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Abstract

High dimensional linear models are commonly used in practice. In many ap-
plications, one is interested in linear transformations β>x of regression coefficients
β ∈ Rp, where x is a specific point and is not required to be identically distributed
as the training data. One common approach is the plug-in technique which first
estimates β, then plugs the estimator in the linear transformation for prediction.
Despite its popularity, estimation of β can be difficult for high dimensional problems.
Commonly used assumptions in the literature include that the signal of coefficients β
is sparse and predictors are weakly correlated. These assumptions, however, may not
be easily verified, and can be violated in practice. When β is non-sparse or predictors
are strongly correlated, estimation of β can be very difficult. In this paper, we pro-
pose a novel pointwise estimator for linear transformations of β. This new estimator
greatly relaxes the common assumptions for high dimensional problems, and is adap-
tive to the degree of sparsity of β and strength of correlations among the predictors.
In particular, β can be sparse or non-sparse and predictors can be strongly or weakly
correlated. The proposed method is simple for implementation. Numerical and the-
oretical results demonstrate the competitive advantages of the proposed method for
a wide range of problems.
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1 Introduction

With the advance of technology, high dimensional data are prevalent in many scientific

disciplines such as biology, genetics and finance. Linear regression models are commonly

used for the analysis of high dimensional data, typically with two important goals: pre-

diction and interpretability. Variable selection can help to provide useful insights on the

relationship between predictors and the response, and thus improve the interpretability of

the resulting model. During the past several decades, many sparse penalized techniques

have been proposed for simultaneous variable selection and prediction, including convex

penalized methods (Tibshirani, 1996; Zou and Hastie, 2005), as well as nonconvex ones

(Fan and Li, 2001; Zhang, 2010).

In this paper, we are interested in estimating linear transformations β>x of regression

coefficients β = (β1, · · · , βp)> ∈ Rp for high dimensional linear models, where x ∈ Rp is

a specific point and is not required to be from the same distribution as the training data.

It relates to both coefficient estimation and prediction. For instance, sometimes we are

interested in estimating β1 and β1 − β2, where both of them can be expressed as β>x

by taking x as (1, 0, . . . , 0)> and (1,−1, 0, . . . , 0)>, respectively. On the other hand, for a

typical prediction problem, x follows the same distribution as the training data.

To estimate β>x, a natural and commonly used solution is to estimate β first by β̂ and

construct the estimator β̂
>
x, which can be viewed as the plug-in one. The efficiency of the

plug-in estimator depends on that of β̂. Despite its simplicity, obtaining a good estimate

of β may not be easy in high-dimensional problems. If β is sparse (i.e. the support of β,

supp(β), is small), sparse regularized techniques such as the LASSO can be used to obtain a

consistent estimator of β. Desirable theoretical and numerical results have been established

for various sparse penalized methods in the literature (see, for example, Bickel et al. (2009);
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Raskutti et al. (2011); Bühlmann and Van De Geer (2011); Negahban et al. (2012)). These

regularized methods assume that β is a sparse vector, which is difficult to verify in practice

and may fail when supp(β) has a magnitude compatible with the sample size n or larger

than n. The problem becomes more difficult when the predictors are strongly correlated

since most sparse regularized methods work well on weakly dependent predictors.

We use a small simulation to illustrate the adverse effects of the sparsity degree of

β on the plug-in estimator of β>x in the linear regression model (2.1), where Xi follows

the normal distribution N(0,Σ), β = δ0(1>p0 ,0
>
p−p0)

> and p0 = r0p, and Σ = (σij), σij =

0.5|i−j|/η with η controlling the correlation strength among the predictors. A larger value

of r0 implies a denser β. The setup of δ0 and other parameters are presented in Setting

1 of Section 5.1. The average testing errors of the plug-in estimators and our proposed

PointWise Estimator (PWE) are shown in Figure 1. We can see that the errors of the

plug-in estimators deteriorate quickly as r0 increases. In contrast, our proposed estimator

is much less sensitive to the change of the degree of non-sparsity.
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Figure 1: The effect of non-sparsity of β on plug-in estimators in terms of prediction error,
where p = 1000. “A-lasso” and “lasso” denote the results of plug-in estimators with β̂
being adaptive LASSO and LASSO respectively, and PWE denotes the proposed method.

In typical prediction problems, a number of papers studied the convergence of prediction

for various estimators, including LASSO, ridge, partial least squares, overparametrized

estimators, and many others under different settings (Dalalyan et al., 2017; Zhang et al.,

2017; Dobriban and Wager, 2018; Bartlett et al., 2020, etc.). It has been observed that

LASSO and related methods are less affected by the correlation strength among predictors
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in prediction than in estimation problems (Hebiri and Lederer, 2013; Dalalyan et al., 2017).

However, for some sparse vectors for x such as x = (1, 0 · · · , 0)>, the estimation of β>x

becomes that of the first coefficient and these methods are more affected by the correlation

strength than prediction (Zou and Hastie, 2005). All the above mentioned methods consider

the plug-in estimator and the average prediction error.

Different from these existing methods, we focus on β>x for a specific fixed x (x 6= 0)

rather than on estimating β and the average prediction error, where x is not required

to have the same distribution as the training data. The line of works that are closely

related to ours are those on the hypothesis testing and confidence intervals of β>x in high

dimensional linear models (van de Geer et al., 2014; Zhang and Zhang, 2014; Javanmard

and Montanari, 2014; Lu et al., 2017; Cai and Guo, 2017; Zhu and Bradic, 2018, etc.). Most

of these papers considered the case of β being ultra-sparse with |supp(β)| �
√
n/ log p. Cai

and Guo (2017) considered the broader range where |supp(β)| has an order no more than

n/ log p. Zhu and Bradic (2018) considered the hypothesis testing and confidence intervals

of β>x where β is allowed to be non-sparse by introducing a sparse auxiliary model, which

can be restrictive. For example, if the predictor vector follows the normal distribution

N(0,Σ) and the sparse auxiliary model holds for any x ∈ Rp simultaneously, then Σ must

be equal to Ip. Moreover, the estimator of β>x obtained from the confidence interval of Zhu

and Bradic (2018), despite allowing β to be dense, works only when p/n→ 0 in prediction

problems. Although these results have optimality in the minimax sense (Cai and Guo, 2017;

Zhu and Bradic, 2018), they can be conservative and are actually determined by the most

difficult case. In this paper, we introduce the sparsity of eigenvalues (or approximately low

rank) of some matrices, which is shown to be complementary to the sparsity of β. The

most difficult case is actually the situation where both types of sparsity fail.

Our key observation is that we can directly target at γx := β>x, treating it as an

4



unknown parameter for estimation. We refer to the resulting estimate as the pointwise

estimator. To this end, we propose a unified framework to leverage multiple sources of

information. In many cases, the eigenvalues of the covariance matrix decrease dramatically,

due to correlations among the predictors, which will be referred as sparsity of eigenvalues

in the following descriptions. This type of sparsity is generally viewed as an adverse factor,

making the estimation of β more difficult. Contrary to this popular view, we show that

the sparsity of eigenvalues is beneficial in our framework and serves as a good complement

to the sparsity of β. In practice, two different kinds of test points x are of particular

interest: (1) x is a given sparse vector, and (2) x is a random vector having the same

distribution as the training data (i.e. the prediction problem). We give detailed results on

these two special cases and compare our estimator with several other methods. The main

contribution of this paper is that we propose a transformed model under a new basis, which

provides a unified way to utilize different sources of information.

First, to utilize the sparsity of eigenvalues, we propose an estimator based on a basis

consisting of eigenvectors of a specific matrix constructed from the training data. When

the eigenvalues decrease at a certain rate, our estimator performs well for both kinds of

test points x regardless of the sparsity of β. On the other hand, if eigenvalues decrease

slowly (or covariance matrix close to Ip), this estimator is less efficient; and consequently

is inferior to LASSO when β is indeed sparse. In fact, the pointwise estimator using the

sparsity of eigenvalues is complementary to LASSO.

Second, to leverage the information of β, such as β being sparse, and the sparsity of

eigenvalues jointly, we construct another basis based on an initial estimator β̂. It is shown

that two types of information help each other: a faster decreasing rate of eigenvalues

allows β̂ converging in a slower rate, and vice versa. When the test point x is a sparse

vector, we show that the pointwise estimator performs well. The case of x being random
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as in prediction problems is more complicated in the sense that the sparsity degree of

β should be taken into account. Hence, we consider a subset S1 of {1, · · · , p} satisfying

S1 ⊇ supp(β), where S1 can be estimated from data. Specifically, we consider two cases: (1)

Let S1 = {1, · · · , p}, which allows β to be sparse or dense. When sparsity of eigenvalues

holds, our pointwise estimator performs well. When the eigenvalues are less sparse (or

covariance matrix is close to Ip), our pointwise estimator performs similarly to the existing

results on dense β in the literature. (2) When β is sparse, a smaller |S1| leads to a

better estimator. If a good initial estimator β̂ and a good S1 are available, our estimator’s

performance is similar to that of LASSO.

