In Fig. 4, the time-independent desired trajectories generated

based on the virtual constraints and the measured trajectories

during 10 exampled gait cycles in Task 1 are depicted for

each participant. Given the current study only focused on

the swing phase, the desired ankle joint trajectories only

exist in the gray areas and are represented by the red curves

in Fig. 4 while the measured trajectories are represented

by the blue curves. The accuracy of the online trajectory

generation based on the virtual constraints was evaluated

by calculating the averaged root mean square error (RMSE)

values between the virtual constraint-calculated trajectories

and measured trajectories during the 30 gait cycles in Task 1

for each participant. These averaged RMSE values are 1.49°,

1.26°, 2.12°, 1.83°, and 1.78° of participant A01, A02,...,

A05, respectively. The mean and standard deviation (SD) of



Figure 4: Ankle joint trajectory measurements and results

from the GAPSO during the walking swing phase for each

participant in Task 1. The gray and non-gray areas represent

the swing phase and stance phase, respectively. The red and

blue curves represent the online generated desired trajectories

based on the virtual constraint and the measured trajectories

by using the incremental encoder, respectively.

averaged RMSE values across participants are 1.70±0.33°.

The small averaged RMSE value across gait cycles and

participants indicates the high robustness of the designed

virtual constraints.

B. Results of control performance

Figure 5 demonstrates the snapshots of one swing phase

during Task 3 on Participant A03, where (A) - (H) represent

every 12.5% of the swing phase in the current gait cycle.

Visually, the ankle joint’s angular position is improved in

the clockwise direction, especially from (E) to (H), when

compared to results from Task 2. In Fig. 6, the quantitative

results of ankle joint real trajectories from 30 swing phases in

Task 1, Task 2, and Task 3 on each participant are presented,

where the black, blue, and red solid curves represent the

mean value from 30 selected swing phases, while the black,

blue, and red shadowed areas represent the SD in Task 1,

Task 2, and Task 3, respectively. It is not surprising that

the individual TA muscle had different response and the

individual ankle joint had different trajectories due to three

main reasons. First, in the current study, we only focused

on the treadmill walking swing phase, where the ankle joint

was in the air. According to the subjective walking habit,

it is reasonable that each participant has a preferred and

comfortable ankle joint trajectory during his or her walking

swing phase even though the participant was asked to avoid

volitional TA muscle contraction (make the ankle joint at

rest) during each walking swing phase. Second, to get the

measurements of angular position and velocity on the ankle

joint, we attached an ankle-foot brace with an incremental

encoder (same for all participants) in the experimental setup.

The stabilization of the ankle-foot brace during the walking

swing phase depended on many factors, including the size

of individual shoes, the tightness of individual shoes, the

stiffness and damping parameters of individual ankle joint

with the ankle-foot brace, and so on. Third, due to the

person-to-person variations, the threshold and saturation of

FES pulse width were different between participants, and

the control output FES pulse width were time-varying and

different between participants. For each swing phase in Fig.

6, the averaged θankle is calculated, denoted as θ̄ankle, then

the mean and SD values of 30 θ̄ankles on each participant

is calculated and shown in Table II. The results show that

the right ankle joint real dorsiflexion motion is significantly

improved by using the proposed US-based DSC-DC control

framework in Task 3 compared to the dorsiflexion motion

with imitated drop foot in Task 2. However, compared to

the normal gait in Task 1, some inconsistencies still existed

even the proposed control framework was applied in Task

3, especially during the first half of the swing phase on

Participant A01, A02, and A04.

Table II: Mean and SD values of ankle joint real trajectories

in 30 swing phases in Task 1, Task 2, and Task 3 on each

participant. (Unit: °)

Condition Task 1 Task 2 Task 3

Participant Mean SD Mean SD Mean SD

A01 -4.16 5.96 -19.80 2.19 -11.57 4.69
A02 -7.76 4.77 -17.36 5.62 -8.32 7.67
A03 -7.09 2.67 -14.55 5.44 -7.62 4.75
A04 -3.73 3.74 -23.61 5.67 -5.38 5.21
A05 -0.74 4.01 -11.12 3.26 -1.66 4.41

