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Abstract—Cooperative control of functional electrical stimu-
lation (FES) and electric motors in a hybrid exoskeleton may
benefit from fatigue measurements and online model learning.
Recent model-based cooperative control approaches rely on
time-consuming offline system identification of a complex mus-
culoskeletal system. Further, they may lack the ability to include
measurements from muscle sensors that monitor the FES-
induced muscle fatigue, which may hinder maintaining desired
muscle fatigue levels. This paper develops an online adaptive
reinforcement learning approach to control knee extension via
an electric motor and FES. An optimal tracking control problem
that uses an actor-critic identifier structure is formulated to
approximate an optimal solution to the Hamiltonian-Jacobi-
Bellman equation. The continuous controller provides asymmet-
rically saturated optimal control inputs of FES and the electric
motor. Critic and identifier neural networks are designed to
simultaneously estimate the reward function and the system
dynamics based on sampled fatigue measurements and compute
control actions. Importantly, simulation results show that a
satisfactory joint angle tracking and actuator allocation can be
obtained at multiple on-demand desired muscle fatigue levels
and prolong FES utilization.

I. INTRODUCTION

Spinal cord injuries (SCI) are debilitating and frequently
result in complete or partial paraplegia that causes loss of es-
sential lower limb functions such as walking, running, sitting-
to-standing, etc. Several studies indicate that functional elec-
trical stimulation (FES) can help restore lower limb function
in persons with SCI. FES, which works by applying external
electrical currents, artificially activates motor neurons that
induce desired muscle contractions. However, the artificial
nature of FES leads to unnatural motor neuron activation
patterns, which causes a rapid onset of fatigue in the stim-
ulated muscle. The onset of FES-induced muscle fatigue
quickly deteriorates the desired limb movement, limiting its
effectiveness. One of the proposed solutions to reduce the
FES-induced muscle fatigue’s effect is to utilize a hybrid
approach that combines both electric motors and FES to
facilitate walking or sitting to standing [1].
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Model predictive control (MPC) methods were recently
designed for cooperative and optimal allocation of desired
torque between the motors and FES for sit-to-stand and
leg extension tasks [2]. However, the MPC methods rely
on exact model knowledge for optimal performance. Robust
MPC methods have been designed to account for uncertain-
ties in parameter estimation and disturbances by adding a
feedback controller. Nonetheless, MPC relies on an offline
model identification procedure to provide a nominal system
model, which is likely a bit time-consuming for clinical
implementation.

Reinforcement learning (RL) is a class of machine learning
methods that modify an agent’s actions through a reward
function representing the system interactions with its environ-
ment. Recently, RL has excited control researchers to develop
optimal control laws for dynamical systems described by
ordinary differential equations. These continuous RL formu-
lations lead to the Hamilton-Jacobi-Bellman (HJB) equation
[3]. However, since the nonlinear HIB equation is harder to
solve, policy-iteration algorithms have been developed that
use neural networks trained to approximate a solution to the
HIJB equation. Specifically, a policy-iteration algorithm cre-
ates an actor-critic framework that employs neural networks
to approximate value function and optimal control actions
from system state measurements. These methods have been
shown to regulate continuous time linear [4] and nonlinear
systems [5]. Even an online identifier can be added to the
framework to form an actor critic identifier (ACI) structure
[6] to determine optimal adaptive control laws that can
be potentially applied without a prior information of the
system dynamics. Thus, we are motivated to explore ACI
as a potential RL approach to determine optimal motor and
FES control inputs for a hybrid exoskeleton while obviating
the need to build a prior knowledge of musculoskeletal and
exoskeleton dynamics.

Another desire is to include fatigue measurements in the
control design rather than relying on a person-specific fatigue
model to maintain desired muscle state or its fatigue level.
Current fatigue measurement methods include include surface
electromyography (SEMG) and force measurements. How-
ever, incorporating force measurements into an exoskeleton
design and measuring joint torques are difficult. In addition,
with force measurements it is difficult to isolate the fatigue
of a specific muscle group within a larger set of muscles. On



the other hand, SEMG based fatigue measurement is difficult
due to FES-related stimulation artifacts and its sensitivity to
cross-talk between muscle groups. Our previous work has
shown that ultrasound (US) imaging-derived signals such as
a cross-correlation-based strain measurement can estimate
fatigue [7]. A drawback of US imaging-derived measures is
that they are obtained offline due to a high computation cost
of the image analysis. The US-derived measures may be fast
processed using graphical processing units but still would
be limited to low sampling rates. To incorporate the low-
sampled measurement in FES based control design, in [8]
we used a model-based sampled data observer to estimate
FES-evoked muscle activation. However the observer as well
as the control still relies on person specific neuromuscular
parameters that are difficult to estimate.