The rest of this paper is organized as follows. In Section 2, we propose our pointwise

estimator for the linear transformation β>x in high dimensional linear models. Theoretical

properties are established in Sections 3 and 4. Some simulated examples and real data

analysis are presented in Section 5, followed by some discussions in Section 6. Proofs of

the theoretical results are provided in the Supplementary Materials.

Notations. We first introduce some notations to be used for the paper. For any sym-

metric positive semidefinite matrix A ∈ Rm×m, denote the eigenvalues of A in a decreasing

order as λ1(A) ≥ · · · ≥ λm(A), and the smallest nonzero eigenvalues as λ+
min(A). For any

matrix A ∈ Rm1×m2 , λmax(A), λmin(A) are the maximum and minimum singular values of

A, respectively. For any vector v = (v1, · · · , vm)> ∈ Rm, ‖v‖ and ‖v‖1 denote the `2 and `1

norms of v, respectively, and ‖v‖∞ = max
1≤j≤m

|vj|; the support set of v is denoted as supp(v).

In addition, define ‖v‖A =
√
v>Av for any positive semidefinite matrix A ∈ Rm×m. For

two sequences {an} and {bn}, both an . bn and an = O(bn) imply limn an/bn ≤ c for some

constant c <∞; both an & bn and an = Ω(bn) indicate that limn an/bn ≥ c; an � bn means

that an has exactly the same order as bn. For any integer i, let ei denote the vector of zeros

except the ith element being 1.
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2 A unified framework for pointwise estimation

Suppose (Xi, Yi); 1 ≤ i ≤ n, are i.i.d. from the following linear regression model

Yi = X>i β + εi; 1 ≤ i ≤ n, (2.1)

where εi ∈ R satisfies E(εi) = 0 and var(εi) = σ2 < ∞, Xi ∈ Rp is independent of εi

satisfying E(Xi) = 0, and cov(Xi) = Σ = (σij). Without loss of generality, we assume

that σii = 1; i = 1, . . . , p, and that var(Yi) < ∞. Denote X = (X1, · · · , Xn)> ∈ Rn×p,

Y = (Y1, · · · , Yn)> ∈ Rn, and ε = (ε1, · · · , εn)> ∈ Rn. Then the model can be written as

Y = Xβ+ ε. Here the dimension p can be much larger than the sample size n. Let x ∈ Rp

be a given point at which we intend to estimate β>x. We assume that X>i x 6= 0 for some

1 ≤ i ≤ n, which can be checked numerically. Let S0 = supp(β) of cardinality s0 = |S0|.

Since a non-sparse β and the case where Σ might not be of full rank will be considered, we

make the following identifiability condition and discuss some useful facts.

• When Σ is not of full rank, we assume that β falls into the column space of Σ for

identifiability, due to the following reasons. Denote Xi = Σ1/2X̃i; 1 ≤ i ≤ n, where X̃i

satisfies E(X̃i) = 0 and cov(X̃i) = Ip. Let PΣ be the projection matrix on the column

space of Σ and QΣ = Ip − PΣ. Then X>i β = X̃>i Σ1/2β = X̃>i Σ1/2(PΣ + QΣ)β =

X>i PΣβ. Thus the parameter can be set as PΣβ, which falls into the column space

of Σ.

• The magnitude of βj; j ∈ S0, depends on the sparsity degree s0. Note that λ+
min(Σ)‖β‖2 ≤

β>Σβ < var(Yi) < ∞, and consequently that ‖β‖2 ≤ var(Yi)/λ
+
min(Σ). Assume

that βj’s with j ∈ S0 are of the same magnitude. Then it follows that |βj| .

[s0λ
+
min(Σ)/var(Yi)]

−1/2, j ∈ S0. Particularly, if λ+
min(Σ) � 1, |βj|’s are of order

s
−1/2
0 , which can be small when s0 is large.

Next we first introduce the transformed model based on a set of basis to leverage
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multiple sources of information in Section 2.1. The construction of basis is discussed in

Section 2.2. A penalized estimator and a pointwise estimator are proposed in Section 2.3.

2.1 The transformed model

For any fixed x ∈ Rp, let Px = xx>/‖x‖2 be the projection matrix on the space spanned

by x and Qx = Ip − Px be the projection matrix on the complementary space. Recall that

γx = β>x and denote βQx
= Qxβ. Then one can write

Xβ = XPxβ + XQxβ = Xx · x>β‖x‖−2 +
√
nζβ :=

√
nzx · αx +

√
nζβ, (2.2)

where αx = γx · ‖x‖−2‖Xx‖n−1/2 ∈ R, zx = Xx/‖Xx‖ ∈ Rn and ζβ = n−1/2XβQx
∈ Rn.

Here αx is a scaled version of γx such that the `2 norm of the predictor
√
nzx equals

√
n.

Estimating γx is equivalent to that of αx, since given αx, one can compute γx directly

from data (X, x). Then we get Y = Xβ+ ε =
√
nzxαx +

√
nζβ + ε, where ζβ is a nuisance

parameter vector. Note that ζβ is a non-sparse vector in general, particularly when Xi’s are

i.i.d. variables; thus we have n+1 non-sparse parameters with the sample size n. To handle

the difficulty, we introduce a set of basis Γ ∈ Rn×n using different sources of information

such that ζβ can be expressed sparsely under the set of basis.

The construction of Γ depends on the information at hand and will be elaborated in

Section 2.2. For an invertible matrix Γ ∈ Rn×n, of which the columns are of unit length (i.e.

Γ>·jΓ·j = 1, 1 ≤ j ≤ n), we denote
√
nζβ = (

√
nΓ)(Γ−1ζβ) =

√
nΓθ, where θ = Γ−1ζβ ∈ Rn.

Although Γ here can be any invertible matrix, as shown later, the case we are interested in

is Γ being (approximately) orthogonal. We hope that θ is (approximately) sparse when Γ

is chosen properly. Combining these together, we have the transformed linear model

Y =
√
nzx · αx +

√
nΓθ + ε = Zα+ ε, (2.3)

where Z =
√
n(zx,Γ) ∈ Rn×(n+1),α = (αx,θ

>)> ∈ Rn+1. The parameter θ is treated as a
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n-dimensional nuisance parameter vector. As shown later in Section 2.2, Γ plays a critical

role in this model, providing a flexible way to leverage different sources of information. A

naive choice is Γ = In without using additional information, which will be discussed further

in Section F of Supplementary Materials. In contrast to p parameters of the original linear

model, the transformed model (2.3) has only n+ 1 unknown parameters that are (approx-

imately) sparse. Without loss of generality, we assume that both |αx| and consequently

‖ζβ‖ are bounded, given x and X. This assumption is mild and holds in probability when

x and Xi’s are i.i.d. from N(0,Σ). Detailed discussions are presented in Section A of the

Supplementary Materials.

Denote by α̂x a generic estimator of αx. Then γx can be estimated by γ̂x = α̂x ·

‖x‖2‖Xx‖−1n1/2. Given x, noting that n−1‖Xx‖2 →p ‖x‖2
Σ, where ‖x‖Σ =

√
x>Σx, we see

that the quantity ‖x‖2/‖x‖Σ affects the convergence rate of the estimator γ̂x. We investigate

the magnitude of ‖x‖2/‖x‖Σ, and consider two typical settings for clarity. Recall that x is

a given vector, which may or may not have the same distribution as Xi.

Example 1. Let x be a sparse vector with the support set Sx = supp(x) and the

cardinality |Sx| := sx. Examples of such x include x = ei or x = ei − ej. Denote XiSx =

(Xij, j ∈ Sx). If the eigenvalues of ΣSxSx = cov(XiSx) are both upper and lower bounded,

and ‖x‖∞ = O(1), then it follows that ‖x‖2/‖x‖Σ � ‖x‖ � s
1/2
x .