Mean -4.70 4.23 -17.28 4.43 -6.91 5.35

By taking Participant A03 as an example, the results

of the sparse US echogenicity measurements and the US

echogenicity-derived muscle activation levels in tasks 1, 2,

and 3 are presented in Fig. 7 (a) and (b), respectively. Among

these three tasks, FES was applied only in Task 3, so the input

(normalized FES pulse width from the US-based DSC-DC

control framework) and output signals (continuous muscle

activation estimation given Ta = 0.33 s for this participant

and γ = 20) of the SDO are presented in Fig. 7 (c) and

(d), respectively. In each subplot, the mean and SD of each

signal from 30 swing phases are normalized proportionally

to the swing phase cycle (0-100%). Results in Fig. 7 (a) and

(b) indicate that muscle activation levels in Task 2 are much

lower when compared to those in Task 1 and Task 3.
The experimental results for the trajectory tracking per-

formance from a representative participant are presented in

Fig. 8, where data were obtained from 10 gait cycles in

both Task 3 and Task 4. The dashed red and solid blue

curves respectively represent the desired (generated online

based on the virtual constraints) and actual (measured by the



Figure 5: Snapshots of Participant A03’s walking swing phase in Task 3. (A) to (H) represent every 12.5% of the swing

phase in the current gait cycle. The dorsiflexion range of motion is significantly enhanced in Task 3 than that in Task 2.

Figure 6: The mean and SD values of ankle joint real trajectories from 30 swing phases of each participant in Task 1 (black

curves and shadowed areas), Task 2 (blue curves and shadowed areas), and Task 3 (red curves and shadowed areas).

Figure 7: Results of the sparse US echogenicity measure-

ments (a) and the US echogenicity-derived muscle acti-

vation levels (b) in Tasks 1, 2, and 3, the non-delayed

FES normalization from the US-based DSC-DC controller

(c) and the continuous estimation of TA muscle activation

from the proposed SDO (d) on Participant A03. Each solid

curve and shadowed area represent the mean and SD of the

corresponding data from 30 swing phases and are normalized

proportionally to the swing phase cycle (0 - 100%).

encoder) trajectories. When the US-based DSC-DC controller

was applied, the best 10 successive gait cycles from this

participant result in the RMSE of 3.39±0.57°, while when

the traditional DSC-DC controller was applied, the best

10 successive gait cycles from this participant result in

the RMSE of 4.55±1.42°. For the RMSE values from the

corresponding 10 gait cycles shown in Fig. 8, a two-sample
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Figure 8: Experimental results of the trajectory tracking

performance from 10 gait cycles by using both the US-based

DSC-DC and traditional DSC-DC controllers on Participant

A03. Results show the desired (dashed red curves) and actual

(solid blue curves) trajectories during the swing phases.

paired t-test was performed to determine if the differences in

the criteria were statistically significant at a 95% confidence

level. The statistical analysis determined that the US-based

DSC-DC controller statistically outperformed the traditional

DSC-DC controller in the RMSE values (p < 0.001).

To further evaluate the controller performance throughout

the 2-minute walking experiments in both Task 3 and Task 4,

results of swing phases in the first and last 20 gait cycles

within each 2-minute trial were compared and analyzed,

denoted as single-task evaluation. As shown in Fig. 9 (a)

and (b), the mean and SD values of the ankle joint trajectory

tracking RMSE and the mean and SD values of the root

mean square pulse width (RMSPW) across the first and last

20 swing phases in Task 3 and Task 4 on each participant

are depicted, respectively. When either the US-based DSC-

DC or the traditional DSC-DC control framework was used,
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(b) The traditional DSC-DC controller in Task 4.

Figure 9: The mean and SD values of the dorsiflexion

trajectory tracking RMSE and the FES RMSPW on the TA

muscle when the US-based DSC-DC and traditional DSC-DC

control frameworks were applied for each participant. (a) &

(b) Results from the first 20 and last 20 swing phases in Task

3 and Task 4, respectively.

the trajectory tracking RMSE’s mean value across the first

20 swing phases was lower than that across the last 20

swing phases for each participant, indicating the average

ankle joint trajectory tracking performance in the first 20

gait cycles was better than the average of the last 20 gait

cycles. Meanwhile, the RMSPW’s mean value across the last

20 swing phases was higher than that across the first 20 swing

phases for each participant, which implies that at the end of

the 2-minute walking period, the FES-elicited muscle fatigue

resulted in higher stimulation intensity but deteriorated the

joint trajectory tracking performance.