In this paper we derive an online actor-critic approach
to simultaneously compute control actions for motor and
FES, estimate a value function, and identify unknown system
dynamics during a knee extension task. A continuous optimal
tracking control problem is formulated with a reward function
that minimizes the effect of FES-induced muscle fatigue
on the tracking while simultaneously satisfying asymmetric
constraints on the FES input. We address the challenge of
integrating sampled fatigue measurements with a continuous
RL structure by designing a neural network (NN)-based iden-
tifier that accommodates intermittent measurements. Using
a Lyapunov stability analysis and hybrid system approach,
the identifier convergence error is shown to be ultimately
bounded despite sampled fatigue measurements. Simulations
show tracking performance and input allocation between mo-
tors and FES during the knee extension task under different
manually selected desired muscle fatigue levels.

II. DYNAMIC MODEL OF KNEE EXTENSION

The dynamics for a single degree of freedom muscu-
loskeletal model are given as

Ji+1,+G(g) =T, (1)

where ¢,q,§ € R represent angular position, velocity, and
acceleration of a limb joint respectively, 7 € R is the total
torque input required to move the limb joint, J € R is the
moment of inertia of the leg, G(q) = mglsin(q + geq) is a
term that represents the gravitational torque, where m € R™
is the mass of leg, g € R is the gravitational acceleration
constant, [ € RT is the distance from the knee joint to the
center of mass, and ¢., € R is the equilibrium position of
the lower leg with respect to the vertical, and 7, is a passive
torque based on person specific parameters defined in [9]. The
total combined torque is composed as T = T,, + Ty, where
Tm,Tf € R represent the torque produced by the electric
motor and and FES respectively and 7; is modeled as

7 = p(q, ¢)puy, (2)

where p(q, ¢) contains force-length and force-velocity rela-
tions based on person specific parameters [9], ¢ € R is the
FES-induced muscle fatigue, and u¢ € R is the normalized

FES current or pulse-width input. The FES-induced fatigue
is modeled as

= wi(Pmin — P)uy + wr(1 =) (1 —uy), 3)

where wys, w, € RT are time constants for fatigue and
recovery of the muscle and ¢,,;, is the minimum fatigue
value for each person. Because uy is the normalized FES
input, the solution for (3) at the bounds uy = 0 and uy =1
result in ¢ being bounded as ¢ € [Ymin, 1] Where a fatigue
value of 1 means the muscle is fully rested and a fatigue value
of i means the muscle is completely fatigued. The fatigue
dynamics in (3) can be rearranged as ¢ = g, (¢)us + f,(¥),
where g, (@) = (WfPmin — W + wyr +wrp) and fi, () =
(w, — wy). By defining states 1 = ¢, 2 = ¢, 3 = @
the state space representation of the dynamics in (1) can be
written as

&= f(x) + g1(x)Tm + g2(x)uy, 4

where @ = [ @1 &y ds ]T and f(z) € R gy(z) €
R3*1 and go(z) € R3*! are defined as

I2 0
f(x) = _§G($2 - TTP ’gl(x) = % )
fo(x3) + gp(x3)uy 0
0
ga(x) = Loy
go(T3)uy

III. DETERMINING OPTIMAL CONTROL INPUTS

The control objective is to determine optimal motor and
FES inputs that generate the required torque to track a
prescribed limb angle trajectory by utilizing an ACI approach
to solve the optimal tracking control problem. A tracking
error e € R3*! is defined as

e =x(t) — xq(t), (5)

where z4(t) € R3*! is a bounded desired trajectory for the
position, velocity, and fatigue. It is assumed that x4(t) is
bounded and there exists a continuous function hy(z4(t)) €
R3*! such that d4(t) = hq(w4(t)). Taking the derivative of
(5) gives the error dynamics

