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ORDERABILITY OF HOMOLOGY SPHERES OBTAINED BY

DEHN FILLING

Xinghua Gao

Abstract. In this paper, we develop a method for constructing left-orders on the funda-
mental groups of rational homology 3-spheres. We begin by constructing the holonomy
extension locus of a rational homology solid torus M , which encodes the information

about peripherally hyperbolic P̂SL2R representations of ⇡1(M). Plots of the holonomy
extension loci of many rational homology solid tori are shown, and the relation to left-
orderability is hinted. Using holonomy extension loci, we study rational homology 3-
spheres coming from Dehn filling on rational homology solid tori and construct intervals
of Dehn fillings with left-orderable fundamental group.

1. Introduction

A nontrivial group is called left-orderable if there exists a strict total order on
the set of group elements which is invariant under left multiplication. We will say
that a closed 3-manifold is orderable when its fundamental group is left-orderable. In
particular, for a countable group, being left-orderable is the same as being isomorphic
to a subgroup of Homeo+(R), the group of orientation preserving homeomorphisms
of R (see e.g. [6, Theorem 2.6]).

The reason why we care about left-orderability is that this property is conjectured
to detect L-spaces completely. Recall an irreducible Q-homology 3-sphere (abbr.

QHS) Y is called an L-space if dim dHF (Y ) = |H1(Y ;Z)|, i.e. it obtains minimal
Heegaard Floer homology [29]. Boyer, Gordon, and Watson conjectured in [4] that
a QHS is a non L-space if and only if its fundamental group is left-orderable. This
conjecture has been studied extensively in recent years and evidence has accumulated
in favor of the conjecture [3, 17].

One of the main di�culties of proving the conjecture is to determine the left-
orderability of a fundamental group. Various tools have been developed to study
left-orderability. Boyer, Rolfsen, and Wiest proved that a necessary and su�cient
condition that the fundamental group of a compact, connected, orientable 3-manifold
be left-orderable is that there exists a homomorphism into Homeo+(R) [6, Theorem
3.2]. In particular, representation (i.e. homeomorphism) of the fundamental group

into P̂SL2R, a subgroup of Homeo+(R), has been proven very useful in studying the
left-orderability of 3-manifold groups [10, 14, 23, 34, 35]. Being the universal cover

of the linear Lie groups PSL2R and SL2R, P̂SL2R is more computable as compared
to Homeo+(R), while still containing a fair amount of information about left-orders
inherited from Homeo+(R).

To study P̂SL2R representations, Culler and Dunfield introduced the idea of the
translation extension locus of a compact 3-manifold M with torus boundary [10].
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They gave several criteria implying whole intervals of Dehn fillings of M have left-
orderable fundamental groups.

1.1. The translation extension locus. We follow the notation in [10]. Denote

PSL2R by G, and P̂SL2R by eG. Let R eG(M) = Hom(⇡1(M), eG) be the variety of eG
representations of ⇡1(M). For a precise definition of the representation variety, see
Section 2.2.

The name translation extension locus comes from the fact that we need to use
translation number in the definition. For an elements eg in eG, define the translation
number to be

trans(eg) = lim
n!1

egn(x)� x

n
for some x 2 R.

Then trans: R eG(@M) ! H
1(@M ;R) can be defined by taking e⇢ to trans�e⇢. The

translation number of eg measure the distance eg moves a point on the real line. It will
be discussed in more details in the next section.

Let M be a knot complement in a QHS or equivalently a Q-homology solid torus.
To study eG representations of M whose restrictions to ⇡1(@M) are elliptic, Culler
and Dunfield gave the following definition of translation extension locus.

Definition 1.1. (See [10] Section 4) Let PE eG(M) be the subset of representations in

R eG(M) whose restriction to ⇡1(@M) are either elliptic, parabolic, or central. Consider
the composition

PE eG(M) ⇢ R eG(M)
◆⇤�! R eG(@M)

trans�! H
1(@M ;R)

The closure in H
1(@M ;R) of the image of PE eG(M) under trans � ◆⇤ is called trans-

lation extension locus and denoted EL eG(M).

They showed that translations extension locus of a Q-homology solid torus satisfies
the following properties. (In the statement of the theorem, D1(M) is the infinite
dihedral group Z o Z/2Z. It acts on R

2 by translating along the x-axis by integers
and reflecting about the origin.)

Theorem 1.1. [10, Theorem 4.3] The extension locus EL eG(M) is a locally finite

union of analytic arcs and isolated points. It is invariant under D1(M) with quotient

homeomorphic to a finite graph. The quotient contains finitely many points which are

ideal or parabolic. The locus EL eG(M) contains the horizontal axis L0, which comes

from representations to eG with abelian image.

The translations extension locus depicts the set of peripherally elliptic and para-
bolic eG representations of a Q-homology solid torus. The following results regarding
orderability of Dehn filling were obtained using translation extension locus.

Theorem 1.2. [10, Theorem 7.1] Suppose that M is a longitudinally rigid (defined

in Section 5) irreducible Q-homology solid torus and that the Alexander polynomial of

M has a simple root ⇠ on the unit circle. When M is not a Z-homology solid torus,

further suppose that ⇠
k 6= 1 where k > 0 is the order of the homological longitude �

in H1(M ;Z). Then there exists a > 0 such that for every rational r 2 (�a, 0)[ (0, a)
the Dehn filling M(r) is orderable.
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Theorem 1.3. [10, Theorem 1.4] Let K be a hyperbolic knot in a Z-homology 3-sphere
Y . If the trace field of the knot exterior M has a real embedding then:

(a) For all su�ciently large n, the n-fold cyclic cover of Y branched over K is

orderable.

(b) There is an interval I of the form (�1, a) or (a,1) so that the Dehn filling

M(r) is orderable for all rational r 2 I .

(c) There exists b > 0 so that for every rational r 2 (�b, 0) [ (0, b) the Dehn

filling M(r) is orderable.

Recently, Herald and Zhang [21] improved Theorem 1.2 in the case of M being
a Z-homology solid torus by removing the longitudinally rigid condition (meaning
that M(0) has 0-dimensional PSL2C character variety apart from the component of
reducible representations) of M . Their result is stated as follows.

Theorem 1.4. Let M be the exterior of a knot in an integral homology 3-sphere such

that M is irreducible. If the Alexander polynomial �(t) of M has a simple root on the

unit circle, then there exists a real number a > 0 such that, for every rational slope

r 2 (�a, 0) [ (0, a), the Dehn filling M(r) has left-orderable fundamental group.

1.2. Holonomy extension locus. In Section 3 of this paper, I will construct holo-
nomy extension locus which depicts the set of peripherally hyperbolic and parabolic
eG representations of a Q-homology solid torus, in contrast to translation extension
locus.

Let M be the complement of a knot in a QHS or equivalently a Q-homology solid
torus. We define the holonomy extension locus of M as follows.

Definition 3.3. Let PH eG(M) be the subset of representations whose restriction to

⇡1(@M) are either hyperbolic, parabolic, or central. Consider the composition

PH eG(M) ⇢ R
aug
eG

(M)
◆⇤�! R

aug
eG

(@M)
EV�! H

1(@M ;R)⇥H
1(@M ;Z)

The closure of EV�◆⇤(PH eG(M)) in H
1(@M ;R) is called the holonomy extension locus

and denoted HL eG(M).

Despite the similarity between the definition of translation extension locus and
the holonomy extension locus, there are more technical di�culties to deal with in
the peripherally hyperbolic case than the peripherally elliptic case. For instance,
the translation extension locus of a Q-homology solid torus is a planer graph in R

2,
while the holonomy extension locus has infinitely many sheets each of which is a
planer graph. This major di↵erence comes from the fact that, for peripherally elliptic
eG representations, the translation number captures su�cient information we need,
while in the hyperbolic case, translation number is far less than enough and other
invariants need to be taken into consideration. The following theorem describes the
structure of a holonomy extension locus.

Suppose � is the homological longitude of M , with its order in H1(M ;Z) being n.
Define kM = min{��(S)|S ⇢ M a connected incompressible surface bounding n�}.
Let i, j be integers.

Theorem 3.1. The holonomy extension locus HL eG(M) =
F

i,j2Z Hi,j(M), �kM
n 

j  kM
n is a locally finite union of analytic arcs and isolated points. It is invariant un-

der the a�ne group D1(M) with quotient homeomorphic to a finite graph with finitely
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many points removed. Each component Hi,j(M) contains at most one parabolic point

and has finitely many ideal points locally.

The locus H0,0(M) contains the horizontal axis L0, which comes from representa-

tions to eG with abelian image.

In Section 4, plots of the holonomy extension loci of several Q-homology solid tori
will be shown. The relation between left-orderability of Dehn filling and holonomy
extension locus will be demonstrated. From these examples, we will see that the
holonomy extension locus provides di↵erent information about left-orderability from
translation extension locus. This motivates us to obtain two theorems in Section 5.

1.3. Main result of this paper. Using holonomy extension loci, I study QHSs
coming from Dehn filling on Q-homology solid torus and construct intervals of left-
orderable Dehn fillings. The following are the two main applications of the results of
this paper.

Theorem 5.1. Suppose M is the exterior of a knot in a Q-homology 3-sphere that is

longitudinal rigid. If the Alexander polynomial �M of M has a simple positive real

root ⇠ 6= 1, then there exists a nonempty interval (�a, 0] or [0, a) such that for every

rational r in the interval, the Dehn filling M(r) is orderable.

Theorem 6.1. Suppose M is a hyperbolic Z-homology solid torus. Assume the lon-

gitudinal filling M(0) is a hyperbolic mapping torus of a homeomorphism of a genus 2
orientable surface and its holonomy representation has a trace field with a real embed-

ding at which the associated quaternion algebra splits. Then every Dehn filling M(r)
with rational r in an interval (�a, 0] or [0, a) is orderable.
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DMS-1811156 of the United States, and NRF Mid-Career Researcher Program (Grant
No. 2018R1A2B6004003) of the Republic of Korea. The author gratefully thanks her
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their program which produces many of the graphs of holonomy extension loci in this
paper and teaching her how it works. Finally, the author would like to thank the
referee and the editor for pointing out the mistakes and giving all the detailed advice
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2. Background

In the L-space conjecture [4], we study Q-homology (and also Z-homology) 3-
spheres, abbreviated as QHS (ZHS). They are Dehn fillings on Q-homology (Z-
homology) solid tori, where a Q-homology (Z-homology) solid torus is a compact
3-manifold with a torus boundary whose rational (integral) homology groups are the
same as those of a solid torus.