To demonstrate the advantages of the proposed US-based

DSC-DC control framework over the traditional DSC-DC

control framework, results of the ankle joint trajectory track-

ing RMSE and TA muscle stimulation RMSPW on the same

participant with different controllers were compared. Given

that the FES-evoked muscle fatigue is not the focus of the

current study, only results from the first 20 gait cycles in Fig.

9 were compared. Fig. 10 shows the mean trajectory tracking

RMSE and mean FES RMSPW across those 20 swing cycles

in Task 3 and Task 4 for each participant. A paired t-test

was used to determine if the differences between Task 3 and

Task 4 were statistically significant at a 95% confidence level

across the five participants. The results in Fig. 10 (a) show
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Figure 10: Comparison results of the ankle dorsiflexion

trajectory tracking RMSE and FES RMSPW between Task 3

and Task 4. Each data point represents the mean value of the

tracking RMSE or FES RMSPW across the first 20 swing

cycles in each task on each individual participant. Asterisk ⋆

represents the significant difference level at p < 0.001.

that the trajectory tracking RMSE values were significantly

reduced by 46.52%±7.99% (p<0.001) when the US-based

DSC-DC controller was applied, compared to those when

the traditional DSC-DC controller was applied. Similarly,

comparison results of the TA muscle stimulation RMSPW

are also presented in Fig. 10 (b). However, no statistically

significant difference was observed for the RMSPW values

between Task 3 and Task 4 across the five participants.

The US-based DSC-DC controller thus improves tracking

performance without the need for increased FES intensity.

Lastly, the robustness of the proposed US-based DSC-DC

controller was evaluated by comparing the control perfor-

mance in Task 3 and Task 5. To avoid the effect of FES-

elicited muscle fatigue, we only focused on data from the

first 20 gait cycles of both tasks. Fig. 11 shows the results

of plantarflexion stimulation disturbance rejection using the

proposed US-based DSC-DC controller in the first 10 swing

phases out of 20. During the treadmill walking in Task 5,

with the motivation of the co-contraction characteristic in the

drop foot syndrome, we simulated the ankle joint plantarflex-

ion disturbance by applying a step FES input (frequency of

33 Hz, current amplitude of 25 mA, and pulse width of

100 µs) of 500 ms on the medial and lateral gastrocnemius

muscles every time when the gait cycle entered the swing

phase. It is observed that an effective disturbance rejection

is obtained through the proposed controller in Fig. 11 (b),

where the trajectory tracking RMSE values (3.61±0.69°)

are comparable to the situation without any disturbance

(3.59±0.99°) in Fig. 11 (a). However, the RMSPW val-

ues (268.76±25.29 µs) when applying the disturbance are

significantly higher than the situation (232.05±21.82 µs)

without any disturbance (p < 0.001). Similarly, the mean

and SD values of RMSE and RMSPW across the first 20

gait cycles with and without the plantarflexion disturbance

on each participant are summarized in Table III. Overall,

the proposed US-based DSC-DC controller still achieved a

comparative ankle joint trajectory tracking performance even

though a plantarflexion disturbance was added, which implied

an effective disturbance rejection of the proposed control
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(a) Typical tracking results without disturbance in Task 3.
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(b) Typical tracking results with disturbance in Task 5.

Figure 11: The effect of disturbance rejection using the

proposed US-based DSC-DC controller on Participant A03.

Data come from the first 10 swing phases, and a constant

plantarflexion stimulation on gastrocnemius muscles was

applied throughout each swing phase as a disturbance. These

plots show the desired (dashed red curves) and actual (solid

blue curves) trajectories during the swing phases.

framework across these five participants.

C. Discussion

The purpose of using US imaging in the current study

was to measure the TA muscle activation level during FES,

and this measurement was used as a feedback signal for the

closed-loop control of the FES-elicited ankle joint neuro-

muscular system. US imaging directly visualizes the muscle

contraction during FES and thus can monitor the muscle

activation levels. It would thus act as a robust alternative to

sEMG, which is often poorly suited due to interference from

stimulation artifacts and cross-talk from adjacent muscles.