Example 2. Let x be a random vector as in prediction problems. For simplicity, we

assume x and Xi’s are i.i.d. variables from N(0,Σ). As shown in Section 4.2, it follows

‖x‖2/‖x‖Σ �
√

[tr(Σ)]2/tr(Σ2) := MΣ, (2.4)

in probability. Moreover, it holds that 1 ≤ MΣ ≤ p1/2 and M2
Σ can be viewed as the

effective rank of Σ. Particularly, if some eigenvalues of Σ are much larger than the rest

(e.g. the largest eigenvalue has the order p), then MΣ � 1; if Σ is close to Ip, then MΣ is

close to p1/2 and γx is close to p1/2αx.
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Clearly, the magnitude of ‖x‖2/‖x‖Σ with a sparse x in Example 1 can be smaller than

that of the dense x in Example 2. If x is not sparse, the sparsity of β can help as well. This

observation motivates us to consider estimators utilizing the information of the sparsity

degree of β. For any subset S1 ⊆ {1, · · · , p} such that S0 ⊆ S1, we observe that

γx = β>x = β>S0
xS0 = β>S1

xS1 = β>x̃S1 = γx̃S1
,

where xS0 and βS0
are the subvectors of x and β, respectively, and x̃S1 is a p-dimensional

vector obtained by setting xSc
1

= 0 in x. Thus, instead of estimating γx, one can equivalently

consider prediction at the point x̃S1 , which is a sparse vector when |S1| is small. Clearly,

one can set S1 = {1, · · · , p}, and then γx̃S1
becomes γx. Estimating γx̃S1

provides a way to

take the sparsity degree of β into account. In practice, one can choose different S1’s and

select the best one by CV, as shown later in Section 2.3. In Section 4, we will compare our

method with several existing methods in details for Examples 1 and 2.

Remark 1. In Example 2 above, a smaller set S1 is preferred. However, the true support

set S0 is unknown. When s0 is small, choosing a set S1 that covers S0 is feasible. For

example, S1 can be taken as the support set of the LASSO estimator, or constructed by

some screening methods (Fan and Lv, 2008).

2.2 Construct basis utilizing multiple sources of information

Next we discuss the construction of Γ. For a positive semidefinite matrix A ∈ Rp×p, denote

λ(A) = (λ1(A), · · · , λp(A)) the vector of eigenvalues of A in a decreasing order. We say

that λ(A) is approximately sparse when only a few eigenvalues are much larger than the

average p−1
p∑
i=1

λi(A), and the detailed requirements on the decreasing rate of eigenvalues

will be elaborated later. In practice, different sources of information may be available. For

clarity of the presentation, we focus on two different sources of information.
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Source I. We use the information of β through an initial estimator β̂. Note that a good

estimator is available in some cases. In particular, if β is sparse, then β̂ can be obtained

from that of LASSO, or other sparse regression methods. However, an estimator β̂ may

not be good enough in many cases especially when β is less sparse and p is larger than n.

Source II. We utilize the dependence among predictors. Note that λ(n−1XQxX
>) =

λ(n−1XQxQxX
>) that equals the first n elements of λ(n−1QxX

>XQx), of which the pop-

ulation version is λ(QxΣQx). When predictors are correlated such that λ(n−1XQxX
>) is

(approximately) sparse, a key observation is that by choosing a suitable Γ, the parameter

θ can be (approximately) sparse regardless β being sparse or not (details are referred in

Section 3.2). Thus it is feasible to estimate the parameters well in the transformed model

(2.3).

Denote C1 = {β is sparse}, C2 = {λ(n−1XQxX
>) is sparse}, and let C̃ = Cc1 ∩ Cc2.

The sparsity in C2 is complementary to that in C1. Both C1 and C2 are ideal cases with

good estimators available (we will introduce estimators for Case C2 later), and the case C̃

can be the least favorable case. There are intermediate cases between C1 and C̃, when the

degree of sparsity of β increases gradually. A similar argument applies between C2 and

C̃. To handle these complicated cases, it is natural to use these two different sources of

information jointly. In fact, our approach works well under the complementary condition in

Section 3.3 where stronger requirements on one type of sparsity weaken those of the other.

It is possible that both C1 and C2 hold simultaneously, where our estimators leverage both

sources of information.

Denote the spectral decomposition of n−1XQxX
> as ΓegΨΓ>eg, where Γeg = (ueg,1, · · · ,

ueg,n) ∈ Rn×n are eigenvectors and Ψ = diag(ψ1, · · · , ψn) is the diagonal matrix of the

associated eigenvalues in a deceasing order. Denote ζ̄β = ζβ/‖ζβ‖ = XβQx
/‖XβQx

‖. When

an initial estimator β̂ is available, ζ̄β can be estimated by ζ̄β̂. To utilize two different sources
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of information jointly, or in other words to use both ζ̄β̂ and the columns of Γeg, we construct

Γ by replacing one of the columns (say for example the ith column) of Γeg by ζ̄β̂, that is,

Γ = Γ(β̂), defined as

Γ(β̂) = (ζ̄β̂, ueg,j, j 6= i), (2.5)

which is the empirical version of Γ(β) = (ζ̄β, ueg,j, j 6= i). More discussion on this process

is provided in Proposition 1 and Remark 2 below.

Recall that αx, associated with predictor
√
nzx, is the parameter of interest in the

transformed model that has predictors
√
n(zx,Γ). It is desirable to avoid the collinearity

between zx and other predictors in the transformed model. Hence, we assume that β̂

satisfies that ζ̄β̂ 6= zx, which can be checked from data, and require the matrix (zx, ueg,j, j 6=

i) being invertible. Note that it is also required that Γ(β̂), i.e. (ζ̄β̂, ueg,j, j 6= i), is invertible.

Proposition 1. Suppose that β̂ satisfies |z>x ζ̄β̂| > 0 and ζ̄β̂ 6= zx. Then for at least one

i ∈ {1, · · · , n}, it holds that both matrices (ζ̄β̂, ueg,j, j 6= i) and (zx, ueg,j, j 6= i) are invertible

or equivalently that min{|u>eg,iζ̄β̂|, |u>eg,izx|} > 0.

In principle, we can replace any ueg,i by ζ̄β̂ as long as min{|u>eg,iζ̄β̂|, |u>eg,izx|} > 0. In our

numerical studies, the strategy in Remark 2 below is used to further reduce collinearity.

Remark 2. Reducing the collinearity between zx and other predictors in the transformed

model makes the estimator of αx more stable. In our simulation studies, we replace ueg,i0 by

ζ̄β̂ with i0 = arg max
1≤i≤n

|u>eg,izx|, and the resulting Γ(β̂) is observed nonsingular numerically.

Naturally, one can just use the information in Source II by setting Γ = Γeg. A good

property for this choice is that it depends only on X without requiring an initial estimator

β̂ and is free of any assumption on the sparsity of β. However, this choice may not be ideal

if a reasonably good initial estimator β̂ can be obtained. We summarize the constructions

of Γ used in this paper in Table 1 below.
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Table 1: Candidates of Γ for the pointwise estimator

1. Γ = Γeg, where Γeg ∈ Rn×n contains the eigenvectors of n−1XQxX
>.

2. Γ = Γ(β̂) = (ζ̄β̂, ueg,j, j 6= i0), where i0 can be taken as any i satisfying the
condition in Proposition 1 or selected by the procedure in Remark 2, when an
initial estimator β̂ is available.

In Section 3, we show that when λ(n−1XQxX
>) is sparse enough, θ = Γ−1

eg ζβ is ap-

proximately sparse without any sparsity assumption on β. An extreme case is Σ being a

low rank matrix, where θ is exactly sparse with at most rank(Σ) + 1 nonzero elements. It

is worth pointing out that which elements of θ are large are generally unknown since β is

involved. When λ(n−1XQxX
>) is less sparse, as discussed below, β̂ will provide additional

information and θ can still be approximately sparse.

When Γ = Γ(β̂), the sparsity of θ also depends on the accuracy of β̂. For the ideal case

that β̂ = β, it can be shown that θ = Γ(β)−1ζβ ∝ e1 = (1, 0, · · · , 0)>, and consequently θ

is a sparse vector. This argument still holds, if we replace (ueg,j, j 6= i0) by any other vectors

such that Γ(β) is invertible, implying that if we know β, there is no need for additional

information. Consequently, if β̂ is good, (ueg,j, j 6= i0) do not help much. When β̂ is not

good enough (e.g. β is less sparse in particular) but λ(n−1XQxX
>) is sufficiently sparse,

using ueg,i’s will compensate the low accuracy of β̂. Thus both types of information can

help each other in our framework and the estimator becomes more robust to the underlying

assumptions. Details are provided in Section 3.

2.3 Penalized estimator and pointwise estimator

As discussed in Section 2.2, the parameters in the transformed model (2.3) can be ap-

proximately sparse if Γ is constructed properly. Thus we consider the minimization of the
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following objective function

Lλ,Γ(α) = n−1‖Y − Zα‖2 + Pen,λ(α), (2.6)

where Pen,λ(α) = λ‖α‖1 is the `1 penalty function used by LASSO, and λ and Γ are the

tuning parameters. The parameter λ plays the same role as that for the usual regularized

estimator and can be selected by cross validation (CV). The selection of Γ will be elaborated

below. Since the `1 penalty usually induces biases for coefficients of large absolute values,

to solve this problem, other nonconvex penalty functions, such as the SCAD (Fan and Li,

2001) or MCP (Zhang, 2010), can be used instead. Denote the minimizer as

α̂λ,Γ = (α̂x, θ̂
>

)> = arg min
α∈Rn+1

Lλ,Γ(α). (2.7)

Then we have γ̂x = α̂x · ‖x‖2‖Xx‖−1n1/2.