2.1. Preliminaries in graph theory. To study holonomy extension locus, we need
some basic definitions from graph theory. We call a graph finite if both of its edge
set and vertex set are finite. In fact, a holonomy extension locus could be viewed as
the union of infinite sheets, each of which is a planer graph but still slightly di↵erent
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from a finite graph. It contains both a finite graph part and finitely many branches
going to infinity. So we need some proper notion to describe it, and we can use the
notion finite graph with finitely many points removed.

2.2. Representation Variety and Character Variety. To study representations
of the fundamental group, we need some tools from algebraic geometry.

An a�ne algebraic set is defined to be the zeros of a set of polynomials. In this
paper, we also need real semialgebraic sets [1, Chapter 3], which are defined by polyno-
mial inequalities. The dimension of a real semialgebraic set is equal to its topological
dimension. An a�ne algebraic variety is an irreducible a�ne algebraic set.

With these notions, we can define the representation variety and character variety
of a 3-manifold M . We are interested in representations into Lie groups PSL2C '
PGL2C and PSL2R. The set of PSL2C representations, Hom(⇡1(M),PSL2C) is an
a�ne algebraic set in some C

n equipped with Zariski topology. We call it the PSL2C

representation variety of M and denote it by R(M). Similarly we can define R(@M) =
Hom(⇡1(@M),PSL2C). The group PSL2C acts on R(M) by conjugation, so we can
consider the geometric invariant theory (GIT) quotient R(M)//PSL2C, which we
denote by X(M). It is called the PSL2C character variety of M .

Recall G = PSL2R, eG = P̂SL2R. Similarly we can consider the G representation
variety RG(M) (and RG(@M)) and eG representation variety R eG(M) (and R eG(@M)).
Also we define the G character variety XG(M) to be the geometric invariant theory
quotient RG(M)//PGL2R. Both RG(M) and XG(M) are real algebraic varieties.

A rational map f : X ! Y between two irreducible varieties is called dominant if
f(X) contains a non-empty open subset in Y . It is called birational if it is dominant,
and if there is another dominant rational map g : Y ! X such that g � f = idX
and f � g = idY as rational maps. The readers could refer to standard textbooks
on algebraic geometry like [19, Chapter I, Section 4], for definitions of other related
terminologies. Let f : bX(M) ! X(M) be a birational map with bX(M) a smooth
projective curve. Then bX(M) is called the smooth projectivization of X(M). Points
in bX(M)� f

�1(X(M)) are called ideal points. To each ideal point, we can associate
incompressible surfaces to it. See [8] for more details.

2.3. P̂SL2R. Consider the Lie group SU(1, 1) =

⇢✓
↵ �

� ↵

◆
| |↵|2 � |�|2 = 1

�
, which

manifests as the isometry group of the hyperbolic plane in the disc model. So there is
an isomorphism between SU(1, 1) and SL2R, which is the isometry group in the upper
half-plane model. We can parameterize SU(1, 1) by (�,!), with � = ��/↵ 2 C and
! = arg↵ defined modulo 2⇡. Consequentially SL2R can be described as {(�,!) | |�| <
1,�⇡  ! < ⇡}. As the universal cover of SL2R and G = PSL2R, eG = P̂SL2R is also
a Lie group and can be described as {(�,!) 2 C ⇥ R | |�| < 1,�1 < ! < 1} with
group operation given by:

(�,!)(�0
,!

0) =
✓
(� + �

0
e
�2i!)(1 + �̄�

0
e
�2i!)�1

,! + !
0 +

1

2i
log (1 + �̄�

0
e
�2i!)(1 + ��̄

0
e
2i!)�1

◆
.

(1)
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This multiplication formula could be checked using the correspondence between (�,!)

and

✓
↵ �

� ↵

◆
. So we have a copy of R sitting inside eG as an abelian subgroup.

The following properties of eG can be found in [24, Section 2]. The universal cover
of S

1 is R, where S
1 can be viewed as lifted to unit length intervals. Being the

universal cover of G which acts on S
1 = P

1(R) by Möbius transformation, eG acts on
R faithfully so it is left-orderable. For elements in eG, define the translation number
to be

trans(eg) = lim
n!1

egn(x)� x

n
for some x 2 R.

It’s independent of the choice of x. The proof of the existence of the limit and more
properties of the translation number could be found in [15, Section 5]. The translation
number is also called rotation number in some other occasions.

Let A 2 SL2R, A 6= ±Id. Then A is called elliptic if |trace(A)| < 2 and in this
case A is conjugate to a matrix of the form


cos(↵) sin(↵)
� sin(↵) cos(↵)

�
, 0  ↵ < 2⇡.

The matrix A is called parabolic if |trace(A)| = 2 and it is conjugate to a matrix of
the form

±

1 2u
0 1

�
,�1 < u < 1.

The matrix A is called hyperbolic if |trace(A)| > 2 and in this case it is conjugate to
a matrix of the form 

a 0
0 a

�1

�
, a 6= 0.

Elements of SU(1, 1) are classified in the same way via the identification SU(1, 1) '
SL2R. We then call an element of eG elliptic, parabolic or hyperbolic if it covers an
element of the corresponding type in SU(1, 1). By Lemma 2.1 in [24], conjugacy
classes in eG can be presented as

• elliptic: (0,↵), with �1 < ↵/2⇡ < 1 the translation number of elements in
the conjugacy class.

• parabolic: (
iu

1 + iu
, tan�1(u) + 2k⇡) or (

iu

1 + iu
, tan�1(u) + ⇡ + 2k⇡) , with

u 2 R and k 2 Z the translation number of elements in the conjugacy class.

• hyperbolic: (
a� a

�1

a+ a�1
, 2k⇡) with a > 0 or (

a� a
�1

a+ a�1
,⇡+2k⇡) with a < 0. And

k 2 Z is the translation number in both cases.

In particular, if eg is conjugate to (0, 2k⇡) or (0, (2k + 1)⇡), then eg is called central,
with k 2 Z the translation number.

2.4. Augmented Representation Variety and Character Variety. As a sub-
group of PSL2C, G acts on P

1(C) by the Möbius transformation as well as on
S
1 = P

1(R) ⇢ P
1(C). An element in PSL2C has at least one fixed point when

acting on P
1(C). When there is more than one fixed point, we sometimes need to

specify which one we are using. So we consider the augmented representation variety
and augmented character variety. More details could be found in [2, Section 10].
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A subgroup of G may not have a common fixed point on P
1(C), but an abelian

subgroup does. In fact, a nontrivial abelian subgroup of G contains only one type
of elliptic, hyperbolic or parabolic elements, and consequently has either one (if the
subgroup contains parabolic elements) or two common fixed points(if the subgroup
contains hyperbolic or elliptic elements) on P

1(C).
Let Raug

G (M) be the subvariety of RG(M)⇥P
1(C) consisting of pairs (⇢, z), where

z is a fixed point of ⇢(⇡1(@M)). Let Xaug
G (M) be the GIT quotient of Raug

G (M) under
the diagonal action of G by conjugation and Möbius transformations. There is a
natural regular map ⇡ : Xaug

G (M) ! XG(M) which forgets the second factor.
Notice that a fixed point of a matrix in G can also be viewed as its eigenvector.

Eigenvalues of images of peripherally hyperbolic and parabolic representations play
an important part in the definition of the holonomy extension locus in Section 3. We
need the augmented character variety X

aug
G (M) so that given � 2 ⇡1(@M), we can

define a regular function e� which sends [(⇢, z)] to the square of the eigenvalue of
⇢(�) corresponding to z. In contrast, on XG(M) such functions could not be defined
because the two eigenvalues of ⇢(�) cannot be distinguished.

The fiber of ⇡ : X
aug
G (M) ! XG(M) contains two points except at [⇢] where

⇢|⇡1(@M) is parabolic (fiber has one point), or ⇢|⇡1(@M) is trivial (fiber is isomorphic
to P

1(C)).

2.5. Augmented P̂SL2R Representations. Similarly, we construct augmented

P̂SL2R representations.
As a subgroup of PSL2C, G acts on P

1(C). There is a natural action of eG on
P

1(C) by projecting to G. So hyperbolic and elliptic elements of eG have two fixed
points while parabolic elements have one fixed point on P

1(C). An abelian subgroup
of eG has at least one fixed point on P

1(C). So ⇢(⇡1(@M)) has at least one fixed point.

Consider the following subset of eG⇥ P
1(C),

Aug( eG) = {( eA, v)| eA 2 eG, v 2 P
1(C) is a fixed point of eA}.

Denote by A 2 G the projection of eA 2 eG. Notice that v is in fact a fixed point of
A on P

1(C). Then for any element ( eA, v) in Aug( eG) with eA hyperbolic, we can use

(a�a�1

a+a�1 , k⇡) as the representative of the conjugacy class of eA in eG, where a is the

eigenvalue of A corresponding to v. The sign of a doesn’t matter since a�a�1

a+a�1 is an
even function.

We can now construct the augmented eG representation variety of M . Let Raug
eG

(M)

be the subvariety of R eG(M) ⇥ P
1(C) consisting of pairs (e⇢, z) with z a fixed point

of e⇢(⇡1(@M)). Similarly, define the augmented eG representation variety of @M . Let
R

aug
eG

(@M) be the subvariety of R eG(@M) ⇥ P
1(C) consisting of pairs (e⇢, z) with z a

fixed point of e⇢(⇡1(@M)).
There is a natural projection from R

aug
eG

(�) to R eG(�) forgetting the second factor.

We call a representation in R eG(@M) elliptic, hyperbolic or parabolic if its image in eG
contains an element of the corresponding type, and call it central if its image contains
only central elements. We call a representation in R

aug
eG

(@M) elliptic, hyperbolic,

parabolic or central if its projection to R eG(@M) is of the corresponding type.
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3. Holonomy extension locus

In this section, we define the holonomy extension locus, show its structure and
explain how it works.