6= —ig(t)
= f(@) + g1(2)7m + g2(x)uy — ha(za(t)),  (6)

. T
By defining an augmented state as z, = [ e z] |7 €
R6*! the system dynamics can be written as

m.a = fa(xa) + gla(xa)Tm + gZQ(xa)ufa (7)

where the f,, g14,and go, matrices become

e = " ot = [ 206570

Goal(@a) = [ gd(eaLﬂﬁd) ] )



In order to solve the optimal tracking control problem, an
infinite horizon value function is defined as

V)= [ e raalr) uo)ldr, ®)
t
where r(xq,u) = 2IQz, + Ui(tm) + Us(uy) where
Q € R°%6, R, € R*, Ry € R* are positive weights,
U1 (7m),U2(uy) are defined as

Ul(Tm) R17'72n

Us(ug) =2 [2* " tanh™" (v) Radv ©)

and v > 0 is a discount factor used to ensure the bound of
the value function. It is noted that Us(uy) is designed with a
tanh~!(v) term similar to [10] with shifted bounds to satisfy
an asymmetric constraint on uy in (2). To obtain a closed
form solution for the optimal control inputs, the Hamiltonian
of the system is defined as

T
H ot iy, ) = 5 Folea) + g1a(ea)rn (10
+ gaala)ug) + s u(r) = 2V (za).

The optimal control inputs satisfy the Hamiltonian-Bellman-
Jacobi equation which states that

H(‘Tavaauf787xa ):Oa (11)
where V'* is the optimal value function defined as
V*(xq(t)) = min / r(xa,u(zy))dr. (12)
TmUf Jy

The optimal control inputs can be solved using the stationary
conditions gTH =0, gTh; = 0 and the definition of Uy (7,)

and Us(uy) in (9) giving the closed form solution

.1 oVt
=3 1lg?aa—% : (13)
oV
uy = 5[1 — tanh( R2 ! 2Ta5 )] (14)

Based on (14), it is seen that the FES input is constrained as
0<uy <L

IV. ONLINE ACTOR-CRITIC SYSTEM IDENTIFICATION
AND VALUE FUNCTION APPROXIMATION

From (13) and (14), it is obvious that knowledge of g1,
924 and 37‘2 are required to solve for the optimal control
inputs. Because the person specific parameters are uncertain,
three Neural Networks are used to estimate the system
dynamics of f,, g1, and ga,. A fourth NN is developed to
estimate BTV The NN representation for the dynamics and

the value function is given as

fa(za) = WG ¢(za) + €0(2a), (15)
g1a(za) = WY ¢(4) + €1(2a), (16)
92a(Ta) = W3 ¢(4) + €2(2a), (17)
V(wa) = Wi ¢(xa) + €3(wa), (18)

where Wy, W1, W, € RFX6 and W5 € R¥*! are ideal
NN estimation weights, where k& € R™ is the number of
neurons, ¢ € R *1 ig basis function vector, and €g...€3 are
approximation errors, where €, €1, €2 € R6%! and €5 € R,
The gradient of the value function , 9V/dx,, is then given

b
Y ov
0x,

where V¢ € R¥*® and Ve € RO*!. For online implemen-
tation, fq, g1a, and go, are approximated as fa = Wo d(Za)s
G1a = WT H(Za)s G2a = WE(ia) and the value function is
estimated as V = WS ¢(x,) where WO, Wl, Wg,and W3 are
the estimated weights of the ideal NN weights.

The following assumptions are made about the ideal
weights, basis function, and estimation error.