Remark 3. Our approach involves eigenvalue decomposition of the matrix n−1XQxX
> ∈

Rn×n with the computational complexity of the order O(n3), which can be a burden when

n is large. To reduce the complexity, the Divide-and-Conquer (DC) approach for handling

big data can be used (Zhang et al., 2015). Simulation results based on DC are presented in

Section G.2 of the Supplementary Materials.

Next we briefly discuss the estimator in (2.7). First, the predictor Z in Model (2.3)

involves the transformation matrix Γ, while in the classical model (2.1), the predictor is X,

of which each row represents a realization of the predictors. Second, unlike the classical

methods such as the LASSO, where the parameters are unknown constants, the parameter

α here involves (x,X,Γ), which makes the theoretical analysis challenging.

Remark 4. In the above arguments, we consider a single point x that may or may not be

from the same distribution as the predictor vector. However, if we are going to consider a

large number of test points {xi, i = 1, · · · , nte} that are i.i.d. observations of Xi, the bias

should be taken into account. Because E(γxi) = E(β>xi) = 0 and var(γxi) = β>Σβ <
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var(Y1), there will be many γxi’s that are close to 0 and the corresponding estimators are

shrunken to 0 by the penalization, resulting in large biases in terms of the average estimation

error. There are many bias correction methods for LASSO and related penalized estimators

in the literature (Belloni and Chernozhukov, 2013; Zhang and Zhang, 2014, etc.). In our

simulation results for the prediction problem, the method of Belloni and Chernozhukov

(2013) is applied.

For clarity, we briefly summarize the estimation procedure for a given Γ as follows.

Algorithm 1: Estimator of γx (or γx̃S1
) with given Γ

1. (Estimate αx) Solve the optimization problem (2.6), where the optimal λ is chosen

by CV; the corresponding parameter obtained is denoted as (α̂x, θ̂
>

)>.

2. (Bias-correction) This is an optional step. Denote Ŝ = supp(θ̂) and Γ·Ŝ the columns

of Γ with index Ŝ. Apply the OLS with responses Y and predictors Z =
√
n(zx,Γ·Ŝ)

to get the updated coefficient α̂x of
√
nzx, which is a bias-corrected estimator of αx.

3. (Estimate γx) γx is estimated by γ̂x = α̂x · ‖x‖2‖Xx‖−1n1/2.

4. (Alternative Steps 1–3) Replacing x by x̃S1 in Steps 1–3, we get the estimator γ̂x̃S1
.

Step 2 is mainly applied for the setting in Remark 4 with a large number of testing

points that are i.i.d. observations as of the training data Xi’s. For clarity, the pointwise

estimator obtained by Algorithm 1 is named based on the specific Γ used. There are many

estimators of β available for different settings in the literature, and can be used as an

initial estimator. Denote by β̂lasso and β̂ridge the estimators of LASSO and ridge regression

respectively, and by β̂rdl the overparameterized ridgeless OLS estimator using the Moore-

Penrose generalized inverse (Bartlett et al., 2020; Azriel and Schwartzman, 2020; Hastie

et al., 2022). We consider the estimators γ̂x in Algorithm 1 with Γ being Γeg and Γ(β̂) for

β̂ ∈ {β̂lasso, β̂ridge, β̂rdl}, and the resulting estimators are denoted as Peg, Plasso, Pridge, Prdl

respectively. Now we propose a procedure to select Γ adaptively. Denote by M a set of
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estimators, e.g. M = {Plasso, Pridge, Peg, Prdl} in Setting 1 of our numerical study. The best

estimator selected from M by the following CV procedure will be denoted as PWE.

Algorithm 2: Select Γ by CV

1. Compute the CV error for estimators inM. Split randomly the whole data D of size

n into K parts, denoted as D1, · · · , DK . For each method A ∈ M, compute the CV

error, n−1
K∑
k=1

∑
(xi,yi)∈Dk

(γ̂Axi − yi)
2, where γ̂Axi is estimated by A with data D \Dk.

2. The method A0 in M with the minimum CV error is chosen to be the best one.

3. The final estimator of γx is γ̂A0
x .

For Example 1 in Section 2.1 where x is a sparse vector, we apply Algorithm 2 to get the

pointwise estimator. For the prediction problems in Example 2, since the sparsity degree

of β is unknown, we have two choices on the subset S1: (1) simply taking S1 = {1, · · · , p}

(i.e. estimate γx directly); (2) estimating S1 from data using LASSO or screening methods.

Given Γ, among the candidates of S1, we can select the best one by CV, similar to Steps

1 and 2 of Algorithm 2. Note that xi should be replaced by x̃iS1 , which is defined in the

way similar to x̃S1 , when one computes the CV error in Step 1 of Algorithm 2. Moreover,

one can select both Γ and S1 simultaneously by CV.

3 Properties of the penalized estimator α̂x

Throughout our theoretical analysis, it is assumed that εi’s are i.i.d. from N(0, σ2), and

(x,X) can be fixed or random and will be specified later. In this section, we present

theoretical properties of the regularized estimator α̂x in (2.7), which lays a foundation for

properties of the estimator γ̂x in Section 4. To this end, we first establish results for a

generic invertible matrix Γ with fixed (x,X) in Section 3.1, and then apply it to Γeg and

Γ(β̂) in Sections 3.2 and 3.3, respectively.
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3.1 A general result on α̂x with a generic Γ and fixed (x,X)

Recall that Z =
√
n(zx,Γ) in Model (2.3). Let vx = (1,−b>x )>/(1+b>x bx)

1/2 with bx = Γ−1zx.

It can be shown that vx is the eigenvector associated with the zero eigenvalue of n−1Z>Z (see

proof of Theorem E.1 in Supplementary Materials). For any v = (v1, · · · , vn+1)> ∈ Rn+1,

denote ‖v‖(q) =
n+1∑
i=1

|vi|q; q ∈ [0, 1]. It is worth noting that ‖v‖(q) here is not the `q norm

of v that is defined as ‖v‖q = ‖v‖1/q
(q) ; and for q = 1, they are the same. This notation

‖v‖(q) is convenient for our purpose, particularly for the discussions of the case with q = 0

or q → 0.

For α = (αx,θ
>)> and q ∈ [0, 1], denote Rq = ‖α‖(q) = |αx|q + ‖θ‖(q), which measures

the sparsity of the parameter α. Particularly, when q = 0, Rq is the number of nonzero

elements in α. Let the tuning parameter λ = λn := a0σ
√

(log n)/n with a0 ≥ 2. We have

the following result on a generic invertible matrix Γ.

Theorem 1. Assume that (x,X) are fixed. Let Γ be a generic invertible matrix that may

depend on (x,X). Assume the following α-sparsity condition: Rq ≤ Cλqn‖vx‖2
1 for some

q ∈ [0, 1] and some constant C > 0. Then with probability 1− C1n
−3, we have

|α̂x − αx| ≤
5

4
λn + Cκλ

1−q
n Rq ·min{λq/2n R−1/2

q ‖Γ>zx‖, ‖Γ>zx‖∞},

where C1, Cκ are positive constants. Furthermore, when Γ is a generic orthogonal matrix,

the α-sparsity condition can be simplified as Rq ≤ C ′λqn‖Γ>zx‖2
1 for some constant C ′ > 0.

We make a brief discussion on the above result. First, note that ‖Γ>zx‖∞ ≤ ‖Γ>zx‖,

where the latter equals 1 when Γ is an orthogonal matrix. Further discussions are referred

to Section A of the Supplementary Materials. Second, since λn has the order
√

log n/n,

the bound of Theorem 1 does not explicitly depend on p, which is reasonable, since we

have only n+ 1 parameters in the transformed model (2.3). Third, the bound given above

involves the sparsity of the parameter vector α in the transformed model instead of that
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of β, allowing β being sparse or non-sparse. As an application of Theorem 1, we present

the results for Γ being Γeg and Γ(β̂) respectively below.

Proposition 2. Suppose that (x,X) are fixed. Let Γ = Γeg. Assume that the α-sparsity

condition Rq ≤ Cλqn‖Γ>zx‖2
1 holds for some constant C > 0. Then it holds that |α̂x−αx| ≤

C ′λ
1−q/2
n R

1/2
q with probability 1− C1n

−3, where C1, C
′ are positive constants.

Similar to Theorem 1, Proposition 2 allows β to be sparse or non-sparse. Due to αx

being bounded, we have Rq � ‖θ‖(q), which can be bounded as shown in Section 3.2. When

Xi’s are random, a lower bound on ‖Γ>egzx‖1 is given in Section E of the Supplement.