However, US imaging for FES control is yet to be clinically

translated and its advantages over sEMG must be validated in

the future. That said, the real focus of the paper was not really

to show an improvement of US over sEMG but to show given

the potential advantages of US, how can one integrate US in

closed-loop FES system control. It is true that the current US

systems are more expensive and bulky than an sEMG system,

and the portability of the US transducer will be critical for

clinical translation of US-based drop foot technology. During

the walking experiments on the treadmill, the experimental

results showed that the US transducer was stabilized onto the

targeted muscle steadily throughout the walking tasks (as can

be seen in the newly added video demonstrations). In recently

years, efforts are being made to make US imaging devices

wearable [45], [61], [62], which may allow their viable

integration in FES systems. Nevertheless, the comparison

between the use of US imaging and sEMG signals in the

closed-loop FES control problem is fairly important to further

evaluate the contributions of using our proposed control

framework, which will be an interesting research direction in

future work. Indeed, EMG offers muscle activation at a higher

frequency and our recent research [39], [41], [59] has even

shown a benefit of combining US imaging, which provides

mechanical information (muscle contractility) with sEMG

during ankle dorsiflexion, where its electrical information

can be complementary to US signals. Similar opportunity

exists to combine sEMG and US for FES control and will

be pursued in our future work.

The treadmill walking speed in the current study was

selected as 0.6 m/s, and we have not done any testing

for walking with faster speeds due to the targeted clinical

population being those with drop foot syndrome who usually

have slower walking speeds. We would like to infer the

following implications based on the current experimental

study. Firstly, the faster speeds will change the normal gait

patterns, including the shank and thigh orientations and

angular velocities, as well as the ankle joint trajectory during

the swing phases, so the parameters need to be re-determined

by using GAPSO in the virtual constraints. Secondly, given

that the current US echogenicity measurement is sampled

at 7.8 Hz, the faster walking speeds will shorten the time

duration of the swing phase, thus reducing the available US

echogenicity samples during the swing phase. These issues

need to be addressed in the future US-based FES control

design for faster walking speeds.

Although the two-dimensional US imaging applied in

this study could visualize the skeletal muscle’s architectural

features from the superficial to the deep layers, it only

provides information from a single plane, which might be

prone to visualization errors for the targeted region of interest

due to the lack of muscle depth information in the third

dimension [63]. In particular, dynamic muscle contraction,

including concentric and eccentric contraction, could easily

cause squeeze, stretch, or overlap of muscle fascicles, and the

capture of these deformations are very challenging by using

two-dimensional US imaging. To address this challenge,

three-dimensional US imaging has been investigated in recent

years [64]. However, to our best knowledge, few studies have

assessed the efficacy of real-time two-dimensional US imag-

ing in the closed-loop control of FES systems, not to mention

the real-time three-dimensional US imaging. Actually, this

sort of problem is very common even for recently developed

high-density sEMG (HD-sEMG) technology, where a plane

of electrical information (a plane of length and width) at

each time instant is provided, but HD-sEMG cannot be used

to measure deeply located muscles.

There are still some limitations in the current study. The

first one is that only participants without any neurological

disorders were included in this study. Although they were

asked to simulate the drop foot syndrome during the tread-

mill walking, they cannot completely avoid the volitional

dorsiflexion motion during the swing phase and fully relax

their foot, which was noticeable from the blue curves in



Table III: Summarized results of disturbance rejection performance by using the US-based DSC-DC controller. (Data are from

the first 20 swing cycles in Task 3 and Task 5, and Dison (Disoff ) represents with (without) plantarflexion disturbance.)

A01 RMSE A02 RMSE A03 RMSE A04 RMSE A05 RMSE

Unit [°] Mean SD Mean SD Mean SD Mean SD Mean SD
Dison 3.61 1.38 3.15 1.66 4.07 0.74 3.38 1.26 4.18 1.89
Disoff 2.92 1.15 2.63 0.74 3.61 0.86 3.21 0.92 3.32 1.43

A01 RMSPW A02 RMSPW A03 RMSPW A04 RMSPW A05 RMSPW

Unit [µs] Mean SD Mean SD Mean SD Mean SD Mean SD
Dison 288.62 26.66 374.05 29.97 240.23 42.76 270.14 50.72 258.68 43.99
Disoff 238.09 22.53 281.22 60.33 225.43 26.49 144.55 56.21 219.17 75.75

Fig. 6. Therefore, further evaluations of the proposed control

framework on individuals with drop foot impairments are

necessary in the next step. The second limitation of the

applying US imaging was the low sample rate of 7.8 Hz,

which was determined by the US machine in this study.

