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1. Introduction

Contextual dynamic pricing aims to design an online pricing policy adaptive to product features, customer char-
acteristics, and the marketing environment (Huang et al. [30]). It is widely used in industries such as hospitality,
tourism, entertainment, retail, electricity, and public transportation (den Boer [21]). A successful dynamic pric-
ing algorithm involves both pricing and learning to maximize revenues. Upon receiving sequential customer
responses, the algorithm continuously updates its knowledge of customer purchasing behavior and sets a price
accordingly. Such online statistical learning differs from traditional supervised or unsupervised learning in its
adaptive and sequential manner.

The key learning objective in dynamic pricing is the willingness to pay (demand) of a customer, that is, the prob-
ability of a customer making a buying decision. With full knowledge of the demand, the seller can set optimal
prices that yield the maximum expected revenues. However, it is common that the seller knows little about the
demand prior to the pricing procedure. Such an unknown demand case is studied extensively in dynamic pricing
(Besbes and Zeevi [6], Cesa-Bianchi et al. [12], Chen et al. [15], Cheung et al. [17], den Boer and Keskin [23], Keskin
and Zeevi [35]). In this case, one critical task is to balance the trade-off between exploration and exploitation, in
which exploration aims for more customer-demand knowledge and exploitation maximizes the revenue based on
the current knowledge. Two major influential factors for a customer’s willingness to pay are the price offered by
the seller as well as the customer’s valuation of the product. In this paper, we consider a widely adopted linear val-
uation model (Golrezaei et al. [28], Javanmard and Nazerzadeh [32]). Given the contextual covariate x, for exam-
ple, product features, customer characteristics, and the marketing environment, the customer’s valuation v(x) for
the product is v(x) = x7 6 + z. Here, the first component represents the linear effect of the covariates x with an
unknown parameter 6, and the second component models a market noise z drawn from an unknown distribution
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F. After observing the price p set by the seller, the customer buys the product if v(x) exceeds p and otherwise leaves
without purchasing.

Existing contextual dynamic pricing models assume partial or full knowledge of the market noise distribution F.
For example, Javanmard and Nazerzadeh [32] assume a known F for their regularized maximum likelihood pricing
(RMLP) method and consider F to belong to a log-concave family for their RMLP-2 policy. Despite knowing that F
simplifies the pricing process and improves learning accuracy, it can be restrictive and unrealistic in practice. It is
essential to tackle the contextual dynamic pricing problem with an unknown F. Importantly, it may happen in prac-
tice that not all relevant contexts can be observed, and such unobserved contexts may lead to a complex noise term.
For example, the heterogeneity among customers may lead to a noise that is a mixture of many distributions
beyond the log-concave family. In our auto loan data set studied in Section 5, the estimated probability distribution
functions (PDFs) of the noise term in four states are clearly not log-concave as shown in Figure 1.

In this paper, we propose a distribution-free pricing (DIP) policy to tackle the contextual dynamic pricing prob-
lem with unknown 6y and unknown F. DIP employs a doubling trick (Lattimore and Szepesvari [38]) in its frame-
work, which cuts the time horizon into episodes in order to reduce the correlations across data and handle the
unknown horizon length. At the beginning of each episode, by formulating the 0, estimation into a classification
problem in which no prior knowledge of F is required, our DIP policy adopts the logistic regression to estimate 0
using data in the previous episode. Given such an estimate, we then translate our single-episode pricing problem
into a newly proposed perturbed linear bandit (PLB). PLB can be considered an extension of the classic linear bandit
(Abbasi-Yadkori et al. [1], Agrawal and Goyal [2], Chu et al. [19]) and is also of independent interest. Interestingly,
the “perturbation level” of the translated PLB can be specified as proportional to the {1 error of the given 0, esti-
mate. A modified linear upper confidence bound (M-LinUCB) algorithm, serving as an essential part of DIP, is pro-
posed for our translated PLB to unify the learning of F and exploitation of the learnt knowledge to set prices.

In addition to the methodological contribution, we also establish regret analysis of our DIP policy. The regret, as
the expected loss of revenues with respect to the clairvoyant policy, is widely used to evaluate the performance of a
pricing policy. We first prove a To-period regret of O(yTy + C,To) for M-LinUCB on a general PLB with C, repre-
senting the perturbation level. The decomposition of sublinear and linear terms is analogous to the regret in misspe-
cified linear bandits (Foster et al. [27], Lattimore et al. [39], Pacchiano et al. [44]). Importantly, we also show that the
linear dependence of Ty is unavoidable by establishing a matching lower bound for our perturbed linear bandit.
We then apply this result to the specific PLB formulation of our single-episode pricing problem to obtain the regret
bound for each episode. Finally, we obtain the regret bound for the entire T horizon, which consists of an O(T%/?)
sublinear term and an extra term related to the estimation error for 0. The latter term is dominated by the sublinear
term in a broad range of scenarios, which is well-supported by our experiments. In summary, our sublinear O(T%/?)
regret upper bound implies that the average regret per time period vanishes as the time horizon tends to infinity.
Because our problems involve both unknown linear parameter 6, and unknown noise distribution F, we conjecture
that the obtained O(T?/?) rate is close to the optimal rate.

Finally, we demonstrate the superior performance of our policy on extensive simulations and a real-life auto loan
data set by comparing our DIP policy to RMLP and RMLP-2 (Javanmard and Nazerzadeh [32]). Because of the
restrictive condition on F, RMLP is not satisfactory when a moderate misspecification of F occurs. Despite being
more robust than RMLP, RMLP-2 inevitably leads to a linear regret when the noise distribution is beyond log-
concave. On the other hand, our DIP policy is robust to unknown complex noise distributions. In a real-life auto
loan data set, our DIP policy is shown to largely improve the regret of the benchmark RMLP-2 method in learning
customer’s purchasing behavior of auto loans. Specifically, DIP has an 80% improvement over RMLP-2 in the

Figure 1. (Color online) Estimated noise PDFs for four states in our auto loan real application.
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cumulative regret over the considered time horizon. Such an improvement keeps increasing when the total time
horizon increases. See Section 5 for more details.

1.1. Related Work

1.1.1. Noncontextual Dynamic Pricing. For noncontextual dynamic pricing without covariates, Besbes and Zeevi
[6, 8], Wang et al. [52], and Chen and Gallego [14] design policies to handle a nonparametric model, whereas Besbes
and Zeevi [6], Broder and Rusmevichientong [10], den Boer and Zwart [24], and Keskin and Zeevi [35] consider
parametric models. Furthermore, Besbes and Zeevi [7], den Boer [22], and Keskin and Zeevi [36] investigate the
time-varying unknown demand setting. In addition, the upper confidence bound (UCB) idea (Abbasi-Yadkori et al.
[1], Auer et al. [3]) is used in different noncontextual instances (Kleinberg and Leighton [37], Misra et al. [41], Wang
et al. [51]). However, all these approaches do not incorporate the covariates into the pricing policy. Therefore, our
model and technical tools are fundamentally different.