3.2 Sparsity of θ and properties of α̂x when Γ = Γeg

We first show that for Γ = Γeg, if the eigenvalues of n−1XQxX
> decrease at a certain rate, θ

will be approximately sparse; specifically ‖θ‖(q) is bounded for some q ∈ [0, 1]. Then we give

the asymptotic results on α̂x. Recall ψ1 ≥ ψ2 · · · ≥ ψn ≥ 0 are the eigenvalues of n−1XQxX;

they are also the first n eigenvalues of n−1QxX
>XQx. For q ∈ [0, 1] and k = 0, 1, · · · , n−1,

let ψ̄q,k = (n−k)−1
n∑

i=k+1

ψ
q/(2−q)
i and φ

1/2
k (β) be the norm of the projected vector of β onto

the subspace spanned by the eigenvectors of n−1QxX
>XQx associated with eigenvalues

ψk+1, · · · , ψn, φn(β) = ψ̄q,n = 0, and ψ̄q,k is the average magnitude of the smallest n − k

eigenvalues. For any x1, x2 ≥ 0, denote Hq,k(x1, x2) = k1−q/2 + [(n− k)x1]1−q/2 x
q/2
2 . The

following Lemma 1 is a deterministic result on ‖θ‖(q).

Lemma 1. For q ∈ [0, 1], it holds that ‖θ‖(q) ≤ min
0≤k≤n

{
‖ζβ‖qk1−q/2 +

[
(n− k)ψ̄q,k

]1−q/2
φ
q/2
k (β)

}
.

Moreover, since ‖ζβ‖ = O(1) in Model (2.3), it holds that ‖θ‖(q) = O
(

min
0≤k≤n

Hq,k(ψ̄q,k, φk(β))
)

.

Generally, it is difficult to obtain the sharp upper bound in Lemma 1 without any

information of eigenvalues and β. Simply setting k = n, we have the trivial bound

‖θ‖(q) . Hq,n(ψ̄q,n, φk(β)) = n1−q/2, (3.1)
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which however is unbounded and undesirable. To get better bounds on ‖θ‖(q), we take into

account of the properties of eigenvalues and β, and consider the following three cases:

Case (a) : n−1XX> has low rank, say rank(n−1XX>) = rX = O(1);

Case (b) : β is sparse with ‖β‖0 = s0 and that ‖β‖∞ < C <∞;

Case (c) : β is dense, following a normal distribution N(0,Σβ).

Results are presented in Corollary 1 and Proposition 3, respectively.

Corollary 1. The following conclusions are deterministic.

(1) For Case (a), it holds that ψ̄q,k = 0 for k ≥ rX + 1, and ‖θ‖(q) = O(r
1−q/2
X ) = O(1).

(2) For Case (b), assume that n < p, then ‖θ‖(q) . min
0≤k≤n

Hq,k(ψ̄q,k, s0). Thus if ψ̄q,k0 =

O(s
−q/(2−q)
0 n−1) for some fixed k0, then ‖θ‖(q) = O(k

1−q/2
0 ) = O(1).

In Corollary 1, conclusion (1) holds regardless of the sparsity of β, while conclusion (2)

relaxes the conditions on eigenvalues by taking advantages of the sparsity of β. For Case

(c), we assume that the column space of Σβ is the same as that of Σ, accommodating the

identifiability condition that β ∈ span(Σ). We have the following results.

Proposition 3. Suppose that (X, x) is fixed. For Case (c) with span(Σβ)=span(Σ), assume

the following conditions: (i) ‖ζβ‖ = Op(1); (ii) (np)−1
n∑
i=1

X>i QxXi � 1; (iii) n < p. Then

it holds that φk(β) = Op(dβn/p) for all k and that ‖θ‖(q) = Op

(
min

0≤k≤n
Hq,k

(
ψ̄q,k, dβn/p

) )
,

where dβ = λmax(Σβ)/λ+
min(Σβ) can be viewed as the condition number of Σβ. For clarity,

we assume that dβ = O(1) and consider the following two specific examples of eigenvalues:

(1) Suppose that ψ1 ≥ · · · ≥ ψk0 = Ω(p) and max
j≥k0+1

ψj = O(pn−2/q) for some fixed k0.

Then it holds that ‖θ‖(q) = Op(k
1−q/2
0 ) = Op(1).

(2) Denote fψ(i) = ψi/
n∑
i=1

ψi, the scaled version of ψi, i = 1, · · · , n. Assume that fψ(i)

decreases exponentially, that is, fψ(w) = a exp(−a(w−1)) for w ≥ 1, where a = an >

0 may depend on n. Then ‖θ‖(q) = Op(1) if an = Ω(q−1 log n).

19



Condition (i) is a natural extension of the condition ‖ζβ‖ = O(1) for fixed β in Section

2. Condition (ii) is mild, ruling out the extreme case that Σ has eigenvalues (p, 0, · · · , 0).

Details are referred to the proof in Supplementary Materials. The two examples in Propo-

sition 3 imply that θ can be approximately sparse, when eigenvalues decrease fast enough.

Based on the results of ‖θ‖(q) in Corollary 1 and Propositions 3, by applying the conclusion

of Proposition 2, we are ready to give the asymptotic results of α̂x.

Theorem 2. Suppose that (x,X) are fixed. Taking Γ = Γeg, we have the following conclu-

sions for Cases (a)-(c):

(1) For Case (a), |α̂x−αx| = Op

(
λnr

1/2
X

)
. For Case (b), suppose that λqn‖Γ>zx‖2

1 = Ω(1)

and that n < p; if ψ̄q,k0 = O(s
−q/(2−q)
0 n−1) for some fixed k0, then |α̂x − αx| =

Op(λ
1−q/2
n k

1/2−q/4
0 ).

(2) For Case (c) of a dense β, assume that the conditions of Proposition 3 hold and

that λqn‖Γ>zx‖2
1 = Ω(1). If ψi’s are from Proposition 3 (1), then |α̂x − αx| =

Op(λ
1−q/2
n k

1/2−q/4
0 ); if ψi’s are from Proposition 3 (2), then |α̂x − αx| = Op(λ

1−q/2
n ).

The condition λqn‖Γ>zx‖2
1 = Ω(1) above can be checked from data. Here k0 and rX

reflect the sparsity of the parameters in the transformed model. Faster decay rates of

eigenvalues result in smaller values of k0 and rX, and consequently better convergence

rates of |α̂x − αx|. Moreover, a smaller value of q results in a smaller value of λ
1−q/2
n ,

but requires a faster decreasing rate of eigenvalues. Note that the above bounds only

depend on n and the degree of sparsity in eigenvalues, and do not explicitly depend on p.

Moreover, for Cases (a) and (c) where β is allowed to be dense, the sparsity of eigenvalues

is complementary to the sparsity of β.
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3.3 Properties of the regularized estimator α̂x with an initial β̂

We study properties of our estimator with Γ(β̂), giving the convergence rate of α̂x, for

fixed x and Xi’s being i.i.d. from N(0,Σ). The normality assumption of Xi’s simplifies the

proofs and can be relaxed to general distributions such as sub-Gaussian distributions. We

first give a result on ‖ζ̄β̂ − ζ̄β‖. Recall that ζβ̂ = n−1/2Xβ̂Qx
.

Proposition 4. Assume that x is fixed, Xi’s are i.i.d. from N(0,Σ), and cov(X>i βQx
) � 1.

For any estimator β̂ in Model (2.1), it holds that ‖ζ̄β̂ − ζ̄β‖ = Op(min{2, ‖ζβ̂ − ζβ‖}).

Assuming further that ‖x‖∞‖x‖Σ/‖x‖2 = O(1), then ‖ζβ̂ − ζβ‖ = Op(‖β̂ − β‖1(log p)1/2).

When β̂ is the LASSO estimator, we have ‖β̂ − β‖1 = Op(σs0

√
log p/n) with s0 =

supp(β) (Bickel et al., 2009), and consequently ‖ζ̄β̂ − ζ̄β‖ = Op(min{2, σs0

√
(log p)2/n}).

Let H1,k(ψ̄1,k, x) be the function obtained by setting q = 1 in Hq,k(ψ̄q,k, x) defined in Section

3.2.

Theorem 3. Let Γ = Γ(β̂). Assume that following conditions: (i) Xi’s are i.i.d. from

N(0,Σ), x is fixed, and n < p; (ii) β satisfies cov(X>i βQx
) � 1 and β̂ is obtained

from additional data independent of (X,Y), satisfying cov(X>i β̂Qx
|β̂) � 1. Then it holds

that |α̂x − αx| = Op(λn[1 + Hmin‖ζβ̂ − ζβ‖]), where Hmin = min
0≤k≤n

H1,k(ψ̄1,k, n/[pλ
+
min(Σ)]).

Assuming further the Complementary condition: Hmin‖ζβ̂ − ζβ‖ = Op(1), it follows that

|α̂x − αx| = Op(λn).