3.1. Definition and Main Property.

Definition 3.1. For hyperbolic element eg 2 eG, take v 2 P
1(C) to be a fixed point of

eg. Define ev : Aug( eG) �! R⇥Z, (eg, v) 7! (ln(|a|), trans(eg)), where a is the eigenvalue

of g (the projection of eg in G) corresponding to the eigenvector v.

For parabolic elements, define ev : Aug( eG) �! R⇥ Z, taking eg to (0, trans(eg)).

Lemma 3.1. The map ev(�, v) is a group homomorphism when restricted to hy-

perbolic or parabolic abelian subgroup of eG, with v 2 P
1(C) any fixed point of the

subgroup. As a consequence, ev((e⇢(�), v)) : ⇡1(@M) ! R ⇥ Z is a group homomor-

phism for e⇢ hyperbolic or parabolic, where v is a fixed point of e⇢(⇡1(@M)).

Proof. Any nontrivial hyperbolic or parabolic abelian subgroup of eG has at least one
fixed point in P

1(C) and let v be any one of them. Consider the stabilizer group
Stab(v) ⇢ SL2R of v. We can define a homomorphism eig: Stab(v) �! R

⇥ which
takes g 2 Stab(v) to |a| where gv = av. Since ±I is the kernel, this homomorphism
descends to a homomorphism from the stabilizer group of v in G to R

⇥ which we will
still call eig. As trans is also a homomorphism and ev(eg, v) = (ln(eig(g)), trans(eg))
for any eg 2 eG where g 2 G is the projection, it follows that ev(�, v) preserves the
group structure of hyperbolic or parabolic abelian subgroup of eG.

When e⇢ is hyperbolic (or parabolic), e⇢(⇡1(@M)) becomes an abelian hyperbolic
(or parabolic resp.) subgroup of eG, with v a fixed point. So being the composite of
two homomorphisms e⇢ and ev(�, v), ev((e⇢(�), v)) : ⇡1(@M) ! R⇥ Z is also a group
homomorphism.

⇤
Identifying Hom(⇡1(@M),R ⇥ Z) with H

1(@M ;R) ⇥ H
1(@M ;Z), we can view

ev((e⇢(�), v)) as living in H
1(@M ;R) ⇥ H

1(@M ;Z). Let M be an irreducible Q-
homology solid torus, and let ◆ : @M ! M be the inclusion map. With the above
lemma, we can now define:

Definition 3.2. Let PH eG(M) be the subset of representations whose restriction to

⇡1(@M) are either hyperbolic, parabolic, or central. Define EV : R
aug
eG

(@M) �!
H

1(@M ;R) ⇥H
1(@M ;Z) by (e⇢, v) 7! ev((e⇢(�), v)) on ◆

⇤(PH eG(M)), where ◆
⇤
is the

restriction R
aug
eG

(M) �! R
aug
eG

(@M) of representations of ⇡1(M) to ⇡1(@M).

Lemma 3.2. Fix v 2 P
1(C). Let Hv be the set of hyperbolic elements of eG that fix

v. Then any two elements of Hv with the same image under ev(�, v) are conjugate

in eG.

Proof. We will use the homomorphism eig as in the proof of Lemma 3.1 and the
property that ev(eg, v) = (ln(eig(g)), trans(eg)) for any eg 2 eG where g 2 G is the
projection.

Suppose eg and eg0 are two elements in Hv, and g and g
0 are their projection in G.

Then g and g
0 are conjugate if and only if they share the same set of eigenvalues. So
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eg and eg0 are conjugate if and only if eig(g) = eig(g0) and trans(eg) = trans(eg0), that is
ev(eg, v) = ev(eg0, v). ⇤

Definition 3.3. Consider the composition

PH eG(M) ⇢ R
aug
eG

(M)
◆⇤�! R

aug
eG

(@M)
EV�! H

1(@M ;R)⇥H
1(@M ;Z).

The closure of EV � ◆⇤(PH eG(M)) in H
1(@M ;R)⇥H

1(@M ;Z) is called the holonomy

extension locus of M and denoted HL eG(M).

We will call a point in HL eG(M) a hyperbolic or parabolic point if it comes from
a representation e⇢ 2 PH eG(M) such that e⇢|⇡1(@M) is hyperbolic or parabolic. In a
sense, the holonomy extension locus provides some kind of visualization of peripherally
hyperbolic and parabolic eG representations of M .

Definition 3.4. We call a point in HL eG(M) an ideal point if it only lies in the

closure EV � ◆⇤(PH eG(M)) but not in EV � ◆⇤(PH eG(M)), where the closure is taken

in R
2 ⇥ Z

2
.

Lemma 3.3. Suppose (e⇢, v) 2 R
aug
eG

(@M) is hyperbolic or central. If EV (e⇢, v)(�) =
(0, 0) for some � 2 ⇡1(@M), then e⇢(�) = 1.

Proof. It follows from Lemma 3.2 that ev(e⇢(�), v) = EV (e⇢, v)(�) = (0, 0) implies e⇢(�)
is conjugate to the identity element of eG. So e⇢(�) = 1. ⇤

Suppose � is the homological longitude of M , with its order in H1(M ;Z) being n.
Define

kM = min{��(S)|S is a connected incompressible surface of M that bounds n�}.

We will use Milnor-Wood inequality in the form of Proposition 6.5 from [10].

Proposition 3.1. Suppose S is a compact orientable surface with one boundary com-

ponent. For all e⇢ : ⇡1(S) ! eG one has

|trans(e⇢(�))|  max(��(S), 0) where � is a generator of ⇡1(@S).

Applying this proposition, we see immediately that |trans(e⇢(�))|  kM

n
.

In the next theorem, we will show that

HL eG(M) =
G

i,j2Z
Hi,j(M), �kM

n
 j  kM

n
.

Each Hi,j(M) := HL eG(M) \ (R2 ⇥ {i}⇥ {j}) ⇢ R
2 is a finite union of analytic arcs

and isolated points. Denote the infinite dihedral group Zo Z/2Z by D1(M). Then
D1(M) acts on R

2 ⇥ Z
2 by translating (x, y, i, j) to (x, y, i + nk, j) for i, j, k 2 Z,

and taking (x, y, i, j) to (�x,�y,�i,�j) by reflecting about (0, 0, 0, 0). We will show
that as a subset of R2 ⇥ Z

2, HL eG(M) is invariant under the action of D1(M).
Define Lr to be line of slope �r going through the origin in R

2. Then L0 is the
x-axis. Now we can state the theorem.
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Theorem 3.1. The holonomy extension locus HL eG(M) =
F

i,j2Z Hi,j(M), �kM

n


j  kM

n
is a locally finite union of analytic arcs and isolated points. It is invariant un-

der the a�ne group D1(M) with quotient homeomorphic to a finite graph with finitely

many points removed. Each component Hi,j(M) contains at most one parabolic point

and has finitely many ideal points locally.

The locus H0,0(M) contains the horizontal axis L0, which comes from representa-

tions to eG with abelian image.

Remark. If we assume the manifold M is small, i.e. it has no closed essential

surface, then there is no ideal point in HL eG(M). The proof is similar to [10, Lemma
6.8]. See Lemma 3.7.

Lemma 3.4. The holonomy extension locus HL eG(M) is invariant under D1(M).

Proof. We will show the image I of PH eG(M) under EV�◆⇤ is invariant under D1(M).
Take (e⇢, v) 2 PH eG(M) and let t = EV � ◆

⇤(e⇢, v) be the corresponding point in

I. Let s be the generator of the center of eG which is isomorphic to Z and take
any ' 2 H

1(M ;Z). Then PH eG(M) 3 ' · e⇢ : � 7! e⇢(�)s'(�) is another lift of

⇡ � e⇢, where ⇡ : eG ! G is the projection. It’s easy to see that e⇢(⇡1(@M)) and
' · e⇢(⇡1(@M)) share the same fixed point v. We can check that for any � 2 ⇡1(M), we
have ev(' · e⇢(�), v) = ev(e⇢(�)s'(�)

, v) = ev(e⇢(�), v) + (0,'(�)). So EV�◆⇤(' · e⇢, v) =
EV�◆⇤(e⇢s', v) = EV�◆⇤(e⇢, v) + (0,'). It follows that I is invariant under translation
by elements of ◆⇤(H1(M ;Z)) ⇢ H

1(@M ;R).
Next, we will show HL eG(M) is invariant under reflection about the origin in R

2 ⇥
Z
2. Define f to be the element in Homeo(R) taking x 2 R to �x, and consider the

conjugate action of f on eG. The group eG is preserved under this conjugation because
⇡(fegf�1) has the same action as ⇡(eg�1) on S

1 for any eg 2 eG. Suppose a is a square
root of the derivative of ⇡(g) at v, then a

�1 is a square root of the derivative of ⇡(eg�1)
at v and a

�1 is a square root of the derivative of ⇡(fegf�1) at �v. Moreover we can
check that

trans(fegf�1) = lim
n!1

(fegf�1)n(0)� 0

n
= lim

n!1

fegn(�0)� 0

n
= �trans(eg).

This shows that ev(e⇢(�), v) = �ev(f e⇢f�1(�),�v) and it follows that EV�◆⇤(e⇢, v) =
�EV(f e⇢f�1

,�v). Given such an f , the image of (f e⇢f�1
,�v) in I is �t, proving the

invariance. ⇤
As a consequence of Lemma 3.4, we can now look at the quotient PL eG(M) =

HL eG(M)/D1(M). In fact PL eG(M) = t�n<i<n,�kMjkMHi,j(M)/(Z/2Z), where
Z/2Z acts on the disjoint union by taking (x, y) 2 Hi,j(M) to (�x,�y) 2 H�i,�j(M).
In particular, Z/2Z acts on H0,0(M) via reflection about the origin.

Lemma 3.5. PL eG(M) has finitely many connected components. In particular, each

Hi,j(M) has finitely many connected components.

Proof. The proof works similarly as Lemma 6.2 of [10].
Let ⇧ : R eG(M) ! RG(M) be the map between representation varieties induced

by ⇡ : eG ! G. Let PHG(M) be the subset of RG(M) consisting of representations
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whose restriction to ⇡1(@M) consist only of hyperbolic, parabolic and trivial elements.
The set PHG(M) is a subset of the real algebraic set RG(M) cut out by polynomial
inequalities. It follows that PHG(M) is a real semialgebraic set.