Different sampling frequency rates for US data and sEMG

data are due to different data acquisition mechanisms. The

US data contains high dimensional signals (128 channels for

the US transducer used in this study), compared to a one di-

mensional EMG signal (one channel per sensor). Instead, we

need to transfer the raw radio frequency data (usually binary-

type data) to 2D images, known as beamforming approach

[60]. This beamforming procedure needs a large amount of

computation and is time-consuming, which is the main reason

that the US echogenicity signals can only be provided at a

low-frequency rate. Transmission delays due to the use of

the User Datagram Protocol (UDP) between two computer

systems, e..g, the US machine with graphics processing unit

(GPU) for online beamforming and US echogenicity calcula-

tion and the host computer running Simulink for the closed-

loop control, is another reason for low computation rates

for US imaging. As for the US echogenicity computation

on the US machine with GPU as mentioned in (28) and

the muscle activation measurement calculation in (29), they

are almost instantaneous with computation time less than 1

ms. Nevertheless, multiple options could be used to possibly

increase the US sample rate. Firstly, we used 128 channels

to image the TA muscle and got US echogenicity from

beamformed data that were collected from all 128 channels.

The reduction of the channel number would be helpful to

increase the US sample rate, but could result in lower SNR.

Secondly, we set the depth of US imaging as 40 mm to

capture the entire region of the TA muscle. The reduction of

the depth could be another option, but could result in cropped

region of the TA muscle. Thirdly, applying more advanced

and time-efficient beamforming algorithms or more powerful

graphics processing unit could also be helpful.

VI. CONCLUSION

In this paper, we proposed to use a US imaging-derived

signal (echogenicity) as an indicator of the FES-induced

muscle activation and designed an FES controller that in-

cludes both the continuous kinematic and the lower-sampled

US imaging-derived activation measurements. An SDO was

proposed to continuously estimate the US imaging-derived

muscle activation levels during the stimulation, while a DC

term was used to deal with the input delay in the mus-

cle activation dynamics. The Lyapunov-Krasovskii stability

analysis was performed to prove the convergence of the

trajectory tracking error was SGUUB. This is the first study

that integrates the real-time US imaging in the closed-loop

FES control. The proposed US-based DSC-DC controller was

experimentally validated during the walking swing phase on a

treadmill. Experimental results showed that the dorsiflexion

trajectory tracking performance was significantly improved

by incorporating the US-imaging signals. Future work will

focus on investigation and evaluation of the proposed con-

troller on persons with drop foot disorders, as well as the

comparison between the use of US imaging and sEMG

signals in the closed-loop FES control problem.

REFERENCES

[1] A. K. Thompson, K. L. Estabrooks, S. Chong, and R. B. Stein,
ªSpinal reflexes in ankle flexor and extensor muscles after chronic
central nervous system lesions and functional electrical stimulation,º
Neurorehabil. Neural Repair, vol. 23, p. 133142Wolpaw, 2009.

[2] R. B. Stein, D. G. Everaert, A. K. Thompson, S. L. Chong, M. Whit-
taker, J. Robertson, and G. Kuether, ªLong-term therapeutic and
orthotic effects of a foot drop stimulator on walking performance in
progressive and nonprogressive neurological disorders,º Neurorehabil.

Neural Repair, vol. 24, no. 2, pp. 152–167, 2010.
[3] C. Barrett, G. Mann, P. Taylor, and P. Strike, ªA randomized trial to in-

vestigate the effects of functional electrical stimulation and therapeutic
exercise on walking performance for people with multiple sclerosis,º
Mult. Scler. J., vol. 15, no. 4, pp. 493–504, 2009.

[4] R. B. Stein, M. Bélanger, G. Wheeler, M. Wieler, D. B. PopoviÂc,
A. Prochazka, and L. A. Davis, ªElectrical systems for improving
locomotion after incomplete spinal cord injury: An assessment,º Arch.