The assumption on β in (ii) is mild as cov(X>i βQx
) = E(‖ζβ‖2) and ‖ζβ‖ is bounded

in probability. We give some examples on the magnitude of Hmin.

Corollary 2. (1) If Σ is of low rank, say rank(Σ) = rΣ = O(1), then Hmin = O(r
1/2
Σ ).

(2) Suppose that max
j≥k0+1

ψj = O(pn−2) for some fixed k0 and that λ+
min(Σ) & 1. Then

Hmin = O(k
1/2
0 ). (3) Suppose that λ+

min(Σ) & 1 and denote fψ(i) = ψi/
n∑
i=1

ψi, i = 1, · · · , n.
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Assuming that fψ(i) decreases exponentially, i.e. fψ(w) = a exp(−a(w − 1)) for w ≥ 1,

where a = an & log n, then Hmin = O(1).

Proof of Corollary 2 is similar to those of Corollary 1 and Proposition 3 and is omitted.

We point out two basic facts: 1 . Hmin .
√
n from (3.1), and ‖ζβ̂ − ζβ‖ = Op(1) by

Condition (ii) and the law of large numbers. Moreover, the error rate of an estimator is

generally believed having an order no less than n−1/2; thus without loss of generality we

have ‖ζβ̂ − ζβ‖ = Ωp(n
−1/2) throughout this paper. Hence Theorem 3 leads to the error

rate of order λnHmin‖ζβ̂ − ζβ‖ . min{λn
√
n‖ζβ̂ − ζβ‖, λnHmin} without any restriction on

the decay rate of eigenvalues.

The complementary condition involves two terms, Hmin and ‖ζβ̂−ζβ‖, where the former

is controlled by the decay rate of the eigenvalues, and the latter depends on the accuracy of

β̂. As argued before, as long as the eigenvalues decrease fast, Hmin will be bounded, even if

ζβ̂−ζβ 9 0. Therefore, if β̂ is not accurate but eigenvalues decay fast, we can still get good

results. The same argument applies when β̂ is accurate but the eigenvalues decay slowly.

Particularly, if β̂ is good enough such that ‖ζβ̂ − ζβ‖ = Op(n
−1/2), then the requirement

on the decaying rate of eigenvalues can be removed completely. Thus the information of β̂

and eigenvalues are complementary to each other, requiring only the product of Hmin and

‖ζβ̂ − ζβ‖ being bounded. Theorem 3 assumes β̂ being independent of the data (X,Y).

When β̂ depends on (X,Y), we get a similar result on α̂x with some modifications on the

Condition (i), which is presented in Section F of the Supplementary Materials.

4 Results of γ̂x for two types of test points

In Section 3, we establish theoretical properties of α̂x. With γ̂x = α̂x · ‖x‖2‖Xx‖−1n1/2, it

is natural to get the corresponding results on γ̂x for a generic x. As mentioned in Examples
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1 and 2 in Section 2.1, we are interested in two typical settings in particular: (1) x is a

sparse vector with Sx = supp(x) and sx = |Sx|, and (2) x is a random vector as an i.i.d.

copy of Xi (i.e. the prediction problem). Next we give the theoretical results on γ̂x for

these two examples, based on the simple fact that |γ̂x − γx| ≤ |α̂x − αx| · ‖x‖2‖Xx‖−1n1/2.

4.1 Properties of γ̂x for a sparse x

Proposition 5. Assume the following conditions: (i) x is a fixed sparse vector satisfying

‖x‖∞ = O(1); (ii) λmin(n−1X>Sx
XSx) > c > 0, where XSx is formed by the columns of

X with index Sx. Then we have ‖x‖2‖Xx‖−1n1/2 = O(‖x‖) = O
(
s

1/2
x

)
. Moreover, the

following results hold.

(1) Take Γ = Γeg and assume that the conditions of Theorem 2 hold. For Case (a) in

Section 3.2, it holds that |γ̂x − γx| = Op

(
λn‖x‖r1/2

X

)
= Op

(
λn(sxrX)1/2

)
; for Cases

(b) and (c) in Section 3.2, |γ̂x − γx| = Op

(
λ

1−q/2
n ‖x‖

)
= Op

(
s

1/2
x λ

1−q/2
n

)
, where k0

appeared in Theorem 2 is omitted due to k0 = O(1).

(2) Let Γ = Γ(β̂). Assume further that the conditions of Theorem 3 hold. Then it follows

that |γ̂x − γx| = Op

(
s

1/2
x λnHmin‖ζβ̂ − ζβ‖

)
; assume further that the Complementary

condition holds, then |γ̂x − γx| = Op

(
‖x‖
√
n−1 log n

)
= Op

(√
n−1sx log n

)
.

The condition λmin(n−1X>Sx
XSx) > c > 0 is a type of the restricted eigenvalue con-

dition (Bickel et al., 2009). If Xi’s are i.i.d. variables, n−1X>Sx
XSx →p cov(XSx) =

ΣSxSx . Recall that rank(n−1X>X) = rX in Case (a) of Theorem 2; then the condition

λmin(n−1X>Sx
XSx) > c > 0 implies that sx ≤ rX there.

Remark 5. We briefly discuss the case of Σ = Ip or close to Ip for a sparse vector x.

For Γ = Γeg, using the trivial bound in (3.1) on Rq and taking q = 1 in Proposition
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2, we can see that the error of |α̂x − αx| has the order Op((log n)1/4), and consequently

|γ̂x − γx| = Op(‖x‖(log n)1/4).

We briefly compare our method with the plug-in estimator using the LASSO estimator

β̂ (named briefly as LASSO). For LASSO, the error varies depending on the direction of

x, while results of our estimator depend only on the sparsity degree sx of x. For simplicity

of comparison, we consider a bound of LASSO depending only on sx. Specifically, as

‖x‖∞ = O(1), we have |x>β̂lasso−x>β| = O(‖x‖‖β̂lasso−β‖) = Op(
√
sxs0 log p/n) (Bickel

et al., 2009); the latter will be used as the error rate of LASSO. Recall that Peg denote

our estimator with Γ = Γeg. For Case (a), it follows from Proposition 5 that Peg is better

than LASSO if and only if rX(log n)(log p)−1 = o(s0). Cases (b) and (c) can be analyzed

similarly. Recall that Plasso is our estimator with Γ = Γ(β̂lasso).

Corollary 3. Denote by Tn,fix the ratio of error rate of Plasso over that of LASSO for a

fixed sparse x. Suppose that the conditions (i) and (ii) in Proposition 5 and the conditions

of Theorem 3 hold. Then Plasso has the error rate of order λnHmin

√
sx(s0 log p)2/n and

consequently Tn,fix = Op(λnHmin

√
s0 log p). If Hmin = op(n

1/2[s0(log n)(log p)]−1/2), then

Tn,fix = op(1), impliying Plasso is superior to LASSO; otherwise Plasso is inferior or similar

to LASSO.

The proof of Corollary 3 is a simple combination of Proposition 4 and (2) of Propo-

sition 5 and is omitted here. Since we always have Hmin .
√
n, the requirement Hmin =

op(n
1/2[s0(log n)(log p)]−1/2) is mild.

4.2 Properties of γ̂x for prediction problems

In a prediction problem, x and Xi’s are i.i.d. variables. Recall that MΣ =
√
tr2(Σ)/tr(Σ2).
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Proposition 6. Suppose that x and Xi’s are i.i.d. from N(0,Σ). Then ‖x‖2‖Xx‖−1n1/2 =

Op(‖x‖2/‖x‖Σ) = Op(MΣ). In addition, it holds that 1 ≤MΣ ≤ p1/2. Particularly, MΣ � 1

when Σ is of low rank, and MΣ = p1/2 when Σ = Ip.

Next we first derive properties of γ̂x with Γ = Γeg. Then we consider the estimator γ̂x̃S1

with Γ = Γ(β̂), given both an initial estimator β̂ and a subset S1.

4.2.1 Properties of γ̂x for x in prediction with Γ = Γeg

Recall that |γ̂x−γx| ≤ |α̂x−αx| · ‖x‖2‖Xx‖−1n1/2. Combining Proposition 6 and the result

on |α̂x − αx| with fixed (x,X) given in Proposition 2 for Γ = Γeg, it can be inferred that

|γ̂x−γx| = Op

(
λ

1−q/2
n R

1/2
q MΣ

)
. Clearly, a faster decay rate of the eigenvalues λ(Σ) leads to

a smaller value of MΣ, and a faster decay rate of ψi’s or equivalently a smaller value of Rq,

consequently a better rate. Different from the fixed (x,X) considered in Theorem 2, (x,X)

are random variables in this section. Thus, Rq lacks an explicit rate, due to randomness

of the empirical eigenvalues ψi’s. The magnitudes of ψi’s, though can be checked from

data, are hard to extract in theory generally, according to random matrix theory. To the

best of our knowledge, there is no solution for a general case. To obtain an explicit result,

we consider two extreme cases: (1) Σ is (approximately) low rank; (2) Σ = Ip, the least

favorable case.

