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Abstract. Contextual dynamic pricing aims to set personalized prices based on sequential 
interactions with customers. At each time period, a customer who is interested in purchas
ing a product comes to the platform. The customer’s valuation for the product is a linear 
function of contexts, including product and customer features, plus some random market 
noise. The seller does not observe the customer’s true valuation, but instead needs to learn 
the valuation by leveraging contextual information and historic binary purchase feedback. 
Existing models typically assume full or partial knowledge of the random noise distribu
tion. In this paper, we consider contextual dynamic pricing with unknown random noise 
in the linear valuation model. Our distribution-free pricing policy learns both the contex
tual function and the market noise simultaneously. A key ingredient of our method is a 
novel perturbed linear bandit framework, in which a modified linear upper confidence 
bound algorithm is proposed to balance the exploration of market noise and the exploita
tion of the current knowledge for better pricing. We establish the regret upper bound and a 
matching lower bound of our policy in the perturbed linear bandit framework and prove a 
sublinear regret bound in the considered pricing problem. Finally, we demonstrate the 
superior performance of our policy on simulations and a real-life auto loan data set.
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Supplemental Material: The supplementary material is available at https://doi.org/10.1287/moor.2023. 
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1. Introduction
Contextual dynamic pricing aims to design an online pricing policy adaptive to product features, customer char
acteristics, and the marketing environment (Huang et al. [30]). It is widely used in industries such as hospitality, 
tourism, entertainment, retail, electricity, and public transportation (den Boer [21]). A successful dynamic pric
ing algorithm involves both pricing and learning to maximize revenues. Upon receiving sequential customer 
responses, the algorithm continuously updates its knowledge of customer purchasing behavior and sets a price 
accordingly. Such online statistical learning differs from traditional supervised or unsupervised learning in its 
adaptive and sequential manner.

The key learning objective in dynamic pricing is the willingness to pay (demand) of a customer, that is, the prob
ability of a customer making a buying decision. With full knowledge of the demand, the seller can set optimal 
prices that yield the maximum expected revenues. However, it is common that the seller knows little about the 
demand prior to the pricing procedure. Such an unknown demand case is studied extensively in dynamic pricing 
(Besbes and Zeevi [6], Cesa-Bianchi et al. [12], Chen et al. [15], Cheung et al. [17], den Boer and Keskin [23], Keskin 
and Zeevi [35]). In this case, one critical task is to balance the trade-off between exploration and exploitation, in 
which exploration aims for more customer-demand knowledge and exploitation maximizes the revenue based on 
the current knowledge. Two major influential factors for a customer’s willingness to pay are the price offered by 
the seller as well as the customer’s valuation of the product. In this paper, we consider a widely adopted linear val
uation model (Golrezaei et al. [28], Javanmard and Nazerzadeh [32]). Given the contextual covariate x, for exam
ple, product features, customer characteristics, and the marketing environment, the customer’s valuation v(x) for 
the product is v(x) � x⊤u0 + z. Here, the first component represents the linear effect of the covariates x with an 
unknown parameter u0 and the second component models a market noise z drawn from an unknown distribution 
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F. After observing the price p set by the seller, the customer buys the product if v(x) exceeds p and otherwise leaves 
without purchasing.

Existing contextual dynamic pricing models assume partial or full knowledge of the market noise distribution F. 
For example, Javanmard and Nazerzadeh [32] assume a known F for their regularized maximum likelihood pricing 
(RMLP) method and consider F to belong to a log-concave family for their RMLP-2 policy. Despite knowing that F 
simplifies the pricing process and improves learning accuracy, it can be restrictive and unrealistic in practice. It is 
essential to tackle the contextual dynamic pricing problem with an unknown F. Importantly, it may happen in prac
tice that not all relevant contexts can be observed, and such unobserved contexts may lead to a complex noise term. 
For example, the heterogeneity among customers may lead to a noise that is a mixture of many distributions 
beyond the log-concave family. In our auto loan data set studied in Section 5, the estimated probability distribution 
functions (PDFs) of the noise term in four states are clearly not log-concave as shown in Figure 1.

In this paper, we propose a distribution-free pricing (DIP) policy to tackle the contextual dynamic pricing prob
lem with unknown θ0 and unknown F. DIP employs a doubling trick (Lattimore and Szepesvári [38]) in its frame
work, which cuts the time horizon into episodes in order to reduce the correlations across data and handle the 
unknown horizon length. At the beginning of each episode, by formulating the θ0 estimation into a classification 
problem in which no prior knowledge of F is required, our DIP policy adopts the logistic regression to estimate θ0 
using data in the previous episode. Given such an estimate, we then translate our single-episode pricing problem 
into a newly proposed perturbed linear bandit (PLB). PLB can be considered an extension of the classic linear bandit 
(Abbasi-Yadkori et al. [1], Agrawal and Goyal [2], Chu et al. [19]) and is also of independent interest. Interestingly, 
the “perturbation level” of the translated PLB can be specified as proportional to the ℓ1 error of the given θ0 esti
mate. A modified linear upper confidence bound (M-LinUCB) algorithm, serving as an essential part of DIP, is pro
posed for our translated PLB to unify the learning of F and exploitation of the learnt knowledge to set prices.

In addition to the methodological contribution, we also establish regret analysis of our DIP policy. The regret, as 
the expected loss of revenues with respect to the clairvoyant policy, is widely used to evaluate the performance of a 
pricing policy. We first prove a T0-period regret of Õ(

ffiffiffiffiffi
T0
√
+CpT0) for M-LinUCB on a general PLB with Cp repre

senting the perturbation level. The decomposition of sublinear and linear terms is analogous to the regret in misspe
cified linear bandits (Foster et al. [27], Lattimore et al. [39], Pacchiano et al. [44]). Importantly, we also show that the 
linear dependence of T0 is unavoidable by establishing a matching lower bound for our perturbed linear bandit. 
We then apply this result to the specific PLB formulation of our single-episode pricing problem to obtain the regret 
bound for each episode. Finally, we obtain the regret bound for the entire T horizon, which consists of an Õ(T2=3)
sublinear term and an extra term related to the estimation error for θ0. The latter term is dominated by the sublinear 
term in a broad range of scenarios, which is well-supported by our experiments. In summary, our sublinear Õ(T2=3)
regret upper bound implies that the average regret per time period vanishes as the time horizon tends to infinity. 
Because our problems involve both unknown linear parameter θ0 and unknown noise distribution F, we conjecture 
that the obtained Õ(T2=3) rate is close to the optimal rate.

Finally, we demonstrate the superior performance of our policy on extensive simulations and a real-life auto loan 
data set by comparing our DIP policy to RMLP and RMLP-2 (Javanmard and Nazerzadeh [32]). Because of the 
restrictive condition on F, RMLP is not satisfactory when a moderate misspecification of F occurs. Despite being 
more robust than RMLP, RMLP-2 inevitably leads to a linear regret when the noise distribution is beyond log- 
concave. On the other hand, our DIP policy is robust to unknown complex noise distributions. In a real-life auto 
loan data set, our DIP policy is shown to largely improve the regret of the benchmark RMLP-2 method in learning 
customer’s purchasing behavior of auto loans. Specifically, DIP has an 80% improvement over RMLP-2 in the 

Figure 1. (Color online) Estimated noise PDFs for four states in our auto loan real application. 
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cumulative regret over the considered time horizon. Such an improvement keeps increasing when the total time 
horizon increases. See Section 5 for more details.

1.1. Related Work
1.1.1. Noncontextual Dynamic Pricing. For noncontextual dynamic pricing without covariates, Besbes and Zeevi 
[6, 8], Wang et al. [52], and Chen and Gallego [14] design policies to handle a nonparametric model, whereas Besbes 
and Zeevi [6], Broder and Rusmevichientong [10], den Boer and Zwart [24], and Keskin and Zeevi [35] consider 
parametric models. Furthermore, Besbes and Zeevi [7], den Boer [22], and Keskin and Zeevi [36] investigate the 
time-varying unknown demand setting. In addition, the upper confidence bound (UCB) idea (Abbasi-Yadkori et al. 
[1], Auer et al. [3]) is used in different noncontextual instances (Kleinberg and Leighton [37], Misra et al. [41], Wang 
et al. [51]). However, all these approaches do not incorporate the covariates into the pricing policy. Therefore, our 
model and technical tools are fundamentally different.

