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Abstract—Cooperative control of functional electrical stimu-
lation (FES) and electric motors in a hybrid exoskeleton may
benefit from fatigue measurements and online model learning.
Recent model-based cooperative control approaches rely on
time-consuming offline system identification of a complex mus-
culoskeletal system. Further, they may lack the ability to include
measurements from muscle sensors that monitor the FES-
induced muscle fatigue, which may hinder maintaining desired
muscle fatigue levels. This paper develops an online adaptive
reinforcement learning approach to control knee extension via
an electric motor and FES. An optimal tracking control problem
that uses an actor-critic identifier structure is formulated to
approximate an optimal solution to the Hamiltonian-Jacobi-
Bellman equation. The continuous controller provides asymmet-
rically saturated optimal control inputs of FES and the electric
motor. Critic and identifier neural networks are designed to
simultaneously estimate the reward function and the system
dynamics based on sampled fatigue measurements and compute
control actions. Importantly, simulation results show that a
satisfactory joint angle tracking and actuator allocation can be
obtained at multiple on-demand desired muscle fatigue levels
and prolong FES utilization.

I. INTRODUCTION

Spinal cord injuries (SCI) are debilitating and frequently

result in complete or partial paraplegia that causes loss of es-

sential lower limb functions such as walking, running, sitting-

to-standing, etc. Several studies indicate that functional elec-

trical stimulation (FES) can help restore lower limb function

in persons with SCI. FES, which works by applying external

electrical currents, artificially activates motor neurons that

induce desired muscle contractions. However, the artificial

nature of FES leads to unnatural motor neuron activation

patterns, which causes a rapid onset of fatigue in the stim-

ulated muscle. The onset of FES-induced muscle fatigue

quickly deteriorates the desired limb movement, limiting its

effectiveness. One of the proposed solutions to reduce the

FES-induced muscle fatigue’s effect is to utilize a hybrid

approach that combines both electric motors and FES to

facilitate walking or sitting to standing [1].
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Model predictive control (MPC) methods were recently

designed for cooperative and optimal allocation of desired

torque between the motors and FES for sit-to-stand and

leg extension tasks [2]. However, the MPC methods rely

on exact model knowledge for optimal performance. Robust

MPC methods have been designed to account for uncertain-

ties in parameter estimation and disturbances by adding a

feedback controller. Nonetheless, MPC relies on an offline

model identification procedure to provide a nominal system

model, which is likely a bit time-consuming for clinical

implementation.

Reinforcement learning (RL) is a class of machine learning

methods that modify an agent’s actions through a reward

function representing the system interactions with its environ-

ment. Recently, RL has excited control researchers to develop

optimal control laws for dynamical systems described by

ordinary differential equations. These continuous RL formu-

lations lead to the Hamilton-Jacobi-Bellman (HJB) equation

[3]. However, since the nonlinear HJB equation is harder to

solve, policy-iteration algorithms have been developed that

use neural networks trained to approximate a solution to the

HJB equation. Specifically, a policy-iteration algorithm cre-

ates an actor-critic framework that employs neural networks

to approximate value function and optimal control actions

from system state measurements. These methods have been

shown to regulate continuous time linear [4] and nonlinear

systems [5]. Even an online identifier can be added to the

framework to form an actor critic identifier (ACI) structure

[6] to determine optimal adaptive control laws that can

be potentially applied without a prior information of the

system dynamics. Thus, we are motivated to explore ACI

as a potential RL approach to determine optimal motor and

FES control inputs for a hybrid exoskeleton while obviating

the need to build a prior knowledge of musculoskeletal and

exoskeleton dynamics.

Another desire is to include fatigue measurements in the

control design rather than relying on a person-specific fatigue

model to maintain desired muscle state or its fatigue level.