Let PH
lift
G (M) ⇢ PHG(M) be the image of PH eG(M) under ⇧. By continuity of

the translation number, PH
lift
G (M) is a union of connected components of PHG(M).

Moreover PH
lift
G (M) ⇢ PHG(M) is the quotient of PH eG(M) under the action of

H
1(M,Z) and ⇧ is the covering map. So it is also a real semialgebraic set and thus

has finitely many connected components.
The action of H

1(M,Z) on PH eG(M) then induces an action of Z  D1(M)
on HL eG(M). Let ⇧�1(PH

lift
G (M)) be any sheet in the covering of PH

lift
G (M). So

PL eG(M) = EV � ◆⇤(⇧�1(PH
lift
G (M)))/(Z/2Z), and thus has finitely many com-

ponents. Let PH
j
G(M) be the subset of PH

lift
G (M) consisting of representations

with translation number of the homological longitude being j. Then PH
j
G(M) is

a finite union of connected components of PHG(M). It follows that Hi,j(M) =

EV � ◆⇤(⇧�1(PH
j
G(M))) has finitely many components, where ⇧�1(PH

j
G(M)) is any

sheet in the covering of PH
j
G(M). ⇤

Proof of Theorem 3.1. First notice that the index j is bounded, which follows from
Proposition 3.1.

Define c : H1(@M ;R) ⇥H
1(@M ;Z) ! XG(@M), (f1, f2) 7! character of ⇢, where

⇢ is given by ⇢(µ) =


e
f1(µ) 0
0 e

�f1(µ)

�
, ⇢(�) =


e
f1(�) 0
0 e

�f1(�)

�
.

Consider the dual basis {µ⇤
,�

⇤
,m

⇤
, l

⇤} for H1(@M ;R)⇥H
1(@M ;Z), where

(2) µ
⇤(pµ+ q�) = p,�

⇤(pµ+ q�) = q,m
⇤(pµ+ q�) = p and l

⇤(pµ+ q�) = q

for any pµ+ q� 2 H1(@M). Take (x, y, i, j) 2 HL eG(M) ⇢ H
1(@M ;R)⇥H

1(@M ;Z).
If we use trace-squared coordinates on XG(@M), we get

c(x, y, i, j) = (tr(⇢(µ)), tr(⇢(�)), tr(⇢(µ)⇢(�)))

= (e2x + e
�2x + 2, e2y + e

�2y + 2, e2x+2y + e
�2x�2y + 2).

It is easy to check that c(�x,�y,�i,�j) = c(x, y, i, j) and c(x, y, i + n1, j + n2) =
c(x, y, i, j), where n1 and n2 are integers.

Consider the diagram

PH eG(M)
EV�◆⇤ //

✏✏

H
1(@M ;R)⇥H

1(@M ;Z)

c

✏✏
XG(M)

◆⇤ // XG(@M)

The vertical map c maps HL eG(M) into ◆⇤(XG(M)). Being the image of a real alge-
braic set under a polynomial map, XG(M) is a real semialgebraic subset of XR(M).
Since ◆⇤(X(M)) ⇢ X(@M) has complex dimension at most 1 [10, Lemma 2.4], then the
real semialgebraic set ◆⇤(XG(M)) has real dimension at most 1. Moreover ◆⇤(XG(M))
is a locally finite graph as XG(M) is. Thus, its preimage under c is a locally fi-
nite graph invariant under D1(M) with analytic edges. So each Hi,j(M) and thus
PL eG(M) is a locally finite graph and by Lemma 3.5 it has finitely many connected
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components. Therefore, PL eG(M) is homeomorphic to a finite graph with finitely
many points removed.

Suppose D is a closed disc in H
1(@M ;R), then D\Hi,j(M) lives in a finite graph.

Since by Lemma 3.5 Hi,j(M) has finitely many components, then D \Hi,j(M) also
has finitely many components and thus is a finite graph. So D\Hi,j(M) is the closure
of a set of finitely many components in a finite graph and thus contains finitely many
ideal points.

Parabolic points can only occur at the origin of each Hi,j(M), so there can be at
most one parabolic point in each component Hi,j(M).

Recall from Section 2.3 that there is an abelian subgroup of eG that is isomorphic
to R. Consider the diagonal representations in G. They lift to a one parameter family
of abelian representations ⇡1(M) ! eG by sending the generator of H1(M ;Z)free ⇠=
H1(M ;Z)/(torsion) ⇠= Z to a given element in R. Since the longitude � of @M is 0
in H1(M ;Z)free, this one parameter family of abelian representations give rise to the
line L0 in H0,0(M).

⇤

3.2. Other Properties. Recall from Section 2.2 that bX(M) is the smooth pro-
jectivization of X(M). The following lemma describes some other properties of
HL eG(M).

Lemma 3.6 (structure of Hi,j(M)). Suppose for some i, j, Hi,j(M) contains an arc

that continues on to infinity. Then this arc approaches an asymptotes y = �rx in R
2

as it goes to infinity, where r is the boundary slope of the associated incompressible

surface to some ideal point of bX(M).

Proof. The vertical map c in the diagram from the proof of Theorem 3.1 maps
HL eG(M) into ◆⇤(XG(M)). Suppose Hi,j(M) contains an arc A that continues to

infinity, then there is a an ideal point x of bX(M) that is the limit of a sequence of
characters {[⇢k]} in X(M) of hyperbolic representations {⇢k} such that images of lifts
{f⇢k} under EV � ◆⇤ are contained in A. To show this, suppose images of {f⇢k} under
EV � ◆

⇤ go to infinity in HL eG(M). Then {[⇢k]} march o↵ to infinity in X(M) as
eigenvalues of either {⇢k(µ)} or {⇢k(�)} go to infinity. Thus by passing to a subse-
quence, {[⇢k]} converge to an ideal point x of bX(M). Notice that traces of elliptic and
parabolic elements of G are bounded, by passing to a subsequence, we can assume
that f⇢k|⇡1(@M) are hyperbolic. Moreover, one can choose a sequence of points {vk}
where vk 2 P

1(C) is a common fixed point of ⇢k(⇡1(@M)) acting on P
1(C). And by

passing to a subsequence, we can assume {vk} limits to v 2 P
1(C).

By the result in [8, Section 5.7], there exists � 2 ⇡1(@M) such that tr2�(x) =

b
2 + b

�2 + 2 is finite and � = pµ + q�, where r = p/q is the boundary slope of
the incompressible surface associated to the ideal point x. Then limk!1 tr2�([⇢k]) =

b
2 + b

�2 + 2 as [⇢k] ! x, where b
2 is a positive real number as it is the limit of the

square of an eigenvalue of a hyperbolic G matrix. Moreover, b has to be a root of
unity by [8, Section 5.7]. It follows that b

2 = 1, which implies limk!1 ⇢k(�) = I.
It follows that limk!1 f⇢k(�) = eI, where eI is a lift of I with translation num-
ber being limk!1 trans(f⇢k(�)) = p limk!1 trans(f⇢k(µ)) + q limk!1 trans(f⇢k(�)) =
pi + qj. Then we can check the slope of the asymptote of the arc containing the
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sequence of points {EV(f⇢k, vk)} in HL eG(M). It follows from direct computation
that p limk!1 EV(f⇢k, vk)(µ) + q limk!1 EV(f⇢k, vk)(�) = p limk!1 ev(f⇢k(µ), vk) +
q limk!1 ev(f⇢k(�), vk) = limk!1 ev(f⇢k(pµ + q�), vk) = ev(eI, v) = (ln(|b|) = 0, pi +
qj). So limk!1 slope[⇢k] = �r and thus the curve A is asymptotic to the line of slope
�r going through the origin.

⇤

Holonomy extension locus can be viewed as an analog of the A-polynomial which
was first introduced in [8] by Cooper et al.. To explain this relation, we will start
with the definition of eigenvalue variety [33, Section 7].

Let Raug
U (M) be the subvariety of Raug(M) defined by two equations that set the

lower left entries in ⇢(M) and ⇢(L) to be zero. Consider the eigenvalue map,

R
aug
U (M) ! (C� 0)2

By taking the closure of the image of this map and discarding zero dimensional com-
ponents, we get the eigenvalue variety E(M) of M , which is defined by a principal
ideal. A generator for the radical of this ideal is called the A-polynomial. We will
call points that are only in the closure but not in the image ideal points.

We are only interested in the intersection of E(M) with R
2 as those points come

from peripherally parabolic or hyperbolicG representations. The composition R
aug
G !

R
aug
U (M) ! R

2 \ E(M) gives a map from a peripherally hyperbolic or parabolic G

representation ⇢ of M to eigenvalues of ⇢(µ) and ⇢(�), where µ and � are the meridian
and longitude of @M . This map is similar to but not entirely the same as EV�◆⇤
defined in 3.3.

Recall that M is called a small manifold if it contains no closed essential surface.
We will prove the following lemma.

Lemma 3.7. If M is small, then there is no ideal point in HL eG(M) or (R2 � 0) \
E(M).

Proof. The proof works the same way as in [10, Lemma 6.8]. Suppose t0 is an ideal
point in HL eG(M) (resp. (R2 � 0) \ E(M)) and {e⇢i} ⇢ PH eG(M) is a sequence of
eG representations whose images in HL eG(M) (resp. (R2 � 0) \ E(M)) converge to
t0. Suppose {[⇢i]} is the sequence of corresponding characters in XG(M). A similar
argument shows that by passing to a subsequence, {[⇢i]} lie in a single irreducible
component X 0 of X(M) and {[⇢i]} either limit to a character � in XG(M) or march
o↵ to infinity in the noncompact curve X

0. In the latter case, as both |tr(⇢i(µ))| and
|tr(⇢i(�)| are bounded above, |tr(⇢i(�))| is bounded above for any � 2 ⇡1(@M). The
argument of [8, Section 2.4] produces a closed essential surface associated to a certain
ideal point of X 0, contradicting our hypothesis that M is small.

In the case when the [⇢i] limit to � in XG(M), a similar argument shows that t0

is not actually an ideal point, proving the lemma.
⇤

Finally, we use the following lemma to construct order. We focus on the H0,0(M)
sheet of HL eG(M). Recall that Lr is a line through origin in R

2 with slope �r. We
will see from the proof of Lemma why we require the slope to be �r instead of r.