Proposition 7. Suppose that x and Xi’s are independent from N(0,Σ). Assume that

n < p. Taking Γ = Γeg, we have the following conclusions:

(1) If Σ is of low rank with rank(Σ) = rΣ, we have |γ̂x − γx| = Op(rΣ

√
n−1 log n).

An extension to Σ being approximately low rank is presented in Proposition D.1 of

Supplementary Material.

(2) For the least favorable case of Σ = Ip, it holds that |γ̂x − γx| = Op(p
1/2(log n)1/4).
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For the case of Σ having a low rank, |γ̂x− γx| has the order similar to that of |α̂x−αx|.

But when Σ = Ip, the error diverges, which is not surprising since θ is non-sparse in

the transformed model in this setting and the rate is determined by the most difficult

case. Particularly, the rate for Σ = Ip is the combination of the facts that |α̂x − αx| =

Op((log n)1/4) and MΣ = p1/2. Next we briefly compare LASSO with the proposed method

with Γ = Γeg. LASSO performs well in prediction when β is (approximately) sparse, and is

less sensitive to the sparsity of eigenvalues. In contrast, the proposed method with Γ = Γeg

has good performance when the eigenvalues of Σ decrease fast, and β can be sparse or less

sparse. Thus our method with Γ = Γeg and LASSO are complementary to each other.

4.2.2 Error of γ̂x̃S1
in prediction with Γ = Γ(β̂)

Recall that in Example 2 in Section 2.1, γx = γx̃S1
for any S1 ⊇ S0 with S0 = supp(β),

implying that one can make prediction at the point x̃S1 . Trivially, one can take S1 =

{1, · · · , p} such that x̃S1 = x. The subset S1 takes the sparsity degree of β into account.

Given an initial estimator β̂ and a subset S1 such that S1 ⊇ S0, by applying our approach

with Γ = Γ(β̂) that is constructed with x replaced by x̃S1 , we obtain the estimator of γx̃S1

denoted as γ̂x̃S1
.

Denote d(β̂,β) = [max{var(X>i (β̂ − β)), var(X>iS1
(β̂S1

− βS1
))}]1/2, which stands for

the prediction error of an initial estimator β̂. Without loss of generality, we assume

d(β̂,β) has magnitude of order no less than n−1/2. Let ΣS1S1 = cov(XiS1) and MS1 =

[tr2(ΣS1S1)/tr(Σ
2
S1S1

)]1/2 with M2
S1

standing for the effective rank of matrix ΣS1S1 . Let

H̃min be the quantity defined similar to Hmin but with the eigenvalues of n−1XX>, satisfy-

ing 1 . H̃min .
√
n (the detailed expression is given in the Supplementary Materials). We

have the following conclusions from Theorem 3.

Theorem 4. Let Γ = Γ(β̂). Assume that (i) x and Xi’s are i.i.d. variables from N(0,Σ)
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and n < p; (ii) Both S1 and β̂ are independent of (X,Y) satisfying cov(X>i β̂) � 1. Then

it holds that |γ̂x̃S1
−γx| = Op(λnMS1H̃mind(β̂,β)). If we further assume the complementary

condition: d(β̂,β))H̃min = Op(1), it holds that |γ̂x̃S1
−γx| = Op(λnMS1). These conclusions

are still valid for S1 = {1, · · · , p}.

Theorem 4 shows that the rate depends on MS1 , H̃min and d(β̂,β). The first two de-

pend on the decay rate of eigenvalues. Moreover, it holds that d(β̂,β) = Op(1) by the

assumptions that both cov(X>i β) and cov(X>i β̂) are bounded, which imposes restrictions

on β̂. Hence, by Theorem 4, without the complementary condition, we have the error rate

min{λnMS1

√
nd(β̂,β), λnMS1H̃min}.

We compare Plasso with the plug-in method using LASSO estimator β̂ (briefly named

LASSO). By the typical rate of LASSO, we have d(β̂lasso,β) = Op(min{1,
√
s0 log p/n}).

To simplify the comparison, we assume that the LASSO estimator is consistent, that is,√
s0 log p/n = o(1). Then one can see that the condition d(β̂lasso,β)H̃min = Op(1) becomes

H̃min = O(n1/2(s0 log p)−1/2), which is mild, since it always holds that H̃min . n1/2.

Denote by Tn,rad the ratio of the error rate of Plasso over d(β̂lasso,β) for random test

points. Then Tn,rad = op(1) would imply that our method is better than LASSO. By

Theorem 4, we see that Tn,rad � λnMS1H̃min. To investigate the magnitude of the latter,

we consider the following two cases:

• Suppose that β is sparse with support set S0 of cardinality s0 = |S0|. Moreover, if a

good S1 is available such that S1 ⊇ S0 and |S1| � s0, that is, we know sufficiently well

on the support set. Then we have MS1 � s
1/2
0 . If H̃min = op(n

1/2(s0 log n)−1/2) (i.e.

λns
1/2
0 H̃min = op(1)) which is mild as argued above, we have Tn,rad = op(1); otherwise

Tn,rad = Ωp(1). Moreover, Plasso has error |γ̂x̃S1
− γx| = Op

(√
s0(log n)/n

)
under the

mild condition Hmind(β̂lasso,β) = Op(1). If one knows the support set S0 in advance,

the OLS estimator using the oracle predictor XiS0 ’s has the rate
√
s0/n, which is
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similar to the rate of our estimator up to a term log n. However, the performance of

our estimator depends on that of S1 and the decay of eigenvalues.

• If we simply set S1 = {1, · · · , p}, ignoring the sparsity information of β, then Tn,rad =

op(1) if and only if MS1H̃min = op(λ
−1
n ); otherwise Tn,rad = Ωp(1). This condition

MS1H̃min = op(λ
−1
n ) holds when eigenvalues decay fast. Moreover, under the settings

similar to Corollary 2, we have H̃min = Op(1). For instance, if rank(Σ) = o(λ−1
n ),

then MS1H̃min . rank(Σ) = op(λ
−1
n ). However, Plasso is worse than LASSO when Σ

is close to Ip and β is indeed sparse; specifically, under the complementary condition,

Plasso has error rate λnMS1 = Op((n
−1p log n)1/2), which is worse than that of LASSO.

However, taking S1 = {1, · · · , p} accommodates both sparse and non-sparse β. The

classical OLS estimator for a non-sparse β has the order
√
p/n, close to that of Plasso.

In practice, we do not know the sparsity degree of β. The CV approach in Section

2.3 can be used to select between γ̂xS1
and γ̂x in an automatic data adaptive manner.

5 Numerical Studies

We use simulation studies in Section 5.1 and real data analysis in Section 5.2 to further

illustrate the numerical performance of our method.

5.1 Simulations

We consider the simulation studies with samples generated i.i.d. from the linear model

(2.1) with p = 1000 dimensional vector Xi ∼ N(0,Σ) and εi ∼ N(0, 1). Set Σ = (σij) with

σij = 0.5|i−j|/η, where η controls the level of dependence strength among the predictors,

with larger values of η implying stronger correlations among predictors. For the convenience

of discussion, the plug-in estimator is named by the method used in estimating β. For
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Figure 2: Simulation prediction results of PWE, LASSO, ridge, Peg and ridgeless (RDL).

example, “LASSO”, “ridge” and “ridgeless” denote the plug-in estimators β̂
>
x with β̂

being LASSO, ridge and ridgeless estimators, respectively.

Setting 1 (Prediction). We set β = δ0(1>p0 , 0, · · · , 0)> ∈ Rp, where p0 = r0p, 1p0

is the p0-dimensional vector of 1, and δ0 = 10/
√
p0 such that ‖β‖ = 10. Clearly, β is

denser for larger values of r0, and we set r0 ∈ {0.1, 0.2, . . . , 0.9}. For prediction, we set

M = {Plasso, Pridge, Peg, Prdl} for Algorithm 2 in Section 2.3.

We compare the prediction performance of different methods. Split the data into two

parts with the training sample of size ntr = 200 and the testing sample of size nte = 500 to

compute the test error. PWE estimators are obtained by Algorithm 2 with the M given

above and S1 = {1, · · · , p}. For the implementation of Algorithm 1, the bias correction

step is adopted. We repeat the procedure 100 times and calculate the average test error

for each method. We compare LASSO, ridge, ridgeless, Peg and the PWE estimators. For

clarity, simulation results for Setting 1 are summarized as follows:

(1) Comparison of LASSO, ridge, ridgeless with PWE and Peg on prediction. The

simulation results are presented in Figure 2. When β is sparse such as r = 0.1, PWE

performs similar to (with small η) and better than (with large η) LASSO, and much better

than other methods including ridgeless. When r0 is large, PWE is similar to or slightly

better than the ridgeless estimator, and is much better than other methods. By taking the

advantages of different initial estimators, PWE performs well for both sparse and dense
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β. Moreover, Peg is insensitive to r0, which supports our theoretical findings, and is better

than LASSO when r0 is large. Its advantage over LASSO is more clear when η is large.