Current fatigue measurement methods include include surface

electromyography (sEMG) and force measurements. How-

ever, incorporating force measurements into an exoskeleton

design and measuring joint torques are difficult. In addition,

with force measurements it is difficult to isolate the fatigue

of a specific muscle group within a larger set of muscles. On



the other hand, sEMG based fatigue measurement is difficult

due to FES-related stimulation artifacts and its sensitivity to

cross-talk between muscle groups. Our previous work has

shown that ultrasound (US) imaging-derived signals such as

a cross-correlation-based strain measurement can estimate

fatigue [7]. A drawback of US imaging-derived measures is

that they are obtained offline due to a high computation cost

of the image analysis. The US-derived measures may be fast

processed using graphical processing units but still would

be limited to low sampling rates. To incorporate the low-

sampled measurement in FES based control design, in [8]

we used a model-based sampled data observer to estimate

FES-evoked muscle activation. However the observer as well

as the control still relies on person specific neuromuscular

parameters that are difficult to estimate.

In this paper we derive an online actor-critic approach

to simultaneously compute control actions for motor and

FES, estimate a value function, and identify unknown system

dynamics during a knee extension task. A continuous optimal

tracking control problem is formulated with a reward function

that minimizes the effect of FES-induced muscle fatigue

on the tracking while simultaneously satisfying asymmetric

constraints on the FES input. We address the challenge of

integrating sampled fatigue measurements with a continuous

RL structure by designing a neural network (NN)-based iden-

tifier that accommodates intermittent measurements. Using

a Lyapunov stability analysis and hybrid system approach,

the identifier convergence error is shown to be ultimately

bounded despite sampled fatigue measurements. Simulations

show tracking performance and input allocation between mo-

tors and FES during the knee extension task under different

manually selected desired muscle fatigue levels.

II. DYNAMIC MODEL OF KNEE EXTENSION

The dynamics for a single degree of freedom muscu-

loskeletal model are given as

Jq̈ + τp +G(q) = τ, (1)

where q, q̇, q̈ ∈ R represent angular position, velocity, and

acceleration of a limb joint respectively, τ ∈ R is the total

torque input required to move the limb joint, J ∈ R
+ is the

moment of inertia of the leg, G(q) = mglsin(q + qeq) is a

term that represents the gravitational torque, where m ∈ R
+

is the mass of leg, g ∈ R
+ is the gravitational acceleration

constant, l ∈ R
+ is the distance from the knee joint to the

center of mass, and qeq ∈ R
+ is the equilibrium position of

the lower leg with respect to the vertical, and τp is a passive

torque based on person specific parameters defined in [9]. The

total combined torque is composed as τ = τm + τf , where

τm, τf ∈ R represent the torque produced by the electric

motor and and FES respectively and τf is modeled as

τf = ρ(q, q̇)ϕuf, (2)

where ρ(q, q̇) contains force-length and force-velocity rela-

tions based on person specific parameters [9], ϕ ∈ R is the

FES-induced muscle fatigue, and uf ∈ R is the normalized

FES current or pulse-width input. The FES-induced fatigue

is modeled as

ϕ̇ = wf (ϕmin − ϕ)uf + wr(1− ϕ)(1− uf ), (3)

where wf , wr ∈ R
+ are time constants for fatigue and

recovery of the muscle and ϕmin is the minimum fatigue

value for each person. Because uf is the normalized FES

input, the solution for (3) at the bounds uf = 0 and uf = 1
result in ϕ being bounded as ϕ ∈ [ϕmin, 1] where a fatigue

value of 1 means the muscle is fully rested and a fatigue value

of ϕmin means the muscle is completely fatigued. The fatigue

dynamics in (3) can be rearranged as ϕ̇ = gϕ(ϕ)uf +fϕ(ϕ),
where gϕ(ϕ) = (wfϕmin −wfϕ+wr +wrϕ) and fϕ(ϕ) =
(wr − wrϕ). By defining states x1 = q, x2 = q̇, x3 = ϕ
the state space representation of the dynamics in (1) can be

written as

ẋ = f(x) + g1(x)τm + g2(x)uf , (4)

where ẋ =
[

ẋ1 ẋ2 ẋ3

]T
and f(x) ∈ R

3×1, g1(x) ∈
R

3×1, and g2(x) ∈ R
3×1 are defined as

f(x) =





x2

− 1
J
G(x2)−

τp
J

fϕ(x3) + gϕ(x3)uf .