1.1.2. Contextual Dynamic Pricing. Dynamic pricing with covariates has garnered significant interest among
researchers. As Mueller et al. [42], Javanmard et al. [33], and Chen et al. [16] focus on the multiproduct setting, most of
the contextual dynamic pricing literature (Ban and Keskin [4], Bastani et al. [5], Cohen et al. [20], Javanmard [31], Mao
et al. [40], Nambiar et al. [43], Qiang and Bayati [47], Wang et al. [53], Xu and Wang [54]) considers a single product at
each time. Javanmard and Nazerzadeh [32] and Golrezaei et al. [28, 29] also consider the linear valuation model as we
do in this paper. Similar to us, Golrezaei et al. [28] assume both the unknown linear effect and noise distribution and,
thus, face the same challenge of error propagation. They adopt a second price auction mechanism with multiple
buyers at each time. One main difference lies in the feedback structure. Namely, they assume a full-information set-
ting in which the seller observes all bids and valuations from multiple buyers, whereas we consider a bandit setting in
which the seller only observes one single buyer’s binary purchasing decision. In Javanmard and Nazerzadeh [32],
their proposed RMLP assumes a known market noise distribution, whereas RMLP-2 assumes a known log-concave
family of the noise distribution. Hence, their approaches are no longer applicable when the noise distribution is
unknown or not log-concave. In addition, by assuming the noise distribution to be in a known ambiguity set, Golre-
zaei et al. [29] also establish a O(T?/3) regret with respect to a robust benchmark defined upon the ambiguity set. In
the general unknown noise case, the ambiguity set could be extremely large, and hence, the robust benchmark could
be far from the true optimal policy. In contrast, our DIP policy is adaptive to the general unknown noise case, and our
regret bound is established by comparing it to the true optimal policy. On the other hand, Shah et al. [49] and Chen
and Gallego [13] share similar nonparametric ingredients in the unknown demand function as ours. Specifically,
Chen and Gallego [13] consider a general Lipschitz demand and propose a pricing policy based on adaptive binning
of the covariate space (Perchet and Rigollet [45]) with a regret of O(T@+h)/+do)) where d,, is the dimension of covari-
ates. Thus, when dy > 3, our DIP policy enjoys better performance as we leverage the parametric structure in our
dynamic pricing model. Shah et al. [49] adopt a log-linear valuation model to handle the unknown nonparametric
noise in their semiparametric model. Their method heavily relies on the special structure of the log-linear valuation
model, whose optimal price has desirable separable effects of the unknown linear structure and unknown noise distri-
bution. Hence their approach is not applicable to our pricing model in which these two unknown parts tangle with
each other. Therefore, techniques used in Shah et al. [49] and Chen and Gallego [13] for handling nonparametric com-
ponents in the demand function are very different from the newly proposed PLB framework of our DIP policy.

1.1.3. Bandit Algorithms. Our pricing policy is also related to bandit algorithms (Bubeck and Cesa-Bianchi [11],
Foster and Rakhlin [26], Lattimore and Szepesvari [38]) which address the balance between exploration and exploi-
tation. In particular, our perturbed linear bandit is related to misspecified linear bandits (Foster et al. [27], Lattimore
et al. [39], Pacchiano et al. [44]) and nonstationary linear bandits (Cheung et al. [18], Russac et al. [48], Zhao et al.
[56]). An interesting finding is that, by leveraging the special structure of the perturbed linear bandit formulation of
our dynamic pricing problem, we achieve a better and more precise regret bound for our proposed policy com-
pared with direct application of much more complex existing algorithms for misspecified or nonstationary linear
bandits. See Section 3.1 for more discussions.

1.2. Notation and Paper Organization

We adopt the followmg notations throughout the article. Let [T]={1,...,T}. For a vector B e R?, let ||Bll. =
max; |B] | and ||Bll, = Z 1 | B | denote its max norm and ¢; norm, respectlvely For two sequences a,, b,, we say a,, =
O(by) if a, < Cb, for some positive constant C, a,, = O(by) if a, = O(b,) that i ignores logarithmic terms, and a,, = CQ(b,,)
ifa, > Cb, for some positive constant C.
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The rest of the paper is organized as follows. In Section 2, we introduce the methodology of our proposed DIP
policy along with the perturbed linear bandit formulation of the pricing problem. In Section 3, we develop regret
bounds for a general perturbed linear bandit problem and employ it to establish the regret bound of our DIP policy.
In Section 4, we demonstrate the superior performance of DIP on various synthetic data sets, and in Section 5, we
apply DIP to a real-life auto loan data set. We conclude our work along with some future directions in Section 6.
Technical proofs and additional numerical results are collected in the Supplementary Material as an E-companion.

2. Methodology
In this section, we discuss the contextual dynamic pricing problem setting and then introduce our DIP policy,
which involves a general perturbed linear bandit formulation.

2.1. Problem Setting

In contextual dynamic pricing, a potential customer who is interested in purchasing a product arrives at the plat-
form at each period t € [T] = {1,..., T}, and the seller observes a covariate x; € X C R representing the product fea-
tures and customer characteristics. Similar to Javanmard and Nazerzadeh [32], Golrezaei et al. [28], Shah et al. [49],
and Chen and Gallego [13], we assume [|x||., <1, Vx; € X. Given x;, the customer’s valuation of the product v; =
v(x) = x/ 0 + 2 is a sum of a linear function of x; and a market noise z;. We assume {z;}¢[7) are drawn independent
and identically distributed (i.i.d.) from an unknown distribution with cumulative distribution function (CDF) F. If
the customer’s valuation v; is higher than the price p; set by the seller, the sale happens, and the seller collects a reve-
nue of p;. Otherwise, the customer leaves, and the seller receives no revenue. Let y; = 1(y,>p,) denote whether the cus-
tomer buys the product. By the aforementioned sales mechanism, it follows that

a { 1 if v >p, with probability 1—F(p; —x[ 6);
Y= 0 if v <p;, with probability F(p: —x; 6p),

and the reward Z; = p1yi = pil{y,»p,)- Then, the triplet (¢, pt, yt) records the information of the pricing procedure at
time £.

Given this customer choice model and the covariate x, the expected reward of setting price p is p(1 — F(p — x" 6)).
We define the optimal price p*(x) as that maximizing p(1 — F(p — x " 6y)), which is an implicit function of the covariate
and dependent on both the unknown 6, and F. By dynamically setting prices and observing binary feedback, we col-
lect instant revenues and, meanwhile, gather more information to estimate 6y, F and p*(x). An important feature of
this process is the trade-off between exploration and exploitation in which we well-balance between exploiting the
current knowledge for larger immediate revenues and exploring more information for better future revenues.

We next introduce the notion of regret for evaluating a pricing policy. Denote

p; =p'(x;) = arg max p(1 — F(p — x 60))

as the optimal price at time t. Then, the regret r; at time ¢ is defined as the loss of reward by setting the price p; com-
pared with the optimal price p}, that s,

re =p;(1 —F(p; —x; 00)) — pe(1 — F(p: — x/ 6)). ey

The T-period cumulative regret across the horizon is defined as Ry = Zthl r:. We obtain the expected cumulative
regret E(Rr) by taking the expectation with respect to the randomness of data and the potential randomness of the
pricing policy. The goal of our contextual dynamic pricing is to decide the price p; for covariate x; at time ¢ by utiliz-
ing all historic data {(x;, ps,¥s),s = 1,...,t — 1} in order to minimize the expected cumulative regret.

2.2. DIP Algorithm

Our proposed DIP policy enjoys a simple framework as an outer algorithm nested with inner algorithms A and B.
Inner algorithm A is designed for estimating 6, and inner algorithm B is the essential part that fully exploits the
perturbed linear bandit formulation of our single-episode pricing problem and implements the UCB idea to resolve
the trade-off between exploration and exploitation.

2.2.1. Outer Algorithm. In online learning, the total time horizon T is typically unknown. To address this problem,
we adopt a doubling trick widely used in online learning and bandit algorithms (Lattimore and Szepesvari [38]) to
cut the horizon into episodes. After the first warm-up episode and starting from the second episode, we set the
length of the next episode as double the current one until the horizon ends. The number of episodes n = n(T, a1, az)
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Figure 2. (Color online) An illustration of cutting total time horizon utilizing the doubling trick.
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and their lengths denoted as {{ = (T, a1, @2) }se[) are functions of the total horizon length T and the first two epi-
sodes’ lengths a1, a». Figure 2 demonstrates the case when the total time horizon is cut into five episodes via the
doubling trick.

We present the outline of our DIP policy as the generic outer algorithm in Algorithm 1. In the first warm-up epi-
sode, DIP performs random exploration to set random prices at each time period. Then DIP alternates between
inner algorithm A to obtain an estimate of 6, and inner algorithm B to set prices. Specifically, inner algorithm A
uses all data from episode k — 1 to obtain an estimate 0,_, of 6; then, inner algorithm B takes 0, as an input to
sequentially set prices for all time periods in episode k, which then forms all triplets of covariates, prices, and cus-
tomer responses in episode k for future 6, estimation by inner algorithm A. Another advantage of the horizon-
cutting strategy is the reduction of correlation across the pricing procedure.

Algorithm 1 (Generic Outer Algorithm)

: Input: (arrives over time) covariates {x;};¢[r

: Denote the episodes yielded by the doubling trick as &5, ..., Ex.

: Forte &, do

Set a price p; randomly from (0, pmax) and receive a binary response y;.

