
2022 IEEE INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING, AUG. 22–25, 2022, XI’AN, CHINA

DATA-DRIVEN ROBUST MULTI-AGENT REINFORCEMENT LEARNING

Yudan Wang† Yue Wang† Yi Zhou⋆ Alvaro Velasquez‡ Shaofeng Zou†

†Department of Electrical Engineering, University at Buffalo
⋆ Department of Electrical and Computer Engineering, University of Utah

‡ Information Directorate, Air Force Research Laboratory
†{yudanwan, ywang294, szou3}@buffalo.edu, ⋆ yi.zhou@utah.edu, ‡alvaro.velasquez.1@us.af.mil

ABSTRACT

Multi-agent reinforcement learning (MARL) in the collabo-
rative setting aims to find a joint policy that maximizes the
accumulated reward averaged over all the agents. In this pa-
per, we focus on MARL under model uncertainty, where the
transition kernel is assumed to be in an uncertainty set, and
the goal is to optimize the worst-case performance over the
uncertainty set. We investigate the model-free setting, where
the uncertain set centers around an unknown Markov deci-
sion process from which a single sample trajectory can be
obtained sequentially. We develop a robust multi-agent Q-
learning algorithm, which is model-free and fully decentral-
ized. We theoretically prove that the proposed algorithm con-
verges to the minimax robust policy, and further character-
ize its sample complexity. Our algorithm, comparing to the
vanilla multi-agent Q-learning, offers provable robustness un-
der model uncertainty without incurring additional computa-
tional and memory cost.

Index Terms— Distributionally robust, model-free, sam-
ple complexity, finite-time analysis, robust MDP

1. INTRODUCTION

Multi-agent reinforcement learning (MARL) [1] finds a wide
range of applications in modern artificial intelligence applica-
tions, where multiple autonomous agents interact with a com-
mon stochastic environment [2, 3, 4]. Multi-agent systems are
usually distributed, and agents communicate through wireless
channel, and therefore, they are vulnerable to external pertur-
bations and adversarial attacks, which may result in a model
deviation, and further lead to a significant performance degra-
dation. However, existing results typically assume that the
policy will be deployed in the same environment as the one
where training samples are taken [5], and thus may not per-
form well when there is model deviation between the train-
ing and test environments. In this paper, we develop a robust
MARL approach, where the Markov decision process (MDP)
model is not fixed but lies in an uncertainty set, and the goal is

to optimize the worst-case performance over the uncertainty
set.

The framework of robust MDP was developed in [6, 7, 8]
for the single-agent setting. A robust dynamic programming
approach was developed, and was shown to be minimax opti-
mal. This approach, however, requires full knowledge of the
uncertainty set, and does not scale well to large or continuous
problems. Following this framework, model-free approaches
with function approximation are developed, e.g., [9, 10], but
the convergence results require a stringent condition on the
discount factor. There are also heuristic approaches on robust
RL, e.g., [11, 12, 13, 14, 15], but they lack in provable per-
formance guarantee. More importantly, the above studies are
mostly focused on the single-agent case. Recently, the work
[16] studied reward uncertainty in MARL, but did not take
into consideration the Markov transition kernel uncertainty.
There are also studies on MARL, e.g., [17, 18, 19, 20, 1], but
they are limited to the non-robust case.

In this paper, we investigate the problem of robust MARL
in the collaborative setting with uncertainty in the Markov
transition kernel, where the agents aim to maximize the accu-
mulative average reward over all the agents under the worst-
case Markov transition kernel in the uncertainty set. We gen-
eralize the single-agent robust Q-learning algorithm in [21]
to the decentralized multi-agent setting, where there is no fu-
sion center, each agent’s reward information is only locally
observable, and each agent may only communicate with its
neighbors in the network. Our contributions in this paper
can be summarized in three-fold. First, we design an on-
line model-free multi-agent robust Q-learning (MARQ) algo-
rithm. Our MARQ algorithm can be updated in an online and
incremental fashion, and at each time, the agent only needs
to communicate with its neighbors. Moreover, its compu-
tational and memory complexity are the same as the vanilla
Q-learning algorithm (within a constant factor). Second, we
theoretically prove the convergence of MARQ, and derive its
sample complexity in the tabular case, which matches with
one of the centralized tabular Q-learning algorithm (within a
constant factor). Our analysis is based on a novel combina-
tion of distributed optimization [22] and robust reinforcement
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learning, which requires an explicit characterization of the
distributed optimization error and the stochastic error in ro-
bust Q-learning. Third, we numerically demonstrate the con-
vergence and robustness of our algorithm. Our approach can
be easily combined with the deep Q-learning algorithm [23]
and the double Q-learning approach [24], and design robust
deep Q-learning for large or continuous problems.