10014 Xinghua Gao

Lemma 3.8. If Lr intersects H0,0(M) at a nonzero point that not ideal, and assume

M(r) is irreducible, then M(r) has left-orderable fundamental group.

Proof. The idea of proof works in the following way, a point in the intersection corre-
sponds to a eG representation e⇢ of ⇡1(M) which maps � 2 ⇡1(@M) to identity, where
� is the homology class of simple closed curves of slope r on @M . Then e⇢ becomes a
representation of ⇡1(M(r)).

Let f = (x1, y1) be a point in Lr \ H0,0(M) that is di↵erent from the origin
and not an ideal point by assumption. Then f is not parabolic as parabolic points
can only occur at the origin. So there exists a preimage e⇢ 2 R eG(M) of f which is
hyperbolic when restricting to ⇡1(@M). Suppose � 2 ⇡1(@M) realizes slope r = j/k,
i.e. � = �

k
µ
j . By definition of Lr : y = �rx, we have f(�) = EV(e⇢)(�) = ev � e⇢(�) =

(ky1+ jx1, k · trans(�)+ j · trans(µ)) = (k(�jx1/k)+ jx, k0+ j0) = (0, 0). The minus
sign in the slope of Lr is needed so that the translation number of e⇢(�) becomes 0.
It follows from Lemma 3.3 that e⇢(�) = 1, so we get an induced representation ⇢ :
⇡1(M(r)) ! eG. As f is di↵erent from the origin, then we can always find an element
⌘ 2 ⇡1(@M) with slope di↵erent from r such that ⇢(⌘) 6= 0, which implies that ⇢ is
nontrivial. So we have constructed a nontrivial eG representation of ⇡1(M(r)). Since
M(r) is irreducible by assumption, it follows from [6, Theorem 3.2] that ⇡1(M(r)) is
left-orderable.

⇤

4. Examples

In this section, I will show some examples of holonomy extension loci. We will see
that the holonomy extension locus of a Q-homology solid torus M provides a way
of visualizing the set of peripherally hyperbolic and parabolic eG representations of
⇡1(M). Moreover, we will see that together with Lemma 3.8, the range of slopes of
orderable Dehn filling on M could be determined from looking at the graph of the
holonomy extension locus.

Recall from (2) the definition of the dual basis {µ⇤
,�

⇤}. Our first example is the
figure eight knot 41, whose Alexander polynomial is t2 � 3t+ 1.
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Figure 1. Holonomy Extension Locus HL eG(41)

There is nothing interesting going on in the translation extension locus of the
figure-eight knot complement as it contains only the x-axis y = 0 coming from
abelian representations. The above figures shows its holonomy extension locus
which has no other sheets except H0,0(M). The figure-eight knot complement
has genus 1, so the 2g� 1 bound for translation number j of the longitude is not
sharp.
There are two asymptotes of the graph with slopes ±4. So fillings on the figure-
eight knot complement with slope lying in the interval (�4, 4) are orderable, by
Lemma 3.8. This observation is confirmed by Proposition 10 of [4].

Our next example is the (7, 3) two-bridge knot 52. The complement of a two-bridge
knot is small [20, Theorem 1(a)]. So the holonomy extension locus of the two-bridge
knot does not have ideal points by Lemma 3.7.
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Figure 2. Holonomy and Translation Extension Locus of (7, 3) 2-
bridge Knot

The top left figure is the translation extension locus of the (7, 3) two-bridge knot,
where the six small circles are parabolic points. The translation extension locus
tells us (�1, 1) fillings are orderable, following from result of Culler-Dunfield
[10].
The top right figure is the H0,0(M) component of its holonomy extension locus.
There are two asymptotes with slope �4 and 0. The interval of left-orderable
Dehn fillings we can read o↵ from the holonomy extension locus is [0,4), again by
Lemma 3.8. So compared to translation extension locus, the holonomy extension
locus does tell us something more.
The two figures on the bottom are H0,1 and H0,�1. Notice that asymptotes in
H0,±1 both have slope �10. Actually, boundary slopes associated to ideal points
of the character variety of the (7, 3) two-bridge knot complement are 0, 4, 10.
This result confirms Lemma 3.6.

The (7, 3) two-bridge knot, whose genus is 1, is a twist knot of three half twist.
So its Alexander polynomial is not monic and it follows that it is not fibered [31].
Moreover, it cannot be an L-space knot [28, Corollary 1.3]. In [10, Section 9, Question
(4)], it is observed that for fibered knots, the bound 2g � 1 for translation number
of the longitude is never sharp. However we can see from this example that for non
fibered knots, this bound can be sharp.
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For the above examples, we actually computed the equations defining the curves in
the graphs. For the rest of this section, we will show some more complicated pictures
produced by the program PE [9] written by Culler and Dunfield under SageMath [12].
In these examples, instead of showing the entire HL eG(M), we only show the quotient
PL eG(M) of HL eG(M) under the action of D1(M), where we identify H0,j with H0,�j

when j 6= 0, and quotient H0,0 down by reflection about the origin.

Our first example is t03632, which has a loop in its holonomy extension locus.

Figure 3. PL eG(t03632)

Top left figure is H0,1 of t03632, where we see a small loop based at the ori-
gin (parabolic point). The Alexander polynomial of t03632 has no positive real
root. The locus H0,0 contains nothing other than the horizontal line representing
abelian representations so we will not show it here.

Our next example is 73 which has a more interesting H0,0.
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Figure 4. PL eG(73)

The Alexander polynomial of 73 is 2t4 � 3t3 + 3t2 � 3t + 2, which has no real
root. But we can see H0,0(73)/(Z/2Z) (figure on top) contains an arc that is
di↵erent from the x-axis, even though this arc does not intersect the x-axis. But
this arc cannot be predicted by any theorem in this paper. Notice that this arc
has two asymptotes of slope 0 and 6. So we could predict that Dehn filling of 73
of rational slope in (�6, 0) would be orderable.
The snappy command normal boundary slopes() tells us all the boundary slopes
of spun normal surfaces [13] of 73 are: 0, �6, �8, and �14. Both arcs in H0,1(73)
and H0,3(73) have asymptote of slope 14.

4.1. Simple Roots of the Alexander Polynomial. When the Alexander polyno-
mial �M of M has a positive root ⇠, we can draw a point (ln(⇠)/2, 0) on the x-axis and
call it an Alexander point. When ⇠ is a simple root, Lemma 5.1 predicts that there
is an arc coming out of the Alexander point (ln(⇠)/2, 0). Moreover, this Alexander
point corresponds to the abelian representation associated to the root ⇠ of �M , e.g.
⇢↵ as constructed in proof of Lemma 5.1. We use large dots to indicate Alexander
points in our figures.

In addition to the example of the figure eight knot shown in Figure 1, we will show
more holonomy extension loci with Alexander points.
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Figure 5. PL eG(v2362)

This figure is PL eG(v2362), the quotient of the holonomy extension locus of v2362,

which has only one sheet H0,0. The Alexander polynomial of v2362 is 6t2�13t+6
which has two simple real roots 2/3 and 3/2. So we can expect to see the
Alexander point ( 12 ln( 32 ), 0), shown as a red dot in the figure. (The other point

( 12 ln( 23 ) = � 1
2 ln( 32 ), 0) is mapped to the same point under the quotient action

of Z/2Z.) We can see in this figure that the arc going through the Alexander
point is not tangent to the x-axis at the Alexander point.

Figure 6. H0,0(K10a35)

This figure is H0,0(K10a35)/(Z/2Z). The Alexander polynomial of K10a35 has
two pairs of simple positive real roots. (The two numbers in each pair are recip-
rocal so they correspond to the same Alexander point.) So we can expect to see
two Alexander points on the x-axis.
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Figure 7. PL eG(K12n547)

The figure on the left is H0,0(K12n547)/(Z/2Z). The Alexander polynomial
of K12n547 has no real root at all. But we can still see quite a few arcs in
H0,0(K12n547), many of which even intersect the x-axis, which is a very in-
teresting phenomenon worthy of further exploration. The figure on the right
is H0,1(K12n547), where we can see two non intersecting arcs sharing the
same asymptote of slope 2. (The x-axis in the right figure is not contained in
H0,1(K12n547). It is included only to show no arc in H0,1(K12n547) intersects
the x-axis.)

Figure 8. PL eG(K10n2)

This figure is PL eG(K10n2), the quotient of the holonomy extension locus of
K10n2. It contains only one sheet, the quotient locus H0,0/(Z/2Z). The Alexan-
der polynomial of K10n2 has a pair of positive real double roots so there is an
Alexander point. We can see that the two arcs are tangent to the x-axis at the
Alexander point.
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Figure 9. PL eG(K10a2)

The Alexander polynomial of K10a2 has a pair of positive real double roots. We
can see that two arcs in H0,0(K10a2) in the left figure are tangent to the x-axis
at the Alexander point.

4.2. Multiple Roots of the Alexander Polynomial. The holonomy extension
loci of K10n2 (Figure 8) and K10a2 (Figure 9) show typical patterns of Q-homology
solid tori whose Alexander polynomials have double real roots: they all have arcs
tangent to the x-axis at the corresponding Alexander point.

The manifold K9a37 in our next example also has Alexander polynomial with dou-
ble roots. However the local picture of its holonomy extension locus at the Alexander
point is quite di↵erent from what we see in Figure 8 and 9. See Figure 10 for expla-
nations.