 , g1(x) =





0
1
J

0



 ,

g2(x) =





0
1
J
ρϕ

gϕ(x3)uf



 .

III. DETERMINING OPTIMAL CONTROL INPUTS

The control objective is to determine optimal motor and

FES inputs that generate the required torque to track a

prescribed limb angle trajectory by utilizing an ACI approach

to solve the optimal tracking control problem. A tracking

error e ∈ R
3×1 is defined as

e = x(t)− xd(t), (5)

where xd(t) ∈ R
3×1 is a bounded desired trajectory for the

position, velocity, and fatigue. It is assumed that xd(t) is

bounded and there exists a continuous function hd(xd(t)) ∈
R

3×1 such that ẋd(t) = hd(xd(t)). Taking the derivative of

(5) gives the error dynamics

ė = ẋ− ẋd(t)

= f(x) + g1(x)τm + g2(x)uf − hd(xd(t)), (6)

By defining an augmented state as xa =
[

eT xT
d

]T
∈

R
6×1 the system dynamics can be written as

ẋa = fa(xa) + g1a(xa)τm + g2a(xa)uf , (7)

where the fa, g1a,and g2a matrices become

fa(xa) =

[

f(e+ xd)− hd

hd(xd(t))

]

g1a(xa) =

[

g1(e+ xd)
0

]

g2a(xa) =

[

gd(e+ xd)
0

]

.



In order to solve the optimal tracking control problem, an

infinite horizon value function is defined as

V (xa(t)) =

∫

∞

t

e−γ(τ−t)[r(xa(τ), u(τ))]dτ, (8)

where r(xa, u) = xT
aQxa + U1(τm) + U2(uf ) where

Q ∈ R
6×6, R1 ∈ R

+, R2 ∈ R
+ are positive weights,

U1(τm),U2(uf ) are defined as

U1(τm) = R1τ
2
m

U2(uf ) = 2
∫ 2uf−1

0
tanh−1(v)R2dv

, (9)

and γ > 0 is a discount factor used to ensure the bound of

the value function. It is noted that U2(uf ) is designed with a

tanh−1(v) term similar to [10] with shifted bounds to satisfy

an asymmetric constraint on uf in (2). To obtain a closed

form solution for the optimal control inputs, the Hamiltonian

of the system is defined as

H(xa, τm, uf ,
∂V

∂xa

) =
∂V

∂xa

T

(fa(xa) + g1a(xa)τm (10)

+ g2a(xa)uf ) + r(xa, u(τ))− γV (xa).

The optimal control inputs satisfy the Hamiltonian-Bellman-

Jacobi equation which states that

H(x∗

a, τ
∗

m, u∗

f ,
∂V

∂xa

∗

) = 0, (11)

where V ∗ is the optimal value function defined as

V ∗(xa(t)) = min
τm,uf

∫

∞

t

r(xa, u(xa))dτ. (12)

The optimal control inputs can be solved using the stationary

conditions ∂H
∂τm

= 0, ∂H
∂uf

= 0 and the definition of U1(τm)

and U2(uf ) in (9) giving the closed form solution

τ∗m = −
1

2
R−1

1 gT1a
∂V

∂xa

∗

, (13)

u∗

f =
1

2
[1− tanh(

1

4
R−1

2 gT2a
∂V

∂xa

∗

)]. (14)

Based on (14), it is seen that the FES input is constrained as

0 < uf < 1.