Phys. Med. Rehabil., vol. 74, no. 9, pp. 954–959, 1993.
[5] T. Killeen, C. S. Easthope, L. Demkó, L. Filli, L. Lőrincz, M. Lin-
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APPENDIX

A Lyapunov-Krasovskii method-based stability analysis is
used to determine the sufficient conditions and guarantee the
closed-loop error system in (23) is SGUUB. To facilitate
the following analysis, three continuously differentiable, non-
negative, radially unbounded functions are defined as

V1(t) = 1
2
e20 +

1
2
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1
2
JΓe

2
2 +
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2
ε23 +
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2
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n + 1

2
y2f , (30)

P (t) =
ζ3

β2

∫ t

t−τM

(
∫ t

s

u
2(ω)dω

)
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dρ, t ∈ [t0, ∞), (32)

where V1(t) can be bounded as m ∥w∥2 ≤ V1(t) ≤ m ∥w∥2,

w ∈ R
6 w = [e0, e1, e2, ε3, Sn, yf ]

T
, and m, m ∈ R

+ are

known positive constants defined as m ≜ 1
2 min (1, a1) and

m ≜ 1
2 max (1, a2). The vector χ ∈ L ⊂ R

8 is defined as
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[
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√
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Proof: A Lyapunov-Krasovskii (LK) functional candi-
date V (χ, t) : L×[t0, ∞) → R

+ is defined as

V (χ, t) = V1(t) + P (t) +Q(t), (34)

and V (χ, t) can be lower and upper bounded as

λ ∥χ∥2 ≤ V (χ, t) ≤ λ ∥χ∥2 , (35)

where λ, λ ∈ R
+ are constant values.

By taking the time derivative of (34), we can get

V̇ = e0ė0 + e1ė1 + JΓe2ė2 +
1

2
J̇Γe

2
2 + ε3ε̇3

+SnṠn + yf ẏf + Ṗ + Q̇, (36)

where ẏf = ẋ3d − ẋ3f = ẋ3d − yf
ζ3

. To get the explicit

expressions of Ṗ and Q̇, the Leibniz integral rule needs to
be applied. By denoting η = ẋ3d as a continuous nonlinear
function and using (7), (12), (13), (14), (20), (23), (25), and
(26), the time-derivative of V can be upper bounded as

V̇ ≤ −α0e
2
0 − α1e

2
1 −Ke

2
2 −

(

1

Ta
− γT̄

)

ε
2
3

−
(

β − ζ3τM

δ2

)

S
2
n + |e2||Sn|+ |e2||yf |+ |e2||ε3|

+ |e2|ρ (∥z∥) ∥z∥+ |e2|ζ + |e0||e1|+ |yf ||η|

+ |Sn|
∣

∣

∣

∣

(

x̂3

Ta
+

(

δ − 1

Ta

)

u(t− τM )

)∣

∣

∣

∣

+ γε̄
k
3 |ε3|

−
(

1

ζ3
− τM

δ2β2ζ3

)

y
2
f +

2τM
δ2β

|Sn||yf |+ γε̄
k
3 |Sn|

− ζ3

β2

∫ t

t−τM

u
2(s)ds− γ

∫ t

t−T̄

ε
2
3(s)ds. (37)

Based on Young’s inequality and Assumption 1, 2, and 4,
the following terms will be bounded as

|e0| |e1| ≤ 1
2

(

e20 + e21
)

, |e2| |Sn| ≤ 1
2

(

e22 + S2
n

)

,

|e2| |ε3| ≤ 1
2

(

e22 + ε23
)

, |e2| |yf | ≤ 1
2

(

e22 + y2f
)

,

|yf | |η| ≤ 1
2

(

1
ϵ
y2fη

2 + ϵ
)

, |Sn| |yf | ≤ 1
2

(

S2
n + y2f

)

,

|Sn|
∣

∣

∣

x̂3
Ta

+
(

δ − 1
Ta

)

u(t− τM )
∣

∣

∣
≤ ψ |Sn| ≤ ψ2S2

n

2ϵ
+ ϵ

2
,

ε̄k3 |ε3| ≤ 1
2

(

1
ϵ
(ε̄k3)

2ε23 + ϵ
)

, ε̄k3 |Sn| ≤ 1
2

(

1
ϵ
(ε̄k3)

2S2
n + ϵ

)

,
(38)

where ϵ ∈ R
+ is an arbitrary constant, and ψ ∈ R

+ is

the upper bound of
∣

∣

∣

x̂3

Ta
+
(

δ − 1
Ta

)

u(t− τM )
∣

∣

∣
. By applying

the inequalities in (38) to (37), the inequality can be further
simplified as

V̇ ≤ −
(

α0 −
1

2

)

e
2
0 −

(

α1 −
1

2

)

e
2
1 −

(

K − 3

2

)

e
2
2

−
(

1

Ta
− γT̄ − 1

2
− γ(ε̄k3)