1.1.2. Contextual Dynamic Pricing. Dynamic pricing with covariates has garnered significant interest among 
researchers. As Mueller et al. [42], Javanmard et al. [33], and Chen et al. [16] focus on the multiproduct setting, most of 
the contextual dynamic pricing literature (Ban and Keskin [4], Bastani et al. [5], Cohen et al. [20], Javanmard [31], Mao 
et al. [40], Nambiar et al. [43], Qiang and Bayati [47], Wang et al. [53], Xu and Wang [54]) considers a single product at 
each time. Javanmard and Nazerzadeh [32] and Golrezaei et al. [28, 29] also consider the linear valuation model as we 
do in this paper. Similar to us, Golrezaei et al. [28] assume both the unknown linear effect and noise distribution and, 
thus, face the same challenge of error propagation. They adopt a second price auction mechanism with multiple 
buyers at each time. One main difference lies in the feedback structure. Namely, they assume a full-information set
ting in which the seller observes all bids and valuations from multiple buyers, whereas we consider a bandit setting in 
which the seller only observes one single buyer’s binary purchasing decision. In Javanmard and Nazerzadeh [32], 
their proposed RMLP assumes a known market noise distribution, whereas RMLP-2 assumes a known log-concave 
family of the noise distribution. Hence, their approaches are no longer applicable when the noise distribution is 
unknown or not log-concave. In addition, by assuming the noise distribution to be in a known ambiguity set, Golre
zaei et al. [29] also establish a Õ(T2=3) regret with respect to a robust benchmark defined upon the ambiguity set. In 
the general unknown noise case, the ambiguity set could be extremely large, and hence, the robust benchmark could 
be far from the true optimal policy. In contrast, our DIP policy is adaptive to the general unknown noise case, and our 
regret bound is established by comparing it to the true optimal policy. On the other hand, Shah et al. [49] and Chen 
and Gallego [13] share similar nonparametric ingredients in the unknown demand function as ours. Specifically, 
Chen and Gallego [13] consider a general Lipschitz demand and propose a pricing policy based on adaptive binning 
of the covariate space (Perchet and Rigollet [45]) with a regret of Õ(T(2+d0)=(4+d0)), where d0 is the dimension of covari
ates. Thus, when d0 ≥ 3, our DIP policy enjoys better performance as we leverage the parametric structure in our 
dynamic pricing model. Shah et al. [49] adopt a log-linear valuation model to handle the unknown nonparametric 
noise in their semiparametric model. Their method heavily relies on the special structure of the log-linear valuation 
model, whose optimal price has desirable separable effects of the unknown linear structure and unknown noise distri
bution. Hence their approach is not applicable to our pricing model in which these two unknown parts tangle with 
each other. Therefore, techniques used in Shah et al. [49] and Chen and Gallego [13] for handling nonparametric com
ponents in the demand function are very different from the newly proposed PLB framework of our DIP policy.

1.1.3. Bandit Algorithms. Our pricing policy is also related to bandit algorithms (Bubeck and Cesa-Bianchi [11], 
Foster and Rakhlin [26], Lattimore and Szepesvári [38]) which address the balance between exploration and exploi
tation. In particular, our perturbed linear bandit is related to misspecified linear bandits (Foster et al. [27], Lattimore 
et al. [39], Pacchiano et al. [44]) and nonstationary linear bandits (Cheung et al. [18], Russac et al. [48], Zhao et al. 
[56]). An interesting finding is that, by leveraging the special structure of the perturbed linear bandit formulation of 
our dynamic pricing problem, we achieve a better and more precise regret bound for our proposed policy com
pared with direct application of much more complex existing algorithms for misspecified or nonstationary linear 
bandits. See Section 3.1 for more discussions.

1.2. Notation and Paper Organization
We adopt the following notations throughout the article. Let [T] � {1, : : : , T}. For a vector b ∈ Rd, let ‖b‖∞ �
maxj |bj | and ‖b‖1 �

Pd
j�1 |bj | denote its max norm and ℓ1 norm, respectively. For two sequences an, bn, we say an �

O(bn) if an ≤ Cbn for some positive constant C, an � Õ(bn) if an �O(bn) that ignores logarithmic terms, and an �Ω(bn)

if an ≥ Cbn for some positive constant C.
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The rest of the paper is organized as follows. In Section 2, we introduce the methodology of our proposed DIP 
policy along with the perturbed linear bandit formulation of the pricing problem. In Section 3, we develop regret 
bounds for a general perturbed linear bandit problem and employ it to establish the regret bound of our DIP policy. 
In Section 4, we demonstrate the superior performance of DIP on various synthetic data sets, and in Section 5, we 
apply DIP to a real-life auto loan data set. We conclude our work along with some future directions in Section 6. 
Technical proofs and additional numerical results are collected in the Supplementary Material as an E-companion.

2. Methodology
In this section, we discuss the contextual dynamic pricing problem setting and then introduce our DIP policy, 
which involves a general perturbed linear bandit formulation.

2.1. Problem Setting
In contextual dynamic pricing, a potential customer who is interested in purchasing a product arrives at the plat
form at each period t ∈ [T] � {1, : : : , T}, and the seller observes a covariate xt ∈ X ⊆ Rd0 representing the product fea
tures and customer characteristics. Similar to Javanmard and Nazerzadeh [32], Golrezaei et al. [28], Shah et al. [49], 
and Chen and Gallego [13], we assume ‖xt‖∞ ≤ 1, ∀xt ∈ X . Given xt, the customer’s valuation of the product vt �

v(xt) � x⊤t u0 + zt is a sum of a linear function of xt and a market noise zt. We assume {zt}t∈[T] are drawn independent 
and identically distributed (i.i.d.) from an unknown distribution with cumulative distribution function (CDF) F. If 
the customer’s valuation vt is higher than the price pt set by the seller, the sale happens, and the seller collects a reve
nue of pt. Otherwise, the customer leaves, and the seller receives no revenue. Let yt � 1{vt≥pt} denote whether the cus
tomer buys the product. By the aforementioned sales mechanism, it follows that

yt �
1 if vt ≥ pt, with probability 1� F(pt� x⊤t u0);

0 if vt < pt, with probability F(pt� x⊤t u0),

�

and the reward Zt � ptyt � pt1{vt≥pt}. Then, the triplet (xt, pt, yt) records the information of the pricing procedure at 
time t.

Given this customer choice model and the covariate x, the expected reward of setting price p is p(1� F(p� x⊤u0)). 
We define the optimal price p∗(x) as that maximizing p(1� F(p� x⊤u0)), which is an implicit function of the covariate 
and dependent on both the unknown u0 and F. By dynamically setting prices and observing binary feedback, we col
lect instant revenues and, meanwhile, gather more information to estimate u0, F and p∗(x). An important feature of 
this process is the trade-off between exploration and exploitation in which we well-balance between exploiting the 
current knowledge for larger immediate revenues and exploring more information for better future revenues.

We next introduce the notion of regret for evaluating a pricing policy. Denote

p∗t � p∗(xt) � arg max
p>0

p(1� F(p� x⊤t u0))

as the optimal price at time t. Then, the regret rt at time t is defined as the loss of reward by setting the price pt com
pared with the optimal price p∗t , that is,

rt � p∗t(1� F(p∗t � x⊤t u0))� pt(1� F(pt� x⊤t u0)): (1) 

The T-period cumulative regret across the horizon is defined as RT �
PT

t�1 rt. We obtain the expected cumulative 
regret E(RT) by taking the expectation with respect to the randomness of data and the potential randomness of the 
pricing policy. The goal of our contextual dynamic pricing is to decide the price pt for covariate xt at time t by utiliz
ing all historic data {(xs, ps, ys), s � 1, : : : , t� 1} in order to minimize the expected cumulative regret.

2.2. DIP Algorithm
Our proposed DIP policy enjoys a simple framework as an outer algorithm nested with inner algorithms A and B. 
Inner algorithm A is designed for estimating u0, and inner algorithm B is the essential part that fully exploits the 
perturbed linear bandit formulation of our single-episode pricing problem and implements the UCB idea to resolve 
the trade-off between exploration and exploitation.

2.2.1. Outer Algorithm. In online learning, the total time horizon T is typically unknown. To address this problem, 
we adopt a doubling trick widely used in online learning and bandit algorithms (Lattimore and Szepesvári [38]) to 
cut the horizon into episodes. After the first warm-up episode and starting from the second episode, we set the 
length of the next episode as double the current one until the horizon ends. The number of episodes n � n(T,α1,α2)
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and their lengths denoted as {ℓk � ℓk(T,α1,α2)}k∈[n] are functions of the total horizon length T and the first two epi
sodes’ lengths α1,α2. Figure 2 demonstrates the case when the total time horizon is cut into five episodes via the 
doubling trick.

We present the outline of our DIP policy as the generic outer algorithm in Algorithm 1. In the first warm-up epi
sode, DIP performs random exploration to set random prices at each time period. Then DIP alternates between 
inner algorithm A to obtain an estimate of u0 and inner algorithm B to set prices. Specifically, inner algorithm A 
uses all data from episode k � 1 to obtain an estimate ûk�1 of u0; then, inner algorithm B takes ûk�1 as an input to 
sequentially set prices for all time periods in episode k, which then forms all triplets of covariates, prices, and cus
tomer responses in episode k for future u0 estimation by inner algorithm A. Another advantage of the horizon- 
cutting strategy is the reduction of correlation across the pricing procedure.
Algorithm 1 (Generic Outer Algorithm)

1: Input: (arrives over time) covariates {xt}t∈[T]
2: Denote the episodes yielded by the doubling trick as E1, : : : ,En.
3: For t ∈ E1, do
4: Set a price pt randomly from (0, pmax) and receive a binary response yt.
5: For episode k � 2, 3, : : : , n, do
6: With input data {(xt, pt, yt)}t∈Ek�1

, apply inner algorithm A on this data set to update an estimate ûk of u0;
7: With input ûk�1 as the estimate of u0, apply inner algorithm B on Ek to sequentially set a price pt and receive 

a binary response yt for all t ∈ Ek.