IV. ONLINE ACTOR-CRITIC SYSTEM IDENTIFICATION

AND VALUE FUNCTION APPROXIMATION

From (13) and (14), it is obvious that knowledge of g1a,

g2a and ∂V
∂xa

are required to solve for the optimal control

inputs. Because the person specific parameters are uncertain,

three Neural Networks are used to estimate the system

dynamics of fa, g1a and g2a. A fourth NN is developed to

estimate ∂V
∂xa

. The NN representation for the dynamics and

the value function is given as

fa(xa) = WT
0 φ(xa) + ǫ0(xa), (15)

g1a(xa) = WT
1 φ(xa) + ǫ1(xa), (16)

g2a(xa) = WT
2 φ(xa) + ǫ2(xa), (17)

V (xa) = WT
3 φ(xa) + ǫ3(xa), (18)

where W0,W1,W2 ∈ R
k×6, and W3 ∈ R

k×1 are ideal

NN estimation weights, where k ∈ R
+ is the number of

neurons, φ ∈ R
k×1 is basis function vector, and ǫ0...ǫ3 are

approximation errors, where ǫ0, ǫ1, ǫ2 ∈ R
6×1 and ǫ3 ∈ R

1.

The gradient of the value function , ∂V/∂xa, is then given

by
∂V

∂xa

= ∇φTW3 +∇ǫ3, (19)

where ∇φ ∈ R
k×6 and ∇ǫ3 ∈ R

6×1. For online implemen-

tation, fa, g1a, and g2a are approximated as f̂a = ŴT
0 φ(x̂a),

ĝ1a = ŴT
1 φ(x̂a), ĝ2a = ŴT

2 φ(x̂a) and the value function is

estimated as V̂ = ŴT
3 φ(xa) where Ŵ0, Ŵ1, Ŵ2,and Ŵ3 are

the estimated weights of the ideal NN weights.

The following assumptions are made about the ideal

weights, basis function, and estimation error.

Assumption 1. The ideal NN weights are bounded such

that ‖W0‖...‖W3‖ ≤ bwi, i = 0, 1, 2, 3
Assumption 2. The basis function φ is a sigmoid function

that is bounded such that 0 < ‖φ(xa)‖ < 1 and ||∇φ(xa)|| ≤
bφx

Assumption 3. The estimation errors and their gra-

dients are bounded such that ‖ǫ0‖...‖ǫ3‖ ≤ bǫi and

‖∇ǫ0‖...‖∇ǫ3‖ ≤ bǫxi,i = 0, 1, 2, 3
Using the estimates of g1a, g2a and ∂V

∂xa
in (16), (17) and

(18) the optimal control inputs in (13) and (14) become

τm = −
1

2
R−1

1 ĝT1a∇φ(xT
a )Ŵ3, (20)

uf =
1

2
[1− tanh(

1

4
R−1

2 ĝT2a∇φ(xa)
T Ŵ3)]. (21)

A. Online Value Function Approximation

It is difficult to obtain a solution for ∂V
∂xa

using the HJB

equation due to its high nonlinearities in the value function

derivative ( ∂V
∂xa

) and its dependence on full knowledge of

system dynamics. Instead, a simplified policy iteration update

as shown in [10] can be developed by noting that for any time

interval T > 0, the value function satisfies

V (xa(t− T )) =

∫ t

t−T

e−γ(τ−t+T )[xT
aQxa + U1(τm) (22)

+ U2(uf )]dτ + e−γTV (xa(t)).

It is noted that (22) does not depend on the system dynamics

and is linear in ∂V
∂x

. Using the value function update in (18)

and (22), a Bellman error due to the approximation of the

value function can be defined as

eb ,

∫ t

t−T

e−γ(τ−t+T )[xT
aQxa + U1(τm)

+ U2(uf )]dτ +WT
3 ∆φ. (23)

where ∆φ = e−γT [φ(xa) − φ(xa(t − T ))]. Using the value

function approximation in (23) gives

êb =

∫ T

t−T

e−γ(τ−t+T )[xT
aQxa + U1(u1(τ))

+ U2(u2(τ))]dτ + ŴT
3 ∆φ. (24)



The update law for Ŵ3 can be found by minimizing the

objective function

Jw3 =
1

2
ê2b . (25)

Using the gradient descent algorithm and chain rule, the

update law is given as

˙̂
W3 =

−α∆φêb
(1 + ∆φT∆φ)2

, (26)

where α ∈ R
+ is a positive gain that represents the learning

rate, and (1+∆φT∆φ)2 is used for normalization. To facil-

itate the closed loop stability analysis, (23) can be rewritten

as

∫ T

t−T

e−γ(τ−t+T )[xT
aQxa + U1(u1(τ)) (27)

+U2(u2(τ))]dτ = −WT
3 ∆φ+ eb.

