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Abstract

High dimensional linear models are commonly used in practice. In many ap-
plications, one is interested in linear transformations 8' x of regression coefficients
B € RP where x is a specific point and is not required to be identically distributed
as the training data. One common approach is the plug-in technique which first
estimates 3, then plugs the estimator in the linear transformation for prediction.
Despite its popularity, estimation of B8 can be difficult for high dimensional problems.
Commonly used assumptions in the literature include that the signal of coefficients 3
is sparse and predictors are weakly correlated. These assumptions, however, may not
be easily verified, and can be violated in practice. When 3 is non-sparse or predictors
are strongly correlated, estimation of 3 can be very difficult. In this paper, we pro-
pose a novel pointwise estimator for linear transformations of 3. This new estimator
greatly relaxes the common assumptions for high dimensional problems, and is adap-
tive to the degree of sparsity of 3 and strength of correlations among the predictors.
In particular, B can be sparse or non-sparse and predictors can be strongly or weakly
correlated. The proposed method is simple for implementation. Numerical and the-
oretical results demonstrate the competitive advantages of the proposed method for
a wide range of problems.
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1 Introduction

With the advance of technology, high dimensional data are prevalent in many scientific
disciplines such as biology, genetics and finance. Linear regression models are commonly
used for the analysis of high dimensional data, typically with two important goals: pre-
diction and interpretability. Variable selection can help to provide useful insights on the
relationship between predictors and the response, and thus improve the interpretability of
the resulting model. During the past several decades, many sparse penalized techniques
have been proposed for simultaneous variable selection and prediction, including convex
penalized methods (Tibshirani, [1996; Zou and Hastie, 2005, as well as nonconvex ones
(Fan and Li, 2001; Zhang, 2010).

In this paper, we are interested in estimating linear transformations 3"z of regression
coefficients 3 = (B1,-++,3,)" € RP for high dimensional linear models, where z € R? is
a specific point and is not required to be from the same distribution as the training data.
It relates to both coefficient estimation and prediction. For instance, sometimes we are
interested in estimating 8, and i — B2, where both of them can be expressed as 8z
by taking z as (1,0,...,0)" and (1,—1,0,...,0)", respectively. On the other hand, for a
typical prediction problem, = follows the same distribution as the training data.

To estimate @'z, a natural and commonly used solution is to estimate 3 first by B and
construct the estimator BTx, which can be viewed as the plug-in one. The efficiency of the
plug-in estimator depends on that of B Despite its simplicity, obtaining a good estimate
of B may not be easy in high-dimensional problems. If 3 is sparse (i.e. the support of 3,
supp(3), is small), sparse regularized techniques such as the LASSO can be used to obtain a
consistent estimator of 3. Desirable theoretical and numerical results have been established

for various sparse penalized methods in the literature (see, for example, Bickel et al | (2009);



Raskutti et al.| (2011)); Bithlmann and Van De Geer| (2011)); Negahban et al. (2012)). These
regularized methods assume that 3 is a sparse vector, which is difficult to verify in practice
and may fail when supp(8) has a magnitude compatible with the sample size n or larger
than n. The problem becomes more difficult when the predictors are strongly correlated
since most sparse regularized methods work well on weakly dependent predictors.

We use a small simulation to illustrate the adverse effects of the sparsity degree of
B on the plug-in estimator of 8"« in the linear regression model , where X; follows
the normal distribution N(0,%), 8 = 50(1;0,0;7},0)T and py = rop, and X = (0y;), 04 =
0.5/"=9!/7 with n controlling the correlation strength among the predictors. A larger value
of ry implies a denser 3. The setup of dy and other parameters are presented in Setting
1 of Section [5.1 The average testing errors of the plug-in estimators and our proposed
PointWise Estimator (PWE) are shown in Figure We can see that the errors of the

plug-in estimators deteriorate quickly as ry increases. In contrast, our proposed estimator

is much less sensitive to the change of the degree of non-sparsity.
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Figure 1: The effect of non-sparsity of 8 on plug-in estimators in terms of prediction error,
where p = 1000. “A-lasso” and “lasso” denote the results of plug-in estimators with 3
being adaptive LASSO and LASSO respectively, and PWE denotes the proposed method.

In typical prediction problems, a number of papers studied the convergence of prediction
for various estimators, including LASSO, ridge, partial least squares, overparametrized
estimators, and many others under different settings (Dalalyan et al., 2017 [Zhang et al.,

2017; Dobriban and Wager, 2018; Bartlett et al., |2020| etc.). It has been observed that

LASSO and related methods are less affected by the correlation strength among predictors



in prediction than in estimation problems (Hebiri and Lederer| 2013} |Dalalyan et al., |2017)).
However, for some sparse vectors for x such as x = (1,0---,0)", the estimation of B x
becomes that of the first coefficient and these methods are more affected by the correlation
strength than prediction (Zou and Hastie, 2005)). All the above mentioned methods consider
the plug-in estimator and the average prediction error.

Different from these existing methods, we focus on 3"z for a specific fixed z (x #0)
rather than on estimating 3 and the average prediction error, where x is not required
to have the same distribution as the training data. The line of works that are closely
related to ours are those on the hypothesis testing and confidence intervals of 8"z in high
dimensional linear models (van de Geer et al., 2014; |Zhang and Zhang, 2014; Javanmard
and Montanari, 2014; Lu et al.,[2017; Cai and Guo, 2017; |Zhu and Bradic, [2018], etc.). Most
of these papers considered the case of B being ultra-sparse with [supp(8)| < +/n/logp. (Cai
and Guo (2017)) considered the broader range where |supp(3)| has an order no more than
n/logp. Zhu and Bradid| (2018) considered the hypothesis testing and confidence intervals
of 3" 2 where 3 is allowed to be non-sparse by introducing a sparse auxiliary model, which
can be restrictive. For example, if the predictor vector follows the normal distribution
N(0,Y) and the sparse auxiliary model holds for any = € R? simultaneously, then ¥ must
be equal to I,,. Moreover, the estimator of B 'z obtained from the confidence interval of Zhu
and Bradic (2018)), despite allowing 3 to be dense, works only when p/n — 0 in prediction
problems. Although these results have optimality in the minimax sense (Cai and Guo), 2017;
Zhu and Bradic, 2018]), they can be conservative and are actually determined by the most
difficult case. In this paper, we introduce the sparsity of eigenvalues (or approximately low
rank) of some matrices, which is shown to be complementary to the sparsity of 3. The
most difficult case is actually the situation where both types of sparsity fail.

Our key observation is that we can directly target at v, := Bz, treating it as an



unknown parameter for estimation. We refer to the resulting estimate as the pointwise
estimator. To this end, we propose a unified framework to leverage multiple sources of
information. In many cases, the eigenvalues of the covariance matrix decrease dramatically,
due to correlations among the predictors, which will be referred as sparsity of eigenvalues
in the following descriptions. This type of sparsity is generally viewed as an adverse factor,
making the estimation of B more difficult. Contrary to this popular view, we show that
the sparsity of eigenvalues is beneficial in our framework and serves as a good complement
to the sparsity of 3. In practice, two different kinds of test points x are of particular
interest: (1) = is a given sparse vector, and (2) x is a random vector having the same
distribution as the training data (i.e. the prediction problem). We give detailed results on
these two special cases and compare our estimator with several other methods. The main
contribution of this paper is that we propose a transformed model under a new basis, which
provides a unified way to utilize different sources of information.

First, to utilize the sparsity of eigenvalues, we propose an estimator based on a basis
consisting of eigenvectors of a specific matrix constructed from the training data. When
the eigenvalues decrease at a certain rate, our estimator performs well for both kinds of
test points z regardless of the sparsity of 8. On the other hand, if eigenvalues decrease
slowly (or covariance matrix close to I,), this estimator is less efficient; and consequently
is inferior to LASSO when 3 is indeed sparse. In fact, the pointwise estimator using the
sparsity of eigenvalues is complementary to LASSO.