2.2.2. Inner Algorithm A. We now introduce the inner algorithm A designed for estimating u0. It uses all data 
(xt, pt, yt) from the (k� 1)th episode to obtain an estimate ûk�1 for future pricing in the kth episode. For simplicity, 
we introduce its generic version with [T0] � {1, : : : , T0} representing the (k� 1)th episode horizon. Because yt is 
binary and invoked by xt, pt through P(yt � 1) � 1� F(pt� x⊤t u0), we obtain

P(yt � 1) > 1
2 , if F�1 1

2

� �

+ x⊤t u0� pt > 0;

P(yt � 1) � 1
2 , if F�1 1

2

� �

+ x⊤t u0� pt � 0;

P(yt � 1) < 1
2 , if F�1 1

2

� �

+ x⊤t u0� pt < 0:

8
>>>>>>>>><

>>>>>>>>>:

Therefore, we can form a classification problem with responses yt and covariates (1, x⊤t , pt)
⊤ for t ∈ [T0]. It admits a 

Bayes decision boundary {u : F�1 1=2( ), u⊤0 , � 1
� �

u � 0}, which involves the unknown parameter u0. Thus, we can 
estimate the linear decision boundary and extract an estimate of u0 by applying a linear classification method. In 
this paper, we use logistic regression, which yields an estimate (ĉ, b̂⊤, b̂) of F�1 1=2( ), u⊤0 , � 1

� �
up to a constant fac

tor. Thus, �b̂=b̂ is a natural estimate of u0. Similar to Javanmard and Nazerzadeh [32], we assume ‖u0‖1 is upper 
bounded by a known constant W. By projecting �b̂=b̂ onto the ℓ1-ball Θ � {u ∈ Rd0 : ‖u‖1 ≤W}, we can obtain our 
final estimate denoted as û � ProjΘ(�b̂=b̂). Such a projection has a closed-form solution as ProjΘ(�b̂=b̂) �

Tρmin
(�b̂=b̂), where Tρ(v) � sgn(v)( |v | � ρ)+ is the soft-thresholding operator and ρmin �min{ρ :

�
�
�

�
�
�Tρ(�b̂=b̂)

�
�
�

�
�
�
1 

≤W}. Here, the assumption of constant W is purely for theoretical purposes, and our policy is very robust to the 
value of W in the empirical studies. The generic inner algorithm A is summarized in Algorithm 2.

Figure 2. (Color online) An illustration of cutting total time horizon utilizing the doubling trick. 
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Algorithm 2 (Generic Inner Algorithm A)
1: Input: {(xt, pt, yt)}t∈[T0], W
2: Use logistic regression to obtain the minimizer

(ĉ, b̂⊤, b̂) � arg min
(c, β⊤, b)

XT0

t�1
log(1 + exp((2yt � 1)(c, β⊤, b)(1, x⊤t , pt)

⊤
)):

3: Estimate u0 by û � ProjΘ(�b̂=b̂), where Θ � {u ∈ Rd0 : ‖u‖1 ≤W}.

Under the same assumption of a known upper bound W of ‖u0‖1, RMLP and RMLP-2 in Javanmard and Nazerza
deh [32] estimate u0 via the maximum likelihood type of method by assuming some knowledge on F. In compari
son, our approach achieves robust u0 estimation without knowledge of a potentially complex-shaped F. It is worth 
mentioning that the logistic regression used in Algorithm 2 can be replaced by other linear classification methods, 
for example, large-margin classifiers (Wang et al. [50]). We choose logistic regression for its simplicity and superior 
numerical performance.

2.2.3. Inner Algorithm B. Next, we introduce the inner algorithm B designed for setting prices. Taking ûk�1 
obtained by inner algorithm A as an input, it sequentially sets prices for all time periods in episode k. For ease of 
presentation, we introduce a generic version by using û to represent ûk�1 and T0 to represent the length of the epi
sode k.

Based on our model in Section 2.1, the knowledge of the expected reward p(1� F(p� x⊤t u0)) plays a critical role 
in deciding the best price at time t. Given the current estimate û, we need to evaluate {p(1� F(p� x⊤t û))} over 
p ∈ (0, pmax). Here, we assume there is a known upper bound pmax of our pricing problem. This assumption is very 
mild in real applications and is also used in Javanmard and Nazerzadeh [32] and Chen and Gallego [13]. By the con
dition ‖xt‖∞ ≤ 1, we have p� x⊤t û ∈ G(û) � [�‖û‖1, pmax + ‖û‖1]. Therefore the evaluation of the expected reward is 
reduced to evaluate 1� F on G(û). When F is Lipschitz continuous and no other global smoothness is assumed, it is 
sufficient to evaluate 1� F on several well-chosen discrete points in G(û) to leverage the finite data for better pric
ing. In this paper, we utilize the discretization idea (Kleinberg and Leighton [37]) to cut G(û) into d same-length sub
intervals with the set of their midpoints M � {m1, : : : , md}. Here, d is a parameter that possibly depends on the 
horizon length T0. When T0 is large, it is reasonable to set a larger d for a denser discretization and, hence, larger 
exploration spaces. We leave the detailed discussion on the choice of d to the theoretical analysis of DIP in Section 3. 
Our aim is then to dynamically set prices and evaluate 1� F on M.

Toy Example (Discretization). We introduce a toy example to better illustrate our pricing policy. We couple each 
part of our pricing strategy with its corresponding realization in this toy example. All quantities that are introduced 
in our pricing policy for this specific example are displayed in Figure 3. Consider a two-dimensional covariate 

Figure 3. An illustration of inner algorithm B via Toy Example. 
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xt � (0:3, 0:2)⊤ at time t. Assume we have an estimation û � (1, 1)⊤ and pmax � 4. Then, the interval for discretiza
tion is G(û) � [�‖û‖1, pmax + ‖û‖1] � [�2, 6] represented by the black solid line in Figure 3. If d � 4, we discretize 
G(û) into subintervals [�2, 0], [0, 2], [2, 4], and [4, 6]. Their midpoints m1 ��1, m2 � 1, m3 � 3, m4 � 5, represented 
by blue hollow triangles on the black line in Figure 3, form the set M � {�1, 1, 3, 5}. We continue this example 
later.

To achieve the mutual reinforcement of pricing and evaluation of 1� F on M, we restrict the set price pt at time t 
into a carefully constructed candidate set St � {mj + x⊤t û | j ∈ [d], mj + x⊤t û ∈ (0, pmax)}. The key feature for any price 
p ∈ St is that p� x⊤t û exactly equals a midpoint in M. We now illustrate why pricing in St and evaluation of 1� F 
on M can enhance each other. For any price p �mj + x⊤t û ∈ St, we can leverage our current knowledge of 1� F(mj)

to obtain an estimate of its expected reward p(1� F(p� x⊤t u0)) as p(1� F(p� x⊤t û)) � p(1� F(mj)). Thus, a better 
evaluation of 1� F on M improves our pricing decision from St. On the other hand, when we set one price pt �

mj + x⊤t û from St, we observe a binary response yt ~ Ber(1� F(mj + x⊤t û� x⊤t u0)) ≈ Ber(1� F(mj)), which then 
improves our knowledge of 1� F(mj). Upon this observation, we say that we pull arm j at time t if we set 
pt �mj + x⊤t û. Then, pulling arm j yields more knowledge for 1� F on mj. Thus, we define the available arm set at 
time t as Bt � {j ∈ [d] : ∃p ∈ St such that p �mj + x⊤t û}, which varies over time as x⊤t û changes over time.

Toy Example (Continued, Construct Candidate Sets). We construct the candidate sets St based on the discretized 
set M � {m1 ��1, m2 � 1, m3 � 3, m4 � 5}. As x⊤t û � 0:5, we obtain St � {mj + x⊤t û |mj + x⊤t û ∈ (0, pmax)} � {m2 + 0:5, 
m3 + 0:5} � {1:5, 3:5} because m1 + x⊤t û ��0:5 and m4 + x⊤t û � 5:5 are out of the range (0, pmax). In this case, the 
arm set at time t is Bt � {j ∈ [d] : ∃p ∈ St such that p �mj + x⊤t û} � {2, 3}.

Restricted on St, there is a clear trade-off between exploration and exploitation for our pricing problem. A pure 
exploration tends to pull less-pulled arms in Bt and may set many suboptimal prices, whereas a pure exploitation 
may continuously pull suboptimal arms because of a lack of knowledge of other arms. To balance between explora
tion and exploitation, we utilize the principle of optimism in the face of uncertainty (Lattimore and Szepesvári [38]) to 
construct an upper confidence bound, which calls for both an estimation ESTt(1� F(mj)) for 1� F(mj) and a confi
dence radius (CR) CRt(1� F(mj)) of this estimation at the beginning of time t. We can accomplish this goal using all 
the past data yielded by pulling arm j. We leave the specific forms of ESTt(1� F(mj)) and CRt(1� F(mj)) to the next 
section as they emerge naturally from the perturbed linear bandit formulation of our single-episode pricing problem. 
Then, we select pt �mj + x⊤t û ∈ St with the largest optimism estimation ptUCBt(1� F(mj)), where UCBt(1� F(mj)) �

ESTt(1� F(mj)) +CRt(1� F(mj)) is an optimism estimation of 1� F(mj). This optimism estimation addresses the 
exploration–exploitation trade-off because a large UCB can result in either exploring a less-pulled arm with a large 
CR or exploiting an optimal arm with a large mean estimation.