2. PROBLEM MODEL

A decentralized multi-agent MDP can be represented by
a tuple ⟨S,A,P,N ,G, r, γ⟩, where S denotes the state
space and |S| is the number of the states; A denotes the
joint action space which can be factorized as ⊗N

i=1A(i)

and A(i) is the action space of agent i; N is the set of all
agents and |N | = N denotes the number of all agents;
P = {ps,a ∈ ∆(S)|s, a ∈ S ×A} is the transition kernel;
G is an undirected graph with node set N and edge set E ;
r = {r(i)}i∈N is the set of reward functions and r(i) is the
reward function for agent i; and γ is the discount factor. The
weight matrix is denoted by G, specifically, the weight for
the edge connecting nodes i and j is denoted by Gi,j , and is
non-negative. For agent i, denote by N (i) = {j|Gi,j ̸= 0}
the neighbors of i.

Let r(i)t denote the reward received by agent i at time t,
and r̄t =

1
N

∑N
i=1 r

(i)
t denote the average reward over all the

agents at time t. At each time t, each agent i chooses its
action a

(i)
t given st according to a local policy π(i)(a

(i)
t |st),

which is a distribution over A(i). Denote by at = {a(i)t }i∈N
the joint action. We define the joint policy of all agents as
π(at|st) =

∏
i∈N π(i)(a

(i)
t |st). Here, we focus on the decen-

tralized setting where there is no fusion center, and two agents
communicate with each other only if there is an edge connect-
ing them. We follow the standard multi-agent RL model, e.g.,
[17], and assume that the state and the joint action are fully
observable to each agent, but the reward can only be observed
locally, i.e., r(i)t is only observable to agent i.

In this paper, we focus on robust MARL with uncertain
transition kernel. Specifically, the transition kernel P is not
fixed, but lies in an uncertainty set P , i.e., P ∈ P . Denote
the transition kernel at time t by Pt ∈ P . Let τ = {Pt}t≥0,
which is referred to as the nature’s policy (as in [8]). The
collection of all possible τ is denoted by T . We focus on the
(s, a)-rectangular uncertainty set [7, 8], i.e., P =

⊗
s,a Ps,a,

where Ps,a ⊆ ∆(S).
We define the robust value function for a given joint policy

π as:

Vπ(s) = min
τ∈T

Eτ

[ ∞∑

t=0

γtr̄t(st, at)
∣∣∣s0 = s, π

]
, (1)

where Eτ denotes the expectation when the state transition
is according to τ . Similarly, we can define robust Q-value

function of the policy π as:

Qπ(s, a) = min
τ∈T

Eτ

[ ∞∑

t=0

γtr̄t(st, at)
∣∣∣s0 = s, a0 = a, π

]
,

(2)
The goal is to maximize Qπ(s, a) for any s ∈ S and any

a ∈ A:

max
π

Qπ(s, a),∀s ∈ S and a ∈ A. (3)

We denote the solution to (3) by π∗, Vπ∗ by V ∗, and Qπ∗ by
Q∗. We also have that V ∗(s) = maxa∈A Q∗(s, a).

We then present the following strong duality results and
robust analog of the Bellman recursion in [25].

Theorem 1. [25, Thm 1 (Robust Dynamic Programming)]
The following strong duality condition holds for all s ∈ S:

max
π

min
τ

Eτ

[
n∑

t=0

γtr̄t(st, at)
∣∣∣s0 = s, π

]

= min
τ

max
π

Eτ

[
n∑

t=0

γtr̄t(st, at)
∣∣∣s0 = s, π

]
. (4)

The optimal robust value function satisfies the following
Bellman equation: V ∗(s) = maxa{r̄(s, a) + γσPs,a(V ∗)},
where σPs,a(V ∗) = minp(·|s,a)∈Ps,a Es′∼p(·|s,a)[V ∗(s′)].
The optimal robust action-value function satisfies Q∗(s, a) =
r̄(s, a) + γσPs,a(V ∗).

In this paper, we focus on the R-contamination uncer-
tainty set. Specifically, for any s ∈ S and a ∈ A, define
the uncertainty set Ps,a:

Ps,a := {(1−R)p̂s,a +Rq|q ∈ ∆(S)}, (5)

where p̂s,a denotes the centroid of the uncertainty set. In this
paper, p̂s,a is unknown, but samples from p̂s,a can be obtained
sequentially.