Second, to leverage the information of 3, such as 3 being sparse, and the sparsity of
eigenvalues jointly, we construct another basis based on an initial estimator B It is shown
that two types of information help each other: a faster decreasing rate of eigenvalues
allows B converging in a slower rate, and vice versa. When the test point x is a sparse

vector, we show that the pointwise estimator performs well. The case of x being random



as in prediction problems is more complicated in the sense that the sparsity degree of
B should be taken into account. Hence, we consider a subset S; of {1,---,p} satisfying
S1 D supp(3), where S; can be estimated from data. Specifically, we consider two cases: (1)
Let Sy = {1,---,p}, which allows B to be sparse or dense. When sparsity of eigenvalues
holds, our pointwise estimator performs well. When the eigenvalues are less sparse (or
covariance matrix is close to 1,), our pointwise estimator performs similarly to the existing
results on dense 3 in the literature. (2) When B is sparse, a smaller |Si| leads to a
better estimator. If a good initial estimator B and a good S are available, our estimator’s
performance is similar to that of LASSO.

The rest of this paper is organized as follows. In Section 2, we propose our pointwise
estimator for the linear transformation 3"z in high dimensional linear models. Theoretical
properties are established in Sections 3 and 4. Some simulated examples and real data
analysis are presented in Section 5, followed by some discussions in Section 6. Proofs of
the theoretical results are provided in the Supplementary Materials.

Notations. We first introduce some notations to be used for the paper. For any sym-
metric positive semidefinite matrix A € R™*™  denote the eigenvalues of A in a decreasing
order as A\;(A) > -+ > A\, (A), and the smallest nonzero eigenvalues as A\, (A). For any
matrix A € R™>*™2 A (A), Amin(A) are the maximum and minimum singular values of
A, respectively. For any vector v = (v, -+ ,v,)" € R™, ||v| and ||v||; denote the £y and ¢,
norms of v, respectively, and ||v||s = ax. |v;; the support set of v is denoted as supp(v).
In addition, define ||v||a = VuT Av for any positive semidefinite matrix A € R™*™. For
two sequences {a,} and {b,}, both a, < b, and a, = O(b,) imply lim, a, /b, < ¢ for some
constant ¢ < oo; both a,, 2 b, and a,, = €(b,) indicate that lim, a, /b, > ¢; a, < b, means
that a, has exactly the same order as b,,. For any integer i, let e; denote the vector of zeros

except the i1th element being 1.



2 A unified framework for pointwise estimation

Suppose (X;,Y;);1 <i < n, are i.i.d. from the following linear regression model
Yi=XB4+e; 1<i<n, (2.1)

where ¢; € R satisfies E(¢;) = 0 and var(e;) = 02 < oo, X; € R? is independent of ¢;
satisfying E(X;) = 0, and cov(X;) = ¥ = (0y;). Without loss of generality, we assume
that o; = 1;i = 1,...,p, and that var(¥;) < co. Denote X = (Xy,---,X,)" € R™P,
Y = (Vy,---,Y,)" € R and € = (€1, -+ ,€,)" € R". Then the model can be written as
Y = X3 +e¢. Here the dimension p can be much larger than the sample size n. Let x € R?
be a given point at which we intend to estimate 8'z. We assume that X.Tx # 0 for some
1 <4 < n, which can be checked numerically. Let Sy = supp(3) of cardinality sy = |Sp|.
Since a non-sparse 3 and the case where > might not be of full rank will be considered, we

make the following identifiability condition and discuss some useful facts.

e When ¥ is not of full rank, we assume that @3 falls into the column space of ¥ for

identifiability, due to the following reasons. Denote X; = X!/ 2X,:1 < i < n, where X;

satisfies £(X;) = 0 and cov(X;) = I,. Let P be the projection matrix on the column
space of ¥ and Qy = I, — Py. Then X8 = X,/ 2?28 = X¥Y?(Py + Qx)B8 =
X, Py3. Thus the parameter can be set as Py, which falls into the column space

of 3.
e The magnitude of 3;; j € Sy, depends on the sparsity degree sg. Note that AT, (3)]|3]]* <

B'EB < var(Y;) < oo, and consequently that ||8]|? < var(Y;)/Af (). Assume

min

that (;’s with j € Sy are of the same magnitude. Then it follows that |5;| <

~

[soAt (8)/var(Y;)]7YV2, j € Sp. Particularly, if \f

min min

(X) =< 1, |B;|'s are of order

351/2, which can be small when s, is large.

Next we first introduce the transformed model based on a set of basis to leverage
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multiple sources of information in Section [2.1, The construction of basis is discussed in

Section 2.2 A penalized estimator and a pointwise estimator are proposed in Section [2.3]

2.1 The transformed model

For any fixed z € R?, let P, = xz' /||z||*> be the projection matrix on the space spanned
by x and @), = I, — P, be the projection matrix on the complementary space. Recall that

Vo = BTa: and denote BQz = .. Then one can write

XB = XP,B+XQuB = Xa -2 Blle| 2 + vVils = itz -y + ViiGs,  (22)
where a, = 7, - ||lz]| 2| Xz||n~? € R, 2, = Xz/||Xz| € R" and (g = n"'/2X3, € R"
Here a, is a scaled version of 7, such that the £3 norm of the predictor y/nz, equals \/n.
Estimating v, is equivalent to that of «,, since given a,, one can compute 7, directly
from data (X, z). Then we get Y = X3+ ¢ = \/nz,a, + /n(sg + ¢, where (g is a nuisance
parameter vector. Note that (g is a non-sparse vector in general, particularly when X;’s are
1.1.d. variables; thus we have n+ 1 non-sparse parameters with the sample size n. To handle
the difficulty, we introduce a set of basis I' € R"*" using different sources of information
such that (g can be expressed sparsely under the set of basis.

The construction of I' depends on the information at hand and will be elaborated in
Section . For an invertible matrix I' € R"*", of which the columns are of unit length (i.e.
I’ =1,1<j <n), we denote \/n(g = (v/nI')(I''(g) = \/n'6, where = T'"'(g € R".
Although I' here can be any invertible matrix, as shown later, the case we are interested in
is I" being (approximately) orthogonal. We hope that 8 is (approximately) sparse when I"

is chosen properly. Combining these together, we have the transformed linear model
Y = Vnz, oy +/nl0 + ¢ =Zo + ¢, (2.3)

where Z = \/n(z,,T) € R0 o = (a,,0")"T € R""!. The parameter 8 is treated as a



n-dimensional nuisance parameter vector. As shown later in Section [2.2] I" plays a critical
role in this model, providing a flexible way to leverage different sources of information. A
naive choice is I' = [,, without using additional information, which will be discussed further
in Section F of Supplementary Materials. In contrast to p parameters of the original linear
model, the transformed model has only n + 1 unknown parameters that are (approx-
imately) sparse. Without loss of generality, we assume that both |a,| and consequently
I¢s]| are bounded, given x and X. This assumption is mild and holds in probability when
x and X;’s are i.i.d. from N(0,%). Detailed discussions are presented in Section A of the
Supplementary Materials.

Denote by &, a generic estimator of «,. Then 7, can be estimated by 4, = &, -
||| Xz||"'n'/2. Given x, noting that n~*||Xxz||? =, ||z||%, where ||z||s = V2T Sz, we see
that the quantity ||z||?/||z||s affects the convergence rate of the estimator 4,. We investigate
the magnitude of ||x||?/||z||s, and consider two typical settings for clarity. Recall that z is
a given vector, which may or may not have the same distribution as X;.

Example 1. Let = be a sparse vector with the support set S, = supp(z) and the
cardinality |S,| := s,. Examples of such z include z = e; or z = e; — ¢;. Denote X;g, =
(Xij,j € Sz). If the eigenvalues of Yg, 5, = cov(X;s,) are both upper and lower bounded,
and ||z]| = O(1), then it follows that ||z||2/|z||s = |jz|| = s&/>.

Example 2. Let x be a random vector as in prediction problems. For simplicity, we

assume x and X;’s are i.i.d. variables from N (0, ). As shown in Section [1.2] it follows

2]/ lllls; = /Ttr(2)]2/tr(52) == M, (2.4)
in probability. Moreover, it holds that 1 < My < pY/2 and M2 can be viewed as the
effective rank of X. Particularly, if some eigenvalues of ¥ are much larger than the rest
(e.g. the largest eigenvalue has the order p), then My < 1; if ¥ is close to I,, then My is

close to p'/? and 7, is close to p'/2ay.