The holonomy extension locus of K9a37 has some interesting phenomena, which
are shown in Figure 10. Part of the red curve (second curve from the bottom) marked
with ‘x’s means that the point on the marked part of the curve comes from a PSL2C

representation ⇢ that is not PSL2R even though ⇢|@M is a PSL2R representation.
So these points do not belong to the holonomy extension locus. (The small dots on
the curves simply means this point comes from a PSL2R representation.) From this
example, we can see that an arc in a holonomy extension locus can end at a point
that is not the infinity, Alexander point or parabolic point. We guess such a point
could be a Tillmann point (see [10] end of Section 5 for definition).
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Figure 10. H0,0(K9a37)

The Alexander polynomial of K9a37 has two positive real double roots. Figure
10 is H0,0 of the holonomy extension locus of K9a37. (To be precise, we still
need to remove a small segment of arc on the red curve (second curve from the
bottom) to get the actual H0,0(K9a37). ) We can see that there is an arc coming
out of the Alexander point in both directions but not tangent to the x-axis.
Remark: If you run the graphing program directly, the graph you see is slightly
di↵erent from this figure. In fact, there is an extra arc which does not belong
to H0,0(K9a37) but appears tangent to the bottom arc (shown in green) in
H0,0(K9a37) and our current graphing program is unable to separate it out
automatically. So we have to remove the extra arc by hand.
Remark 2: In addition to issues with graphing like unseparated curves and
Tillmann points as mentioned above, we also spotted missing components. In
the above example K9a37, we know an arc in H0,2(K9a37) is missing from our
figure. In their graphing program, Culler and Dunfield use gluing varieties rather
than character varieties to simplify computation. Some of the graphing issues
might be caused by this. Check the end of Section 5 of [10] for more details
about computation and graphing issues.

The statement of Lemma 5.1 requires the root of the Alexander polynomial to be
simple. When we have a root that is not simple, we expect to see an example where
there is no arc coming out of the corresponding Alexander point at all, as this is what
happened in the translation extension locus in Figure 10 of Section 5 of [10]. However,
we were not able to find such an example at this moment as the graphing program is
still unfinished and we only have very limited number of samples.

Even though the graph of the holonomy extension locus cannot function as a precise
proof, as it comes from numerical computation. It is still very enlightening in the
sense that, if Lr does not intersect the graph of H0,0(M) for any rational r inside
some interval, then either the Dehn filling M(r) is not orderable or its orderability
could not be proven using the method of representation into eG and a larger subgroup
of Homeo+(R) needs to be taken into consideration.
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5. Alexander polynomials and orderability

In this section, we prove Theorem 5.1. To state the theorem, we will need some
definitions from [10]. We say a compact 3-manifold Y has few characters if each
positive dimensional component of the PSL2C character variety of Y consists entirely
of characters of reducible representations. An irreducible Q-homology solid torus M is
called longitudinally rigid when its Dehn filling M(0) along the homological longitude
has few characters.

The author learnt from a private conversation that this theorem was also proved
independently by Steven Boyer.

Theorem 5.1. Suppose M is the exterior of a knot in a Q-homology 3-sphere that is

longitudinal rigid. If the Alexander polynomial �M of M has a simple positive real

root ⇠ 6= 1, then there exists a nonempty interval (�a, 0] or [0, a) such that for every

rational r in the interval, the Dehn filling M(r) is orderable.

The following lemma is the key to the proof of Theorem 5.1. In Theorem 5.1, we
need M to be longitudinal rigidity to ensure that the path constructed in Lemma 5.1
is not contained in the x-axis when mapped to the holonomy extension locus.

Lemma 5.1. Suppose M is an irreducible Q-homology solid torus. If ⇠ 6= 1 is a

simple positive real root of the Alexander polynomial, then there exists an analytic

path ⇢t : [�1, 1] ! RG(M) where:

(a) The representations ⇢t are irreducible over PSL2C for t 6= 0.
(b) The corresponding path [⇢t] of characters in XG(M) is also a nonconstant

analytic path.

(c) tr
2
�(⇢t) is nonconstant in t for some � 2 ⇡1(@M).

To study the smoothness of a point on the character variety, we need to study the
Zariski tangent space at that point.

Definition 5.1. [30, 3.1.3] Suppose V is an a�ne algebraic variety in C
n
. Let I(V ) =

{f 2 C[x1, . . . , xn]|f(x) = 0, 8x 2 V } be the ideal of V . Define the Zariski tangent

space to V at p to be the vector space of derivatives of polynomials:

T
Zar
p (V ) = {d�

dt
|t=0 2 C

n|� 2 (C[t])n, �(0) = p s.t. f � � 2 t
2
C[t] 8f 2 I(V )}.

A point p on V is called smooth if the dimension of TZar
p (V ) is equal to the dimen-

sion of the component of V which p lies on.
Let � be a group and let ⇢ : � ! PSL2C be a representation. Then we can turn

the Lie algebra sl2(C) into a � module via the adjoint representation, which means
taking conjugation g · a := ⇢(g)a⇢(g)�1. Denote this � module by sl2(C)⇢. Then the
Zariski tangent space of the character variety XPSL2C(�) at [⇢] is a subspace of the
cohomology H

1(�; sl2(C)⇢). [30, Proposition 3.5]

Proof of Lemma 5.1. First I prove (a) and (b).
As in Proposition 10.2 of [22], let ↵ : ⇡1(M) ! R+ = (R > 0) be a representation

such that ↵ factors through H1(M ;Z)free ⇠= Z and takes a generator of H1(M ;Z)free
to ⇠. Let ⇢↵ : ⇡1(M) ! PSL2R be the associated diagonal representation given by

⇢↵ = ±

↵
1/2(�) 0
0 ↵

�1/2(�)

�
, where ↵

1/2(�) is the positive square root of ↵(�).
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Then �↵ = tr2(⇢↵) is real valued, as ↵(�) + 1/↵(�) + 2 2 R, 8� 2 ⇡1(M). Since
Im(↵) is contained in R+ but not in {±1}, Im(⇢↵) is contained in PGL2(R) and in
fact in PSL2R. Next, we carry out the computation of obstruction in the real setting.
As sl2(C) is the complexification of sl2(R), the Lie algebra of SL2R, we have the
corresponding isomorphism of cohomology groups.

H
⇤(⇡1(M); sl2(C)⇢↵) = H

⇤(⇡1(M); sl2(R)⇢↵)⌦R C.

So computations with complex variety X(M) in the proof of [22, Theorem 1.3] can
be carried out in the real case. It follows that the tangent space to XG(M) at �↵

is H
⇤(⇡1(M);R+ � R�)//R⇤ ⇠= R and thus �↵ is a smooth point. Carrying out the

computation of obstructions in the real setting, we are able to show that d+ + d� 2
H

1(⇡1(M); sl2(R)⇢↵) can be integrated to an analytic path ⇢t : [�1, 1] ! RG(M)
with ⇢0 = ⇢↵ and ⇢t irreducible over PSL2C for t 6= 0. So �↵ is contained in a curve
containing characters of irreducible PSL2R representations, which gives (a).

The path [⇢t] ⇢ XG(M) is nonconstant because ⇢t is irreducible whenever t 6= 0
and thus cannot have same character as the reducible representation ⇢0, proving part
(b).

Next, we will prove part (c). In fact the existence of � 2 ⇡1(@M) such that
tr2�(⇢t) is nonconstant in t is proved similarly as in [10, Lemma 7.3 (4)]. We first
construct a nonabelian representation ⇢

+ 2 RG(M) which corresponds to [⇢↵] in
XG(M). Then the Zariski tangent space of XG(M) at [⇢↵] can be identified with
H

1(M ; sl2(R)⇢+), while the Zariski tangent space of XG(@M) at [⇢+ � ◆] can be iden-
tified withH

1(@M ; sl2(R)⇢+). So the proof of (c) boils down to showing the injectivity
of ◆⇤ : H1(M ; sl2(R)⇢+) ! H

1(@M ; sl2(R)⇢+). See [10, Lemma 7.3 (4)] for more de-
tails.

⇤

We will also need the following property of closed 3 manifolds with few characters.

Lemma 5.2. Suppose Y is a closed 3 manifold with H1(Y,Q) = Q. If Y has few

characters, then Y is irreducible.

Proof. Prove by contradiction. If Y is reducible, then we can decompose it as a con-
nected sum Y1]Y2, where H1(Y1,Q) = Q and Y2 is a QHS. So ⇡1(Y ) = ⇡1(Y1)⇤⇡1(Y2).
We want to use PSL2C representations of Y1 and Y2 to construct a dimension one
component of PSL2C character variety of Y containing an irreducible representation
so that it contradicts the assumption that Y has few characters. As H1(Y1,Z) =
Z� (possible torsion), we can construct a nontrivial abelian PSL2C representation ⇢1

of Y1 by composing ⇡1(Y1) ⇣ Z and Z ,! PSL2C. For Y2, there are two cases. If
H1(Y2,Z) contains a cyclic subgroup H, then similarly we can construct a nontrivial
abelian PSL2C representation ⇢2 of Y2 by composing ⇡1(Y2) ⇣ H and H ,! PSL2C.
If Y2 is actually a ZHS, then by Theorem 9.4 of [38], there is an irreducible SL2C

representation ⇢2 of ⇡1(Y2). Moreover we can make ⇢2 an irreducible PSL2C rep-
resentation by simply projecting to PSL2C. So we can construct a set of PSL2C

representations ⇢P = ⇢1 ⇤ P⇢2P
�1 of Y , where P is any matrix in PSL2C. These

representations are not conjugate to each other as long as they have di↵erent P and
at least one of them is irreducible as we can vary P so that ⇢1 and P⇢2P

�1 are not
upper triangular at the same time. ⇤
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Now we can prove Theorem 5.1.

Proof of Theorem 5.1. The key idea of proof is to show that a nontrivial eG represen-
tation of ⇡1(M(r)) exists for rational r in some small interval containing 0, which
mainly uses Lemma 3.8 and Lemma 5.1.

Let ⇢t be the associated path in RG(M) given by Lemma 5.1. As ⇢0 factors through
H1(M ;Z)free ⇠= Z, we can lift it to eG and its lift e⇢0 also factors through H1(M ;Z)free.
Hence trans( e⇢0(�)) = 0 and we can modify e⇢0 so that trans( e⇢0(µ)) = 0. Then e⇢0 is
mapped to a point on the horizontal axis of H0,0(M) as ⇢0(�) = I. The x coordinate
of e⇢0, ln(|⇠|) is nonzero as ⇠ 6= ±1.

As ⇢0 lifts, we can extend this lift to a continuous path e⇢t in R eG(M). Moreover,
we can assume e⇢t is actually in R

aug
eG

(M), as fixed points of e⇢t(⇡1(@M)) also vary
continuously with t.