: Forepisodek=2,3,...,n,do

With input data {(x:, pr. Y1) }eg, ,, apply inner algorithm A on this data set to update an estimate 0y of 0y;
With input 0;_; as the estimate of 6, apply inner algorithm B on & to sequentially set a price p; and receive
a binary response y; for all t € &.

N U A WN e

2.2.2. Inner Algorithm A. We now introduce the inner algorithm A designed for estimating 6. It uses all data
(%1, p1, ) from the (k — 1)th episode to obtain an estimate _; for future pricing in the kth episode. For simplicity,
we introduce its generic version with [To] ={1,..., Ty} representing the (k — 1)th episode horizon. Because y; is
binary and invoked by x;, p; through P(y; = 1) = 1 — F(p; — x/ 6), we obtain

1 1
P(yt=1)>§, if £! (E) +xtT00—p,>O;

]P’(y,zl):%, if F1 (%) +x] 600 —pi =0;

2

1 1
P(yt:1)<§, if F1 <) +x;r007pt<0.

Therefore, we can form a classification problem with responses v, and covariates (1,x;,p;)" for t € [Ty]. It admits a
Bayes decision boundary {u : (F 1(1/2), Og , = 1)u =0}, which involves the unknown parameter 6,. Thus, we can
estimate the linear decision boundary and extract an estimate of 6, by applying a linear classification method. In

this paper, we use logistic regression, which yields an estimate (¢, B7,5) of (F~1(1/2),6y, — 1) up to a constant fac-
tor. Thus, —3 / b is a natural estimate of 6. Similar to Javanmard and Nazerzadeh [32], we assume ||6]|, is upper
bounded by a known constant W. By projecting — B/b onto the £1-ball © = {6 € R% : ||6]|, < W}, we can obtain our

final estimate denoted as 0 = Proj®(—f3 / 5). Such a projection has a closed-form solution as Proj®(—f3 / 5) =
Z,mm(—[% /5), where 7,(v) =sgn(v)(|v| — p), is the soft-thresholding operator and p, , =min{p: H?;(—[% /15)H1

< W}. Here, the assumption of constant W is purely for theoretical purposes, and our policy is very robust to the

value of W in the empirical studies. The generic inner algorithm A is summarized in Algorithm 2.
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Algorithm 2 (Generic Inner Algorithm A)

1: Input: {(x¢, pt, ye) bierr,), W
2: Use logistic regression to obtain the minimizer

N

Ty
(@, BT,E) = arg min)Zlog(l +exp(y; — D), BT, b)(Lx],p)")).
=1

(C/ﬁT/
3: Estimate 6, by 0= Proje(—ﬁ/g), where ® = {@ € R? : ||6]|, < W}.

Under the same assumption of a known upper bound W of ||0y||;, RMLP and RMLP-2 in Javanmard and Nazerza-
deh [32] estimate 6 via the maximum likelihood type of method by assuming some knowledge on F. In compari-
son, our approach achieves robust 6, estimation without knowledge of a potentially complex-shaped F. It is worth
mentioning that the logistic regression used in Algorithm 2 can be replaced by other linear classification methods,
for example, large-margin classifiers (Wang et al. [50]). We choose logistic regression for its simplicity and superior
numerical performance.

2.2.3. Inner Algorithm B. Next, we introduce the inner algorithm B designed for setting prices. Taking € ;
obtained by inner algorithm A as an input, it sequentially sets prices for all time periods in episode k. For ease of
presentation, we introduce a generic version by using @ to represent 8;_; and T to represent the length of the epi-
sode k.

Based on our model in Section 2.1, the knowledge of the expected reward p(1 — F(p — x/ 6y)) plays a critical role
in deciding the best price at time t. Given the current estimate 0, we need to evaluate {p(1 — F(p — x| 79))} over
p € (0, pmax)- Here, we assume there is a known upper bound pmax of our pricing problem. This assumption is very
mild in real applications and is also used in Javanmard and Nazerzadeh [32] and Chen and Gallego [13]. By the con-
dition [jx¢||, <1, we have p —x; T0ecG(O)=[— ||0||1,pmax + ||0|| ]. Therefore the evaluation of the expected reward is
reduced to evaluate 1 — F on G(8). When F is Lipschitz continuous and no other global smoothness is assumed, it is
sufficient to evaluate 1 — F on several well-chosen discrete points in G(8) to leverage the finite data for better pric-
ing. In this paper, we utilize the discretization idea (Kleinberg and Leighton [37]) to cut G(0) into d same-length sub-
intervals with the set of their midpoints M = {my,...,m;}. Here, d is a parameter that possibly depends on the
horizon length T\,. When T, is large, it is reasonable to set a larger d for a denser discretization and, hence, larger
exploration spaces. We leave the detailed discussion on the choice of d to the theoretical analysis of DIP in Section 3.
Our aim is then to dynamically set prices and evaluate 1 — F on M.

Toy Example (Discretization). We introduce a toy example to better illustrate our pricing policy. We couple each
part of our pricing strategy with its corresponding realization in this toy example. All quantities that are introduced
in our pricing policy for this specific example are displayed in Figure 3. Consider a two-dimensional covariate

Figure 3. An illustration of inner algorithm B via Toy Example.
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x: =(0.3,0.2)" at time £. Assume we have an estimation 0= (1,1)" and Pmax = 4. Then, the interval for discretiza-
tion is G(0) = [—||(§||1,pmax +]10],] =[—2,6] represented by the black solid line in Figure 3. If d = 4, we discretize
G(é) into subintervals [—2,0],[0,2],[2,4], and [4, 6]. Their midpoints m; = —1,my = 1,m3 = 3,my = 5, represented
by blue hollow triangles on the black line in Figure 3, form the set M ={-1,1,3,5}. We continue this example
later.

To achieve the mutual reinforcement of pricing and evaluation of 1 — F on M, we restrict the set price p; at time ¢
into a carefully constructed candidate set S; = {m; +x, 70| j€ld], mj+ x| T9< (0, Pmax)}. The key feature for any prlce
p € St is that p — x/ § exactly equals a midpoint in M. We now illustrate why pricing in S; and evaluation of 1 —
on M can enhance each other. For any price p = m; + x| [ € S;, we can leverage our current knowledge of 1 — F (m])
to obtain an estimate of its expected reward p(1 — F(p — x/ 6y)) as p(1 — F(p —x] 0)) = p(1 — F(m;)). Thus, a better
evaluation of 1 — F on M improves our pricing decision from S;. On the other hand, when we set one price p; =
m; +x; [0 from S;, we observe a binary response y; ~ Ber(1 — F(m; + x; 70— x70)) ~Ber(1 — F(m;)), which then
improves our knowledge of 1—F(m;). Upon this observation, we say that we pull arm j at time ¢ if we set
pr =m; +x; [ 0. Then, pulling arm j yields more knowledge for 1 — F on m;. Thus, we define the available arm set at
time tas By = {j € [d] : 3p € S; such that p =m; +x] 6}, which varies over time as x; @ changes over time.

Toy Example (Continued, Construct Candidate Sets). We construct the candidate sets S; based on the discretized
set M ={m;=—1,my=1,m3=3,my = 5} As x| 6 = 0.5, we obtain S; = {mj+x] Olm] +x/ 0e (0, pmax)} = {m2+0.5,
m3 +0.5} = {1.5,3.5} because m; +x; 0=-05 and My +xtTO 5.5 are out of the range (0, Pmax)- In this case, the
arm set at time ¢ is B; = {j € [d] : 3p € S;such that p = m; + x| 70} ={2,3}.

Restricted on Sy, there is a clear trade-off between exploration and exploitation for our pricing problem. A pure
exploration tends to pull less-pulled arms in 3; and may set many suboptimal prices, whereas a pure exploitation
may continuously pull suboptimal arms because of a lack of knowledge of other arms. To balance between explora-
tion and exploitation, we utilize the principle of optimism in the face of uncertainty (Lattimore and Szepesvari [38]) to
construct an upper confidence bound, which calls for both an estimation EST;(1 — F(m;)) for 1 — F(m;) and a confi-
dence radius (CR) CR(1 — F(m;)) of this estimation at the beginning of time . We can accomplish this goal using all
the past data yielded by pulling arm j. We leave the specific forms of EST;(1 — F(r;)) and CR;(1 — F(1m;)) to the next
section as they emerge naturally from the perturbed linear bandit formulation of our single-episode pricing problem.
Then, we select p; = m; + x| 70 € S; with the largest optimism estimation p;UCB;(1 — F(1;)), where UCB(1 — F(m;)) =
EST(1 — F(m;)) + CRy(1 — F(m;)) is an optimism estimation of 1 — F(mn;). This optimism estimation addresses the
exploration—exploitation trade-off because a large UCB can result in either exploring a less-pulled arm with a large
CR or exploiting an optimal arm with a large mean estimation.