Clearly, the magnitude of ||z||?/||z||s with a sparse x in Example 1 can be smaller than
that of the dense x in Example 2. If x is not sparse, the sparsity of 3 can help as well. This
observation motivates us to consider estimators utilizing the information of the sparsity

degree of B. For any subset S; C {1,--- ,p} such that Sy C S, we observe that

Yo =Bz =B§xs, = Bsxs, =B Ts, = Vag,
where xg, and Bg, are the subvectors of x and 3, respectively, and g, is a p-dimensional
vector obtained by setting zge = 0 in x. Thus, instead of estimating ., one can equivalently
consider prediction at the point Zg,, which is a sparse vector when |S;| is small. Clearly,
one can set S; = {1,--- ,p}, and then Yzs, becomes v,. Estimating vz, provides a way to
take the sparsity degree of 3 into account. In practice, one can choose different S;’s and

select the best one by CV, as shown later in Section [2.3] In Section 4, we will compare our

method with several existing methods in details for Examples 1 and 2.

Remark 1. In Example 2 above, a smaller set Sy s preferred. However, the true support
set Sy is unknown. When sqg is small, choosing a set Sy that covers Sy is feasible. For
example, S1 can be taken as the support set of the LASSO estimator, or constructed by

some screening methods (Fan and Lv, 2008).

2.2 Construct basis utilizing multiple sources of information

Next we discuss the construction of I'. For a positive semidefinite matrix A € RP*P denote
A(A) = (A1(A), -+, Ap(A)) the vector of eigenvalues of A in a decreasing order. We say

that A(A) is approximately sparse when only a few eigenvalues are much larger than the
p
average p~! " \;(A), and the detailed requirements on the decreasing rate of eigenvalues

=1

will be elaborated later. In practice, different sources of information may be available. For

clarity of the presentation, we focus on two different sources of information.
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Source I. We use the information of 3 through an initial estimator B Note that a good
estimator is available in some cases. In particular, if 3 is sparse, then B can be obtained
from that of LASSO, or other sparse regression methods. However, an estimator B may
not be good enough in many cases especially when 3 is less sparse and p is larger than n.

Source II. We utilize the dependence among predictors. Note that A(n 1XQ,X") =
A(n1XQ,.Q,.XT) that equals the first n elements of A(n'Q,X"XQ,), of which the pop-
ulation version is A(Q,YXQ,). When predictors are correlated such that A(n 1XQ,X") is
(approximately) sparse, a key observation is that by choosing a suitable I, the parameter
0 can be (approximately) sparse regardless 3 being sparse or not (details are referred in
Section . Thus it is feasible to estimate the parameters well in the transformed model
23).

Denote C; = {B is sparse}, Co = {A(n"'XQ,X") issparse}, and let C = C¢ N CS.
The sparsity in Cy is complementary to that in C;. Both C; and Cy are ideal cases with
good estimators available (we will introduce estimators for Case Cy later), and the case C
can be the least favorable case. There are intermediate cases between C; and C, when the
degree of sparsity of B increases gradually. A similar argument applies between Cy and
C. To handle these complicated cases, it is natural to use these two different sources of
information jointly. In fact, our approach works well under the complementary condition in
Section [3.3 where stronger requirements on one type of sparsity weaken those of the other.
It is possible that both C; and Cs; hold simultaneously, where our estimators leverage both
sources of information.

Denote the spectral decomposition of n7'XQ, X" as Feg\I/FeTg, where T'eg = (Ueg1,- -,
Uegn) € R™ ™ are eigenvectors and ¥ = diag(¢y, - ,,) is the diagonal matrix of the
associated eigenvalues in a deceasing order. Denote (g = (g/|¢all = XBq, /X8, | When

an initial estimator B is available, C_Ig can be estimated by ¢ - To utilize two different sources

11



of information jointly, or in other words to use both ¢ 5 and the columns of I'eg, we construct
I' by replacing one of the columns (say for example the ith column) of I'ey by C_[,, that is,

A

[' =T(8), defined as

F(B) = (éfgaueg,j?j 7& Z)7 (25)

which is the empirical version of ['(3) = (g, Ueg.j,j # i). More discussion on this process
is provided in Proposition [T and Remark [2] below.

Recall that a,, associated with predictor y/nz,, is the parameter of interest in the
transformed model that has predictors \/n(z,, ). It is desirable to avoid the collinearity
between z, and other predictors in the transformed model. Hence, we assume that B
satisfies that ¢ 5 # 2, which can be checked from data, and require the matrix (2,, teg j, j #

i) being invertible. Note that it is also required that I'(3), i.e. (fB, Ueg j, J 7 1), is invertible.

Proposition 1. Suppose that B satisfies ]zgfﬂ] > 0 and EB # 2. Then for at least one
i€ {l,---,n}, it holds that both matrices (EB, Ueg,j, J 7 1) and (2y, Ueg,j, J 7 1) are invertible
or equivalently that min{|ueTgﬂ-gT@|7 |Ugg i22|} > 0.

In principle, we can replace any teg; by f[; as long as min{|u§g7i§[§|, |ngsz|} > 0. In our

numerical studies, the strategy in Remark 2| below is used to further reduce collinearity.

Remark 2. Reducing the collinearity between z, and other predictors in the transformed
model makes the estimator of o, more stable. In our simulation studies, we replace Ueg i, by

1.z

C_B with ig = arg max [ug, ;2,|, and the resulting I'(3) is observed nonsingular numerically.

1<i<n

Naturally, one can just use the information in Source II by setting I' = I'e;. A good
property for this choice is that it depends only on X without requiring an initial estimator
B and is free of any assumption on the sparsity of 3. However, this choice may not be ideal
if a reasonably good initial estimator B can be obtained. We summarize the constructions

of T" used in this paper in Table [I| below.
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Table 1: Candidates of I" for the pointwise estimator

1. I' = I'eg, where I'¢; € R™" contains the eigenvectors of n1XQ, X",

2. T = F(B) = (fﬁ,ung,j # 1), where iy can be taken as any ¢ satisfying the
condition in Proposition [1] or selected by the procedure in Remark 2, when an
initial estimator 3 is available.

In Section 3, we show that when A(n™'XQ,X") is sparse enough, 6 = T' (g is ap-
proximately sparse without any sparsity assumption on 3. An extreme case is % being a
low rank matrix, where 6 is exactly sparse with at most rank(X) + 1 nonzero elements. It
is worth pointing out that which elements of @ are large are generally unknown since 3 is
involved. When A(n~1XQ,XT) is less sparse, as discussed below, B will provide additional
information and @ can still be approximately sparse.

When I' = F(,B), the sparsity of 8 also depends on the accuracy of B For the ideal case
that B = B, it can be shown that 8 = ['(B) "' xe; = (1,0,---,0)", and consequently 0
is a sparse vector. This argument still holds, if we replace (ueg ;, j # i) by any other vectors
such that I'(3) is invertible, implying that if we know 3, there is no need for additional
information. Consequently, if B is good, (Ueg,j,j # %) do not help much. When ﬁ is not
good enough (e.g. B is less sparse in particular) but A(n 'XQ,X") is sufficiently sparse,
using ueg;’s will compensate the low accuracy of B Thus both types of information can
help each other in our framework and the estimator becomes more robust to the underlying

assumptions. Details are provided in Section 3.