(2) Comparison of plug-in estimators with our proposed pointwise counterparts. Due to

the limited space, the results are presented in Figure S.2 in Section G.1 of the Supplemen-

tary material. It is seen that the performance of Plasso is similar to LASSO for small η and

is better than LASSO for large η; in all cases, Pridge is better than ridge. The numerical

results match with our theoretical findings in the sense that the sparsity in eigenvalues

can be helpful. In addition, Prdl is close to ridgeless, especially when η is small. More

comparisons are presented in Setting 4 and Section G.1 in Supplementary Materials.

Setting 2 (Sparse linear transformation). We consider x being sparse vectors in γx =

β>x. Set β = (3,−3, 3, 1, δ11
>
p0−4,0

>
p−p0)

>, where δ1 = 5/
√
p0. Consider γx being one of the

four quantities β1, βp0 , βp and β1−β3, corresponding to taking x being e1, ep0 , ep and e1−e3

respectively in γx. Note that β1 − β3 = 0, indicating that there is no difference between

effects of the first and third predictors; β1 = 3 and βp0 = δ1 stand for strong and weak

signals, respectively. Moreover, βp = 0 indicates that the p-th predictor is insignificant. Let

p0 = 300 and Σ = (σij) with σij = 0.5|i−j|/150, so that the predictors are highly correlated.

We set the training data size ntr = 150, and compute the average errors of |γ̂x − γx| over

100 replications. We compare the regularized estimators, Peg, Plasso and Pridge, with the

plug-in ones. Estimation comparison results are presented in Table 2.

γx LASSO A-LASSO ridge Plasso Pridge Peg PWE
β1 0.671 0.681 0.672 0.701 0.405 0.277 0.405
βp0 0.072 0.072 0.036 0.072 0.072 0.128 0.072
βp 0 0 0.010 0 0 0 0
β1 − β3 0.251 1.062 0.005 0 0 0.022 0

Table 2: The average values of |γ̂x− γx|. The PWE corresponds to the estimator automat-
ically selected from {Peg, Plasso, Pridge}; A-LASSO stands for the adaptive LASSO.

For a strong signal β1, it can be inferred from Table 2 that the regularized pointwise
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estimators Pridge and Peg are better than LASSO, adaptive LASSO and ridge regression.

For weak signal βp0 , ridge estimator is better than others. The main reason is that other

methods sometimes shrink the estimators to zero, resulting in large biases. For βp = 0,

except ridge regression, other methods give zero estimates. Finally, for β1 − β3 = 0, all

the regularized pointwise estimators result in exactly zero estimates, while the plug-in

estimators LASSO and adaptive LASSO lead to large biases.

Setting 3 (Comparison on different subset S1). As pointed out in Sections 2.1 and 2.3,

one can consider prediction at the point x̃S1 instead of x in prediction problems. Under

the setup of Setting 1, we take Γ = Γ(β̂lasso) and compare the following four candidates

of S1: (1) S1 being S0 = supp(β), which is the ideal case; (2) S1 being Sfull = {1, · · · , p},

that is, γx̃S1
= γx; (3) S1 is obtained by SIS of Fan and Lv (2008), denoted as SSIS; (4) S1

being the Slasso = supp(β̂lasso). For each candidate of S1, we repeat 100 times and report

the average values of the prediction error, true positive rate (TP) and the average length

(LEN) that are defined as TP=|S1 ∩ S0|/|S0| and LEN=|S1|/p respectively.

Due to the limited space, we present the simulation results in Section G.2 in Supple-

mentary Materials. It is seen that S0 always leads to the best prediction errors in all cases.

When r0 = 0.01 where β is very sparse, both SSIS and Slasso have higher values of TP

and smaller values of LEN, leading to smaller prediction errors than those of Sfull. As r0

increases, the signal of βj’s becomes weak due to the constraint ‖β‖ = 10, and the values

of TP for SSIS are very small and are the smallest ones among all subsets, which lead to

the worst prediction errors. On the other hand, TP and consequently errors of Slasso are

much better than those of SSIS, because LASSO takes into account correlations among

the predictors when selecting the significant variables, while SIS uses only the marginal

correlations. In addition, it is observed that Slasso performs similar to that of Sfull, which

is partially due to the following reason. During the construction of Γ(β̂lasso) with a given

31



S1, we need to compute x̃>S1
β̂lasso, which equals x>β̂lasso for S1 being both Slasso and Sfull.

Setting 4 (Further comparison for heterogeneous test points). In Setting 1 where test

points are i.i.d. copies from the training distribution, Plasso is nearly the same as LASSO

when η is small such as η = 5 (results shown in Figure S.2 in Supplementary Material). We

compare them further for the case of xi’s following a distribution different from Xi’s, which

is known as covariate shift in the literature of transfer learning (Weiss et al., 2016). We

generate training data of size 100 as in Setting 1 with η = 5 and β ∝ (1>p0 , 0, · · · , 0)> ∈ Rp

with ‖β‖ = 5. The test points xi’s are i.i.d. from N(0,Σte). The eigenvectors matrix Ute of

Σte is uniformly distributed on the set of all orthogonal matrices in Rp×p. The eigenvalues of

Σte, denoted as %te,1, · · · , %te,p, satisfy that %te,i = 2(p− i+ 1)/(p+ 1) such that tr(Σte) = p.

We first generate a Σte and then 200 test points with given Σte, and repeat this procedure

100 times to compute average prediction errors. Results in Table 3 show that Plasso is much

better than LASSO for the case of covariate shift even for small η, possibly due to the

flexible pointwise prediction of our proposed method. Besides these examples, additional

results demonstrate that Prdl can also substantially improve the ridgeless estimator when

covariate shift exists for testing data (Section G.1 of Supplementary Materials).

Table 3: Test errors of LASSO and Plasso with η = 5 for testing points from N(0,Σte)
r0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
LASSO 3.976 5.878 6.749 7.172 7.461 7.569 7.792 8.108 8.164
Plasso 3.278 3.796 4.077 4.197 4.391 4.421 4.469 4.614 4.737

5.2 Real data analysis

We apply our method to a dataset from the Alzheimer’s Disease Neuroimaging Initiative

(ADNI) (https://adni.loni.usc.edu/). Alzheimer’s Disease (AD) is a form of dementia

characterized by progressive cognitive and memory deficits. The Mini Mental State Exam-

ination (MMSE) is a very useful score in practice for the diagnosis of AD. Generally, any
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Figure 3: Comparison of the test errors of different methods for the AD data analysis. Here
Plasso, Pridge, Prdl, and Peg represent our regularized estimators. The PWE is automatically
selected from Plasso, Pridge, Prdl, and Peg.

score greater than or equal to 27 points (out of 30) indicates a normal cognition. Below

this, MMSE score can indicate severe (≤ 9 points), moderate (10-18 points) or mild (19-24

points) cognitive impairment (Mungas, 1991). Currently, structural magnetic resonance

imaging (MRI) is one of the most popular and powerful techniques for the diagnosis of AD.

One can use MRI data to predict the MMSE score and identify the important diagnostic

and prognostic biomarkers. The dataset we used contains the MRI data and MMSE scores

of 51 AD patients and 52 normal controls. After the image preprocessing steps for the MRI

data, we obtain the subject-labeled image based on a template with 93 manually labeled

regions of interest (ROI) (Zhang and Shen, 2012). For each of the 93 ROI in the labeled

MRI, the volume of gray matter tissue is used as a feature. Therefore, the final dataset

has 103 subjects. For each subject, there are one MMSE score and 93 MRI features. We

treat the MMSE score as the response variable and MRI features as predictors.

We split the data at random with 80% as the training set, denoted as Str, and 20% as

the testing set, denoted as Ste, then compute the average test error
∑

Yi∈Ste |Ŷi − Yi|/|Ste|.

We repeat the procedure for 100 times and report the average test errors. The box plots of

different methods are presented in Figure 3. It shows that pointwise estimators are much

better than plug-in estimators of LASSO, adaptive LASSO and ridge, respectively.
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6 Discussion

In this paper, we estimate the linear transformation β>x of parameters β in high dimen-

sional linear models. We propose a pointwise estimator, which works well when β is sparse

or non-sparse, and predictors are highly or weakly correlated. The theoretical analysis re-

veals the significant difference between estimating a linear transformation of β>x and that

of β. When β is non-sparse or predictors are highly correlated, estimating β is difficult,

but we can still get good estimate of β>x using our proposed pointwise estimators.
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