Toy Example (Continued, Set Prices). As the available arm set is B; = {2,3} at time t, we only require knowledge of
1—F(my) and 1 — F(m3) to compare between two candidate prices mjy + x/ 0 and m; +xf 0. To emphasize this, in
Figure 3, we only show {EST,(1 — 1-"(m]))}]_2/3 (red hollow diamonds) and {CRy(1 — F(m]))},_z,s (lengths of purple
dashed line) at two midpoints m, =1 and m3 = 3. Summing them up leads to the optimism estimations {UCB;(1 —
F(m]))}] 23 represented by blue hollow inverted triangles. Multiplying them by their corresponding prices 1, +

x]0=1.5 and m;3 +x] 0 = 3.5, we obtain their optimism expected reward estimations represented by red hollow
mverted triangles, which are used to form our pricing decisions. Based on the illustration in Figure 3, we set the
price p; = 3.5, that is, m3 + x| 0, because 1.5UCB;(1 — F(my)) < 3.5UCBy(1 — F(ms3)).

We summarize the generic inner algorithm B for one episode in Algorithm 3.

Algorithm 3 (Generic Inner Algorithm B)
1: Input: (arrives over time) covariates {x:},cr,], 0, discretization number d, and other inputs required to con-
struct the specific forms of {UCBy(1 — F(m;))}je(4)-
2: Cut the interval G(0) =[—||0l];, Pmax +|0]l;] into d same-length intervals and denote their midpoints as
my,...,mg.
Fortimet=1,...,Ty, do
Construct the candidate price set S; = {m; + x| 70| j€ld], m;+x| 9 < (0, Pmax)};
Determine the arm set B; = {j € [d] : Jp € S;such that p = m; +x/ 8};
Calculate UCB;(1 — F(m;)) for j € B; in (2);
Calculate j; € argmaxes, (1 + x; TO)UCB,(1 — F(m)));
Set a price p; = m;, + x] 0 and receive a binary response y;.
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2.2.4. Perturbed Linear Bandit. In this section, we first introduce a PLB framework and then show that our single-
episode pricing problem can be formulated as a PLB. Furthermore, the proposed M-LinUCB for PLB is shown to be
equivalent to the inner algorithm B with a specific UCB construction.

We say that the reward Z;, the parameter &, and the action set A; form a perturbed linear bandit with a pertur-
bation constant C, if Z; = (§, A;) + 11, with any selected action A; € A; and [|§; — &, < C, for any s, t. Here, 1), is a
sub-Gaussian conditional on the filtration F,_1 = 6(§;,A1,Z1, ..., &, A;). Note that the condition on the linear para-
meters &’'s implies the existence of a & such that ||, — &[|., <= for any f. Thus, the linear parameter & regulating
the reward structure at time ¢ can be viewed as a perturbation from a “central” parameter &'. Note that the linear
bandit (Abbasi-Yadkori et al. [1], Agrawal and Goyal [2], Chu et al. [19]) is a special zero-perturbation PLB with &, =
& foranyt.

Now, we introduce the perturbed linear bandit formulation of our single-episode pricing problem with time
horizon [Ty]. We first specify the linear parameter & = (1 — F(m; +x; 0 —x] 6;),...,1 — F(m; +x] 0 —x 6;))" € R,
which turns out to regulate the reward at time ¢ as shown in Lemma 1. Note that, for any price n; + x; 0 € S, the jth
element of & is exactly the purchasing probability of the customer faced with this price. Further define & =
(1 —F(my),..., 1 —F(my))" as the central parameter. Then, by Lemma 1, &'s can be viewed as perturbations from &
It is interesting to see that the perturbations indeed originate from the difference between the estimate § and the
true 0y and may change with covariates x;’s.

To transform price setting into action selection, we define a mapping from any price p = m; +x/ 0 € S; to a vector
Qilp) e RY with Qt(p)j =mj+ xtTé and Qy(p); =0, Vi # j. Namely, Q; maps a price p = m; + x?@ € S; to a vector with
a single nonzero jth element p. Further define a vector set A; = {Q;(p) : p € S;}. Then, Q; is a one-to-one mapping
from S; to A, and Q; ! is well-defined. To proceed, we define the price-action coupling by A; = Q;(p;). Then, setting
any price p; € S; means selecting an action A; = Q;(p;) € A; and vice versa. With all these preparations, the following
Lemma 1 rigorously forms our single-episode pricing problem into a perturbed linear bandit given Assumption 1
that assumes a Lipschitz F.

Assumption 1. F is Lipschitz with the Lipschitz constant L.

Lemma 1. Under Assumption 1, ||§ — &'l < L||0 — 6|l,, Vt € [To]. Moreover, under the price—action coupling A; =
Qt(pr), the reward Z; = piliy,>p,), the parameter &, and the action set A; form a perturbed linear bandit with a perturbation
constant 2L||0 — 6yl;.

Lemma 1 implies that the perturbation is proportional to the £; estimation error 16— 00|, If the estimate 0=,
then & = & with zero perturbation, and the PLB reduces to a classic linear bandit. On the other hand, a worse 0
implies a larger perturbation, thus incurring more difficulty in solving the PLB and potentially leading to a larger
regret.

iccording toLemmal,Z; = A/ & +n, with || — &, < L||® — 6y|l,, and hence, £ can be estimated from historical
data. Similar to that in linear bandit (Lattimore and Szepesvari [38]), we employ the ridge estimator
%t,l = Vt,l()\)flzéj AsZs, where V;_1(A) = Al + Zi;% A A] with the tuning parameter A > 0. Note that, in Algo-
rithm 3, we use j; to denote the arm pulled at time ¢. Let U;—1; = {s: 1 <s <t —1,j; = j}. Because As have a single
nonzero element and V;_;(A) is a diagonal matrix, we obtain the explicit form for the jth element of &_; as

&t_l,]. = (Zseu,,ljps?%) / ()\ + Zseu,,ljpg> , which serves as the estimate EST(1 — F(m;)) for 1 — F(m)) = &;.

In order to construct a UCB using the principle of optimism in the face of uncertainty, we then compute a confi-
dence radius CR¢(1 — F(m;)) of the preceding estimate EST;(1 — F(m;)) = §,_, ;. The common confidence set C;(f,) =
(€€ :||E— §t,1||%/m( y <P;} yields a marginal confidence radius for each §,_; ;. Because of the simple form of

Vi-1(A), we obtain an explicit form CR(1 — F(m;)) = \/ B/ (A + Zseuliupg). Then, we obtain the UCB as required in

inner algorithm B,
> setty 1, PYs p
UCB(1 — F(m;)) = = + t . @)
' ! A + ZSEL{[,L/- pg A + Zseu!—l,} p?

Motivated by the linear bandit (Lattimore and Szepesvari [38]), we specify the parameter B, =p; =p2. .
2
(1V (l/pmaxm+ \/2 log(1/6) +dlog((dA + (t — 1)p12nax)/d}t)) ) Here, 1 — 6 is the confidence level, and 6 = 1/Tj

is a typical choice (Lattimore and Szepesvari [38]) with known T. Thus, we use 6 = 1/(2¥2¢,) for the application of
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inner algorithm B to the kth episode with a projected length of 2¥2¢,. Now, we are ready to present the full version
of our DIP policy as Algorithm 4. In summary, DIP well-organizes two subalgorithms across episodes, one apply-
ing classification for linear parameter estimation and the other adapting the UCB idea for online pricing.