The R-contamination model was firstly introduced in
[26] (named as ϵ-contamination), and has been widely used
to model distributional uncertainty. The R-contamination
set models the scenario where the state transition could be
arbitrarily perturbed with a small probability R, hence is
more suitable for systems suffering from random pertur-
bations, adversarial attacks, and outliers in sampling. The
R-contamination set can also be connected to uncertainty
sets defined by total variation, KL-divergence and Hellinger
distance via inequalities, e.g., Pinsker’s inequality.

3. MULTI-AGENT ROBUST Q-LEARNING

In this section, we present the design and finite-sample analy-
sis for our multi-agent robust Q-learning (MARQ) algorithm.
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From the robust Bellman equation (Theorem 1), we have

Q∗(s, a) = r̄(s, a) + γσPs,a(V ∗(s)), (6)

Consider the R-contamination set in (5), the support function
in (6) can be further written as

σPs,a(V ∗) (7)
= min

ps,a∈Ps,a
Es′∼ps,a [V ∗(s′)]

= (1−R)Es′∼p̂s,a [V ∗(s′)] +Rmin
s′∈S

V ∗(s′)

= (1−R)Es′∼p̂s,a [V ∗(s′)] +Rmin
s′∈S

max
a′∈A

Q∗(s′, a′).

We will then develop a stochastic and decentralized algorithm
based on the robust Bellman equation.

Note that in the decentralized setting, the reward is ob-
servable only locally, and each agent can only communicate
with its neighbors since there is no fusion center. Moreover, in
practice, agents may also want to keep their reward informa-
tion private. To address this challenge, we generalize the idea
of distributed optimization, and design our MARQ algorithm
in Algorithm 1. Specifically, at each time t, agent i keeps
its local copy of the Q-table Q

(i)
t for i ∈ N . The Q-table is

firstly updated according to a stochastic version of the robust
Bellman equation in (6) using only local reward information.
Then, each agent collects local estimates of the Q-table from
its neighbors, and compute the average, which is referred to
as “average consensus”.

Algorithm 1 Multi-Agent Robust Q-learning (MARQ)

Initialization: T , Q0 = {Q(i)
0 }Ni=1, πb, s0, t = 0,

αt

1: for t ≤ T do
2: Each agent i takes action a

(i)
t ∼ π

(i)
b (·|st), and re-

ceives reward r
(i)
t for i ∈ N

3: Each agent observes st+1 and at,
4: for i = 1, .., N do
5: V

(i)
t (s) = maxa∈A Q

(i)
t (s, a), for every s ∈ S

6: Q̄
(i)
t+1(st, at) = (1 − αt)Q

(i)
t (st, at) + αt(r

(i)
t +

γRmins∈S V
(i)
t (s) + γ(1−R)V

(i)
t (st+1))

7: end for
8: Each agent i sent Q(i)

t to its neighbors
9: Q

(i)
t+1 =

∑
j∈N (i) Gi,jQ̄

(i)
t+1, for all i ∈ N

10: end for
Output: QT

In the algorithm, Qt is the collection of the Q-table esti-
mates at all the agents, and thus is of the dimension |S||A| ×
N , and πb denotes the behavior policy.

In the following, we show that the estimate at each agent
i converges almost surely to the optimal Q∗, i.e., Q(i)

T → Q∗

as T → ∞. We will further characterize the finite-time error
bound for the MARQ algorithm.

We first make three standard assumptions.

Assumption 1. [17] The non-negative matrix G satisfies:
a. G is a double stochastic matrix, i.e., G1 = 1 and 1⊤G =
1⊤, where 1 denotes an all-one vector with dimension N .
Moreover, there exists constant η ∈ (0, 1) such that for any
Gi,j > 0, Gi,j ≥ η.
b. The weight Gi,j of edge connecting nodes i, j is non-zero
if and only if (i, j) ∈ E .
c. Let J = [ 1N ]N×N . The largest eigenvalue of matrix G−J ,
denoted by λmax, is strictly less than 1.

Under Assumption 1, limt→∞ Gt = J [22].

Assumption 2. The learning rate αt satisfies that:
a.
∑

t αt = ∞,
∑

t α
2
t < ∞.

b. αt−t′
αt

≤ Kc +Kat
′, for any t′ < t, where Ka and Kc are

constants.

Assumption 3. [27] [Bounded Reward] The reward r(i)(s, a)
is bounded, r(i)(s, a) ≤ Rmax, ∀ s ∈ S, a ∈ A, i ∈ N .

We first show that our MARQ algorithm converges almost
surely in the following theorem.