Toy Example (Continued, Set Prices). As the available arm set is Bt � {2, 3} at time t, we only require knowledge of 
1� F(m2) and 1� F(m3) to compare between two candidate prices m2 + x⊤t û and m3 + x⊤t û. To emphasize this, in 
Figure 3, we only show {ESTt(1� F(mj))}j�2,3 (red hollow diamonds) and {CRt(1� F(mj))}j�2,3 (lengths of purple 
dashed line) at two midpoints m2 � 1 and m3 � 3. Summing them up leads to the optimism estimations {UCBt(1�
F(mj))}j�2,3 represented by blue hollow inverted triangles. Multiplying them by their corresponding prices m2 +

x⊤t û � 1:5 and m3 + x⊤t û � 3:5, we obtain their optimism expected reward estimations represented by red hollow 
inverted triangles, which are used to form our pricing decisions. Based on the illustration in Figure 3, we set the 
price pt � 3.5, that is, m3 + x⊤t û, because 1:5UCBt(1� F(m2)) < 3:5UCBt(1� F(m3)).

We summarize the generic inner algorithm B for one episode in Algorithm 3.

Algorithm 3 (Generic Inner Algorithm B)
1: Input: (arrives over time) covariates {xt}t∈[T0], û, discretization number d, and other inputs required to con

struct the specific forms of {UCBt(1� F(mj))}j∈[d].
2: Cut the interval G(û) � [�‖û‖1, pmax + ‖û‖1] into d same-length intervals and denote their midpoints as 

m1, : : : , md.
3: For time t � 1, : : : , T0, do
4: Construct the candidate price set St � {mj + x⊤t û | j ∈ [d], mj + x⊤t û ∈ (0, pmax)};
5: Determine the arm set Bt � {j ∈ [d] : ∃p ∈ St such that p �mj + x⊤t û};
6: Calculate UCBt(1� F(mj)) for j ∈ Bt in (2);
7: Calculate jt ∈ argmaxj∈Bt(mj + x⊤t û)UCBt(1� F(mj));
8: Set a price pt �mjt + x⊤t û and receive a binary response yt.
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2.2.4. Perturbed Linear Bandit. In this section, we first introduce a PLB framework and then show that our single- 
episode pricing problem can be formulated as a PLB. Furthermore, the proposed M-LinUCB for PLB is shown to be 
equivalent to the inner algorithm B with a specific UCB construction.

We say that the reward Zt, the parameter jt, and the action set At form a perturbed linear bandit with a pertur
bation constant Cp if Zt � 〈jt, At〉 + ηt with any selected action At ∈At and ‖js� jt‖∞ ≤ Cp for any s, t. Here, ηt is a 
sub-Gaussian conditional on the filtration F t�1 � σ(j1, A1, Z1, : : : , jt, At). Note that the condition on the linear para
meters jt’s implies the existence of a j∗ such that ‖jt� j∗‖∞ ≤

Cp
2 for any t. Thus, the linear parameter jt regulating 

the reward structure at time t can be viewed as a perturbation from a “central” parameter j∗. Note that the linear 
bandit (Abbasi-Yadkori et al. [1], Agrawal and Goyal [2], Chu et al. [19]) is a special zero-perturbation PLB with jt �

j∗ for any t.
Now, we introduce the perturbed linear bandit formulation of our single-episode pricing problem with time 

horizon [T0]. We first specify the linear parameter jt � (1� F(m1 + x⊤t û� x⊤t u0),: : : ,1� F(md + x⊤t û� x⊤t u0))
⊤
∈ Rd, 

which turns out to regulate the reward at time t as shown in Lemma 1. Note that, for any price mj + x⊤t û ∈ St, the jth 
element of jt is exactly the purchasing probability of the customer faced with this price. Further define j∗ �
(1� F(m1),: : : ,1� F(md))

⊤ as the central parameter. Then, by Lemma 1, jt’s can be viewed as perturbations from j∗. 
It is interesting to see that the perturbations indeed originate from the difference between the estimate û and the 
true u0 and may change with covariates xt’s.

To transform price setting into action selection, we define a mapping from any price p �mj + x⊤t û ∈ St to a vector 
Qt(p) ∈ Rd with Qt(p)j �mj + x⊤t û and Qt(p)i � 0, ∀i ≠ j. Namely, Qt maps a price p �mj + x⊤t û ∈ St to a vector with 
a single nonzero jth element p. Further define a vector set At � {Qt(p) : p ∈ St}. Then, Qt is a one-to-one mapping 
from St to At, and Q�1

t is well-defined. To proceed, we define the price–action coupling by At �Qt(pt). Then, setting 
any price pt ∈ St means selecting an action At �Qt(pt) ∈At and vice versa. With all these preparations, the following 
Lemma 1 rigorously forms our single-episode pricing problem into a perturbed linear bandit given Assumption 1
that assumes a Lipschitz F.

Assumption 1. F is Lipschitz with the Lipschitz constant L.

Lemma 1. Under Assumption 1, ‖jt� j∗‖∞ ≤ L‖û� u0‖1, ∀t ∈ [T0]. Moreover, under the price–action coupling At �

Qt(pt), the reward Zt � pt1{vt≥pt}, the parameter jt, and the action set At form a perturbed linear bandit with a perturbation 
constant 2L‖û� u0‖1.

Lemma 1 implies that the perturbation is proportional to the ℓ1 estimation error ‖û� u0‖1. If the estimate û � u0, 
then jt � j∗ with zero perturbation, and the PLB reduces to a classic linear bandit. On the other hand, a worse û 
implies a larger perturbation, thus incurring more difficulty in solving the PLB and potentially leading to a larger 
regret.

According to Lemma 1, Zt � A⊤t jt + ηt with ‖jt� j∗‖∞ ≤ L‖û� u0‖1, and hence, j∗ can be estimated from historical 
data. Similar to that in linear bandit (Lattimore and Szepesvári [38]), we employ the ridge estimator 
ĵt�1 � Vt�1(λ)

�1Pt�1
s�1 AsZs, where Vt�1(λ) � λI+

Pt�1
s�1 AsA⊤s with the tuning parameter λ > 0. Note that, in Algo

rithm 3, we use jt to denote the arm pulled at time t. Let U t�1,j � {s : 1 ≤ s ≤ t� 1, js � j}. Because Ass have a single 
nonzero element and Vt�1(λ) is a diagonal matrix, we obtain the explicit form for the jth element of ĵt�1 as 
ĵt�1,j �

P
s∈U t�1,j p

2
s ys

� �
= λ+

P
s∈U t�1,j p

2
s

� �
, which serves as the estimate ESTt(1� F(mj)) for 1� F(mj) � j∗j .

In order to construct a UCB using the principle of optimism in the face of uncertainty, we then compute a confi
dence radius CRt(1� F(mj)) of the preceding estimate ESTt(1� F(mj)) � ĵt�1,j. The common confidence set Ct(βt) �

{j ∈ Rd : ‖j� ĵt�1‖
2
Vt�1(λ) ≤ βt} yields a marginal confidence radius for each ĵt�1,j. Because of the simple form of 

Vt�1(λ), we obtain an explicit form CRt(1� F(mj)) �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
βt=(λ+

P
s∈U t�1,j p

2
s )

q
. Then, we obtain the UCB as required in 

inner algorithm B,

UCBt(1� F(mj)) �

P
s∈U t�1,j p2

s ys

λ+
P

s∈U t�1,j p2
s
+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
βt

λ+
P

s∈U t�1,j p2
s

s

: (2) 

Motivated by the linear bandit (Lattimore and Szepesvári [38]), we specify the parameter βt � β
∗
t � p2

max 

1∨ 1=pmax
ffiffiffiffiffiffi
λd
√
+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 log 1=δ( ) + d log (dλ+ (t� 1)p2
max)=dλ

� �q� �2� �

. Here, 1� δ is the confidence level, and δ � 1=T0 

is a typical choice (Lattimore and Szepesvári [38]) with known T0. Thus, we use δ � 1=(2k�2ℓ2) for the application of 
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inner algorithm B to the kth episode with a projected length of 2k�2ℓ2. Now, we are ready to present the full version 
of our DIP policy as Algorithm 4. In summary, DIP well-organizes two subalgorithms across episodes, one apply
ing classification for linear parameter estimation and the other adapting the UCB idea for online pricing.