2.3 Penalized estimator and pointwise estimator

As discussed in Section , the parameters in the transformed model (2.3) can be ap-

proximately sparse if I' is constructed properly. Thus we consider the minimization of the

13



following objective function
Lir(a) =n""Y — Za|? + Pua(a), (2.6)

where P, x(a) = A|la|; is the ¢ penalty function used by LASSO, and A and I' are the
tuning parameters. The parameter A\ plays the same role as that for the usual regularized
estimator and can be selected by cross validation (CV). The selection of I will be elaborated
below. Since the ¢; penalty usually induces biases for coefficients of large absolute values,
to solve this problem, other nonconvex penalty functions, such as the SCAD (Fan and Li,

2001) or MCP (Zhang, 2010), can be used instead. Denote the minimizer as

N
ar = (G, 0 )' = arg min Lyr(o). (2.7)
a€Rn+1

Then we have 4, = d, - [|2[]?|| Xz |~ *n/2

Remark 3. Our approach involves eigenvalue decomposition of the matriz n ' XQ, X' €
R™™ with the computational complexity of the order O(n?), which can be a burden when
n is large. To reduce the complexity, the Divide-and-Conquer (DC) approach for handling
big data can be used (Zhang et all |2015). Simulation results based on DC are presented in

Section G.2 of the Supplementary Materials.

Next we briefly discuss the estimator in . First, the predictor Z in Model
involves the transformation matrix I', while in the classical model , the predictor is X,
of which each row represents a realization of the predictors. Second, unlike the classical
methods such as the LASSO, where the parameters are unknown constants, the parameter

a here involves (x, X, '), which makes the theoretical analysis challenging.

Remark 4. In the above arguments, we consider a single point x that may or may not be
from the same distribution as the predictor vector. However, if we are going to consider a
large number of test points {x;,i = 1, -+ 4} that are i.i.d. observations of X;, the bias

should be taken into account. Because FE(v,,) = E(B'xz;) = 0 and var(y,,) = 8’28 <
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var(Y1), there will be many ~y,,’s that are close to 0 and the corresponding estimators are
shrunken to 0 by the penalization, resulting in large biases in terms of the average estimation
error. There are many bias correction methods for LASSO and related penalized estimators
in the literature (Belloni and Chernozhukouv, |2015; |Zhang and Zhang, |201/, etc.). In our
simulation results for the prediction problem, the method of |Belloni and Chernozhukou

(2013) is applied.
For clarity, we briefly summarize the estimation procedure for a given I' as follows.

Algorithm 1: Estimator of 7, (or 7z, ) with given I

1. (Estimate a,) Solve the optimization problem ({2.6)), where the optimal A is chosen
~T
by CV; the corresponding parameter obtained is denoted as (&,,0 ).
2. (Bias-correction) This is an optional step. Denote S = supp(@) and I' ¢ the columns

of I with index S. Apply the OLS with responses Y and predictors Z = /n(z,,I" &)
to get the updated coefficient &, of y/nz,, which is a bias-corrected estimator of .

3. (Estimate ,) 7, is estimated by 4, = @&, - [|2||?||Xz|'n'/2.
4. (Alternative Steps 1-3) Replacing = by &g, in Steps 1-3, we get the estimator Vi, -
Step 2 is mainly applied for the setting in Remark [4] with a large number of testing
points that are i.i.d. observations as of the training data X;’s. For clarity, the pointwise
estimator obtained by Algorithm 1 is named based on the specific I used. There are many
estimators of B available for different settings in the literature, and can be used as an

initial estimator. Denote by Blasso and 3 the estimators of LASSO and ridge regression

ridge

A

respectively, and by 3,4 the overparameterized ridgeless OLS estimator using the Moore-
Penrose generalized inverse (Bartlett et al. 2020; Azriel and Schwartzman, 2020; Hastie
et al., 2022). We consider the estimators 4, in Algorithm 1 with I' being I'e, and I'(3) for
B € {Blasso, Bridge, Brdl}, and the resulting estimators are denoted as P.g, Plassos Pridge, Frdl

respectively. Now we propose a procedure to select I' adaptively. Denote by M a set of
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estimators, e.g. M = {Plasso, Pridge, Peg, Pra1} in Setting 1 of our numerical study. The best

estimator selected from M by the following CV procedure will be denoted as PWE.

Algorithm 2: Select I' by CV

1. Compute the CV error for estimators in M. Split randomly the whole data D of size
n into K parts, denoted as Dy, --- , Dg. For each method A € M, compute the CV

K
error, n ' Y. Y (92 — ;)% where 42 is estimated by A with data D\ D,
k=1 (z;,y;)€D
2. The method Ay in /\/kl with the minimum CV error is chosen to be the best one.

3. The final estimator of 7, is 47°.

For Example 1 in Section[2.T]where x is a sparse vector, we apply Algorithm 2 to get the
pointwise estimator. For the prediction problems in Example 2, since the sparsity degree
of 3 is unknown, we have two choices on the subset S;: (1) simply taking Sy = {1,--- ,p}
(i.e. estimate 7, directly); (2) estimating S; from data using LASSO or screening methods.
Given I', among the candidates of S, we can select the best one by CV, similar to Steps
1 and 2 of Algorithm 2. Note that x; should be replaced by Z;s,, which is defined in the
way similar to Zg,, when one computes the CV error in Step 1 of Algorithm 2. Moreover,

one can select both I' and S; simultaneously by CV.

3 Properties of the penalized estimator &,

Throughout our theoretical analysis, it is assumed that €;’s are i.i.d. from N(0,0?), and
(x,X) can be fixed or random and will be specified later. In this section, we present
theoretical properties of the regularized estimator &, in (22.7)), which lays a foundation for
properties of the estimator 4, in Section 4. To this end, we first establish results for a

generic invertible matrix I" with fixed (z,X) in Section , and then apply it to I'e; and

F(B) in Sections and , respectively.
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3.1 A general result on &, with a generic I' and fixed (z, X)

Recall that Z = /n(z,,T) in Model [2.3). Let v, = (1, =b])T/(14+-b] b,)"/? with b, = Tz,
It can be shown that v, is the eigenvector associated with the zero eigenvalue of n='ZTZ (see
proof of Theorem E.1 in Supplementary Materials). For any v = (vy,- -+ ,v,41)' € R*"L
denote |[v|g) = g |v;|% ¢ € [0,1]. It is worth noting that ||v||,) here is not the £, norm
of v that is deﬁn;d as ||v||, = ||'U||Z)q; and for ¢ = 1, they are the same. This notation
||v]| (g is convenient for our purpose, particularly for the discussions of the case with ¢ = 0
or g — 0.

For o = (a;,0")" and g € [0, 1], denote R, = ||a|(q) = |c|? + [|0] (4, Which measures
the sparsity of the parameter c. Particularly, when ¢ = 0, R, is the number of nonzero
elements in . Let the tuning parameter A = )\, := aoa\/m with ag > 2. We have

the following result on a generic invertible matrix I'.

Theorem 1. Assume that (x,X) are fized. Let I be a generic invertible matriz that may
depend on (x,X). Assume the following a-sparsity condition: R, < CA||v.||? for some

q € 10,1] and some constant C > 0. Then with probability 1 — C1n~3, we have
5
|, — | < Z)\n + C AR, - min{)\f/2R;1/2||Fsz||, 1T 2 [|oo ¥

where Cy, C\. are positive constants. Furthermore, when I' is a generic orthogonal matriz,

the a-sparsity condition can be simplified as R, < C'\L||T' Tz, ||3 for some constant C' > 0.

We make a brief discussion on the above result. First, note that ||I'7 2.]|ec < [T 24|,
where the latter equals 1 when I' is an orthogonal matrix. Further discussions are referred
to Section A of the Supplementary Materials. Second, since A, has the order \/W,
the bound of Theorem [I| does not explicitly depend on p, which is reasonable, since we
have only n + 1 parameters in the transformed model . Third, the bound given above

involves the sparsity of the parameter vector a in the transformed model instead of that
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of B, allowing B being sparse or non-sparse. As an application of Theorem [T, we present

the results for I" being I'e, and I'(3) respectively below.

Proposition 2. Suppose that (z,X) are fized. Let I' = I'ey. Assume that the ac-sparsity
condition R, < CA1||TT 2,||? holds for some constant C' > 0. Then it holds that |, — a,| <

C’)\Tlfq/QRé/Q with probability 1 — Cin=3, where C1,C" are positive constants.