On substituting (27) into (24), we get

êb = −W̃3∆φ+ eb, (28)

where W̃3 = W3 − Ŵ3. Using (28) in (26), we get

˙̃W3 = −
˙̂
W3 = −α∆φ̄∆φ̄T W̃3 + α

∆φ̄

m
eb, (29)

where m = 1 + ∆φT∆φ and ∆φ̄ = ∆φ
(1+∆φT∆φ)

. By using

(26) (Theorem 3 in [10]), if ∆φ̄ is persistently exciting (PE),

i.e.,

γ1I ≤

∫ t+T1

t

∆̄φ(τ)∆̄φ(τ)dτ ≤ γ2I (30)

where γ1, γ2 ∈ R
+ are constants and I ∈ R

k×k is an

identity matrix is satisfied, the NN weight approximation

error converges exponentially to zero if eb = 0 or converges

exponentially to a residual set for a bounded bellman error.

Due to the PE condition, the boundedness of ∆φ̄T W̃3 implies

that W̃3 is bounded. This property will be used in Theorem

2 to show stability of the closed loop error system with a

neural network value function approximation.

B. Online Actor NN Design

To guarantee stability of the closed-loop system, an actor

NN is used for both the FES and motor inputs and is designed

as

τ̂m = −
1

2
R−1

1 ĝT1a∇φ(xT
a )Ŵ4, (31)

ûf =
1

2
[1− tanh(

1

4
R−1

2 ĝT2a∇φ(xa)
T Ŵ5)], (32)

where Ŵ4, Ŵ5 ∈ R
k×1 are NN weight estimates for the

actors. The update laws for Ŵ4 and Ŵ5 are determined using

a gradient descent approach to minimize the error between

the control input with only the value function approximation

and the input with the actor NNs with additional terms added

to ensure stability of the closed-loop system in Theorem 2.

Figure 1. Combined control architecture with the system identifier and
sampled measurements used to determine the control inputs in (31) and
(32).

The error between the control input with the critic and

actor is defined as

em = τm − τ̂m

= −
1

2
R−1

1 ĝT1a∇φT Ŵ3 +
1

2
R−1

1 ĝT1a∇φT Ŵ4, (33)

ef = uf − ûf

= −tanh(
1

4
R−1

1 ĝT2a∇φT Ŵ3) + tanh(
1

4
R−1

1 ĝT2a∇φT Ŵ4),

(34)

for both motor and FES inputs respectively.

The objective functions to be minimized by the actor NNs

for both motor and FES inputs are defined as Jw4 = 1
2e

2
m and

Jw5 = 1
2e

2
f respectively. Using the gradient descent algorithm

and chain rule, the update law for actor NN on the motor

input becomes

˙̂
W4 = −α2(

1

2
R−1

1 ∇φĝ1aem +
k1
2
R−1

1 ∇φĝ1a + Y1Ŵ4),

(35)

where Y1, k1 ∈ R
+ are gains to ensure stability. Similarly,

the update law for the actor NN on the FES input becomes

˙̂
W5 = −α3(

ef
4
R−1

2 ∇φĝ2a−
ef
4
R−1

2 ∇φĝ2atanh
2(P̂ )+Y2Ŵ5)

(36)

where P̂ = − 1
4R

−1
2 φT Ŵ2∇φT Ŵ5 and Y2 ∈ R

+ is a gain

to ensure stability. A flow chart of the the complete control

architecture is presented in Fig. 1.