Algorithm 4 (DIP for Contextual Dynamic Pricing)
1: Input: (at time 0) α1,α2, pmax, C,λ, W
2: Input: (arrives over time) covariates {xt}t∈[T]
3: For time t � 1, : : : ,ℓ1(� α1), do
4: Set a price pt randomly from (0, pmax) and receive a binary response yt.
5: For episodes k � 2, 3, : : : , n(� n(T,α1,α2)), do
6: Apply inner algorithm A with the input data {(xt,pt,yt)}Pk�2

i�1 ℓi+1≤t≤
Pk�1

i�1 ℓi 
and W to obtain the estimate ûk�1;

7: Apply inner algorithm B on the coming sequential covariates {xt}Pk�1
i�1 ℓi+1≤t≤

Pk
i�1 ℓi 

with the estimate ûk�1, dis

cretization number dk � C⌈(2k�2ℓ2)
(1=6)
⌉, and the UCB construction in (2) with βt � β

∗
t and δ � 1=(2k�2ℓ2).

Remark 1. In this remark, we provide the computational complexity of Algorithm 4. In each episode k, the inner 
algorithm A consists of a logistic regression and a projection with the complexity of O(ℓkd0) and O(d0), respec
tively. Thus, it contributes a complexity of O(d0T + d0 log T) �O(d0T) in the total horizon. The inner algorithm B 
in episode k first conducts a discretization with the complexity of O(dk) �O(ℓ1=6

k ). At its tth iteration, by saving 
related quantities, the update of constructed upper confidence bounds for {1� F(mj)}j∈[dk]

takes only O(1) time 
complexity. The calculation of the estimated linear valuation component x⊤t ûk has a complexity of O(d0). The calcu
lation of optimism expected revenues of the candidate prices and the selection of an optimal candidate price take 
another O(dk) time complexity. Thus, the overall complexity of inner algorithm B in episode k is O(d0ℓk + dkℓk)

�O(d0ℓk + ℓ
(7=6)
k ). Thus, inner algorithm B contributes a total complexity of O(d0T+T(7=6)) to the entire horizon. 

Hence, the computational complexity of the whole DIP policy is O(d0T +T(7=6)).

Finally, we mention that the proposed perturbed linear bandit framework can be used beyond the contextual 
dynamic pricing problem. This motivates us to introduce a general algorithm called M-LinUCB in Algorithm 5 for 
the perturbed linear bandit framework Zt � 〈jt, At〉 + ηt when any potential action has only one nonzero element. 
For any vector v with a single nonzero element, denote δ(v) as the index of this nonzero element. For instance, 
δ((0, 1, 0)⊤) � 2. Further define B̃t � {δ(a) : a ∈At} as the nonzero index set of all potential actions at time t and B̃′t �
{δ(As) : s ∈ [t� 1]} as the nonzero index set of all past selected actions. Then, bridged by the PLB formulation of our 
single-episode pricing problem, there exists a close connection between M-LinUCB and inner algorithm B formal
ized in Lemma 2.

Algorithm 5 (M-LinUCB for Perturbed Linear Bandit)
1: Input: (arrives over time) action sets At, λ, {βt}t∈[T0]

2: For t � 1, : : : , T0, do
3: Determine B̃t � {δ(a) : a ∈At} and B̃′t � {δ(As) : s ∈ [t� 1]}.
4: If B̃t ⊈ B̃

′

t, do
5: Choose an arbitrary At ∈At such that δ(At) ∉ B̃

′

t.
6: If B̃t ⊆ B̃

′

t, do
7: For a ∈At, do
8: Calculate LinUCBt(a) �maxj∈Ct(βt)

〈j, a〉, where Ct(βt) � {j ∈ R
d : ‖j� ĵt�1‖

2
Vt�1(λ) ≤ βt} and ĵt�1 � Vt�1(λ)

�1 

Pt�1
s�1 AsZs, Vt�1(λ) � λI+

Pt�1
s�1 AsA⊤s .

9: Choose At ∈ arg maxa∈At LinUCBt(a).
10: Receive a reward Zt.

Lemma 2. Applying Algorithm 5 to the PLB formulation of our single-episode pricing problem with βt � β
∗
t � p2

max 

1∨ 1=pmax
� � ffiffiffiffiffiffi

λd
√
+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 log 1=δ( ) + d log (dλ+ (t� 1)p2
max)=dλ

� �q� �2� �

yields Algorithm 3 using the UCB construction 

(2) with βt � β
∗
t .

Therefore, inner algorithm B (Algorithm 3) can be viewed as the “projection” of M-LinUCB onto our single- 
episode pricing problem. In the remaining part of this paper, without further specifications, we refer to Algorithms 
3 and 5 as the ones mentioned in Lemma 2.
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3. Theory
In this section, we establish the regret bound for the proposed DIP policy. As DIP divides the total time horizon 
into episodes, we conduct the regret analysis on a single episode and then merge them together. For the single- 
episode pricing problem, our discretization procedure leads to a natural decomposition of the regret into discrete 
and continuous parts. One key technical contribution is the proof of the discrete-part regret, which is shown via the 
equivalent regret of M-LinUCB for the corresponding PLB formulation.

In our single-episode regret analysis, we denote the total horizon as [T0] and use û as the input for Algorithm 3. 
In Algorithm 3, we restrict the price in a discrete candidate set St, thus yielding a “discrete” best price p̃∗t in St, that 
is, p̃∗t ∈ arg maxp∈St p(1� F(p� x⊤t u0)). Thus, the regret rt in (1) can be rewritten as

p̃∗t(1� F(p̃∗t � x⊤t u0))� pt(1� F(pt� x⊤t u0))
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

rt,1

+p∗t(1� F(p∗t � x⊤t u0))� p̃∗t(1� F(p̃∗t � x⊤t u0))
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

rt,2

:

The first part rt,1 is the reward loss with respect to the discrete best price p̃∗t . The second part rt,2 is the regret of set
ting p̃∗t . Denote their sums as RT0,1 �

PT0
t�1 rt,1 and RT0,2 �

PT0
t�1 rt,2, which are the discrete- and continuous-part 

regrets, respectively. Then, bounding the cumulative regret RT0 � RT0,1 +RT0,2 reduces to bounding RT0,1 and RT0,2 
separately. As discussed before, the discrete-part regret is shown to be the same as the regret under the equivalent 
PLB formulation and then investigated by utilizing newly developed regret bounds for the PLB setting. For the 
continuous-part regret, we adopt the following second order smoothness assumption on the general expected reve
nue function defined as fq(p) � p(1� F(p� q)). Note that the single-step continuous-part regret rt,2 can then be 
rewritten as fx⊤t u0(p∗t)� fx⊤t u0(p̃

∗
t).

Assumption 2. There exists a constant C such that, for any q � x⊤u0 and x ∈ X , we have fq(p∗(x))� fq(p) ≤ C(p∗(x)
�p)2, ∀p ∈ [0, pmax].

Assumption 2 requires that the reward difference between the overall best price and any other price can be 
bounded by a constant multiplying their quadratic difference. Given the global continuity of F, Assumption 2 indi
cates a uniform control of fx⊤u0(p) over the local neighborhoods of the maximizers p∗(x). In Proposition 1, by apply
ing Taylor’s theorem with the Lagrange remainder, we provide a sufficient condition for Assumption 2. 
Nevertheless, Assumption 2 does not require any global smoothness of F. The derived regret bound still holds for 
locally erratic Fs as long as Assumption 2 is satisfied.

Proposition 1. Assumption 2 holds if F′′(·) is bounded on [�‖u0‖1, pmax + ‖u0‖1].

Now, we present our main result in the following Theorem 1. It provides a regret upper bound over the entire 
horizon.

Theorem 1. Under Assumptions 1 and 2, the DIP policy yields the expected regret

E(RT) � Õ(T2=3) + 4pmaxL
Xn

k�2
2k�2ℓ2E‖ûk�1 � u0‖1:

Theorem 1 demonstrates how the estimation errors ‖ûk� u0‖1 affect the regret upper bound for DIP policy. If the 
estimates {ûk}k∈[n�1] are perfectly accurate, the second term vanishes, and the overall regret is Õ(T2=3). In general, 
if E‖ûk� u0‖1 �O(ℓ�αk ) for some 0 < α ≤ 1=2, we can conclude that 

Pn
k�2 2k�2ℓ2E‖ûk�1� u0‖1 �O(T1�α) by the dou

bling construction. Then, the overall regret is Õ(T(2=3)∨(1�α)). Because we use the adaptive pricing data in the pre
vious episode to estimate u0, it is challenging to derive the exact rate of convergence for the estimation. In spite 
of this theoretical difficulty, we conduct a simulation study in Section 4.1 to numerically demonstrate that the 
convergence rate of ‖ûk� u0‖1 is between 1/3 and 1/2, and hence, the Õ(T2=3) overall regret bound can be practi
cally achieved.