Let k be the index of h◆⇤(µ)i in H1(M,Z)free, where ◆ : @M ! M is the inclusion.
By construction tr2µ( e⇢0) = ⇠

k+2+⇠
�k

> 4, so there exists " > 0 such that tr2µ(e⇢t) � 4
for t 2 [�", "]. As ⇢t(µ) is hyperbolic, ⇢t(�) is also hyperbolic. Therefore ⇢t is a path
in PHG(M) and e⇢t is a path in PH eG(M).

Then we can build a path A by composing e⇢t with EV�◆⇤ : PH eG(M) ! HL eG(M).
That the path A is nonconstant follows from Lemma 5.1. Moreover, it is not contained
in x-axis L0. If it were contained in the x-axis, then ⇢t(�) = I as ⇢t(�) is always
hyperbolic or trivial. So each ⇢t factors through a representation of the 0 filling
M(0). Therefore [⇢t] must lie in a component of X(M(0)) of dimension at least 1,
contradicting the assumption that M is longitudinally rigid.

Since all points in A come from actual eG representations, there is no ideal point
in A. As all but at most three Dehn fillings of a knot complement are reducible [18,
Theorem 1.2], we can shrink A if necessary so that none of the Dehn fillings involved is
reducible. The only parabolic point inH0,0(M) is the origin so A contains no parabolic
point. Applying Lemma 3.8, we get an interval (0, a) or (�a, 0) of orderable Dehn
fillings.

Finally, we show M(0) is orderable. The first Betti number of M(0) is 1 as rational
homology groups of M(0) are the same as S2⇥S

1. The irreducibility of M(0) follows
from Lemma 5.2. So we can apply Theorem 1.1 of [6] and show that ⇡1(M(0)) is
left-orderable, completing the proof of the theorem.

⇤

Remark. In our numerical computation, an interval of the form (�a, b) with a, b > 0
is expected to hold in Theorem 5.1. This could be observed from the graphs of holonomy

extension loci in the previous section. However the author was not able to prove it.

See Section 7 for details.

6. Real embeddings of trace fields and orderability

In this section, we use a di↵erent assumption for the manifolds we study, and prove
Theorem 6.1.

Let Y be a closed hyperbolic 3-manifold with fundamental group �. Let ⇢hyp :
� ! PSL2C be the holonomy representation of Y . The trace field K = Q(tr�) of
⇢hyp is the subfield of C generated over Q by the traces of lifts to SL2C of all elements
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in ⇢hyp(�). It is a number field by [25, Theorem 3.1.2]. Assume we have a real
embedding � of the trace field K into R.

Define the associated quaternion algebra to be D = {⌃ai�i|ai 2 K, �i 2 ⇢hyp(�)}.
To say D splits at the real embedding � means D ⌦� R ⇠= M2(R), which implies
that we can conjugate � into PSL2R. So we get a Galois conjugate representation
⇢ : � ! PSL2R. See Section 2.1 and 2.7 of [25] for more details.

The following conjecture is due to Dunfield.

Conjecture 1. Suppose M is a hyperbolic Z homology solid torus. Assume the

longitudinal filling M(0) is hyperbolic and its holonomy representation has a trace

field with a real embedding at which the associated quaternion algebra splits. Then

every Dehn filling M(r) with rational r in an interval (�a, a) is orderable.

By adding some extra conditions, I am able to prove the following result.

Theorem 6.1. Suppose M is a hyperbolic Z-homology solid torus. Assume the lon-

gitudinal filling M(0) is a hyperbolic mapping torus of a homeomorphism of a genus 2
orientable surface and its holonomy representation has a trace field with a real embed-

ding at which the associated quaternion algebra splits. Then every Dehn filling M(r)
with rational r in an interval (�a, 0] or [0, a) is orderable.

First let us fix some notations. Denote the holonomy representation of the hy-
perbolic manifold M(0) by ⇢hyp : ⇡1(M(0)) �! PSL2C and the projection map
p : ⇡1(M) ! ⇡1(M(0)). The composition ⇢M = p � ⇢hyp has kernel normally gen-
erated by the longitude �. The Galois conjugate of ⇢M is denoted by ⇢0. It is also
the Galois conjugate of ⇢hyp composed with p. Denote ⇢V : ⇡1(V ) �! PSL2C the
induced representation of ⇢hyp on V = S

1⇥D
2 ⇢ M(0), and ⇢T 2 : ⇡1(T 2) �! PSL2C

the induced representation of ⇢hyp on @M = T
2.

Weil’s infinitesimal rigidity in the compact case [36], which is stated as follows, is
the key to the proof of Theorem 6.1.

Theorem 6.2. Let M be a compact 3-manifold with torus boundary whose interior

admits a hyperbolic structure with finite volume, then H
1(M(0), sl2(C)⇢hyp) = 0. (See

also [30, Section 3.3.3][26])

The reference [30] works with SL2C rather than PSL2C character varieties. So to
apply the argument in [30], we will lift PSL2R representations to SL2R when necessary.
That they always lift is guaranteed by [11, Proposition 3.1.1].

The proof of Theorem 6.1 relies on the following lemma whose proof is based on
Weil’s theorem.

Lemma 6.1. Suppose ⇢0 is defined as above. Then there exists an arc c in RG(M)
such that

(a) c 3 ⇢0 is a smooth point of RG(M).
(b) tr

2
� is a local parameter of the arc c near ⇢0 (see e.g. [32, 2.1] for def.), where

� 2 ⇡1(@M) is some primitive element di↵erent from the longitude �.

Proof. (a) First, let us prove that ⇢0 is a smooth point of RG(M). We compute
the Mayer-Vietoris sequence for cohomology with local coe�cients, associated to the
decomposition M(0) = M [@M V .
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· · · ! H
1(M(0); sl2(C)⇢hyp)

! H
1(V ; sl2(C)⇢V )�H

1(M ; sl2(C)⇢M ) ! H
1(T 2; sl2(C)⇢T2 ) !

! H
2(M(0); sl2(C)⇢hyp) ! · · ·

The first term H
1(M(0); sl2(C)⇢hyp) = 0 follows from Weil’s infinitesimal rigidity

Theorem 6.2. So H
1(V ; sl2(C)⇢V ) � H

1(M ; sl2(C)⇢M ) ! H
1(T 2; sl2(C)⇢T2 ) is an

injection. To see that it is actually an isomorphism, note that by Poincaré duality
H

2(M(0); sl2(C)⇢hyp) ⇠= H
1(M(0); sl2(C)⇢hyp) = 0.

Let Xc(M) be the component of X(M) containing [⇢M ]. As ⇢V and ⇢T 2 are
nontrivial, then by [5, Theorem 1.1 (i)], we have dimC H

1(V ; sl2(C)⇢V ) = 1 and
dimC H

1(T 2; sl2(C)⇢T2 ) = 2. So dimC H
1(M ; sl2(C)⇢M ) = 1. By [30, Proposition 3.5],

we have an inclusion of the Zariski tangent space T
Zar
⇢M

(Xc(M)) ,! H
1(M ; sl2(C)⇢M ).

So dimC T
Zar
⇢M

(Xc(M))  dimC H
1(M ; sl2(C)⇢M ) = 1.

Following from Thurston’s result [11, Proposition 3.2.1], dimC Xc(M) � 1 as
⇢M (im(⇡1(@M) ! ⇡1(M))) = Z. Since dimC Xc(M)  dimC T

Zar
⇢M

(Xc(M)), then
dimC Xc(M) = dimT

Zar
⇢M

(Xc(M)) = dimC H
1(M ; sl2(C)⇢M ) = 1. Therefore [⇢M ] is a

smooth point of X(M).
To show that the Galois conjugate ⇢0 of ⇢M is also a smooth point, we use the

same argument as in the proof of [10, Lemma 8.3]. Construct X1 by taking the
C-irreducible component X0 of X(M) containing [⇢M ], which must be defined over
some number field, and then take the union of the Gal(Q/Q)-orbit of X0. Then
X1 is the unique Q-irreducible component of X(M) that contains [⇢M ]. Since X1 is
invariant under the Gal(Q/Q)-action, it contains [⇢0] as well as [⇢M ]. As by definition,
T

Zar
⇢M

(X(M)) is defined by derivatives of a set of polynomials. Then T
Zar
⇢0

(X(M)) is
defined by derivatives of Galois conjugates of this set of polynomials and thus should
have dimension 1, same as T

Zar
⇢M

(X(M)). On the other hand, any component of X1

has the same dimension as Xc(M), which is 1. So [⇢0] is a smooth point of X1 and
thus of X(M).

Moreover, By Théorème 3.15 of [30], ⇢M is �-regular for some simple closed curve
� ⇢ @M , which means that the inclusion H

1(M,µ; sl2(C)⇢M ) ! H
1(M ; sl2(C)⇢M ) is

nonzero (see [30, Definition 3.21] for definition). So tr� is a local parameter of X(M)
at [⇢M ]. Since [⇢M ] is not �-regular as ⇢M (�) = I, then � must be a curve di↵erent
from �. Locally the sign of tr� does not change, so we could make tr2� the local
parameter. Whether a regular function is a local parameter at a smooth point on the
curve X1 can be expressed purely algebraically and hence is Gal(Q/Q)-invariant. It
follows that [⇢0] is also a smooth point of X1 with local parameter tr2� .

Applying [10, Proposition 2.8], we get a smooth arc c of real points in XR(M)
containing [⇢0], locally defined by tr2� being real. By restricting ✏ if necessary, we can
assume that every character in c comes from an irreducible PSL2C representation.
Since [⇢0] 2 XG(M) is irreducible, we can restrict ✏ so that c is actually contained in
XG(M) as both XG(M) and XSU2(C)(M) are closed in X(M)[10, Lemma 2.12]. Then
by [10, Lemma 2.11] we can lift c to c 2 RG(M) and c is still parameterized by tr2� .
This completes the proof of (b). ⇤
Lemma 6.2. trans( e⇢0(�)) is an even integer.
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Proof. When mapping down to SL2R, the image of e⇢0(�) 2 P̂SL2R is I. It follows
from [10, Claim 8.5] that trans( e⇢0(�)) is an even integer. ⇤

Now we are ready to prove Theorem 6.1.

Proof of Theorem 6.1. The idea of proof is similar to that of Theorem 5.1: show that
a nontrivial eG representation of ⇡1(M(r)) exists for rational r in some small interval
containing 0.