2

2ϵ

)

ε
2
3 + |e2|ζ

+ |e2|ρ (∥z∥) ∥z∥ −
(

β − τM

δ2β
+ ϑ

)

S
2
n

+ (1 + γ)ϵ− ζ3

β2

∫ t

t−τM

u
2(s)ds

−
(

κ

ζ3
− 1

2
− η2

2ϵ
− τM

δ2β

)

y
2
f − γ

∫ t

t−T̄

ε
2
3(s)ds, (39)

where ϑ = − ζ3τM
δ2

− 1
2 −

ψ2

2ϵ −
γ(ε̄k

3
)2

2ϵ and κ = 1− τM
δ2β2 . The

coefficient κ
ζ3

− 1
2 −

η2

2ϵ −
τM
δ2β

needs to be a positive constant

by defining the control gain ζ3 as

1

ζ3
>

1

κ

[

1

2
+
η̄2

2ϵ
+
τM

δ2β

]

, (40)

where η̄ ∈ R
+ is the maximum of η in the defined compact

set Ξ =

{

χ ∈ R
8| ∥χ∥ < σ, χ =

[

w,
√
P ,

√
Q
]T

}

and σ ∈



R
+ is a known constant in the compact set. Recall the control

gain K = K1 +K2 +K3. After completing the squares to
compensate for |e2|ζ and ρ (∥z∥) ∥z∥ using (K2 +K3) e

2
2,

the following inequality can be obtained

V̇ ≤ −
(

α0 −
1

2

)

e
2
0 −

(

α1 −
1

2

)

e
2
1 −

(

K1 −
3

2

)

e
2
2

−
(

1

Ta
− γT̄ − 1

2
− γ(ε̄k3)

2

2ϵ

)

ε
2
3 +

ζ2

4K3

+ (1 + γ)ϵ+
(ρ (∥z∥) ∥z∥)2

4K2
−

(

β − τM

δ2β
+ ϑ

)

S
2
n

−
(

κ

ζ3
− 1

2
− η2

2ϵ
− τM

δ2β

)

y
2
f

− ζ3

β2

∫ t

t−τM

u
2(s)ds− γ

∫ t

t−T̄

ε
2
3(s)ds. (41)

Recall eI(t) =
∫ t

t−τM
u(s)ds, by using Lemma 1, we have

e
2
I(t) =

(
∫ t

t−τM

u(s)ds

)2

≤ τM

∫ t

t−τM

u(s)2ds. (42)

Then by multiplying − ζ3
2τMβ2 , the inequality is given as

− ζ3

2τMβ2

(

τM

∫ t

t−τM

u(s)2ds

)

≤ − ζ3

2τMβ2
e
2
I . (43)

Therefore, (41) can be simplified as

V̇ ≤ −
(

ξ − ρ2 (∥z∥)
4K2

)

∥z∥2 −
(

β − τM

δ2β
+ ϑ

)

S
2
n

−
(

1

Ta
− γT̄ − 1

2
− γ(ε̄k3)

2

2ϵ

)

ε
2
3 +

ζ2

4K3

−
(

κ

ζ3
− 1

2
− η2

2ϵ
− τM

δ2β

)

y
2
f + (1 + γ)ϵ

− ζ3

2β2

∫ t

t−τM

u
2(s)ds− γ

∫ t

t−T̄

ε
2
3(s)ds, (44)

where ξ = min
{

α0 − 1
2 , α1 − 1

2 , K1 − 3
2 ,

ζ3
2τMβ2

}

. Given

that the Krasovskii functional candidates P and Q could be
bounded as follows

P ≤ ζ3τM
β2 sup

s∈(t−τM , t)

(

∫ t

s
u2(w)dw

)

= ζ3τM
β2

∫ t

t−τM
u2(w)dw,

Q ≤ γT̄ sup
ρ∈(t−T̄ , t)

(

∫ t

ρ
ε23(s)ds

)

= γT̄
∫ t

t−T̄
ε23(s)ds,

the equation (44) can be rewritten as

V̇ ≤ −
(

ξ − ρ2(∥z∥)
4K2

)

∥z∥2 −
(

β − τM
δ2β

+ ϑ
)

S2
n

−
(

1
Ta

− γT̄ − 1
2
− γ(ε̄k

3
)2

2ϵ

)

ε23 +
ζ2

4K3
+ (1 + γ)ϵ

−
(

κ
ζ3

− 1
2
− η2

2ϵ
− τM

δ2β

)

y2f − 1
2τM

P − 1
T̄
Q.