Remark 2. At first glance, the obtained regret upper bound is worse than the typical Ω(T1=2) lower bound in linear 
bandit (Lattimore and Szepesvári [38]) and dynamic pricing with the known noise distribution (Javanmard and 
Nazerzadeh [32]). However, we point out that our problem involves both unknown linear parameter u0 and 
unknown noise distribution F. We conjecture that our obtained regret upper bound is close to the lower bound in 
our setting. To see it, Chen and Gallego [13] consider a nonparametric pricing problem and prove an Ω(T(d0+2)=(d0+4))

lower bound under some additional smoothness assumptions, where d0 is the dimension of the nonparametric 
component. With a one-dimensional nonparametric component F in our pricing problem, their results suggest an 
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Ω(T3=5) lower bound, which is higher than the typical Ω(T1=2) rate. However, their constructed instances do not fit 
into our considered pricing problem with an additional linear structure x⊤u0. The additional unknown u0 makes the 
lower bound derivation harder, and we leave it for future work.

Remark 3. After our initial submission, there are two recent papers (Fan et al. [25], Xu and Wang [55]) consider
ing a similar dynamic pricing problem with the unknown noise distribution. In Fan et al. [25], the authors con
sider an m(≥ 2) times continuously differentiable F and propose an explore-then-commit type of policy that 
achieved an Õ(T(2m+1)=(4m�1)) regret upper bound. Both our assumed Lipschitz and second order smoothness 
assumptions are satisfied under their condition of twice continuously differentiable F (m � 2). Thus, even under 
stronger assumptions, their proved Õ(T5=7) regret for m � 2 is still worse than our main Õ(T2=3) regret term. In 
Xu and Wang [55], the authors consider an adversarial setting and propose a D2-EXP4 policy that achieves a 
regret of Õ(T3=4). By fully utilizing the smoothness of the noise distribution, our proposed DIP policy achieves 
an improvement to Õ(T2=3) for our main regret term.

In the next two sections, we first do some preparations by developing the regret bounds for the general perturbed 
linear bandit. Then, we provide a proof outline for our main Theorem 1 by utilizing the proved PLB results.

3.1. Regret Bounds for Perturbed Linear Bandit
We consider a PLB setting with the reward model Zt � 〈jt, At〉 + ηt, which satisfies the following conditions.

Condition 1. For any t ∈ N+ and a ∈At, | 〈jt, a〉 | ≤ 1.

Condition 2. For any t ∈ N+, ‖jt‖∞ ≤ C1.

Condition 3. For any t ∈ N+ and a ∈At, ‖a‖0 � 1 and ‖a‖2 ≤ amax for a constant amax.

Condition 4. For any t ∈ N+, ηt is a 1-conditionally sub-Gaussian random variable, that is, E(exp(αηt) |F t�1) ≤
exp α2=2

� �
for any α ∈ R, where F t�1 � σ(j1, A1, Z1, : : : , jt, At).

Remark 4. Condition 1 ensures a constant regret upper bound at each time and is commonly adopted in linear 
bandit (Lattimore and Szepesvári [38]). Condition 2 assumes the bounded infinity norm of jt. Condition 3
implies there is only one nonzero element bounded in absolute value for any action. This holds for our PLB for
mulation becausee any action vector Qt(p) with p �mj + x⊤t û ∈ St has a single nonzero jth element p ∈ (0, pmax). 
Condition 4 implies that the noise is sub-Gaussian conditional on all the past parameters, actions, and rewards as 
well as the current parameter and action. The perturbed linear bandit formulation of our single-episode pricing 
problem satisfies all these conditions.

We develop the following Lemma 3 to establish the regret bound for such a PLB setting.

Lemma 3. Consider the PLB satisfying Conditions 1–4 with a perturbation Cp. With probability at least 1� δ, Algorithm 

5 with βt � β̃t � 1∨ C1
ffiffiffiffiffiffi
λd
√
+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 log 1=δ( ) + d log (dλ+ (t� 1)a2
max)=dλ

� �q� �2 
has the regret bound

RPLB
T0
≤ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2dT0β̃T0
log dλ+T0a2

max
dλ

� �s

+ 2amaxCpT0 + 2d:

Proof Sketch. We construct a new sequence of “shadow” linear parameters {j̇t}2≤t≤T0 and control the “pseudo- 
regret” 

PT0
t�2 〈j̇t, Ȧt�At〉 with the sublinear order Õ(

ffiffiffiffiffi
T0
√
), where Ȧt � arg maxa∈At〈j̇t, a〉. By proving closeness of 

j̇t and jt for all t, we can bound the difference between the true regret and pseudo-regret by a linear term propor
tional to the perturbation Cp. The detailed construction of {j̇t}2≤t≤T0 and rigorous proofs are deferred to Supple
mental Section A. w

As shown in Lemma 3, the second term in the regret upper bound is proportional to the perturbation Cp. When 
Cp � 0, this linear term vanishes, and the final regret bound matches that of the classic linear bandit. Reversely, the 
perturbed linear bandit becomes intractable when Cp is too large. Interestingly, by Lemma 1, this perturbation con
stant in the PLB formulation of our single-episode pricing problem is proportional to ‖û� u0‖1. This matches the 
intuition that a larger estimation error leads to more revenue loss. Lemma 3 is of independent interest because it 
provides an informative regret bound for the PLB problem.
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Remark 5. Our proposed PLB can be viewed as a misspecified linear bandit (Foster et al. [27], Lattimore et al. 
[39], Pacchiano et al. [44]) with a misspecification level ɛ∗ � amaxCp=2, where the latter has a general regret of 
Õ(d

ffiffiffiffiffi
T0
√
+ ɛ∗

ffiffiffi
d
√

T0). In comparison, by leveraging Condition 3, we prove a regret of Õ(d
ffiffiffiffiffi
T0
√
+ amaxCpT0) �

Õ(d
ffiffiffiffiffi
T0
√
+ ɛ∗T0) for the simple M-LinUCB algorithm under our PLB setting. To see it, the key in our proof is the 

closeness property ‖j̇t� jt‖∞ ≤ Cp of our constructed shadow parameters j̇t � V+t�1
Pt

s�1 AsA⊤s js. The proof of this 
property relies on the fact that the Moore–Penrose inverse V+t�1 of Vt�1 � Vt�1(0) is a diagonal matrix, which is a 
direct result of the condition ‖a‖0 � 1 in Condition 3. Importantly, this 

ffiffiffi
d
√

improvement is critical for us to derive 
the final regret rate of our pricing problem.

Remark 6. Nonstationary linear bandits (NLBs) (Cheung et al. [18], Russac et al. [48], Zhao et al. [56]) also allow 
changing linear parameters jt but design policies to adapt to the smooth variations BT0 �

PT0�1
t�1 ‖jt� jt+1‖2. Our 

PLB setting fits an NLB with linear variations BT0 �O(CpT0). The nonasymptotic results in Cheung et al. [18] and 
Zhao et al. [56] suggest a regret of Õ(B1=3

T0
T2=3

0 ) � Õ(C1=3
p T0), which is only valid for a range of Cp (exclusive of 

zero and dependent on T0). In contrast, our proven Lemma 3 provides regret behaviors with a fixed T0 for 
Cp→ 0, that is, approaching the classic linear bandit result Õ(

ffiffiffiffiffi
T0
√
) linearly with Cp, which is essential for further 

derivations in our pricing problem. Though some intermediate results in Cheung et al. [18] and Zhao et al. [56] 
also yield regrets for fixed T0 and Cp→ 0, they suggest worse regrets, such as Õ(wCpT0 + (T0=

ffiffiffiffi
w
√
)) (w chosen 

from {1, : : : , T0}) and Õ(CpT2
0 +

ffiffiffiffiffi
T0
√
) when applied to our PLB setting, which inevitably deteriorates the perfor

mance guarantee for our pricing problem.

Next, we prove an Ω(CpT0) regret lower bound for the PLB with a perturbation Cp. This implies that the linear 
term in the upper bound is inevitable because of the potentially adversarial perturbations. Define PB(j̃, Cp) � {j ∈ Rd :

‖j� j̃‖∞ ≤ (Cp=2)} as a parameter set with respect to a central parameter j̃ and a perturbation quantification Cp.

Proposition 2. For any PLB algorithm A∗, any j̃ with all positive elements, and (Cp=2) <mini∈[d]j̃i, there exists a PLB 
with parameters (j1, : : : , jt, : : : ) and action sets (A1, : : : ,At, : : : ) satisfying jt ∈ PB(j̃, Cp), ∀t ∈ N+ and a constant C0 only 
dependent on j̃ such that

E(RPLB
T0
(A∗)) ≥ C0CpT0, ∀T0 ∈ N+:

3.2. Proof Outline for Theorem 1
To prove Theorem 1, we first prove regret upper bounds for each episode and then merge them together. In the fol
lowing Proposition 3, we prove a high-probability regret bound as well as an expected regret bound for our pricing 
policy in a single episode. Specifically, the expected regret is bounded by a sublinear Õ(T2=3) term and a linear term 
proportional to the ℓ1 estimation error ‖û� u0‖1. As DIP applies Algorithm 3 to the kth episode with û � ûk�1, we 
obtain Theorem 1 by applying Proposition 3 to each episode.