First we lift the arc c ⇢ RG(M) as constructed in Lemma 6.1 to c̃ 2 R eG(M). In
the case of hyperbolic integer solid torus M , H2(⇡1(M);Z) ⇠= H

2(M ;Z) = 0, so we
can always lift G representations of M to eG.

Since M(0) admits a complete hyperbolic structure, elements in ⇡1(M(0)) are
mapped to loxodromic elements in PSL2C by ⇢hyp. So µ 2 ⇡1(M(0)) is mapped to
either a hyperbolic or elliptic element under the Galois conjugate ⇢0. Therefore we
divide our proof into two cases according to the image of the meridian µ.

Remark. We do not consider the case that µ is mapped to a parabolic element,

because ⇢hyp(µ) is loxodromic and Galois conjugate cannot take a complex number

with norm greater than 2 to one with norm 2.

Case 1: µ is mapped to an elliptic element by ⇢0.
At e⇢0, the local parameter s = tr2( e⇢0(�)) < 4. As c̃ is parameterized near e⇢0 by

tr2� 2 [s � ✏, s + ✏], we can require s + ✏ < 4 so that c̃ ⇢ PE eG(M). Then we map c̃

down to an arc A ⇢ EL eG(M) which is locally parameterized by tr2� on some small
interval [0, �].

To obtain an interval of orderable Dehn fillings, we want to apply Lemma 8.4 of
[10] which works similarly as Lemma 3.8. So we need to show that A is not contained
in the horizontal axis L0 of EL eG(M) ⇢ R

2. If it is contained in L0, then all ⇢t factor
through ⇡1(M(0)) and it follows that [⇢t] lie in an irreducible component of X(M(0))
with complex dimension at least one. But we have seen in the proof of Lemma 6.1
that H1(M(0); sl2(C)⇢hyp) = 0, so 1  dimT

Zar
⇢0

(X(M(0))) = dimT
Zar
⇢hyp

(X(M(0))) 
dimC H

1(M(0); sl2(C)⇢hyp) = 0, which is a contradiction.
Now we can draw an arc A inside the translation extension locus EL eG(M) near e⇢0.

It contains no ideal point as all points on A come from eG representations. Applying
Lemma 8.4 of [10], we get a > 0 so that Lr meets EL eG(M) for all r in the interval
(�a, a). Invoking [18, Theorem 1.2] (at most three Dehn fillings of a knot complement
are reducible), we can shrink a to make M(r) irreducible. Then we can apply Lemma
4.4 of [10].

Case 2: µ is mapped to a hyperbolic element by ⇢0.
This case is similar to Case 1 except we start with s=tr2( e⇢0(�)) > 4. As c̃ is

parameterized by tr2� 2 [s� ✏, s+ ✏], we can require s� ✏ > 4 so that c̃ ⇢ PH eG(M).
Again we map c̃ down to an arc A ⇢ HL eG(M) which is locally parameterized by tr2�
on some small interval [��, �].

By Lemma 3.4, we can always choose a lift e⇢0 such that trans( e⇢0(µ)) = 0 and
therefore by continuity we can make A lie in H0,j(M). To show A ⇢ H0,0(M), we
compute j = trans( e⇢0(�)) and show it is 0. By assumption, M(0) is a mapping torus
of a homeomorphism of a genus 2 surface S. Then M(0) = M� where � is a Pseudo-
Anosov map of S since M(0) is hyperbolic. Suppose there is a G representation ⇢0
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of ⇡1(M(0)), then it restricts to a G representation ⇢0|S of ⇡1(S). Let eu(⇢0|S) be
the Euler number of ⇢0|S as defined in [16] (or equivalently in [27, 37]). It is equal to
trans( e⇢0([a1, b1][a2, b2])) with a1, b1, a2, b2 the standard generators of ⇡1(S) and is thus
equal to trans( e⇢0(�)). We claim that |eu(⇢0|S)| 6= 2. Otherwise ⇢0|S would determine
a hyperbolic structure on S (Milnor-Wood inequality [27, 37]) which is invariant under
�, implying that � has finite order which contradicts that � is Pseudo-Anosov. So
|trans( e⇢0(�))| = |eu(⇢0|S)| 6= 2. By Lemma 6.2 and Proposition 3.1, we must have
trans( e⇢0(�)) = 0.

Claim that A is not contained in the horizontal axis L0 of H0,0 ⇢ R
2. If it is

contained in the horizontal axis, then all ⇢t factor through ⇡1(M(0)) and it follows
that [⇢t] lie in an irreducible component of X(M(0)) with complex dimension at least
one. But we have seen that H1(M(0); sl2(C)⇢hyp) = 0, so 1  dimT

Zar
⇢0

(X(M(0))) =
dimT

Zar
⇢hyp

(X(M(0)))  dimC H
1(M(0); sl2(C)⇢hyp) = 0, which is a contradiction.

So we have constructed an arc A ⇢ H0,0(M) that is not contained in L0 near e⇢0.
Then we can find a > 0 such that Lr meets H0,0(M) at points that are not parabolic
or ideal andM(r) irreducible for all r in an interval (0, a) or (�a, 0). Applying Lemma
3.8 then tells us M(r) is orderable for r in (0, a) or (�a, 0).

Finally, we show M(0) is orderable. The first Betti number of M(0) is 1 as the
integral homology groups of M(0) are the same as those of S2⇥S

1. The irreducibility
of M(0) follows from the assumption that it is hyperbolic. So we can apply Theo-
rem 1.1 of [6] and show that ⇡1(M(0)) is left-orderable, completing the proof of the
theorem.

⇤

Remark. The assumption that M(0) being a mapping torus of genus 2 is used to

show trans(�) = 0. This is a very strong hypothesis. However, when µ is mapped

to an elliptic element, M(0) being a mapping torus is not needed at all. When µ is

mapped to hyperbolic, the author does not know how to prove the theorem under a

weakened assumption.

Using the method of Calegari [7, Section 3.5], we are able to prove the following
result.

Proposition 6.1. Suppose Y is a mapping torus of a closed surface S of genus at

least 2. If Y has a faithful G representation ⇢, then ⇢|S can never be discrete.

Proof. First notice that ⇡1(Y ) has no torsion. This is because Y is an Eilenberg-
Maclane space and a finite dimensional CW-complex as a mapping torus. We claim
that ⇢ has indiscrete image. Otherwise ⇢(⇡1(Y ))  G = PSL2(R) = Isom+(H2)
would be a torsion-free Fuchsian group and thus act on H

2 with quotient isometric
to a complete hyperbolic surface, which is impossible as Y is a closed 3 manifold.

Now suppose ⇢|S is discrete, then ⇢|S : ⇡1(S) ! G determines some complete
hyperbolic structure H

2
/⇢(⇡1(S)) on S as it is faithful. So ⇢(⇡1(S)) consists of hy-

perbolic elements only. Let ⇡1(Y ) = hti n ⇡1(S), where the conjugation action of
t on ⇡1(S) is given by the monodromy of the bundle. Then ⇢(t) acts on ⇢(⇡1(S))
by conjugation and normalizes ⇢(⇡1(S)). Since ⇢(t) 2 G, it gives an isometry of H2

and thus an isometry of S. On the other hand, any isometry of S is of finite order
as it has to preserve the hyperbolic structure. Then the action of ⇢(t) on ⇢(⇡1(S))
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by conjugation must be of finite order. To show that actually ⇢(t) is a finite order
element in G, notice that ⇢(⇡1(S)) has at least two hyperbolic elements of di↵erent
axes. But this contradicts the fact that ⇢ is a faithful representation as ⇡1(Y ) has no
torsion. So ⇢|S could not be discrete. ⇤

We are also able to prove the following result.

Proposition 6.2. Suppose M is a hyperbolic Z homology solid torus. Assume the

longitudinal filling M(0) is hyperbolic and the trace field of its holonomy representation

has a real embedding at which the associated quaternion algebra splits. Then the ZHS

Dehn filling M( 1n ) is orderable for all n 2 Z large enough (or �n large enough).

Proof. The proof is almost the same as Theorem 6.1 except for the case when the
meridian µ is mapped to a hyperbolic element by ⇢0. Similar to Case 2 of the proof
of Theorem 6.1, first we construct A ⇢ Hi,j(M) and show that it is not contained
in the horizontal axis L0. But after that, we do not need to show i = j = 0 (i.e.
A ⇢ H0,0(M)). Since A is not horizontal, there exists N 2 Z>0 (or N 2 Z<0) large
enough (or �N large enough resp.) such that L� 1

N
intersects A at points that are

not parabolic or ideal and M( 1n ) irreducible for all n � N (or �n � �N resp.).
Suppose ⇢n corresponds to an intersection point of L� 1

n
and A, then ⇢n(µ�n) = I.

By choosing the lift f⇢n of ⇢n, we can make trans f⇢n(µ) = �n· trans f⇢n(�), which
then implies trans f⇢n(µ�n) = 0. So we actually have f⇢n(µ�n) = I and therefore f⇢n is
a nontrivial eG representation of ⇡1(M( 1n )). ⇤

7. Unsolved Problems

Here are some interesting questions for potential follow-up researches:

1) Can we drop the longitudinal rigid condition in Theorem 5.1? In particular,
is it possible prove H

1(⇡1(M(0)); sl2(R)⇢+)) = 0, which is weaker than M

being longitudinal rigid but enough to prove Theorem 5.1?
2) As mentioned in the remark after the proof of Theorem 5.1, according to

our numerical experiment, a larger range of slopes of orderable Dehn filling
is expected. But unfortunately the author was not able to prove it. Is it
possible to extend the interval (�a, 0] in Theorem 5.1 to (�a, b) with a, b > 0
using some properties of the character variety?

3) In Theorem 6.1, we assumed that the holonomy representation has a trace
field with a real embedding. When do holonomy representations have real
places? Calegari studied some special cases in [7]. Are there more general
criteria?

4) In Theorem 6.1, we also assumed the 0 filling on M is a mapping torus of
genus 2. This is because we need the translation number of the homological
longitude of M to be 0. It is in general a challenging question to compute the
translation number. Is there an algorithm to compute the translation number
of the longitude of M? Can we weaken the restriction on the genus and still
have the translation number of the longitude being 0?
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