(45)
According to the definition of z(t) and χ(t), the equation

(45) can be upper bounded as

V̇ ≤ −
{

ξ − ρ2 (∥z∥)
4K2

}

∥eI∥2 − ξ ∥χ∥2 + ς, (46)

where ς = ζ2

4K3

+ (1 + γ)ϵ, which is bounded by ς̄ ∈ R
+,

and ξ (∥χ∥) ∈ R
+ is defined as

ξ (∥χ∥) = min
{

1
Ta

− γT̄ − 1
2
− γ(ε̄k

3
)2

2ϵ
, ξ − ρ2(∥z∥)

4K2
,

β − τM
δ2β

+ ϑ, κ
ζ3

− 1
2
− η2

2ϵ
− τM

δ2β
, 1

2τM
, 1
T̄

}

.

The expression (46) can be further bounded when it

satisfies the condition ξ − ρ2(∥z∥)
4K2

≥ 0, which is true if the

condition ∥z∥2 ≤ ρ−2
(

2
√
K2ξ

)

is satisfied, which implies

V̇ ≤ −ξ ∥χ∥2+ ς̄ . Given the boundary conditions in (35) and
the definition of z and χ, a set for the initial condition of the
augmented state vector χ(t) can be defined as

F ≜

{

χ(t) ∈ R
8 |∥χ(0)∥ = σ <

√

λ

λ

[

min
{

1, ζ3
τMβ2

}

ρ−2
(

2
√
K2ξ

)

− ς̄
]

}

,

(47)

where the compact set, Ξ =
{

χ ∈ R
8| ∥χ∥ < σ, χ =

[

w,
√
P ,

√
Q
]T

}

must satisfy

∥χ(0)∥ = σ to ensure η̄ ∈ R
+ in (40) exists in the

defined compact set. Based on the conditions in Theorem 1,
ξ (∥χ∥) ≥ 0 always holds and it can be lower bounded by
a positive constant ϖ ≤ ξ (∥χ∥) ∈ R≥0. Recall the upper
bound of V in (35), the inequality in (46) is rewritten as

V̇ ≤ −ϖ

λ
V + ς̄ . (48)

Therefore, for χ(0) ∈ F , the solution of the linear
differential equation (48) is computed as

V (χ(t)) ≤ V (0)e
−ϖ

λ
t
+
λς̄

ϖ

(

1− e
−ϖ

λ
t
)

, t ∈ [t0, ∞). (49)

Consider the lower and upper bounds of the LK functional
candidate in (35). The augmented state vector χ(t) can be
upper bounded as

∥χ(t)∥ ≤

√

λ

λ

(

∥χ(0)∥2 − ς̄

ϖ

)

e
− ϖ

2λ
t
+

√

λς̄

λϖ
. (50)

Given the definition of ∥χ(t)∥ and the relationship in (12),
the explicit boundary of the trajectory tracking error, defined
in (27), can be expressed as

|e(t)| ≤ (1 + α0)





√

λ

λ

(

∥χ(0)∥2 − ς̄

ϖ

)

e
− ϖ

2λ
t
+

√

λς̄

λϖ



 .

From (49), by providing the control gains α0, α1,

K1, K2, β, and δ, as well as the observation gain

γ according to the sufficient conditions in Theorem 1,

V (χ(t)) decays exponentially to a boundary λς̄
ϖ

. Because

V ∈ L∞, the state variables in the augmented vector

e0, e1, e2, Sn, ε3, yf ,
√
P ,

√
Q ∈ L∞. From (50), the com-

pact set Ξ =

{

χ ∈ R
8| ∥χ(0)∥ = σ, χ =

[

w,
√
P ,

√
Q
]T

}

is invariant. This implies η̄ ∈ R
+, the maximum of η in

the compact set Ξ, exists and thus ẋ3d ∈ L∞. Recalling the

lower bound of V in (35), further analysis can be done to

show the ultimate bound of ∥χ∥ is
√

λς̄
λϖ

, while the ultimate

bound of |e| is (1 + α0)
√

λς̄
λϖ

. Therefore, we can conclude

that the closed-loop system is SGUUB.