Similar to Theorem [I} Proposition [2] allows 3 to be sparse or non-sparse. Due to a,
being bounded, we have R, < ||0||(g), which can be bounded as shown in Section 3.2, When

X;’s are random, a lower bound on ||Fengx||1 is given in Section E of the Supplement.

3.2 Sparsity of 8 and properties of &, when I' = I';,

We first show that for I' = [, if the eigenvalues of n 71X @, X" decrease at a certain rate, 6
will be approximately sparse; specifically ||6|| ) is bounded for some ¢ € [0, 1]. Then we give
the asymptotic results on &,. Recall 1)) > 1)y - -+ > 1, > 0 are the eigenvalues of n =X Q,X;
they are also the first n eigenvalues of n71Q, X "XQ,. For ¢ € [0,1] and k = 0,1,--- ,n—1,
let ¥, = (n—k)~1 %1 wf/(z_q) and ¢,1€/2(ﬂ) be the norm of the projected vector of 3 onto
i=k+
the subspace spanned by the eigenvectors of n™'Q,X"X(Q, associated with eigenvalues
Uity s Un, Ou(B) = 1/_Jq’n = 0, and &qﬁk is the average magnitude of the smallest n — k

eigenvalues. For any x, 79 > 0, denote H, (71, 79) = k=92 + [(n — l{:)xl]l*q/2 :Ug/2. The

following Lemma [1]is a deterministic result on ||0||(,.

Lemma 1. Forq € [0, 1], it holds that ||0]| ) < Jin {||Cﬁqu1_‘I/2 + [(n - k)zﬁqk}l_qm Z/z(,@)} :

Moreover, since ||(g|| = O(1) in Model , it holds that ||0||(q) = O<01<r}€i£1 H, (Vg gzﬁk([j')))

Generally, it is difficult to obtain the sharp upper bound in Lemma [l without any

information of eigenvalues and 3. Simply setting & = n, we have the trivial bound

||0||(q) 5 Hq,n(&q,na gbk(ﬁ)) = nl_Q/gv (31)
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which however is unbounded and undesirable. To get better bounds on ||8||4), we take into
account of the properties of eigenvalues and 3, and consider the following three cases:
Case (a) : n'XXT has low rank, say rank(n 'XX") = rx = O(1);

Case (b) : 3 is sparse with ||B|lo = so and that ||3]|. < C < o0;
Case (c) : 3 is dense, following a normal distribution N (0, Xg).

Results are presented in Corollary [1f and Proposition [3] respectively.
Corollary 1. The following conclusions are deterministic.

(1) For Case (a), it holds that g =0 for k >rx + 1, and ||0||, = O(T;{qﬂ) =0(1).

(2) For Case (b), assume that n < p, then [|0||y < Or<r}€i£1n Hy k(g r,50). Thus if ¥gp, =
O(sy "~ n=1Y for some fized ko, then ||| = O(ky “*) = O(1).

In Corollary [I, conclusion (1) holds regardless of the sparsity of 3, while conclusion (2)

relaxes the conditions on eigenvalues by taking advantages of the sparsity of 3. For Case

(c), we assume that the column space of ¥z is the same as that of ¥, accommodating the

identifiability condition that 3 € span(X). We have the following results.

Proposition 3. Suppose that (X, z) is fized. For Case (c) with span(Xg)=span(¥), assume

the following conditions: (i) ||(g|l = Op(1); (i) (np)~* 3" X' Q. X; < 1; (iii) n < p. Then
i=1

it holds that ¢i(B) = O,(dgn/p) for all k and that ||0|| 4 = Op<or<nk'£1 Hy i (g, dgn/p) ),

where dg = Amax(X) /A5, (X6) can be viewed as the condition number of Y. For clarity,

we assume that dg = O(1) and consider the following two specific examples of eigenvalues:
(1) Suppose that 1y > -+ > g, = Q(p) and max, ¥ = O(pn=9) for some fized ky.
J=ZRo

Then it holds that ||0] ) = O,(ky *?) = O,(1).

(2) Denote fy(i) = i/ > i, the scaled version of ¥;, i = 1,--- ,n. Assume that f,(i)
=1
decreases exponentially, that is, fy(w) = aexp(—a(w—1)) forw > 1, where a = a, >
0 may depend on n. Then 0| = On(1) if a,, = Qg ' logn).
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Condition (7) is a natural extension of the condition ||(g|| = O(1) for fixed B in Section
2. Condition (¢¢) is mild, ruling out the extreme case that ¥ has eigenvalues (p,0,--- ,0).
Details are referred to the proof in Supplementary Materials. The two examples in Propo-
sition |3[imply that @ can be approximately sparse, when eigenvalues decrease fast enough.
Based on the results of [|@]|,) in Corollary[[]and Propositions 3} by applying the conclusion

of Proposition [2| we are ready to give the asymptotic results of &,.

Theorem 2. Suppose that (x,X) are fived. Taking I' = I'ey, we have the following conclu-

sions for Cases (a)-(c):

(1) For Case (a), |Gy — | = O, <)\n7“;(/2>. For Case (b), suppose that X.||T'T z,||? = Q(1)
and that n < p; if Yy = O(saq/(%q)n_l) for some fized ko, then |d, — a,| =

Op(/\}l_Q/2/€é/2_Q/4).

(2) For Case (c) of a dense B, assume that the conditions of Proposition [3 hold and
that MU 72,12 = Q(1). If ¥;’s are from Proposition @ (1), then |G, — a,| =

O, (M 2k~ if ;s are from Proposition@ (2), then &, — o] = O,(An 7?).

The condition A.||T'7z. |2 = Q(1) above can be checked from data. Here ko and rx
reflect the sparsity of the parameters in the transformed model. Faster decay rates of
eigenvalues result in smaller values of ky and rx, and consequently better convergence
rates of |G, — a,|. Moreover, a smaller value of ¢ results in a smaller value of A,lfq/ 2,
but requires a faster decreasing rate of eigenvalues. Note that the above bounds only
depend on n and the degree of sparsity in eigenvalues, and do not explicitly depend on p.
Moreover, for Cases (a) and (c¢) where 3 is allowed to be dense, the sparsity of eigenvalues

is complementary to the sparsity of 3.
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3.3 Properties of the regularized estimator &, with an initial B

~

We study properties of our estimator with I'(3), giving the convergence rate of &, for
fixed x and X;’s being i.i.d. from N(0,%). The normality assumption of X;’s simplifies the
proofs and can be relaxed to general distributions such as sub-Gaussian distributions. We

first give a result on Hfﬂ — (gl|. Recall that (s = n‘l/zXBQz.

Proposition 4. Assume that x is fized, X;’s arei.i.d. from N(0,%), and COV(XZT,BQI) = 1.

For any estimator B in Model , it holds that ||C5 — Cgll = Op(min{2, [[¢5 — Call}).

Assuming further that ||zoo|l|s/|l]* = O(1), then |Gz — Call = Op(IIB — Bll1(log p)'/?).

When 3 is the LASSO estimator, we have || — 8|1 = O,(0so\/logp/n) with sy =
supp(8) (Bickel et al., [2009)), and consequently HEB — (g]| = O,(min{2,5s9+/(logp)2/n}).
Let Hy x(11 1, z) be the function obtained by setting ¢ = 1 in H, 4 (1,1, z) defined in Section

3.2

A

Theorem 3. Let I' = T'(B). Assume that following conditions: (i) X;’s are i.i.d. from
N(0,%), x is fired, and n < p; (ii) B satisfies cov(X]By,) =< 1 and B is obtained
from additional data independent of (X,Y), satisfying cov(XiTﬁQz\B) = 1. Then it holds
that 6, = ] = Oyl + |Gy = Gl where Hosa = s Fus g 0/ oG (51
Assuming further the Complementary condition: Huinl|Cz — Call = Oy(1), it follows that

|G, — ag| = Op(A\n).

The assumption on B in (i) is mild as cov(X;" B, ) = E([|(g]|?) and ||{g] is bounded

in probability. We give some examples on the magnitude of H ;.

Corollary 2. (1) If ¥ is of low rank, say rank(X) = ry = O(1), then Hpyn = O(r;m).