Algorithm 4 (DIP for Contextual Dynamic Pricing)
Input: (at time 0) a1, a2, Pmax, C, A, W
Input: (arrives over time) covariates {x;}c[7)
Fortimet=1,...,{1(=a1),do
Set a price p; randomly from (0, pmax) and receive a binary response y;.
For episodesk=2,3,...,n(=n(T,a1,az)), do
Apply inner algorithm A with the input data {(x;pty)} 524, esi1,, and W to obtain the estimate 0 1

Apply inner algorithm B on the coming sequential covariates {xt}zkj tistest ¢, With the estimate 01, dis-
cretization number d; = C[(2°72£,)/®)], and the UCB construction in (2) with B,=p;ando=1/ (2K2¢,).

Remark 1. In this remark, we provide the computational complexity of Algorithm 4. In each episode k, the inner
algorithm A consists of a logistic regression and a projection with the complexity of O(£,dy) and O(dy), respec-
tively. Thus, it contributes a complexity of O(doT +dologT) = O(doT) in the total horizon. The inner algorithm B
in episode k first conducts a discretization with the complexity of O(dy) = O(f %). At its tth iteration, by saving
related quantities, the update of constructed upper confidence bounds for {1 — F(m;)}c(4,) takes only O(1) time
complexity. The calculation of the estimated linear valuation component x; 6 has a Complexity of O(dp). The calcu-
lation of optimism expected revenues of the candidate prices and the selection of an optimal candidate price take
another O(dy) time complexity. Thus, the overall complexity of inner algorithm B in episode k is O(doly + dity)
= O(doly + 5,((7/ ®)). Thus, inner algorithm B contributes a total complexity of O(doT + T”/)) to the entire horizon.

Hence, the computational complexity of the whole DIP policy is O(doT + T7/9).

Finally, we mention that the proposed perturbed linear bandit framework can be used beyond the contextual
dynamic pricing problem. This motivates us to introduce a general algorithm called M-LinUCB in Algorithm 5 for
the perturbed linear bandit framework Z; = (§;, A;) + n, when any potential action has only one nonzero element.
For any vector v with a single nonzero element, denote 6(v) as the index of this nonzero element. For instance,
6((0,1,0)") = 2. Further define B; = {5(a) : a € A;} as the nonzero index set of all potential actions at time ¢ and B =
{6(As) : s € [t — 1]} as the nonzero index set of all past selected actions. Then, bridged by the PLB formulation of our
single-episode pricing problem, there exists a close connection between M-LinUCB and inner algorithm B formal-
ized in Lemma 2.

Algorithm 5 (M-LinUCB for Perturbed Linear Bandit)
Input: (arrives over time) action sets A;, A, {ﬁt}te[m
Fort=1,...,To, do
Determme B, ={6(a):ac A} and B {6(A;):s€[t—1]}
If B, ¢ Bt, do
Choose an arbitrary A; € A, such that 6(A;) ¢ B
If Bt C Bt’ do
Fora € A;, do
Calculate LinUCB(a) = maxgec,g)(§ a), where C(B,) = {§ € R :||E— §t71||%,HM) <B,} and &=V

S AZ, V(M) = AT+ Y AAT.
9:  Choose A; € arg maX,e 4, LINUCB,(a).
10: Receive a reward Z,.

Lemma 2. Applying Algorithm 5 to the PLB formulation of our single-episode pricing problem with f, = f;

:pmax

2
(1V ((1/pmax) VAd + \/2 log(1/6) + dlog ((dA + (t — 1)p%nax)/d/\)) ) yields Algorithm 3 using the UCB construction
@) with f, = ;.

Therefore, inner algorithm B (Algorithm 3) can be viewed as the “projection” of M-LinUCB onto our single-
episode pricing problem. In the remaining part of this paper, without further specifications, we refer to Algorithms
3 and 5 as the ones mentioned in Lemma 2.
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3. Theory
In this section, we establish the regret bound for the proposed DIP policy. As DIP divides the total time horizon
into episodes, we conduct the regret analysis on a single episode and then merge them together. For the single-
episode pricing problem, our discretization procedure leads to a natural decomposition of the regret into discrete
and continuous parts. One key technical contribution is the proof of the discrete-part regret, which is shown via the
equivalent regret of M-LinUCB for the corresponding PLB formulation. .

In our single-episode regret analysis, we denote the total horizon as [Ty] and use 6 as the input for Algorithm 3.
In Algorithm 3, we restrict the price in a discrete candidate set S;, thus yielding a “discrete” best price p; in Sy, that
is, pj € argmaxyes,p(1 — F(p — x 6p)). Thus, the regret 7, in (1) can be rewritten as

pi(1—F(p; —x/ 60)) — pi(1 — F(p: — x 00)) +p;(1 — F(p; — x; 0)) — p;(1 — F(p; — x/ 60)) -

Tt Tt2

The first part r is the reward loss with respect to the discrete best price p;. The second part r; is the regret of set-
ting p;. Denote their sums as Rr,; = 221 1¢1 and Rr, o = 221 1¢2, which are the discrete- and continuous-part
regrets, respectively. Then, bounding the cumulative regret Rt, = Rt,1 + R, » reduces to bounding Rr,; and R, »
separately. As discussed before, the discrete-part regret is shown to be the same as the regret under the equivalent
PLB formulation and then investigated by utilizing newly developed regret bounds for the PLB setting. For the
continuous-part regret, we adopt the following second order smoothness assumption on the general expected reve-
nue function defined as f;(p) = p(1 — F(p — q)). Note that the single-step continuous-part regret r;» can then be
rewritten as f,r g, (P}) — fir 0, (P})-

Assgjmption 2. There exists a constant C such that, for any q=x"0y and x € X, we have f,(p*(x)) — f,(p) < C(p*(x)
*P) ’ VP € [Orpmax]'

Assumption 2 requires that the reward difference between the overall best price and any other price can be
bounded by a constant multiplying their quadratic difference. Given the global continuity of F, Assumption 2 indi-
cates a uniform control of f,g,(p) over the local neighborhoods of the maximizers p*(x). In Proposition 1, by apply-
ing Taylor’s theorem with the Lagrange remainder, we provide a sufficient condition for Assumption 2.
Nevertheless, Assumption 2 does not require any global smoothness of F. The derived regret bound still holds for
locally erratic Fs as long as Assumption 2 is satisfied.

Proposition 1. Assumption 2 holds if F”'(-) is bounded on [—||6o|l;, Pmax + ||60]]; ]-

Now, we present our main result in the following Theorem 1. It provides a regret upper bound over the entire
horizon.

Theorem 1. Under Assumptions 1 and 2, the DIP policy yields the expected regret

n
E(Rr) = O(T*?) + 4pmax Ly 226,81 — Ol
k=2

Theorem 1 demonstrates how the estimation errors ||0; — 6|}, affect the regret upper bound for DIP policy. If the
estimates {@k}kg[,,_l | are perfectly accurate, the second term vanishes, and the overall regret is O(T*?).In general,
if B||6; — 0]l; = O(£,*) for some 0 < a < 1/2, we can conclude that 37}, 26"26,E||0;_1 — 8|l; = O(T*~*) by the dou-
bling construction. Then, the overall regret is O(T?/?V(1-)). Because we use the adaptive pricing data in the pre-
vious episode to estimate @, it is challenging to derive the exact rate of convergence for the estimation. In spite
of this theoretical difficulty, we conduct a simulation study in Section 4.1 to numerically demonstrate that the
convergence rate of 16 — 0o]|, is between 1/3 and 1/2, and hence, the O(T2/3) overall regret bound can be practi-
cally achieved.

Remark 2. At first glance, the obtained regret upper bound is worse than the typical Q(T*/2) lower bound in linear
bandit (Lattimore and Szepesvari [38]) and dynamic pricing with the known noise distribution (Javanmard and
Nazerzadeh [32]). However, we point out that our problem involves both unknown linear parameter 6, and
unknown noise distribution F. We conjecture that our obtained regret upper bound is close to the lower bound in
our setting. To see it, Chen and Gallego [13] consider a nonparametric pricing problem and prove an Q(T@0+2)/(d+4))
lower bound under some additional smoothness assumptions, where d, is the dimension of the nonparametric
component. With a one-dimensional nonparametric component F in our pricing problem, their results suggest an
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Q(T?/%) lower bound, which is higher than the typical Q(T"/?) rate. However, their constructed instances do not fit
into our considered pricing problem with an additional linear structure x™ 6. The additional unknown 6, makes the
lower bound derivation harder, and we leave it for future work.