Proposition 3. Under Assumptions 1 and 2 with probability at least 1� δ, applying Algorithm 3 on the single-episode 
pricing problem yields the total regret RT0 satisfying

RT0 ≤ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2dT0β
∗
T0

log dλ+T0p2
max

dλ

� �s

+ 4pmaxL‖û� u0‖1T0 +C0
T0

d2 + 2dpmax:

Moreover, by setting δ � (1=T0), d � C⌈T1=6
0 ⌉ and taking the expectation, we have E(RT0) � Õ(T2=3

0 ) + 4pmaxL‖û� u0‖1T0.

It remains to prove the regret bound in Proposition 3 for the single-episode pricing problem. We conduct the 
analysis of both the discrete- and continuous-part regret and then combine them together.

3.2.1. Discrete-Part Regret. By the PLB formulation in Lemma 1 and the one-to-one correspondence between St 
and At, the best action in At is A∗t �Qt(p̃∗t). Therefore, the selected action At �Qt(pt) yields the regret p̃∗t(1� F(p̃∗t �
x⊤t u0))� pt(1� F(pt� x⊤t u0)) for the PLB, which matches the discrete-part regret rt,1. Moreover, Lemma 2 shows 
that Algorithm 5 yields Algorithm 3 under the price–action coupling. Therefore, we can investigate the regret of 
Algorithm 5 on the PLB to quantify the discrete-part regret of Algorithm 3.

We now apply the general regret bound of Lemma 3 to the PLB formulation of our single-episode pricing problem 
to bound the discrete-part regret. After scaling the rewards, linear parameters and noises by 1=pmax as j̃t �

(1=pmax)jt, Z̃t � (1=pmax)Zt, η̃t � (1=pmax)ηt, we obtain the transformed model Z̃t � 〈j̃t, At〉 + η̃t with the perturbation 
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constant C̃p � 2L‖û� u0‖1=pmax, which satisfies Conditions 1–4 with C1 � 1=pmax and amax � pmax. On the other hand, 
we can prove that applying Algorithm 5 with βt � β

∗
t on the original PLB is equivalent to applying it with βt � β̃t �

(1=p2
max)β

∗
t on the transformed model with their regrets admitting a scaling relationship. By formalizing this rea

soning, we obtain the following Proposition 4.

Proposition 4. Under Assumption 1 with probability at least 1� δ, applying Algorithm 3 on the single-episode pricing 
problem yields a discrete-part regret RT0,1 satisfying

RT0,1 ≤ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2dT0β
∗
T0

log dλ+T0p2
max

dλ

� �s

+ 4pmaxL‖û� u0‖1T0 + 2dpmax:

Proposition 4 provides an upper bound of the discrete-part regret on a single episode. The first term is sublinear as 
Õ(

ffiffiffiffiffi
T0
√
), whereas the second term is linear in T0 and proportional to the estimation error ‖û� u0‖1, which invokes 

the perturbation in our PLB formulation. The third term is dominated by the first two terms as we further specify d 
to yield a best trade-off between discrete and continuous parts of the regret.

3.2.2. Continuous-Part Regret. We now discuss how to derive a bound for the continuous-part regret under 
Assumption 2. By our discretization approach, {mi + x⊤t û}i∈[d] are a sequence of points that “cover” [0, pmax] with 
equal adjacent distance (pmax + 2‖û‖1)=d. Because St � {mj + x⊤t û | j ∈ [d], mj + x⊤t û ∈ (0, pmax)} and p∗t ∈ (0, pmax), there 
must exist a ṗt ∈ St close enough with p∗t such that their expected reward difference is O 1=d2� �

according to 
Assumption 2. Because the discrete best price p̃∗t outperforms ṗt, the unit continuous-part regret rt,2 of setting p̃∗t 
satisfies rt,2 �O 1=d2� �

. Thus, the continuous-part regret RT0,2 in the entire horizon is of the order O T0=d2� �
.

3.2.3. Combination. We can prove that the right-hand side of the regret result in Proposition 4 has a simpler 
form of Õ(d

ffiffiffiffiffi
T0
√
)+ 4pmaxL‖û� u0‖1T0. Thus, the overall regret for the single episode is Õ d

ffiffiffiffiffi
T0
√
+ (T0=d2)

� �
+ 4pmax 

L‖û� u0‖1T0. By setting the discretization number d in the order of T1=6
0 , we obtain the single-episode regret bounds 

in Proposition 3.

4. Simulation Study
We demonstrate the performance of our DIP policy on synthetic data sets and compare it with RMLP and RMLP-2 
proposed by Javanmard and Nazerzadeh [32]. The implementation details of DIP, RMLP, and RMLP-2 are pro
vided in Supplemental Section B.

Let Φ(µ,σ2) denote the CDF of N(µ,σ2) distribution. For the first six examples, we consider a scalar covariate 
xt ~i:i:d:Unif[0, 1] and set u0 � 30. The CDF F of the noise distribution is designed as follows, in which Examples 1 and 
5 are motivated from the real application in Section 5. Their probability density functions are shown in Figure 4.

Example 1. The true F � (1=2)Φ(�4, 6) + (1=2)Φ(4, 6).

Example 2. The true F � (1=3)Φ �6, (π2=3)
� �

+ (1=3)Φ �1, (π2=3)
� �

+ (1=6)Φ 1, (π2=3)
� �

+ (1=6)Φ 6, (π2=3)
� �

.

Example 3. The true F � (1=4)Φ �7, (π2=3)
� �

+ (1=4)Φ �3, (π2=3)
� �

+ (1=4)Φ 3, (π2=3)
� �

+ (1=4)Φ 7, (π2=3)
� �

.

Example 4. The true F(·) � F̃(· +mean(F̃)), where F̃ � (1=3)Φ �3, (π2=3)
� �

+ (2=3)Φ 3, (π2=3)
� �

.

Example 5. The true F(·) � F̃(· +mean(F̃)), where F̃ � (1=2)Φ �5, (25π2=3)
� �

+ (1=2)Φ 5, (4π2=3)
� �

.

Example 6. The true F � (1=2)Φ(�2:5, 5) + (1=2)Φ(2:5, 5).

As shown in Figure 4, Examples 1–3 have symmetric PDFs with two, three, and four modes, respectively, 
whereas Examples 4 and 5 have asymmetric PDFs with two modes and one single mode, respectively. Example 6
has two peaks but is close to a single-mode normal distribution.

We compute the mean and confidence interval of cumulative regrets over 100 replications. As shown in 
Figure 5, DIP outperforms both RMLP and RMLP-2 for Examples 1–5. In Example 6, RMLP and RMLP-2 per
form better than DIP as the noise distribution F is close to a normal distribution, which aligns with their model 
assumption. Because of the misspecification of F, the cumulative regrets for both RMLP and RMLP-2 exhibit 
clear linear patterns. The performance deterioration of RMLP and RMLP-2 becomes severe in Example 5, in 
which the PDF is asymmetric and has heavy tails. On the other hand, our DIP policy gradually learns F in the 
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pricing process and achieves sublinear cumulative regrets in all examples. These examples illustrate the sever
ity of noise distribution misspecification of RMLP and RMLP-2 and, hence, the superior performance of the pro
posed robust pricing policy.

Next, we show that DIP can still outperform RMLP and RMLP-2 even when the noise distribution F is standard 
Gaussian Φ(0, 1), which satisfies the log-concave condition assumed by RMLP-2. In the following Examples 7–9, we 
set F �Φ(0, 1) and vary the context dimension d0, the true u0, and the context generation distribution.

Example 7. Dimension d0 � 3, u0 � (10, 10, 10)⊤, xt ~i:i:d:Unif[0:3, 1]3.

Example 8. Dimension d0 � 10, u0 � (3,: : : ,3)⊤, xt ~i:i:d:Unif[0:1, 1]10.

Example 9. Dimension d0 � 10, u0 � (3,: : : ,3)⊤, xt ~i:i:d:Unif[0, 1]10.

We show the log cumulative regrets of DIP, RMLP, and RMLP-2 averaged over 100 replications in Figure 6. We 
use log regret because the scale difference between the regrets of these three methods are large for Examples 7–9
mainly because of the unsatisfactory performance of RMLP. For all three methods, we estimate u0 in each of six epi
sodes and use it for pricing in subsequent episode. Figure 7 shows boxplots of estimation errors ‖ûk� u0‖2 for all six 
episodes k � 1, : : : , 6 and all three methods in Examples 7–9. In Examples 7 and 8, DIP outperforms RMLP-2 with 
more stable parameter estimations. In Example 9, the RMLP-2 is relatively stable and delivers better performance 
than DIP. Note that RMLP performs the worst because it specifies F as ex=(ex + 1) with the variance π2=3, which is 
quite different from that of the true F. Moreover, we find that RMLP-2 sometimes obtains poor estimates and, thus, 
incurs large regrets. For instance, as shown in the middle plot of Figure 7 representing Example 8, there is one repli
cation in which RMLP-2 has an estimation error more than 80 in episode 2. Then, in this replication, the regret of 
RMLP-2 in the subsequent episode 3 can be large because of this unsatisfactory estimate. We conjecture that the 
unstable estimations of RMLP-2 in Examples 7 and 8 are due to its produced singular price-covariate data in each 
episode. In Supplemental Section C, we provide a more detailed discussion on this phenomenon. As a comparison, 
DIP well-balances exploration and exploitation and sets dispersed prices at the beginning of each episode. This 
helps to generate a healthier data structure leading to more stable estimates.

