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Abstract—As electricity consumption significantly contributes
to carbon dioxide emissions in the U.S., increased renewable
energy utilization and individual behavior changes could combine
to substantially decrease the carbon footprint of the sector. This
study proposes an agent-based modelling (ABM) framework of
the New Jersey electricity market that features consumer and
producer agents, each defined by a unique set of attributes.
The consumer agents are capable of making decisions about
energy use, opting into a clean energy program, and investing
in solar panels, while the producer agents decide when to retire
and introduce power plants of each type. The model is used
to simulate agent behavior and to thereby explore the resulting
system outcomes. The results show how ABM is an effective
modeling technique for energy markets, upon which we may
introduce more market complexities such as compound and
dynamic policy scenarios as well as social network analysis.

Index Terms—Sustainable energy, agent-based modeling, com-
plex systems, consumer behavior

I. INTRODUCTION

Still heavily reliant on fossil fuels, the electricity sector
contributes considerably to greenhouse gas emissions (GHG)
in the U.S. Individual energy choices such as reducing elec-
tricity consumption and investing in renewable energy sources
can help reduce GHG emissions and assist in efforts to
remain below 1.5 degrees Celsius of global warming, a critical
threshold internationally agreed upon in the Paris Agreement
and reaffirmed during the 26th UN Climate Change Confer-
ence of the Parties (COP26) [1], [2]. Effectively motivating
individuals to make pro-environmental energy decisions could
reduce emissions by 123 million metric tons of carbon per
year by the tenth year of consistent behaviors [3]. While
individuals are not solely responsible for taking action to
protect the environment, these numbers indicate the value
in determining effective techniques for influencing consumer
behavior in energy markets.

Achieving a more efficient and sustainable energy market
involves promoting individual behavior changes, integrating
renewable energy sources, and understanding the interplay of
power systems with regulatory, economic, and social struc-
tures. However, current practices of designing energy policies,
investing in new energy technologies and assets, understanding
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consumer behaviors, and quantifying social-environmental-
economic impacts are often made at individual stages of an
open-loop framework (see Fig. 1, top), while the interaction of
these key components has been largely neglected. To realize a
more sustainable electric power system, interactions among
individual consumers, power producers, and policy makers
need to be simultaneously considered in a closed-loop system,
see bottom of Fig. 1. One suitable approach to simulating such
systems with independent and autonomous decision makers is
ABM, an acronym referring to either the agent-based modeling
approach or a particular agent-based model [4]. Decades
of behavioral research demonstrate that humans often make
decisions based on what they feel is the best or the right thing
to do and, contrary to expectations, often do not make the most
economically rational or logical choices [5]. To this end, char-
acterizing the behavior of consumers can reveal insights into
the effects of regulatory policies and decision-making strate-
gies on system-level sustainability, while integrating consumer
behavior into a closed-loop multi-agent modeling framework

Fig. 1. Key electricity market system stakeholders, interactions, and impacts;
top: current open-loop approach to system modeling; bottom: proposed closed-
loop multi-agent system modeling approach.



can provide valuable insights for business and policy decision-
makers. An energy market system model that simulates real-
istic consumer behavior will allow the interactions between
consumers, producers, and policies to be studied and analyzed
via simulation without the need to implement policy changes
in the real world. ABM of energy systems offers a bottom-
up approach that can account for complex consumer actions,
provide high temporal resolution, and accommodate diverse
modeling techniques. In this study, an agent-based energy
model was developed to examine energy markets with various
user inputs. The proposed model effectively captures individ-
ualized behaviors and complex interactions while quantifying
sustainability outcomes.

II. METHODS

To explore sustainability outcomes of energy market sys-
tems, an ABM consisting of residential consumer, commercial
consumer, and producer agents was developed. The model
extends a previously-developed model [6], and it features
more robust consumer decision making and policy levers.
When simulated, the model records various economic, social,
and environmental metrics that result from changing policies,
behavioral strategies, and assumptions.

Fig. 2 provides a schematic representation of the flow of
information and decision making within the ABM. The arrows

Fig. 2. ABM behavior and information flow during one time step; agent
attributes are in purple, decisions in green, and calculations in blue.

signify interactions between the components, highlighting the
values and attributes that influence the major decisions in the
model. The model inputs, defined by the user prior to the
simulation, include the producer strategy, producer properties,
energy policy, and consumer attributes that shape the system
behavior. The inputs, calculated values, and agent attributes
together guide the decision making in the system, leading to
updated calculated values and agent attributes and eventually
producing system-level outcomes as the model outputs. The
system-level outcomes help quantify market sustainability.