(2) Suppose that max v; = O(pn=2) for some fized ko and that X%, (X) = 1. Then

ko1 min
Hyin = O(kj(l)/Q). (3) Suppose that X, () > 1 and denote fu(i) =i/ S i, i=1,--+ ,n.
i=1
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Assuming that f,(i) decreases exponentially, i.e. fy(w) = aexp(—a(w — 1)) for w > 1,

where a = a,, 2 logn, then Hy, = O(1).

Proof of Corollary [2]is similar to those of Corollary |1} and Proposition |3| and is omitted.
We point out two basic facts: 1 < Huwm S v/ from (3.1), and [|(5 — (gl = O,(1) by
Condition (i7) and the law of large numbers. Moreover, the error rate of an estimator is
generally believed having an order no less than n~/2; thus without loss of generality we
have [|C5 — (all = Q,(n~Y/2) throughout this paper. Hence Theorem [3| leads to the error
rate of order A\, Hmin||Cz — (all S min{A,v/7[|¢5 — (all; AnHumin} without any restriction on
the decay rate of eigenvalues.

The complementary condition involves two terms, Hyi, and [|¢3—(gl|, where the former
is controlled by the decay rate of the eigenvalues, and the latter depends on the accuracy of
B. As argued before, as long as the eigenvalues decrease fast, H,;, will be bounded, even if
(3—Cp = 0. Therefore, if B is not accurate but eigenvalues decay fast, we can still get good
results. The same argument applies when B is accurate but the eigenvalues decay slowly.
Particularly, if 3 is good enough such that 1C5 — ¢l = Op(n='/?), then the requirement
on the decaying rate of eigenvalues can be removed completely. Thus the information of B
and eigenvalues are complementary to each other, requiring only the product of H;, and
¢z — ¢gll being bounded. Theorem (3| assumes B being independent of the data (X,Y).
When B depends on (X,Y), we get a similar result on &, with some modifications on the

Condition (7), which is presented in Section F of the Supplementary Materials.

4 Results of 7, for two types of test points

In Section 3, we establish theoretical properties of &,. With 4, = a, - ||z|?|| X[ *n/2, it

is natural to get the corresponding results on 4, for a generic x. As mentioned in Examples
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1 and 2 in Section , we are interested in two typical settings in particular: (1) z is a
sparse vector with S, = supp(z) and s, = |S,|, and (2) z is a random vector as an i.i.d.
copy of X; (i.e. the prediction problem). Next we give the theoretical results on 4, for

these two examples, based on the simple fact that |5, — 7| < |G — @ - [|2]|?|| Xz ~1n'/2.

4.1 Properties of 4, for a sparse =

Proposition 5. Assume the following conditions: (i) x is a fixed sparse vector satisfying
|z]leo = O(1); (ii) Amin(n™*X$ Xg,) > ¢ > 0, where Xg, is formed by the columns of
X with index S,. Then we have ||z|?||Xz||*n'/? = O(||z|) = O (s;}cm). Moreover, the

following results hold.

(1) Take I = Loy and assume that the conditions of Theorem [3 hold. For Case (a) in
Section it holds that |¥, — v.| = O, </\n||x|]7“;(/2> = O, (M(serx)"?); for Cases
(b) and (c) in Section Ve — V2| = Oy <)\}L_Q/2||x||> =0, (sglg/z/\,lfqﬂ), where ky

appeared in Theorem |2 is omitted due to ky = O(1).

(2) LetT' = F(B) Assume further that the conditions of Theorem@ hold. Then it follows

that |y — vz| = O, (sim)\nHmmHCB — (ﬁ||> ; assume further that the Complementary

condition holds, then |y, — 7| = O, <||x||\/n—1 log n) =0, (w/n—lsx log n)

The condition Apyin(n™'Xg Xg,) > ¢ > 0 is a type of the restricted eigenvalue con-
dition (Bickel et al.,, [2009). If X,’s are i.i.d. variables, n'X§ Xg, —, cov(Xs,) =
Ss,s.. Recall that rank(n 'XTX) = rx in Case (a) of Theorem [2} then the condition

/\min(n*IXgZXSx) > ¢ > (0 implies that s, < rx there.

Remark 5. We briefly discuss the case of ¥ = I, or close to I, for a sparse vector x.

For I' = T'es, using the trivial bound n on R, and taking ¢ = 1 wn Proposition
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@ we can see that the error of |G, — a,| has the order O,((logn)'/*), and consequently

4z = Yal = Op(llz]| (log n) /).

We briefly compare our method with the plug-in estimator using the LASSO estimator
B (named briefly as LASSO). For LASSO, the error varies depending on the direction of
x, while results of our estimator depend only on the sparsity degree s, of x. For simplicity
of comparison, we consider a bound of LASSO depending only on s,. Specifically, as
2]l = O(1), we have [¢7 Buo — & B] = O|2[|[|Brasso — BII) = Op(+/5250log p/n) (Bickel
et al., 2009); the latter will be used as the error rate of LASSO. Recall that P., denote
our estimator with I' = I'e;. For Case (a), it follows from Proposition [5| that P, is better
than LASSO if and only if rx(logn)(logp)~! = o(sg). Cases (b) and (c) can be analyzed

similarly. Recall that Pl is our estimator with T = T'(8,,..,)-

Corollary 3. Denote by T, sx the ratio of error rate of Passo over that of LASSO for a

fized sparse x. Suppose that the conditions (i) and (ii) in Proposition [5 and the conditions

of Theorem @ hold. Then Psso has the error rate of order /\nHmin\/sgC(so logp)?/n and

consequently Ty, sx = Op(AHmin/5010gp). If Huin = 0,(n'/?[so(logn)(log p)]~/?), then

Thsix = 0p(1), impliying Prasso s superior to LASSO; otherwise Passo s inferior or similar

to LASSO.

The proof of Corollary |3|is a simple combination of Proposition 4| and (2) of Propo-
sition [5| and is omitted here. Since we always have Hp;, < /n, the requirement H;, =

0,(n'/?[so(logn)(log p)]~+/2) is mild.

4.2 Properties of 4, for prediction problems

In a prediction problem, z and X;’s are i.i.d. variables. Recall that My = \/tr?(3)/tr(X2).
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Proposition 6. Suppose that v and X;’s are i.i.d. from N(0,%). Then ||z|?||Xxz|‘n'/? =
O,(||z]12/||z|ls) = Op(Ms). In addition, it holds that 1 < My, < p*/2. Particularly, My, < 1

when ¥ is of low rank, and My, = p'/? when ¥ = I,.

Next we first derive properties of 4, with I' = I'o,. Then we consider the estimator %51

with I' = T(B), given both an initial estimator 3 and a subset ;.

4.2.1 Properties of 4, for z in prediction with I' = I',,

Recall that |4, — 7| < &, — ag|- ||| Xz ~'n'/2. Combining Proposition [f|and the result
on |G, — a,| with fixed (x,X) given in Proposition [2| for I' = Iy, it can be inferred that
1Yz =Yz = Oy <)\71fq/ Ry 2]\/[g). Clearly, a faster decay rate of the eigenvalues A(X) leads to
a smaller value of My, and a faster decay rate of 1);’s or equivalently a smaller value of R,
consequently a better rate. Different from the fixed (z,X) considered in Theorem [2 (z, X)
are random variables in this section. Thus, R, lacks an explicit rate, due to randomness
of the empirical eigenvalues ¢;’s. The magnitudes of ;’s, though can be checked from
data, are hard to extract in theory generally, according to random matrix theory. To the
best of our knowledge, there is no solution for a general case. To obtain an explicit result,
we consider two extreme cases: (1) ¥ is (approximately) low rank; (2) ¥ = I, the least

favorable case.

Proposition 7. Suppose that x and X;’s are independent from N(0,%). Assume that

n <p. Taking I' = I'ss, we have the following conclusions:

(1) If ¥ is of low rank with rank(X) = ry, we have |Y, — V.| = Op(rgy/n~tlogn).
An extension to X being approximately low rank is presented in Proposition D.1 of

Supplementary Material.