C. Online System Identifier Design with Sampled Fatigue

Measurements

The goal of the system identifier is to generate a con-

tinuous estimate of the dynamic system given in (7) to be

used in ĝ1a and ĝ2a in the control laws defined in (13)

and (14) while simultaneously accounting for the sampled

US fatigue measurements. The measurements available in

real-time for the system defined in (4) can be written as

y =
[

x1(t) x2(t) x3(tk)
]T

where x1(t) and x2(t) are

the angular position and velocity of the limb as previously



defined and are measurable at a high sampling frequency by

using either IMUs or encoders and x3(tk) is the US-based

fatigue measurements that are available at discrete instants

tk. It is assumed that the US-based measurement available

at tk is held constant until a subsequent measurement is

available at time instant tk+1. The sampling interval between

two consecutive measurements at tk and tk+1 is a positive

constant denoted as T .

The dynamic system in (7) with optimal control inputs

(20) and (21) can be represented by replacing the unknown

functions f , g1a, and g2a with NN approximations as

˙̂xa = f̂a(x̂a) + ĝ1a(x̂a)τ̂m + ĝ2a(x̂a)ûf + kx̃a + µ+ ξε(tk),
(37)

where k, ξ ∈ R
+ are positive constant gains, and x̃a is the

error between the estimated state and the augmented state xa

defined as x̃a = xa − x̂a, µ ∈ R
6×1 is an auxiliary variable

defined in order to facilitate the stability analysis defined as

µ , ŴT
0 φ̃(xa) + ŴT

1 φ̃(xa)τ̂m + ŴT
2 φ̃(xa)ûf , (38)

where φ̃(xa) = φ(xa) − φ(x̂a). To account for the sampled

US measurements at a lower frequency, the proposed identi-

fier for x̂a is augmented with an update term: ξε(tk) ∈ R
6×1

for the sampled ultrasound (US) measurements defined as

ε(tk) =
[

0 0 ε3(tk) 0 0 0
]T

where ε3(tk) ∈ R

is defined as ε3(tk) = x3(tk) − xd3(tk) − x̂3a(tk) = x̃3a,

where x3(tk) and xd3 are the normalized US-based fatigue

measurement and desired fatigue value at tk and x̂3a(tk) is

the estimated value of the fatigue error at tk. ε3(tk) has an

upper bound of ε̄3 ∈ R
+ and ε3(tk) is a constant value during

every time interval [tk, tk+1] after which an US-based fatigue

measurement is available. The estimation error dynamics can

then be written as

˙̃xa = ẋa − ˙̂xa

= f̃ + g̃1aτ̂m + g̃2aûf − kx̃a − ξε(tk)− µ+ ǫ, (39)

where f̃a = fa − f̂a, g̃1a = g1a − ĝ1a, g̃2a = g2a − ĝ2a,
ǫ = ǫ0 + ǫ1τ̂m + ǫ2ûf represents the bounded NN estimation

errors for W0, W1 and W2 respectively. The update laws are

designed based on the stability analysis in Theorem as 1

˙̂
W0 = proj(Γ0(φ(xa)x̃

T
a − ι0Ŵ0)), (40)

˙̂
W1 = proj(Γ1(−

1

2
φ(xa)R

−1
1 φ(xa)

T Ŵ1∇φT
3 Ŵ3x̃

T
a−ι1Ŵ1)),

(41)
˙̂
W2 = proj(Γ2(φ(xa)ûf x̃

T
a − ι2Ŵ2)), (42)

where Γ0,Γ1,Γ2 ∈ R
k×k are positive gain matrices,

ι0, ι1, ι2 ∈ R
+ are positive constants and proj() is a smooth

operator that bounds the NN weights [11]. It is noted that

based on the projection operator, the optimal control laws in

(20) and (21), and assumptions 1-3, τ̂m, ûf ∈ L∞.

Theorem 1. The identifier designed in (37) along with

weight updates in (40),(41) and (42) ensure that the sampled

identifier error x̃a is globally uniformly ultimately bounded

(G.U.U.B).
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Figure 2. Position tracking at both discrete fatigue levels.

Proof: The proof to Theorem 1 is available upon request.