Theorem 2 (Asymptotic Convergence). Under Assumptions
1-3, Q(i)

T → Q∗ as T → ∞ for any i ∈ N almost surely.

The proof of this theorem follows from a novel general-
ization of the stochastic approximation convergence analysis
to the decentralized setting.

In the following, we further characterize the finite-time
error bound and sample complexity of our MARQ algorithm.
We make the following assumption that is commonly used in
reinforcement learning analysis [27, 28].

Assumption 4. The Markov chain induced by the behavior
policy πb and transition kernel p̂ is uniformly ergodic.

Denote by µπb
the stationary distribution induced by the

behavior policy πb and the transition kernel P̂ s,a. Then define

µmin := min
s∈S,a∈A

µπb
(s, a),

tmix := min

{
t

∣∣∣∣ max
s0∈S,a0∈A

dTV (P
t(·|s0, a0), µπb

) ≤ 1

4

}

where P t(·|s0, a0) denotes the distribution of (st, at) condi-
tioned on the initial state and action (s0, a0), and dTV (µ, ν)
denotes the total variation distance between two probability
measures µ and ν. Based the definition of tmix, for any t >
tmix, the distribution of (st, at) is close to the stationary dis-
tribution µπb

with total variation distance less than 1
4 .

Theorem 3 (Finite-time Error Bound). Under Assumptions
1- 4, consider the MARQ algorithm in Algorithm 1. For any

0 < ϵ < min

{
1

1−γ ,
(1−R)2(1−λmax)γ log( |S||A|

δ )
4c1

√
NRmax(1−γ)2

}
,

||QT −Q∗||∞ < 5ϵ (8)
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with probability at least 1− 6δ, when

T ≥ c0
µmin

{
1

(1− γ)5ϵ2
+

tmix

1− γ

}
log

( |S||A|T
δ

)

· log
(

1

(1− γ)2ϵ

)
+

1

log(λmax)
log

(
ϵ(1− γ)2

4
√
NRmaxγ

)
,

(9)

αt =
c1

log( |S||A|T
δ )

min

{
(1− γ)4ϵ2

(1−R)2γ2
,

1

tmix

}
, (10)

where c0 and c1 are some positive constants.

On the right hand side of (8), 2ϵ is from the error of aver-
age consensus, and 3ϵ is from the error of Q-learning. Note
that there are two terms in (9), where the first term is due to
the stochastic error, and the second term is due to the aver-
age consensus error in the decentralized setting. The overall
sample size of our MARQ algorithm is O( 1

(1−γ)5ϵ2 + tmix
1−γ +

log
√
N

ϵ(1−γ) ), which matches with the single agent and central-
ized settings in [21] and [27] (within a constant factor and
for a large range of N ). It can also be observed that as N
increases, more samples will be needed in order to make the
average consensus error small.

Here we provide a proof sketch of Theorem 3 that high-
lights the major technical steps.

Proof Sketch. Recall that Qt = {Q(i)
t }i∈N is |S||A| ×N di-

mensional matrix, and Q∗ is an |S||A|×1 dimensional vector
defined in (3). Let ⟨Qt⟩ = QtJ .

For any |S||A| × N dimensional matrix Q, let Q(s, a)
denote its (s, a)-th row. We then define the D-norm of Q
as ||Q||D = maxa∈A, s∈S ||Q(s, a)||2. It can be shown that
|| · ||D is a norm, and is upper bounded by the infinity norm.

We will show that Qt → Q∗1⊤, i.e., Q(i)
t → Q∗ for any

i ∈ N as t → ∞. By the triangle inequality,

||Qt −Q∗1⊤||D ≤ ||Qt − ⟨Qt⟩||D︸ ︷︷ ︸
part I

+ ||⟨Qt⟩ − ⟨Q∗1⊤⟩||D︸ ︷︷ ︸
part II

,

where part II follows from the fact that ⟨Q∗1⊤⟩ = Q∗1⊤J =
Q∗1⊤. Note that part I in (11) is the error of one-step average
consensus, and part II in (11) is the error in Q-learning.

It can be shown that

part I ≤ λt
max||Q⊥,0||D +

2λmaxαt

√
N Rmax

1−γ

1− λmax
. (11)

Note that αt ∼ O(ϵ2), and thus the second term in
(11) will is than ϵ(1−γ)

2γ when ϵ is small. To guarantee

that first term in (11) is less than ϵ(1−γ)
2γ , we need t ≥

1
log(λmax)

log
(

ϵ(1−γ)2

4
√
NRmaxγ

)
≜ tI .