(2) For the least favorable case of ¥ = I,,, it holds that |3, — 72| = O,(p*/*(logn)/4).
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For the case of ¥ having a low rank, |9, — ;| has the order similar to that of |&, — a,|.
But when ¥ = I,, the error diverges, which is not surprising since € is non-sparse in
the transformed model in this setting and the rate is determined by the most difficult
case. Particularly, the rate for ¥ = I, is the combination of the facts that |&, — a,| =
O,((logn)*/*) and My, = p'/2. Next we briefly compare LASSO with the proposed method
with I' = I'¢;. LASSO performs well in prediction when 3 is (approximately) sparse, and is
less sensitive to the sparsity of eigenvalues. In contrast, the proposed method with I' = I's,
has good performance when the eigenvalues of ¥ decrease fast, and 3 can be sparse or less

sparse. Thus our method with I' = I'¢; and LASSO are complementary to each other.

4.2.2 Error of 4;, in prediction with I' = F(B)

Recall that in Example 2 in Section , Yo = Yz, for any S 2 Sy with Sy = supp(8),
implying that one can make prediction at the point Zg,. Trivially, one can take S; =
{1,--- ,p} such that g, = x. The subset S; takes the sparsity degree of B into account.
Given an initial estimator B and a subset S; such that S; D Sy, by applying our approach
with I' = F(B) that is constructed with x replaced by Zg,, we obtain the estimator of vz
denoted as 7z, -

Denote d(8, 8) = [max{var(X; (3 — B)),var(X}5, (Bs, — Bs,))}]"/?, which stands for
the prediction error of an initial estimator B Without loss of generality, we assume
d(3, 8) has magnitude of order no less than n~*/2. Let Yg5, = cov(X;s,) and Mg, =
[tr?(Ss,s,)/tr(2%,g,)]"/* with M2 standing for the effective rank of matrix Xg,g,. Let
ﬁ]min be the quantity defined similar to H,,;, but with the eigenvalues of n ' XX, satisfy-

ing 1 < Huin < /1 (the detailed expression is given in the Supplementary Materials). We

have the following conclusions from Theorem

~

Theorem 4. Let I' = I'(8). Assume that (i) v and X;’s are i.i.d. variables from N(0,3)
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and n < p; (ii) Both S; and B are independent of (X,Y) satisfying COV(XZTB) = 1. Then
it holds that [zs, — 2| = Op(AnMs, Hoind(B8,B)). If we further assume the complementary
condition: d(3, B))Huin = O,(1), it holds that V25, — Vel = Op(AnMs, ). These conclusions

are still valid for Sy ={1,--- ,p}.

Theorem 4| shows that the rate depends on Mg, , Hyim and d(B7 B). The first two de-
pend on the decay rate of eigenvalues. Moreover, it holds that d(3,3) = O,(1) by the
assumptions that both cov(X, 8) and cov(X,3) are bounded, which imposes restrictions
on B Hence, by Theorem , without the complementary condition, we have the error rate
min{\, Mg, v/nd(3, 8), \n Mg, Hyin }.

We compare P4, with the plug-in method using LASSO estimator B (briefly named

LASSO). By the typical rate of LASSO, we have d(B,., 8) = O,(min{1, \/sologp/n}).

To simplify the comparison, we assume that the LASSO estimator is consistent, that is,
v/s0logp/n = o(1). Then one can see that the condition d(Brosses B) Hunin = O,(1) becomes
Hoin = O(n'/?(slog p)~/?), which is mild, since it always holds that Hy, < n'/2.
Denote by T, ,aq the ratio of the error rate of Plsso over d(,@lasso, B) for random test
points. Then T, aqa = 0,(1) would imply that our method is better than LASSO. By
Theorem , we see that T}, ;aqg < A\, Mg, f]min. To investigate the magnitude of the latter,

we consider the following two cases:

e Suppose that 3 is sparse with support set Sy of cardinality sqg = |Sp|. Moreover, if a
good S is available such that S; D Sy and |S;| < s, that is, we know sufficiently well
on the support set. Then we have Mg, = s>, If Hyp = 0,(n'/2(sologn)Y/2) (ie.
)\ns(l)/ ?Hopin = 0p(1)) which is mild as argued above, we have T, ;.4 = 0,(1); otherwise
Ty raa = Qp(1). Moreover, Plusso has error [9z5 — 7| = O, (W) under the
mild condition Hpyind(Bee, B) = O,(1). If one knows the support set Sy in advance,

the OLS estimator using the oracle predictor X;g,’s has the rate y/so/n, which is
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5

similar to the rate of our estimator up to a term logn. However, the performance of

our estimator depends on that of S; and the decay of eigenvalues.

If we simply set S; = {1,--- ,p}, ignoring the sparsity information of 3, then 7T}, ;.qa =

0,(1) if and only if Mg, Hyim = 0,(A\;'); otherwise T, aa = ©,(1). This condition

Mg, Hypin = 0,(\,; ") holds when eigenvalues decay fast. Moreover, under the settings

similar to Corollary , we have Hym = O,(1). For instance, if rank(X) = o(\;1),

n

then Mg, Hyin < rank(X) = 0,(A\,1). However, Pl is worse than LASSO when %
is close to I, and 3 is indeed sparse; specifically, under the complementary condition,
Plasso has error rate A\, Mg, = O,((n"'plogn)/?), which is worse than that of LASSO.
However, taking S; = {1,--- ,p} accommodates both sparse and non-sparse 3. The
classical OLS estimator for a non-sparse 3 has the order \/}%, close to that of Pseo.
In practice, we do not know the sparsity degree of 3. The CV approach in Section

can be used to select between 7, and 4, in an automatic data adaptive manner.

Numerical Studies

We use simulation studies in Section and real data analysis in Section to further

illustrate the numerical performance of our method.

5.1 Simulations

We consider the simulation studies with samples generated i.i.d. from the linear model

(2.1) with p = 1000 dimensional vector X; ~ N(0,%) and ¢; ~ N(0,1). Set ¥ = (0;;) with

Oy = 0.5/°=91/" where n controls the level of dependence strength among the predictors,

with larger values of n implying stronger correlations among predictors. For the convenience

of discussion, the plug-in estimator is named by the method used in estimating 3. For
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Figure 2: Simulation prediction results of PWE, LASSO, ridge, P, and ridgeless (RDL).

example, “LASSO”, “ridge” and “ridgeless” denote the plug-in estimators BTJ: with B
being LASSO, ridge and ridgeless estimators, respectively.

Setting 1 (Prediction). We set B = (50(1;0,0,--- ,0)7 € RP, where py = rop, 1,
is the po-dimensional vector of 1, and 0y = 10/,/py such that ||3|| = 10. Clearly, 8 is
denser for larger values of 79, and we set ro € {0.1,0.2,...,0.9}. For prediction, we set
M = {Plassos Pridge;s Peg, Prar} for Algorithm 2 in Section .

We compare the prediction performance of different methods. Split the data into two
parts with the training sample of size n, = 200 and the testing sample of size n;,. = 500 to
compute the test error. PWE estimators are obtained by Algorithm 2 with the M given
above and S; = {1,--- ,p}. For the implementation of Algorithm 1, the bias correction
step is adopted. We repeat the procedure 100 times and calculate the average test error
for each method. We compare LASSO, ridge, ridgeless, FP.; and the PWE estimators. For
clarity, simulation results for Setting 1 are summarized as follows:

(1) Comparison of LASSO, ridge, ridgeless with PWE and P., on prediction. The
simulation results are presented in Figure 2l When 3 is sparse such as r = 0.1, PWE
performs similar to (with small ) and better than (with large ) LASSO, and much better
than other methods including ridgeless. When r( is large, PWE is similar to or slightly

better than the ridgeless estimator, and is much better than other methods. By taking the

advantages of different initial estimators, PWE performs well for both sparse and dense
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B. Moreover, P, is insensitive to 7y, which supports our theoretical findings, and is better
than LASSO when r( is large. Its advantage over LASSO is more clear when 7 is large.
(2) Comparison of plug-in estimators with our proposed pointwise counterparts. Due to
the limited space, the results are presented in Figure S.2 in Section G.1 of the Supplemen-
tary material. It is seen that the performance of P, is similar to LASSO for small 1 and
is better than LASSO for large n; in all cases, Pigge is better than ridge. The numerical
results match with our theoretical findings in the sense that the sparsity in eigenvalues
can be helpful. In addition, P.q is close to ridgeless, especially when 7 is small. More
comparisons are presented in Setting 4 and Section G.1 in Supplementary Materials.
Setting 2 (Sparse linear transformation). We consider = being sparse vectors in v, =
B'z. Set B =(3,-3,3,1, 511;074, O;po)T, where §; = 5/,/po. Consider v, being one of the
four quantities 1, 3,,, Bp and 51 — B3, corresponding to taking x being ey, e,,, €, and e; —e3
respectively in ~,. Note that f; — f3 = 0, indicating that there is no difference between
effects of the first and third predictors; 8, = 3 and 3,, = 0, stand for strong and weak
signals, respectively. Moreover, 3, = 0 indicates that the p-th predictor is insignificant. Let
po = 300 and ¥ = (0y;) with o;; = 0.5/ 50 that the predictors are highly correlated.
We set the training data size n,. = 150, and compute the average errors of |y, — .| over
100 replications. We compare the regularized estimators, Fig, Plasso and Piiqge, With the

plug-in ones. Estimation comparison results are presented in Table [2]

Ve LASSO A-LASSO ridge Pawo Pigge Py PWE
2 0.671  0.681 0.672 0.701 0.405 0.277 0.405
Boo 0.072  0.072 0.036 0.072 0.072 0.128 0.072
By 0 0 0.010 0 0 0 0
Bi—fs 0251  1.062 0.005 0 0 0.022 0

Table 2: The average values of |9, —v;|. The PWE corresponds to the estimator automat-
ically selected from {P.g, Passo, Pridge }; A-LASSO stands for the adaptive LASSO.

For a strong signal f;, it can be inferred from Table [2| that the regularized pointwise
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estimators Pyigee and Pe, are better than LASSO, adaptive LASSO and ridge regression.
For weak signal 3,,, ridge estimator is better than others. The main reason is that other
methods sometimes shrink the estimators to zero, resulting in large biases. For 3, = 0,
except ridge regression, other methods give zero estimates. Finally, for §; — 3 = 0, all
the regularized pointwise estimators result in exactly zero estimates, while the plug-in
estimators LASSO and adaptive LASSO lead to large biases.

Setting 3 (Comparison on different subset S;). As pointed out in Sections and ,
one can consider prediction at the point Zg, instead of x in prediction problems. Under
the setup of Setting 1, we take I' = F(Blasso) and compare the following four candidates
of Si: (1) Sy being Sy = supp(8), which is the ideal case; (2) Sy being Sgn = {1, , p},
that is, 7z, = 7z; (3) S1 is obtained by SIS of [Fan and Lv| (2008), denoted as Ssis; (4) 51
being the Siusso = SUPP(B1asso)- For each candidate of 57, we repeat 100 times and report
the average values of the prediction error, true positive rate (TP) and the average length
(LEN) that are defined as TP=|S; N Sy|/|So| and LEN=|S;|/p respectively.

Due to the limited space, we present the simulation results in Section G.2 in Supple-
mentary Materials. It is seen that Sy always leads to the best prediction errors in all cases.
When ry = 0.01 where 3 is very sparse, both Sgig and S have higher values of TP
and smaller values of LEN, leading to smaller prediction errors than those of Sgy. As 7g
increases, the signal of f;’s becomes weak due to the constraint ||3]| = 10, and the values
of TP for Sgig are very small and are the smallest ones among all subsets, which lead to
the worst prediction errors. On the other hand, TP and consequently errors of S, are
much better than those of Sgig, because LASSO takes into account correlations among
the predictors when selecting the significant variables, while SIS uses only the marginal
correlations. In addition, it is observed that S, performs similar to that of Sg,, which

is partially due to the following reason. During the construction of F(Blasso) with a given
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S1, we need to compute fgl Blasso, which equals xTBmSSO for S7 being both Sj.ss0 and Sgyp.
Setting 4 (Further comparison for heterogeneous test points). In Setting 1 where test
points are i.i.d. copies from the training distribution, P, is nearly the same as LASSO
when 7 is small such as n = 5 (results shown in Figure S.2 in Supplementary Material). We
compare them further for the case of x;’s following a distribution different from X;’s, which
is known as covariate shift in the literature of transfer learning (Weiss et al., 2016). We
generate training data of size 100 as in Setting 1 with n =5 and 8 (1;0, 0,---,0)T €Rr
with ||B|| = 5. The test points x;’s are i.i.d. from N(0, Y ). The eigenvectors matrix Uy, of
Yte 1s uniformly distributed on the set of all orthogonal matrices in RP*P. The eigenvalues of
Yite, denoted as Ot 1, -+, Otep, satisty that gwe; = 2(p—i+1)/(p+ 1) such that tr(X:) = p.
We first generate a >, and then 200 test points with given Y., and repeat this procedure
100 times to compute average prediction errors. Results in Table [3|show that P, is much
better than LASSO for the case of covariate shift even for small 7, possibly due to the
flexible pointwise prediction of our proposed method. Besides these examples, additional
results demonstrate that P,q can also substantially improve the ridgeless estimator when

covariate shift exists for testing data (Section G.1 of Supplementary Materials).

Table 3: Test errors of LASSO and Plss with n = 5 for testing points from N (0, 3y.)
70 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
LASSO 3.976 5878 6.749 7.172 7.461 7.569 7.792 &8.108 &.164
Blasso 3.278 3.796 4.077 4.197 4.391 4.421 4.469 4.614 4.737

5.2 Real data analysis

We apply our method to a dataset from the Alzheimer’s Disease Neuroimaging Initiative
(ADNI) (https://adni.loni.usc.edu/). Alzheimer’s Disease (AD) is a form of dementia
characterized by progressive cognitive and memory deficits. The Mini Mental State Exam-

ination (MMSE) is a very useful score in practice for the diagnosis of AD. Generally, any
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Figure 3: Comparison of the test errors of different methods for the AD data analysis. Here
Piassos Pridge, Pra1, and Py represent our regularized estimators. The PWE is automatically
selected from Plasso; Pridge, Pral, and Peg.

score greater than or equal to 27 points (out of 30) indicates a normal cognition. Below
this, MMSE score can indicate severe (< 9 points), moderate (10-18 points) or mild (19-24
points) cognitive impairment (Mungas, [1991)). Currently, structural magnetic resonance
imaging (MRI) is one of the most popular and powerful techniques for the diagnosis of AD.
One can use MRI data to predict the MMSE score and identify the important diagnostic
and prognostic biomarkers. The dataset we used contains the MRI data and MMSE scores
of 51 AD patients and 52 normal controls. After the image preprocessing steps for the MRI
data, we obtain the subject-labeled image based on a template with 93 manually labeled
regions of interest (ROI) (Zhang and Shen| [2012)). For each of the 93 ROI in the labeled
MRI, the volume of gray matter tissue is used as a feature. Therefore, the final dataset
has 103 subjects. For each subject, there are one MMSE score and 93 MRI features. We
treat the MMSE score as the response variable and MRI features as predictors.

We split the data at random with 80% as the training set, denoted as S;,, and 20% as
the testing set, denoted as Sy, then compute the average test error )y o Y; — Yi|/|Suel-
We repeat the procedure for 100 times and report the average test errors. The box plots of
different methods are presented in Figure [3] It shows that pointwise estimators are much

better than plug-in estimators of LASSO, adaptive LASSO and ridge, respectively.
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6 Discussion

In this paper, we estimate the linear transformation 8'z of parameters B in high dimen-
sional linear models. We propose a pointwise estimator, which works well when 3 is sparse
or non-sparse, and predictors are highly or weakly correlated. The theoretical analysis re-
veals the significant difference between estimating a linear transformation of 3"z and that
of 3. When 3 is non-sparse or predictors are highly correlated, estimating 3 is difficult,

but we can still get good estimate of 8"z using our proposed pointwise estimators.
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