Remark 3. After our initial submission, there are two recent papers (Fan et al. [25], Xu and Wang [55]) consider-
ing a similar dynamic pricing problem with the unknown noise distribution. In Fan et al. [25], the authors con-
sider an m(>2) times continuously differentiable F and propose an explore-then-commit type of policy that
achieved an O(T®"+D/@n-1)y regret upper bound. Both our assumed Lipschitz and second order smoothness
assumptions are satisfied under their condition of twice continuously differentiable F (m = 2). Thus, even under
stronger assumptions, their proved O(T%7) regret for m = 2 is still worse than our main O(T??) regret term. In
Xu and Wang [55], the authors consider an adversarial setting and propose a D2-EXP4 policy that achieves a
regret of O(T%*). By fully utilizing the smoothness of the noise distribution, our proposed DIP policy achieves
an improvement to O(T%?) for our main regret term.

In the next two sections, we first do some preparations by developing the regret bounds for the general perturbed
linear bandit. Then, we provide a proof outline for our main Theorem 1 by utilizing the proved PLB results.

3.1. Regret Bounds for Perturbed Linear Bandit
We consider a PLB setting with the reward model Z; = (§,, A;) + 11, which satisfies the following conditions.

Condition 1. Forany t e N* and a € Ay, |{§,,a)| < 1.
Condition 2. For any t € N*, ||§]|., < Cs.
Condition 3. Forany t e N* and a € Ay, ||ally = 1 and ||all, < amax for a constant amax.

Condition 4. For any teN*, n, is a 1-conditionally sub-Gaussian random variable, that is, E(exp(an,)|Fi_1) <
exp(a?/2) for any a € R, where Fy_1 = 0(€,A1,Z4, ..., &, A,).

Remark 4. Condition 1 ensures a constant regret upper bound at each time and is commonly adopted in linear
bandit (Lattimore and Szepesvari [38]). Condition 2 assumes the bounded infinity norm of &. Condition 3
implies there is only one nonzero element bounded in absolute value for any action. This holds for our PLB for-
mulation becausee any action vector Q;(p) with p = m; +xtT(§ € S; has a single nonzero jth element p € (0, Pmax)-
Condition 4 implies that the noise is sub-Gaussian conditional on all the past parameters, actions, and rewards as
well as the current parameter and action. The perturbed linear bandit formulation of our single-episode pricing
problem satisfies all these conditions.

We develop the following Lemma 3 to establish the regret bound for such a PLB setting.
Lemma 3. Consider the PLB satisfying Conditions 1-4 with a perturbation C With probability at least 1 — 6, Algorithm
5with B, =B, =1v (Cl\/—'+ \/2 log(1/6) +dlog((dA + (t — 1)a2 ) /dA)) has the regret bound

~ + T 2
RELE < 2\/ 2dToB, log (%) + 2maxCy To +2d.

Proof Sketch. We construct a new sequence of “shadow” linear parameters {ft}zétgo and control the “pseudo-
regret” 222 (€, A; — A;) with the sublinear order O(v/T), where A; = arg max,c 4,(£;, a). By proving closeness of
&, and & for all t, we can bound the difference between the true regret and pseudo-regret by a linear term propor-
tional to the perturbation C,. The detailed construction of {§;},.;.r, and rigorous proofs are deferred to Supple-
mental Section A. O

As shown in Lemma 3, the second term in the regret upper bound is proportional to the perturbation C,. When
C, =0, this linear term vanishes, and the final regret bound matches that of the classic linear bandit. Reversely, the
perturbed linear bandit becomes intractable when C, is too large. Interestingly, by Lemma 1, this perturbation con-
stant in the PLB formulation of our single-episode pricing problem is proportional to ||§ — ||;. This matches the
intuition that a larger estimation error leads to more revenue loss. Lemma 3 is of independent interest because it
provides an informative regret bound for the PLB problem.
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Remark 5. Our proposed PLB can be viewed as a misspecified linear bandit (Foster et al. [27], Lattimore et al.
[39], Pacchiano et al. [44]) with a misspecification level €. = anaxCy/2, where the latter has a general regret of
O(d\/T_O +€.VdT,). In comparison, by leveraging Condition 3, we prove a regret of O(dVTy + @maxCyTo) =
O(dVT, +€.Ty) for the simple M-LinUCB algorithm under our PLB setting. To see it, the key in our proof is the
closeness property ||&; — &l|., < C, of our constructed shadow parameters & = Vi >t_ A,AT £. The proof of this
property relies on the fact that the Moore-Penrose inverse V; ; of V,_1 =V;_1(0) is a d1agonal matrix, which is a
direct result of the condition [|a||, = 1 in Condition 3. Importantly, this Vd improvement is critical for us to derive
the final regret rate of our pricing problem.

Remark 6. Nonstationary linear bandits (NLBs) (Cheung et al. [18], Russac et al. [48], Zhao et al [56]) also allow
changing linear parameters & but design policies to adapt to the smooth variations Br, = 31 '[|& — &,1]l,. Our
PLB setting fits an NLB with linear variations Br, = O(C,Ty). The nonasymptotic results in Cheung etal. [18] and
Zhao et al. [56] suggest a regret of @(BlTé 3T(2,/ )= @(C:,/ °Ty), which is only valid for a range of C, (exclusive of
zero and dependent on Ty). In contrast, our proven Lemma 3 provides regret behaviors with a fixed T for
C, — 0, that is, approaching the classic linear bandit result O(v/Tp) linearly with C,, which is essential for further
derivations in our pricing problem. Though some intermediate results in Cheung et al. [18] and Zhao et al. [56]
also yield regrets for fixed Ty and C, — 0, they suggest worse regrets, such as O(wC,Ty + (To/vVw)) (w chosen
from {1,...,To}) and O(C T3 +To) when applied to our PLB setting, which inevitably deteriorates the perfor-
mance guarantee for our pricing problem.

Next, we prove an Q(C,To) regret lower bound for the PLB with a perturbation C,. This implies that the linear
term in the upper bound is inevitable because of the potentially adversarial perturbatlons Define PB(£,C,) = {£€ R":

lE— &l < (Cp/2)} as a parameter set with respect to a central parameter £anda perturbation quantification C,,.

Proposition 2. For any PLB algorithm A®, any & with all positive elements, and (Cp/2) < minepg &, there exists a PLB
with parameters (&,,...,&,...) and action sets (A, ..., Ay, ...) satisfying & € PB(E, Cp), YVt €N and a constant Cy only
dependent on & such that

E(RFIP(AM) > CoC, Ty, VT €N,

3.2. Proof Outline for Theorem 1

To prove Theorem 1, we first prove regret upper bounds for each episode and then merge them together. In the fol-
lowing Proposition 3, we prove a high-probability regret bound as well as an expected regret bound for our pricing
policy in a single episode. Specifically, the expected regret is bounded by a sublinear O(T??) term and a linear term
proportional to the ¢ estimation error ||§ — 6y||;. As DIP applies Algorithm 3 to the kth episode with 8 = 8;_;, we
obtain Theorem 1 by applying Proposition 3 to each episode.

Proposition 3. Under Assumptions 1 and 2 with probability at least 1 — 6, applying Algorithm 3 on the single-episode
pricing problem yields the total regret R, satisfying

d\ + Top?
Ry, < 2\/ 2dToB;, log (J’Opm) 4 4pmacLll® — 60/l To + Co0 + 2dprmen.

dA d?

Moreover, by setting 6 = (1/Ty),d = C[Té/6] and taking the expectation, we have E(Rr,) = O(Té/s) +4pmaxL||0 — o], To.

It remains to prove the regret bound in Proposition 3 for the single-episode pricing problem. We conduct the
analysis of both the discrete- and continuous-part regret and then combine them together.

3.2.1. Discrete-Part Regret. By the PLB formulation in Lemma 1 and the one-to-one correspondence between S;
and A, the best action in A; is A} = Q;(77;). Therefore, the selected action A; = Q;(p;) yields the regret p;(1 — F(p; —
x; 00)) — p(1 — F(pr — x/ 0)) for the PLB, which matches the discrete-part regret r;1. Moreover, Lemma 2 shows
that Algorithm 5 yields Algorithm 3 under the price-action coupling. Therefore, we can investigate the regret of
Algorithm 5 on the PLB to quantify the discrete-part regret of Algorithm 3.