A. Consumer Behavior

The model is initialized with a diversified population of
residential and commercial consumer agents that represent
typical electricity consumers in the state of New Jersey (NJ)
as estimated by the U.S. Census Bureau [7] and the Energy
Information Administration (EIA) [8]. To speed up the simu-
lation, the agents are scaled down by a user-adjustable factor
such that each consumer agent represents 2,000 residential
or commercial customers. An additional residential consumer
agent is introduced in each time step of the simulation, and
a commercial consumer agent is added in every ninth time
step. This growth aligns with forecasts from the U.S. Census
Bureau [7].

Upon initialization, individual consumer agents are assigned
distinct parameters for their wealth, annual income, monthly
energy use, willingness to pay (WTP) for clean energy, and
willingness to invest (WTI) in solar panels. These parameters
were set based on publicly available data or reasonable as-
sumptions when data were unavailable. The distributions used
to define the consumer agent parameters are shown in Table I.
The parameter distributions were defined using techniques and

TABLE I
INITIAL PARAMETERS FOR CONSUMER AGENTS.

Parameter Distribution Residential Commercial

Wealth lognormal µ = $700K
σ = $400K

µ = $3M
σ = $1M

Income,
annual lognormal µ = $75K

σ = $70K
µ = $300K
σ = $150K

Energy use,
monthly normal µ = 700 kWh

σ = 100 kWh
µ = 6300 kWh
σ = 1000 kWh

WTP clean normal µ = $16
σ = $16

µ = $200
σ = $200

WTI solar lognormal µ = $5, 850
σ = $1, 325

µ = $12, 800
σ = $4, 525

sources similar to those in [6]. For the residential consumers,
the wealth distribution was based on the Federal Reserve’s
Survey of Consumer Finances [9], the income distribution
was based on NJ income data published by the U.S. Census
Bureau [7], and the energy consumption distribution was
estimated via data from the EIA [10]. The residential consumer
WTP distribution was based on a meta-analysis of WTP
literature [11], and the solar panel WTI distributions for
residential and consumer agents were calculated via historical
solar installation data from NJ’s Clean Energy Program solar
activity reports [12]. The remaining commercial agent param-
eters were scaled up based on the residential parameters.



During each time step, the consumer agents update their
parameters and make new decisions about adjusting energy
consumption, opting into a clean energy program, and in-
vesting in solar panels. These decisions are influenced by the
parameters in Table I and the existing policy structure. Since
each agent’s parameters are randomly drawn from statistical
distributions at the beginning of the simulation, the model is
stochastic. Upon initialization, no consumers are opted into the
clean energy option, but they have the opportunity to do so
in each time step based on their WTP. A portion of consumer
agents are initialized with solar panels based on the historical
data available on installed systems in NJ, and those initialized
without solar panels are able to invest in future time steps.

Consumers decide whether to increase or decrease their
energy consumption each month by checking if they can
afford to use more energy. If they can afford to, they increase
consumption; if not, they decrease consumption. The demand
for energy is simply calculated by summing the amount of
energy used by the consumer agents in each time step. When
consumers opt into clean energy programs, they increase the
demand for clean energy, and when consumers install solar
panels on their homes, the demand for energy from the
utility companies decreases. By opting into a clean energy
program, consumer agents agree to pay a premium to ensure
their electricity comes from renewable sources. A consumer’s
decision to opt into a clean energy program depends on their
WTP in addition to their regular energy costs each month;
they will opt in if their WTP exceeds the cost of the program.
The final major decision for the consumer agents is whether to
invest in solar panels for their home. This decision depends on
the agent’s WTI in solar panels, their wealth, and the suitability
of their roof or property. If consumers cannot accommodate
the system, they will not invest, and if their WTI exceeds their
wealth, they will purchase a smaller system with the potential
to expand in the future as they accumulate wealth. These
decisions are revisited in each time step and are not constant,
e.g., agents can opt back out of clean energy programs at any
point if their WTP decreases below the program cost.