Assumption 1. The ideal NN weights are bounded such
that [|[Wo|[...|Ws]| < bui,i =0,1,2,3

Assumption 2. The basis function ¢ is a sigmoid function
that is bounded such that 0 < ||¢(x)|| < 1 and |[|[V(z,)|| <
b

Assumption 3. The estimation errors and their gra-
dients are bounded such that |efl...]les]] < b and
[Veoll...|[Ves|| < bexii =0,1,2,3

Using the estimates of g14, 924 and in (16), (17) and
(18) the optimal control inputs in (13) and (14) become

= VT Ws5 + Ves,

19)

T = —nglgﬂVcﬁ(xf)Wg, (20)

2193,V o(za) W3 (2D)

1
up = =[1— tanh(
2
A. Online Value Function Approximation

It is difficult to obtain a solution for 2 T using the HJB
equation due to its high nonlinearities in tﬁe value function
derivative (av) and its dependence on full knowledge of
system dynamlcs Instead, a simplified policy iteration update
as shown in [10] can be developed by noting that for any time
interval T' > 0, the value function satisfies

Viza(t—T)) = /t iT e DT Qu, + Uy (1) (22)
a(t))-

It is noted that (22) does not depend on the system dynamics

and is linear in %—‘;. Using the value function update in (18)

and (22), a Bellman error due to the approximation of the
value function can be defined as

t
ep 2 / e~ (T—t+T) [J:nga + Ui(1m)
t—T
+ Ua(uy)ldr + Wi Ag. (23)

where A¢ = e T [p(z,) — ¢(za(t — T))]. Using the value
function approximation in (23) gives

T
o= [
t—T

+ Uy (uz(7))]dr + WE A,

+ Us(ug)ldr +e TV (2

e~V (T—t+T) (27 Qo + Uy (ui (7))

(24)



The update law for W3 can be found by minimizing the

objective function
1
Jwg 56%
Using the gradient descent algorithm and chain rule, the

update law is given as

s —aA¢éb
Vs = T AgTAGR

(25)

(26)

where o € RT is a positive gain that represents the learning
rate, and (1 + A¢T Ag)? is used for normalization. To facil-
itate the closed loop stability analysis, (23) can be rewritten

as
T
/ e~ V(T—t+T) [xZ;Q:Ea + Uy (ur (7)) 27
t—T
+Us(uz(7))]dr = —WLAS + €.
On substituting (27) into (24), we get
& = —WsA6 + ey, (28)
where Wg = W5 — Wg. Using (28) in (26), we get
X i — s A¢§
W3 = —W3 = —alApAp” W3 + aﬁeb, 29)
where m = 1+ A¢pTA¢ and Ap = m By using

(26) (Theorem 3 in [10]), if A¢ is persistently exciting (PE),
ie.,

t+Ty
w< [ BomBolndr <l GO)
t

where 71,7, € R* are constants and I € RF*F is an
identity matrix is satisfied, the NN weight approximation
error converges exponentially to zero if e, = 0 or converges
exponentially to a residual set for a bounded bellman error.
Due to the PE condition, the boundedness of A¢” W5 implies
that W is bounded. This property will be used in Theorem
2 to show stability of the closed loop error system with a
neural network value function approximation.

B. Online Actor NN Design

To guarantee stability of the closed-loop system, an actor
NN is used for both the FES and motor inputs and is designed
as

N P ;
T = =5 B 91 Vo (e )Wa, (31

iy = 5[1 — tanh({ By 65, Vo(wa) W), ()
where W4,W5 € RFX! are NN weight estimates for the
actors. The update laws for W, and W are determined using
a gradient descent approach to minimize the error between
the control input with only the value function approximation
and the input with the actor NNs with additional terms added

to ensure stability of the closed-loop system in Theorem 2.

T
= Critic NN
I
i

lmmmmmmmmm - Bellman Error: &,

Value Function:
%GQxa + Uy () + Uz ()

Reference

i
10 G iy ty Pt
Actor NN % = f(x) + g1 ()T + g2 Dy

System
Identifier

Ultrasound

Sampled
Measurements

Figure 1. Combined control architecture with the system identifier and
sampled measurements used to determine the control inputs in (31) and
(32).

The error between the control input with the critic and
actor is defined as

em = Tm — Tm
1. . 1
- _531 Lol VT Ws + 5R1 W veTWy,  (33)
WZW—W
= —tanh( Lok VT Ws) + tanh( 9L VT W),
34

for both motor and FES inputs respectively.