We now apply the general regret bound of Lemma 3 to the PLB formulation of our single-episode pricing problem
to bound the discrete-part regret. After scaling the rewards, linear parameters and noises by 1/pmax as & =

(1/pmax) €&, 7= (1/pmax)Zt, 71, = (1/Pmax)1,, we obtain the transformed model Zi= (ét,At) + 7, with the perturbation



Downloaded from informs.org by [128.210.107.129] on 19 May 2023, at 13:16 . For personal use only, all rights reserved.

Luo, Sun, and Liu: Distribution-Free Contextual Dynamic Pricing
Mathematics of Operations Research, Articles in Advance, pp. 1-20, © 2023 INFORMS 13

constant C’p = 2L||(§ — 00ll1 /Pmax, which satisfies Conditions 14 with C; = 1/Pmax and Amax = Pmax- On the other hand,
we can prove that applying Algorithm 5 with , = 8; on the original PLB is equivalent to applying it with g, =, =

(1/p%.x)B; on the transformed model with their regrets admitting a scaling relationship. By formalizing this rea-
soning, we obtain the following Proposition 4.

Proposition 4. Under Assumption 1 with probability at least 1 — 0, applying Algorithm 3 on the single-episode pricing
problem yields a discrete-part regret Rr, 1 satisfying

dA + Top? A
Rpy1 < 2\/ 2dToB;, log (%) + 49 L1|® — 00l To + 2dpmax.

Proposition 4 provides an upper bound of the discrete-part regret on a single episode. The first term is sublinear as
O(V/T,), whereas the second term is linear in Ty and proportional to the estimation error 16 — 0||;, which invokes
the perturbation in our PLB formulation. The third term is dominated by the first two terms as we further specify 4
to yield a best trade-off between discrete and continuous parts of the regret.

3.2.2. Continuous-Part Regret. We now discuss how to derive a bound for the continuous-part regret under
Assumption 2. By our discretization approach, {m; + x; 9}ield] are a sequence of points that “cover” [0, pmax] with
equal adjacent distance (pmax + 2||8|l;)/d. Because S; = {m; +x] 0lje[d], m;+x; 0 € (0,pmax)} and p; € (0, pmax), there
must exist a p, € S; close enough with p; such that their expected reward difference is O(1/d?) according to
Assumption 2. Because the discrete best price p; outperforms p,, the unit continuous-part regret r;, of setting p;
satisfies ;5 = O(1/d?). Thus, the continuous-part regret Ry, » in the entire horizon is of the order O (T /d?).

3.2.3. Combination. We can prove that the right-hand side of the regret result in Proposition 4 has a simpler
form of O(dVTo) + 4pmaxL||0 — 6|l To. Thus, the overall regret for the single episode is O (dVTo + (To/d?)) + 4Pmax
Lo - 0ol|; To. By setting the discretization number 4 in the order of T/ ® we obtain the single-episode regret bounds
in Proposition 3.

4. Simulation Study
We demonstrate the performance of our DIP policy on synthetic data sets and compare it with RMLP and RMLP-2
proposed by Javanmard and Nazerzadeh [32]. The implementation details of DIP, RMLP, and RMLP-2 are pro-
vided in Supplemental Section B.

Let ®(u,0?) denote the CDF of N(u,0?) distribution. For the first six examples, we consider a scalar covariate
Xy M Unif [0,1] and set By = 30. The CDF F of the noise distribution is designed as follows, in which Examples 1 and
5 are motivated from the real application in Section 5. Their probability density functions are shown in Figure 4.

Example 1. The true F = (1/2)P(—4,6) + (1/2)D(4,6).

Example 2. The true F = (1/3)®(—6,(7%/3)) + (1/3)®(—1,(r?/3)) + (1/6)®(1,(7?/3)) + (1/6)D(6, (7*/3)).
Example 3. The true F = (1/4)®(-7,(7%/3)) + (1/4)®(-3,(?/3)) + (1/4)®(3,(7?/3)) + (1/4)@(7, (7*/3)).
Example 4. The true F() = F(- + mean(F)), where F = (1/3)®(-3,(r2/3)) + (2/3)®(3, (%/3)).

Example 5. The true F() = F(- + mean(F)), where F = (1/2)®(-5,(2572/3)) + (1/2)®(5, (47%/3)).
Example 6. The true F = (1/2)®(-2.5,5) + (1/2)®(2.5,5).

As shown in Figure 4, Examples 1-3 have symmetric PDFs with two, three, and four modes, respectively,
whereas Examples 4 and 5 have asymmetric PDFs with two modes and one single mode, respectively. Example 6
has two peaks but is close to a single-mode normal distribution.

We compute the mean and confidence interval of cumulative regrets over 100 replications. As shown in
Figure 5, DIP outperforms both RMLP and RMLP-2 for Examples 1-5. In Example 6, RMLP and RMLP-2 per-
form better than DIP as the noise distribution F is close to a normal distribution, which aligns with their model
assumption. Because of the misspecification of F, the cumulative regrets for both RMLP and RMLP-2 exhibit

clear linear patterns. The performance deterioration of RMLP and RMLP-2 becomes severe in Example 5, in
which the PDF is asymmetric and has heavy tails. On the other hand, our DIP policy gradually learns F in the



Downloaded from informs.org by [128.210.107.129] on 19 May 2023, at 13:16 . For personal use only, all rights reserved.

Luo, Sun, and Liu: Distribution-Free Contextual Dynamic Pricing
14 Mathematics of Operations Research, Articles in Advance, pp. 1-20, © 2023 INFORMS

Figure 4. (Color online) PDFs of the noise distribution in Examples 1-6.
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pricing process and achieves sublinear cumulative regrets in all examples. These examples illustrate the sever-
ity of noise distribution misspecification of RMLP and RMLP-2 and, hence, the superior performance of the pro-
posed robust pricing policy.

Next, we show that DIP can still outperform RMLP and RMLP-2 even when the noise distribution F is standard
Gaussian @(0, 1), which satisfies the log-concave condition assumed by RMLP-2. In the following Examples 7-9, we
set F = ®(0,1) and vary the context dimension d, the true 6, and the context generation distribution.

Example 7. Dimension do = 3, 6 = (10,10,10)", x, " Unif[0.3,1]°.

Example 8. Dimension dg = 10, 8 = (3....,3)", x; "= Unif[0.1,1]"°.

Example 9. Dimension do = 10, 8 = (3,....3)",x; " Unif[0,1]".

We show the log cumulative regrets of DIP, RMLP, and RMLP-2 averaged over 100 replications in Figure 6. We
use log regret because the scale difference between the regrets of these three methods are large for Examples 7-9
mainly because of the unsatisfactory performance of RMLP. For all three methods, we estimate 6, in each of six epi-
sodes and use it for pricing in subsequent episode. Figure 7 shows boxplots of estimation errors || — @||, for all six
episodes k=1, ...,6 and all three methods in Examples 7-9. In Examples 7 and 8, DIP outperforms RMLP-2 with
more stable parameter estimations. In Example 9, the RMLP-2 is relatively stable and delivers better performance
than DIP. Note that RMLP performs the worst because it specifies F as e*/(e* + 1) with the variance 7?/3, which is
quite different from that of the true F. Moreover, we find that RMLP-2 sometimes obtains poor estimates and, thus,
incurs large regrets. For instance, as shown in the middle plot of Figure 7 representing Example 8, there is one repli-
cation in which RMLP-2 has an estimation error more than 80 in episode 2. Then, in this replication, the regret of
RMLP-2 in the subsequent episode 3 can be large because of this unsatisfactory estimate. We conjecture that the
unstable estimations of RMLP-2 in Examples 7 and 8 are due to its produced singular price-covariate data in each
episode. In Supplemental Section C, we provide a more detailed discussion on this phenomenon. As a comparison,
DIP well-balances exploration and exploitation and sets dispersed prices at the beginning of each episode. This
helps to generate a healthier data structure leading to more stable estimates.
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Figure 5. Regret comparisons of DIP, RMLP, and RMLP-2 in Examples 1-6.
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4.1. ¢4 Estimation Error Convergence

Our proven regret upper bound in Theorem 1 involves a term related to ||@; — 6||;. In our Examples 7-9 of simula-
tions, we plot the ¢, estimation errors 16 — 0]l,. In this section, we plot in Figure 8 the {; estimation errors calcu-
lated from each episode of Example 7 to investigate its convergence rates. The left panel of Figure 8 shows a clear
decaying trend starting from the second episode. In addition, in the right panel, we plot the log, average estimation
errors over the log, number of data samples for episodes 2—-6. Through a linear fit, we extract a slope of —0.354,
which implies that the real decaying rate is between —1/2 and —1/3, and hence, a € (—1/2, —1/3). Thus, the
O(T?) overall regret bound in our theorem can be practically achieved.