B. Producer Behavior

The producer agents in the ABM are a simplified rep-
resentation of the generation, transmission, and distribution
processes in the electricity market. Each agent represents a
single power plant in NJ and is defined by its plant type
(nuclear, coal, natural gas, wind, or solar), capacity, and age.
The model is initialized with producer agents whose attributes
correspond to those of current power plants in NJ [13]–[15].
New producer agents are introduced to the simulation when
additional capacity is needed to meet the demands of the
consumer agents, and existing producer agents are retired
when a power plant reaches the end of its life. The decision
to retire a power plant is influenced by the plant’s age and
the predefined lifetime for that type of power plant, based
on EIA estimates [13]. When power plants are retired, the
capacity in the system decreases. The total capacity and clean
capacity are calculated by summing the capacities of all the

producer agents and the capacities of solar and wind producer
agents, respectively. The decisions on building a new power
plant and choosing the type of plant to build are influenced by
the energy demand, clean energy demand, total capacity, total
clean capacity of the grid, and the levelized cost of electricity
(LCOE) of each source; the producer strategy also plays a role
in the type of power plant that is built.

Plant lifetimes, efficiencies, capital costs, operating costs,
variable costs, and fuel costs are defined by statistical dis-
tributions, adding uncertainty to the simulations. The LCOE
for each source estimates the price per kilowatt-hour (kWh)
a power plant would need to charge to break even [13] and
is updated each time step. A major decision made by the
producer agents is whether it is necessary to build a new
power plant, and if so, the type of power plant to build.
Fig. 2 highlights the system capacity, clean capacity, total
demand, and clean demand as factors that are considered when
making these decisions. The LCOE for each source and policy
levers, such as requiring a minimum percentage of energy
from renewable sources, also impact the decision. Considering
all of these factors, the producer strategy plays a key role in
specifying the type of power plant to build when additional
capacity is needed. Prior to simulating the model, one of three
producer strategies is selected by the model user:

1) Cost minimization: If the clean energy demand and
renewable energy minimum are both met, power sources
are chosen that correspond with the lowest-cost energy
source at that time; otherwise, the lowest-cost renewable
energy source at that time is added.

2) Renewable only: When energy demand is not met, the
lower-cost option between solar and wind is added.

3) On-demand: If the clean energy demand and renewable
energy minimum are both met, the lowest-cost on-
demand source (nuclear, coal, or natural gas) is added
to meet the total energy demands.

Changing the producer strategy alters the fundamental struc-
ture of the electricity market, directly shaping market behavior.

C. Policy Levers

Energy policy comes in many different forms, from man-
dates and market-based solutions to incentives and invest-
ments. Policies influence consumer and producer behavior
and can therefore be effective in motivating individuals and
companies to make sustainable decisions with respect to their
electricity consumption and investments. As such, different
policy levers have been included in the ABM that can be
implemented and adjusted to see the impacts they have on the
simulation outcomes. The user can implement various policy
levers including:

1) Renewable portfolio standards (RPS): Require pro-
ducers to source a minimum percentage of energy from
renewable sources.

2) Carbon taxes: Charge producers a price per metric ton
of carbon dioxide (CO2) released.

3) Clean energy incentives: Subsidize the additional cost
to consumers when opting into clean energy programs.



4) Solar panel tax credits: Subsidize the total cost of a
solar panel system by a certain percentage.

Model users have the ability to set these levers prior to
simulation and can therefore compare multiple combinations
of policies.

D. Sustainability Outcomes

Due to the stochastic nature of the ABM, 500-run Monte
Carlo simulations are used to explore the economic, environ-
mental, and social outcomes over a 40-year time horizon. The
following metrics are monitored to provide insights into the
market behavior:

1) CO2 emissions: Total CO2 emitted over the 40-year
simulation from electricity generation, in metric tons.

2) Power mix: Generation capacity from each of the five
power sources (nuclear, coal, natural gas, solar, and
wind), in kilowatts (kW).

3) LCOE by source: Cost to generate energy from each
of the five power sources, in dollars ($) per kWh.

4) Energy use: Average energy consumed by residential
and commercial consumer agents, in kWh.

5) Average bill: Average electric bill for residential and
commercial consumers, in $ per month.

6) Installed Solar: Total installed solar capacity for resi-
dential and commercial agents, in kilowatts.