The objective functions to be minimized by the actor NNs
for both motor and FES inputs are defined as J,,4 = %e?n and
Juws = %e% respectively. Using the gradient descent algorithm
and chain rule, the update law for actor NN on the motor
input becomes

X 1 1 . k1 1 ~ ~
Wy = —a2(§R1 Végiaem + ?R1 Véigia + YiWa),

(35)
where Y7, k; € RT are gains to ensure stability. Similarly,
the update law for the actor NN on the FES input becomes

Ws = —as(“L By 'V og20— L By ' Vgaatanh®(P)+ Y Ws)

(36)
where P = — 1Ry ¢TW,V¢" W5 and Vs € RT is a gain
to ensure stability. A flow chart of the the complete control
architecture is presented in Fig. 1.

C. Online System Identifier Design with Sampled Fatigue
Measurements

The goal of the system identifier is to generate a con-
tinuous estimate of the dynamic system given in (7) to be
used in g1, and §o, in the control laws defined in (13)
and (14) while simultaneously accounting for the sampled
US fatigue measurements. The measurements available in
real-time for the system defined in (4) can be written as
y = [ z1(t) x2(t) as(ty) ]Twhere x1(t) and x4(t) are
the angular position and velocity of the limb as previously



defined and are measurable at a high sampling frequency by
using either IMUs or encoders and x3(tx) is the US-based
fatigue measurements that are available at discrete instants
ti. It is assumed that the US-based measurement available
at t; is held constant until a subsequent measurement is
available at time instant ?; ;. The sampling interval between
two consecutive measurements at t; and ;1 is a positive
constant denoted as 7.

The dynamic system in (7) with optimal control inputs
(20) and (21) can be represented by replacing the unknown
functions f, g14, and go, with NN approximations as

-’fja = fa(i'a) + gla(i‘a)%m + gZa(ij’af + k‘i‘a +p+ fE(tk)a
(37
where k,& € RT are positive constant gains, and Z, is the
error between the estimated state and the augmented state z,,
defined as 7, = 2, — 24, 1t € R6*! is an auxiliary variable
defined in order to facilitate the stability analysis defined as
= WY G(wa) + Wi G(wa)Tm + Wy d(za)tiy,  (38)
where ¢(x4) = ¢(x4) — ¢(iq). To account for the sampled
US measurements at a lower frequency, the proposed identi-
fier for £, is augmented with an update term: £g(ty,) € R6*!
for the sampled ultrasound (US) measurements defined as
e(tr) [0 0 es(tk) O 0 O ]Twhere es(ty) € R
is defined as e3(ti) = z3(tr) — zas(te) — T34 (k) = T30,
where x3(tx) and x43 are the normalized US-based fatigue
measurement and desired fatigue value at ¢ and Z3,(tx) is
the estimated value of the fatigue error at ¢j. £3(t;) has an
upper bound of £5 € R and e3(#,) is a constant value during
every time interval [ty, txt1] after which an US-based fatigue
measurement is available. The estimation error dynamics can
then be written as

Taq = i.Ea — Zq
= [+ G10fm + Goally — ko — Ee(tr) —p+e,  (39)
where fNa = fa - fa, gla = GJla — glaa gQa = G920 — g2a7
€ = €g + €17, + €21y represents the bounded NN estimation
errors for Wy, Wy and W5 respectively. The update laws are
designed based on the stability analysis in Theorem as 1
Wo = proj(To(¢(wa)iy — toWo)), (40)
4 . 1 _ . o .
Wy = PTOJ(Fl(—§¢(%)R1 "(wa) WAV Wil —11 W),
(41)

Wa = proj(Ta(é(wa) il — 15Wa)), (42)

where T'g,I';,Ty € RFX* are positive gain matrices,
Lo, 1,2 € RT are positive constants and proj() is a smooth
operator that bounds the NN weights [11]. It is noted that
based on the projection operator, the optimal control laws in
(20) and (21), and assumptions 1-3, 7,,, U5 € Loo.

Theorem 1. The identifier designed in (37) along with
weight updates in (40),(41) and (42) ensure that the sampled
identifier error T, is globally uniformly ultimately bounded
(G.U.U.B).

Position Tracking: Desired Fatigue = 1
T T T
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Figure 2. Position tracking at both discrete fatigue levels.