Remark 1: The proof of Theorem 1 shows that the

sampled estimation error in (39) is bounded. However the

boundedness of x̃a does not ensure convergence of the

neural network weights. In order to ensure convergence of

the weights, W̃0, W̃1 and W̃2 should satisfy persistence of

excitation conditions. Future versions of this analysis will

address the convergence of the neural network weights.

Theorem 2. The control inputs for motor and FES defined

in (31) and (32) along with the NN update law in (26), (35),

and (36) make the closed loop error system defined in (7) and

the weight estimation error for the value function GUUB.

Proof: The proof to Theorem 2 is available upon request.

V. SIMULATION RESULTS

Simulations were implemented for a leg extension system

in MATLAB under two different on-demand fatigue levels:

1 and 0.8. The desired position and velocity trajectories

were designed using a third order polynomial for knee

extension patterns during the gait cycle and the trajectory

was simulated for a total duration of 2 minutes of continuous

knee extension using simulated discrete US-based measure-

ments that were updated every 5 seconds. To ensure the

PE condition in the simulations, a probing noise modeled

as n(t) = sin2(t)cos(t) + sin2(2t)cos(5t) was added to

the system. The model parameters for the combined fatigue

and leg extension system were determined experimentally

for an able body participant using the approach described in

[9]. Fig. 2 shows the joint position tracking at both desired

fatigue levels for the two minute duration. It is clear that

after two knee extension cycles, the position tracking reaches

steady state. When the desired fatigue level was 1 the steady

state root mean squared error (RMSE) was 3.80 degrees. In

comparison the steady state RMSE when the desired fatigue

level was 0.8 was 4.09 degrees. Fig. 3 shows the motor torque

along with normalized FES input and its corresponding

torque generation calculated using (2) under both desired

fatigue conditions. To maintain the desired fatigue at 1, most

of the control effort is taken up by motors. However it is

seen that as the desired fatigue level is adjusted from 1 to
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Figure 3. Motor torques, normalized FES input, and its corresponding torque
generation under both desired fatigue conditions. The torque generated by
FES was calculated using the dyanmic model based on pre-identifed person
specific parameters.
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Figure 4. Integral of steady state FES and motor inputs along with total
combined torque under both desired fatigue scenarios.

0.8 the motor torque decreases while the torque generated

from the FES input increases while tracking performance is

maintained. This is further highlighted by taking the integral

of the steady state motor torque and normalized FES input as

seen in Fig. 4. Clearly, as the desired fatigue increase more

control effort is placed on the FES in comparison to the motor

while the total torque generated remains the same in both

scenarios. The simulated US fatigue measurements for each

scenario are shown in Fig. 5 and it is seen that the fatigue

approaches is desired value during each scenario. Thus the

developed actor-critic system identifier scheme has the ability

to determine the optimal allocation of motor torques and FES

with using sampled US fatigue measurements to produce

cyclic knee extension for an extended duration at different

desired fatigue profiles while generating the similar steady-

state tracking performance.

VI. CONCLUSION

In this paper, an ACI approach is proposed to solve the

optimal tracking control problem with asymmetric FES con-

straints and US-based fatigue measurements sampled at a low

frequency to optimally allocate motor and FES torque in a hy-

brid exoskeleton system. An NN-based system identifier was

designed to estimate the unknown dynamics despite the low

sampled fatigue measurement and simulation results show

knee extension tracking performance and torque allocation

at two on-demand fatigue levels. Further, it is seen that total
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Figure 5. Simulated US measurements when desired fatigue was set to 1
and 0.8 respectively.

torque administered to the system torque remains consistent

while the desired fatigue is manually adjusted and FES and

motor torques are allocated accordingly. Our preliminary

results demonstrates that the ACI approach is an effective and

promising method to automatically allocate electric motor

and FES . Potentially, optimal adaptive tracking control of a

hybrid exoskeleton seems feasible without prior knowledge

of the system dynamics and desired fatigue levels may be

maintained based on low-sampled fatigue measurements.
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