We then bound part II. Let ∆t+1 := ⟨Qt+1⟩−Q∗1⊤, then
part II= ||∆t+1||D. Let Λt ∈ R|S||A|×|S||A| be a diagonal
matrix:

Λt((s, a), (s, a)) =

{
αt, if (s, a) = (st, at),

0, otherwise.
(12)

Denote by λMAX(Λ) the largest eigenvalue of any matrix
Λ. Set Pt ∈ {0, 1}|S||A|×|S| such that Pt(st, at, st+1) = 1,
and otherwise Pt(s, a, s

′) = 0. Then, we can show that

||∆t+1||D ≤ λMAX(Π
t
j=tI (I − Λj))||∆tI ||D

+ γλMAX

(
t∑

i=tI

||∆i||DΠt
j=i+1(I − ΛJ)Λi

)

+ γ(1−R)

∥∥∥∥∥
t∑

i=tI

Πt
j=i+1(I − Λj)Λi(Pi − p̂)V ∗

∥∥∥∥∥
D

+ γϵλMAX

(
t∑

i=tI

Πt
j=i+1(I − Λj)Λi

)
, (13)

where the first three terms are from the Q-learning stochastic
error, and the last term is due to the error of average consen-
sus. If we choose

t− tI ≥
c0
µmin

{
1

(1− γ)5ϵ2
+

tmix

1− γ

}
log

( |S||A|T
δ

)

· log
(

1

(1− γ)2ϵ

)
, (14)

then (13) can be bounded by 4ϵ.

4. NUMERICAL RESULT

In this section, we compare our robust multi-agent Q-learning
algorithm with the non-robust (vanilla) multi-agent Q-learning
algorithm. We consider a multi-agent MDP with N = 5
agents and |S| = 24 states. The action space for each agent
is A(i) = {0, 1}, and thus the size of the joint action space
is |A| = 32. We simulate our algorithm under a 23-point
game, where the state space is S = {0, 1, 2, . . . , 23}. Then,
we design an action mapping matrix, which maps each joint
action a to a number n(a). Then, given the current state s, the
transition kernel p̂(·|s, a) is that the next state is s′ = s+ a if
s + n(a) ≤ 23 and s′ = 0 if s + n(a) > 23. When the next
state is 23, agents 2, 3, 4 will get rewards 1, 4, 5, respectively.
When the next state is larger than 15, and n(a) is larger than
1, then agent 1 will get reward 0.8. At each step, each agent
receives reward -0.2.

We compare our MARQ with the vanilla non-robust
multi-agent Q-learning. Here, the vanilla non-robust multi-
agent Q-learning algorithm is Algorithm 1 with R = 0. We
train our MARQ and non-robust multi-agent Q-learning al-
gorithm in the training environment specified above, and then
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(a) R=0.2 p=0.2 (b) R=0.3 p=0.2 (c) R=0.3 p=0.3

Fig. 1: MARQ v.s. Non-robust Decentralized Multi-agent Q-learning.

evaluate the obtained policies in a perturbed environment.
Here the perturbed environment is designed as follows. At
state s if a joint action a is taken, then the system transits
according to the transition kernel p̂(·|s, a) with probability
1−p, and transits to the worst-case state argmins V

∗(s) with
probability p. The behavior policy πb is a uniform distribu-
tion over the joint action space A. Once the algorithm stops,
each agent obtains its own policy by taking the greedy action
with respect to its local estimate of the Q-function.

We evaluate the performance every 40 steps. In Figure 1,
we plot the average over 100 test episodes per evaluation step.
Moreover, we plot the upper and lower envelops of the shaded
which correspond to 10 and 90 percentiles of the 100 test
episodes. It can be seen that our MARQ algorithm achieves
a higher reward than the vanilla one on the perturbed envi-
ronment, and hence is robust to distributional uncertainty and
adversarial perturbations. It can also be seen that when the
perturbation parameters R, p are small(i.e., the model mis-
match is small), our algorithm performs similarly to the non-
robust one; and when the parameters are larger, our MARQ
algorithm performs much better.

5. CONCLUSION

In this paper, we design an efficient MARQ algorithm for
robust multi-agent decentralized RL with uncertainty tran-
sition kernel. We theoretically proved its convergence and
provided its finite-time error bound. Our approach can be
extended to make SARSA and other RL algorithms robust.
Our future interest is to generalize our idea, and combine
with the deep Q-learning approach and double Q-learning ap-
proach to solve robust RL problems with large or continu-
ous state/action spaces. It is also of interest to generalize
the robust policy gradient approach [29] to the decentralized
multi-agents setting. Other type of uncertainty sets, e.g., KL-
divergence and Wasserstein distance, are also of interest.
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