Figure 4. (Color online) PDFs of the noise distribution in Examples 1–6. 
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4.1. ‘1 Estimation Error Convergence
Our proven regret upper bound in Theorem 1 involves a term related to ‖ûk � u0‖1. In our Examples 7–9 of simula
tions, we plot the ℓ2 estimation errors ‖ûk� u0‖2. In this section, we plot in Figure 8 the ℓ1 estimation errors calcu
lated from each episode of Example 7 to investigate its convergence rates. The left panel of Figure 8 shows a clear 
decaying trend starting from the second episode. In addition, in the right panel, we plot the log2 average estimation 
errors over the log2 number of data samples for episodes 2–6. Through a linear fit, we extract a slope of –0.354, 
which implies that the real decaying rate is between �1=2 and �1=3, and hence, α ∈ (�1=2, �1=3). Thus, the 
Õ(T2=3) overall regret bound in our theorem can be practically achieved.

4.2. Heavy-Tailed Noise Distributions
Next, we evaluate the performance of our DIP policy on heavy-tailed noise distributions. Let Cauchy(µ,σ2) denote 
the CDF of the Cauchy distribution with location parameter µ and scale parameter σ. We consider the three- 

Figure 5. Regret comparisons of DIP, RMLP, and RMLP-2 in Examples 1–6. 
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Figure 6. Log regret comparisons of DIP, RMLP, and RMLP-2 in Examples 7–9. 
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dimensional covariates xt ~i:i:d:Unif[0:01, 1]3 and set u0 � (10, 10, 10)⊤. The CDF F of the noise distributions are designed 
as follows.

Example 10. The true F � Cauchy(0, 1).

Example 11. The true F � Cauchy(0, 3).

Example 12. The true F � (1=2)Cauchy(�5, 6) + (1=2)Cauchy(5, 6).

We repeat 100 times for each example and plot the average accumulative regret curves and their confidence 
bounds in Figure 9. We can see that DIP outperforms both RMLP and RMLP-2 in all these three simulation 
settings.

4.3. Sensitivity Tests
Our DIP policy relies on three hyperparameters λ, pmax and C. Here, λ is the regularization parameter of the regres
sion estimation procedure, pmax is an upper bound of any potential optimal prices, and C is the constant in the dis
cretization number d � C⌈T1=6

0 ⌉. In all our simulation settings, we set λ � 0:1, pmax � 30, and C � 20. In this section, 
we conduct sensitivity tests to see how their values affect the overall performance of DIP. Here, we use the simula
tion setting in Example 1 as an illustration. In Figure 10, we include two other values for each of the three para
meters, that is, λ � 0:01, 1, pmax � 25,35, C � 15, 25. The results demonstrate that DIP is relatively robust to the 
values of these three parameters.

Figure 7. (Color online) Estimation errors ‖θ̂k �θ0‖2 of DIP, RMLP, and RMLP-2 over six episodes in Examples 7–9. 

Figure 8. (Color online) ℓ1 estimation error ‖θ̂k �θ0‖1 of DIP in Example 7. 
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5. Real Data Analysis
We explore the efficiency of our proposed DIP policy on a real-life auto loan data set provided by the Center for 
Pricing and Revenue Management at Columbia University. This data set was first studied by Phillips et al. [46] and 
further used by Bastani et al. [5] and Ban and Keskin [4] to evaluate different dynamic pricing algorithms.

The data set records 208,085 auto loan applications received by a major online lender in the United States from 
July 2002 through November 2004. For each application, we observe some loan-specific features, such as the date of 
application, the term and amount of loan requested, and the borrower’s personal information. It also includes the 
monthly payment required by the lender, which can be viewed as the pricing decision. Note that it is natural to set 
prices according to the marketing environment, product features, and customer characteristics in online auto lend
ing. Finally, it records whether the price was accepted by the borrower, that is, the customer’s binary purchasing 
decision in our model.

We adopt the feature selection result used in Bastani et al. [5] and Ban and Keskin [4] and only consider the fol
lowing four features: the loan amount approved, FICO score, prime rate, and the competitor’s rate. We scale each 
feature to [0, 1] through dividing them by the maximum. The price p of a loan is computed as the net present value 
of future payment minus the loan amount, that is, p �Monthly Payment ×

PTerm
τ�1 (1+Rate)�τ�Loan Amount. We 

use $1,000 as a basic unit and 0.12% as the rate value here, an approximate average of the monthly London inter
bank offered rate for the studied time period.

Note that it is impossible to obtain customers’ real online responses to any dynamic pricing strategy unless it was 
used in the system when data were collected. Thus, we follow the off-policy learning idea used in Bastani et al. [5] 
and Ban and Keskin [4] to first estimate the customer choice model using the entire data set and use it as the ground 
truth to generate the willingness to pay of each customer given any prices. We utilize a two-step estimation proce
dure to estimate the unknown u0 and F. In particular, we use logistic regression to estimate u0 and then use the ker
nel density estimation idea to estimate F. The details of this estimation procedure are deferred to Supplemental 
Section D. The estimated noise PDF for the United States is shown in the left plot of Figure 11. The estimated û0 and 
F̂ are treated as the true parameters for the customer choice model yt ~ Ber(1� F̂(pt� x⊤t û0)). Note that these true 

Figure 9. Regret comparisons of DIP, RMLP, and RMLP-2 in Examples 10–12. 
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Figure 10. (Color online) Sensitivity tests of DIP policy with respect to λ, pmax and C. 
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parameters are not used in any dynamic pricing algorithm, but only used to calculate the regret for any set prices 
and evaluate the performance of any pricing policies.

We compare DIP with RMLP-2 and RMLP policies developed in Javanmard and Nazerzadeh [32]. Because the 
dimension is low and the coefficients are nonsparse, we apply the RMLP-2 and RMLP policies without regulariza
tion. As required by DIP, a known upper bound pmax of the best prices for all applications is set as 30. We randomly 
sample 216 applications from the total 208,085 for 50 times and apply DIP, RMLP-2, and RMLP policies to each of 
the 50 replications and then record the average cumulative regrets.

As shown in the right plot of Figure 11, RMLP displays the worst performance, and our proposed DIP policy out
performs RMLP-2 when the time period passes above 104. It enjoys more advantages as the time period grows 
larger. Moreover, DIP shows a clear sublinear cumulative regret, whereas RMLP-2 displays a linear pattern. This is 
because DIP can gradually learn the unknown distribution F. Furthermore, DIP enjoys a more accurate and stable 
u0 estimation because it invests a certain amount in price explorations and generates a more well-distributed data 
set. In comparison, RMLP-2 sets the prices by applying a deterministic mapping function to a linear combination of 
the covariates, which might yield a singular data structure that leads to unsatisfactory estimates. This phenomenon 
is similar to that shown in Examples 7 and 8 of the synthetic experiments.

Next, we evaluate the performance of DIP, RMLP-2, and RMLP by focusing on data in California, which has 
nearly 30,000 applications. We apply the same estimation procedure for u0 and F on the California data set to obtain 
the true customer choice model for California. The estimated PDF of the noise distribution for the California data 
are shown in the left panel of Figure 12. It has a multimodal pattern and does not satisfy the log-concave condition 
required by RMLP-2 and RMLP. This illustrates our motivation that the noise distribution could be complex in real 
applications. We record the average cumulative regrets for 50 random samplings of 214 applications. As shown in 
the right panel of Figure 12, DIP again achieves a sublinear regret and outperforms that of RMLP-2 eventually. Sim
ilar to the previous case, RMLP performs worse than DIP and RMLP-2.

Figure 12. (Color online) The left plot shows the PDF of the noise distribution for the California data, and the right plot shows 
the regret comparison of DIP, RMLP, and RMLP-2. 
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Figure 11. (Color online) The left plot shows the PDF of the noise distribution for the whole U.S. data, and the right plot shows 
the regret comparison of DIP, RMLP, and RMLP-2. 
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6. Conclusion
In this paper, we consider a customer choice model generated by a linear valuation function with the unknown 
coefficient parameter and unknown noise distribution. A new pricing policy DIP is proposed to tackle this problem 
through simultaneously learning both the unknown parameter and the unknown distribution. In theory, we show 
that, even when the noise distribution is unknown, our DIP policy is still able to achieve a sublinear regret bound. 
We apply DIP on various synthetic data sets and a real online auto loan data set and demonstrate its superior per
formance when compared with state-of-the-art pricing algorithms.

There are a few interesting future directions. In this paper, we focus on nonsparse coefficients with an unknown 
noise distribution. It would be interesting to extend our policy to the high-dimensional setting with a sparse linear 
choice model. We can also extend the linear choice model to a more flexible semiparametric model (Bickel et al. [9]) 
to allow both a parametric component and a nonparametric component on the covariates. Furthermore, it would be 
interesting to incorporate the considerations of fairness and welfare (Kallus and Zhou [34]) into our dynamic pric
ing regime.
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