4.2. Heavy-Tailed Noise Distributions
Next, we evaluate the performance of our DIP policy on heavy-tailed noise distributions. Let Cauchy(y, 6%) denote
the CDF of the Cauchy distribution with location parameter y and scale parameter 0. We consider the three-

Figure 6. Log regret comparisons of DIP, RMLP, and RMLP-2 in Examples 7-9.
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Figure 7. (Color online) Estimation errors |0 — 6oll, of DIP, RMLP, and RMLP-2 over six episodes in Examples 7-9.
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dimensional covariates x; A Unif [0.01,1]° and set 8, = (10,10,10) . The CDF F of the noise distributions are designed
as follows.

Example 10. The true F = Cauchy(0, 1).
Example 11. The true F = Cauchy(0, 3).
Example 12. The true F = (1/2)Cauchy(-—5,6) + (1/2)Cauchy (5, 6).

We repeat 100 times for each example and plot the average accumulative regret curves and their confidence
bounds in Figure 9. We can see that DIP outperforms both RMLP and RMLP-2 in all these three simulation
settings.

4.3. Sensitivity Tests

Our DIP policy relies on three hyperparameters A, pmax and C. Here, A is the regularization parameter of the regres-
sion estimation procedure, pmax is an upper bound of any potential optimal prices, and C is the constant in the dis-
cretization number d = C [T ®]. In all our simulation settings, we set A = 0.1, pmax = 30, and C = 20. In this section,
we conduct sensitivity tests to see how their values affect the overall performance of DIP. Here, we use the simula-
tion setting in Example 1 as an illustration. In Figure 10, we include two other values for each of the three para-
meters, that is, A =0.01,1, pmax = 25,35, C = 15, 25. The results demonstrate that DIP is relatively robust to the
values of these three parameters.

Figure 8. (Color online) ¢; estimation error 16, — 6ll; of DIP in Example 7.
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Figure 9. Regret comparisons of DIP, RMLP, and RMLP-2 in Examples 10-12.
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5. Real Data Analysis

We explore the efficiency of our proposed DIP policy on a real-life auto loan data set provided by the Center for
Pricing and Revenue Management at Columbia University. This data set was first studied by Phillips et al. [46] and
further used by Bastani et al. [5] and Ban and Keskin [4] to evaluate different dynamic pricing algorithms.

The data set records 208,085 auto loan applications received by a major online lender in the United States from
July 2002 through November 2004. For each application, we observe some loan-specific features, such as the date of
application, the term and amount of loan requested, and the borrower’s personal information. It also includes the
monthly payment required by the lender, which can be viewed as the pricing decision. Note that it is natural to set
prices according to the marketing environment, product features, and customer characteristics in online auto lend-
ing. Finally, it records whether the price was accepted by the borrower, that is, the customer’s binary purchasing
decision in our model.

We adopt the feature selection result used in Bastani et al. [5] and Ban and Keskin [4] and only consider the fol-
lowing four features: the loan amount approved, FICO score, prime rate, and the competitor’s rate. We scale each
feature to [0, 1] through dividing them by the maximum. The price p of a loan is computed as the net present value
of future payment minus the loan amount, that is, p = Monthly Payment X ZTerm (1+Rate) " — Loan Amount. We
use $1,000 as a basic unit and 0.12% as the rate value here, an approximate average of the monthly London inter-
bank offered rate for the studied time period.

Note that it is impossible to obtain customers’ real online responses to any dynamic pricing strategy unless it was
used in the system when data were collected. Thus, we follow the off-policy learning idea used in Bastani et al. [5]
and Ban and Keskin [4] to first estimate the customer choice model using the entire data set and use it as the ground
truth to generate the willingness to pay of each customer given any prices. We utilize a two-step estimation proce-
dure to estimate the unknown 6, and F. In particular, we use logistic regression to estimate 6, and then use the ker-
nel density estimation idea to estimate F. The details of this estimation procedure are deferred to Supplemental
Section D. The estimated noise PDF for the United States is shown in the left plot of Flgure 11. The estimated 6 and
F are treated as the true parameters for the customer choice model y; ~ Ber(1 — F (pr — 00)) Note that these true

Figure 10. (Color online) Sensitivity tests of DIP policy with respect to A, pmax and C.
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Figure 11. (Color online) The left plot shows the PDF of the noise distribution for the whole U.S. data, and the right plot shows
the regret comparison of DIP, RMLP, and RMLP-2.
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parameters are not used in any dynamic pricing algorithm, but only used to calculate the regret for any set prices
and evaluate the performance of any pricing policies.

We compare DIP with RMLP-2 and RMLP policies developed in Javanmard and Nazerzadeh [32]. Because the
dimension is low and the coefficients are nonsparse, we apply the RMLP-2 and RMLP policies without regulariza-
tion. As required by DIP, a known upper bound pmay of the best prices for all applications is set as 30. We randomly
sample 2'® applications from the total 208,085 for 50 times and apply DIP, RMLP-2, and RMLP policies to each of
the 50 replications and then record the average cumulative regrets.

As shown in the right plot of Figure 11, RMLP displays the worst performance, and our proposed DIP policy out-
performs RMLP-2 when the time period passes above 10*. It enjoys more advantages as the time period grows
larger. Moreover, DIP shows a clear sublinear cumulative regret, whereas RMLP-2 displays a linear pattern. This is
because DIP can gradually learn the unknown distribution F. Furthermore, DIP enjoys a more accurate and stable
0, estimation because it invests a certain amount in price explorations and generates a more well-distributed data
set. In comparison, RMLP-2 sets the prices by applying a deterministic mapping function to a linear combination of
the covariates, which might yield a singular data structure that leads to unsatisfactory estimates. This phenomenon
is similar to that shown in Examples 7 and 8 of the synthetic experiments.

Next, we evaluate the performance of DIP, RMLP-2, and RMLP by focusing on data in California, which has
nearly 30,000 applications. We apply the same estimation procedure for 6, and F on the California data set to obtain
the true customer choice model for California. The estimated PDF of the noise distribution for the California data
are shown in the left panel of Figure 12. It has a multimodal pattern and does not satisfy the log-concave condition
required by RMLP-2 and RMLP. This illustrates our motivation that the noise distribution could be complex in real
applications. We record the average cumulative regrets for 50 random samplings of 2'* applications. As shown in
the right panel of Figure 12, DIP again achieves a sublinear regret and outperforms that of RMLP-2 eventually. Sim-
ilar to the previous case, RMLP performs worse than DIP and RMLP-2.

Figure 12. (Color online) The left plot shows the PDF of the noise distribution for the California data, and the right plot shows
the regret comparison of DIP, RMLP, and RMLP-2.
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6. Conclusion

In this paper, we consider a customer choice model generated by a linear valuation function with the unknown
coefficient parameter and unknown noise distribution. A new pricing policy DIP is proposed to tackle this problem
through simultaneously learning both the unknown parameter and the unknown distribution. In theory, we show
that, even when the noise distribution is unknown, our DIP policy is still able to achieve a sublinear regret bound.
We apply DIP on various synthetic data sets and a real online auto loan data set and demonstrate its superior per-
formance when compared with state-of-the-art pricing algorithms.

There are a few interesting future directions. In this paper, we focus on nonsparse coefficients with an unknown
noise distribution. It would be interesting to extend our policy to the high-dimensional setting with a sparse linear
choice model. We can also extend the linear choice model to a more flexible semiparametric model (Bickel et al. [9])
to allow both a parametric component and a nonparametric component on the covariates. Furthermore, it would be
interesting to incorporate the considerations of fairness and welfare (Kallus and Zhou [34]) into our dynamic pric-
ing regime.
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