The system-level outcomes are used to compare the overall
sustainability of the simulated energy market configurations.
Analyses of the simulation results can help uncover patterns
and emergent behaviors that arise when policies are introduced
to energy markets, providing a better understanding of how
policy influences these markets. It also provides policy makers
with the opportunity to identify any relationships between en-
ergy prices, electricity consumption behaviors, environmental
impacts, and policy design. These insights can contribute to
the improved sustainability of energy markets as a whole.

III. RESULTS

The baseline model configuration is comprised of a cost
minimization producer strategy, no RPS, carbon tax, nor clean
incentive, and 26 percent solar tax credits for both residential
and commercial consumers corresponding to current NJ tax
credits [16]. The system-level outcomes of the simulation
are presented in Fig. 3. For the first half of the simulation,
CO2 emissions rise steadily; however, as the cost to generate
renewable energies falls below the LCOE of conventional
energy sources, the power mix becomes predominately so-
lar and wind power as coal is phased out. Throughout the
40-year simulation, the average residential and commercial
energy use increases linearly; however, as renewable energy
becomes more affordable and installed solar capacity increases
throughout the simulation, the average electricity bills do not
constantly increase with the increased consumption. The solar
installation costs are incurred as a one-time investment; there-
fore, monthly electricity bills decrease as installed capacity
increases, reducing the need for electricity from the utility
company.

IV. DISCUSSION

The simulation results indicate that over time, renewable
energy sources are expected to overtake conventional sources
and CO2 emissions will eventually fall as renewable energy
penetration increases. Such outcomes are encouraging and can
help reduce the negative impacts of electricity consumption
on the environment. However, the speed of this transition is
critical to reducing the scale and effects of climate change.
Implementing more policy levers and studying the effects
of combined policy levers could uncover favorable policy
structures that result in improved social, environmental, and
economic conditions.

As with any modeling endeavor, some assumptions were
made to facilitate this simulation development. Specifically,
while the agents are simulated as individual entities that
interact with each other and make optimal decisions, they
are still defined by aggregated distributions. To more closely
represent the behavior of real consumers in energy markets,
and to better take advantage of ABM capabilities, future work
may consider defining consumer agents using individualized
consumer attributes based on real people, allowing for greater
diversity among the agents and a better representation of
consumer decision making. To that end, all consumption and
investment decisions are currently made from an economically
rational perspective; the agents lack attributes that account for
peoples’ inclinations to spend more to protect the environment
and conserve electricity when they cannot afford to do so.
Accounting for non-financially motivated pro-environmental
behaviors would contribute to our understanding of consumer
behavior in energy markets.

To improve upon the limitations of the model, a parallel
study is underway to determine the effects of incentives, fees,
and social norms on individual consumer energy decisions.
Survey experiments are capturing the intended behavior, atti-
tudes, beliefs, and WTP expressed by participants in an effort
to identify the intervention combinations that result in the most
pro-environmental intentions and attitudes. Once these data
are collected, individualized residential consumer behaviors
revealed in the survey experiments will be incorporated into
the energy model, and the system-level outcomes from indi-
vidualized consumer agents will be compared to the results
from this paper, which uses aggregate statistics.

Social network implementation could also further improve
the model. Using survey responses and social network analy-
sis, social influence that will shape the consumers’ decisions to
purchase solar panels and opt into clean energy programs can
be introduced. The inclusion of social networks would account
for interactions such as referral behaviors and recommenda-
tions that exist in peoples’ social circles, improving upon
the residential consumer agents’ portrayal of real consumer
behavior. Once the model is sufficiently comprehensive and
representative of true electricity markets, it can be turned into
a user-friendly tool for policy makers and businesses. The tool
could be used to simulate different policy structures and output
summary reports and statistics, indicating the expected results



Fig. 3. Average results from 500 simulation runs with error bands of one standard deviation; CO2 emissions, power mix, LCOE by source, average electricity
consumption, average monthly bill, and installed solar using the baseline model structure

of policies and producer strategies.

V. CONCLUSIONS

This paper presents an agent-based modeling approach
for simulating electricity market systems and exploring the
system-level outcomes generated via simulation. The model
considers consumer and producer behavior and policy levers,
thereby shaping the system-level sustainability outcomes ob-
served. The results suggest that this approach is suitable to
study policy influence and trade-offs, providing the oppor-
tunity to identify favorable policy structures that result in
pro-environmental energy decisions. The approach and results
from this study can serve as a reference point to consult as
the model is expanded to include technological challenges,
individualized consumer agents, and social networks.
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