Proof: The proof to Theorem 1 is available upon request.

|

Remark 1: The proof of Theorem 1 shows that the

sampled estimation error in (39) is bounded. However the

boundedness of z, does not ensure convergence of the

neural network weights. In order to ensure convergence of

the weights, Wy, Wi and W, should satisfy persistence of

excitation conditions. Future versions of this analysis will
address the convergence of the neural network weights.

Theorem 2. The control inputs for motor and FES defined
in (31) and (32) along with the NN update law in (26), (35),
and (36) make the closed loop error system defined in (7) and
the weight estimation error for the value function GUUB.

Proof: The proof to Theorem 2 is available upon request.
|

V. SIMULATION RESULTS

Simulations were implemented for a leg extension system
in MATLAB under two different on-demand fatigue levels:
1 and 0.8. The desired position and velocity trajectories
were designed using a third order polynomial for knee
extension patterns during the gait cycle and the trajectory
was simulated for a total duration of 2 minutes of continuous
knee extension using simulated discrete US-based measure-
ments that were updated every 5 seconds. To ensure the
PE condition in the simulations, a probing noise modeled
as n(t) = sin?(t)cos(t) + sin?(2t)cos(5t) was added to
the system. The model parameters for the combined fatigue
and leg extension system were determined experimentally
for an able body participant using the approach described in
[9]. Fig. 2 shows the joint position tracking at both desired
fatigue levels for the two minute duration. It is clear that
after two knee extension cycles, the position tracking reaches
steady state. When the desired fatigue level was 1 the steady
state root mean squared error (RMSE) was 3.80 degrees. In
comparison the steady state RMSE when the desired fatigue
level was 0.8 was 4.09 degrees. Fig. 3 shows the motor torque
along with normalized FES input and its corresponding
torque generation calculated using (2) under both desired
fatigue conditions. To maintain the desired fatigue at 1, most
of the control effort is taken up by motors. However it is
seen that as the desired fatigue level is adjusted from 1 to
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Figure 3. Motor torques, normalized FES input, and its corresponding torque
generation under both desired fatigue conditions. The torque generated by
FES was calculated using the dyanmic model based on pre-identifed person
specific parameters.

Integral of FES Torque Integral of Motor Torque Integral of Combined Torque

1800

1600 1800
500

1400 1600

1400
400 1200
1200
1000
300 1000
800
800

200 600
600
400
100
200

0
Fat=1 Fat=.8 Fat=1

Fat=1 Fat=.8

Figure 4. Integral of steady state FES and motor inputs along with total
combined torque under both desired fatigue scenarios.

0.8 the motor torque decreases while the torque generated
from the FES input increases while tracking performance is
maintained. This is further highlighted by taking the integral
of the steady state motor torque and normalized FES input as
seen in Fig. 4. Clearly, as the desired fatigue increase more
control effort is placed on the FES in comparison to the motor
while the total torque generated remains the same in both
scenarios. The simulated US fatigue measurements for each
scenario are shown in Fig. 5 and it is seen that the fatigue
approaches is desired value during each scenario. Thus the
developed actor-critic system identifier scheme has the ability
to determine the optimal allocation of motor torques and FES
with using sampled US fatigue measurements to produce
cyclic knee extension for an extended duration at different
desired fatigue profiles while generating the similar steady-
state tracking performance.

VI. CONCLUSION

In this paper, an ACI approach is proposed to solve the
optimal tracking control problem with asymmetric FES con-
straints and US-based fatigue measurements sampled at a low
frequency to optimally allocate motor and FES torque in a hy-
brid exoskeleton system. An NN-based system identifier was
designed to estimate the unknown dynamics despite the low
sampled fatigue measurement and simulation results show
knee extension tracking performance and torque allocation
at two on-demand fatigue levels. Further, it is seen that total

I I
0 20 40 60 80 100 120
Time [secods]

Figure 5. Simulated US measurements when desired fatigue was set to 1
and 0.8 respectively.

torque administered to the system torque remains consistent
while the desired fatigue is manually adjusted and FES and
motor torques are allocated accordingly. Our preliminary
results demonstrates that the ACI approach is an effective and
promising method to automatically allocate electric motor
and FES . Potentially, optimal adaptive tracking control of a
hybrid exoskeleton seems feasible without prior knowledge
of the system dynamics and desired fatigue levels may be
maintained based on low-sampled fatigue measurements.
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