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Abstract: We develop a new stochastic analysis approach to the lattice Yang–Mills
model at strong coupling in any dimension d > 1, with t’ Hooft scaling βN for the
inverse coupling strength. We study their Langevin dynamics, ergodicity, functional
inequalities, large N limits, and mass gap. Assuming |β| < N−2

32(d−1)N
for the structure

group SO(N ), or |β| < 1
16(d−1)

for SU (N ), we prove the following results. The invariant
measure for the corresponding Langevin dynamic is unique on the entire lattice, and the
dynamic is exponentially ergodic under a Wasserstein distance. The finite volume Yang–
Mills measures converge to this unique invariant measure in the infinite volume limit, for
which Log-Sobolev and Poincaré inequalities hold. These functional inequalities imply
that the suitably rescaled Wilson loops for the infinite volume measure has factorized
correlations and converges in probability to deterministic limits in the large N limit,
and correlations of a large class of observables decay exponentially, namely the infinite
volume measure has a strictly positive mass gap. Our method improves earlier results
or simplifies the proofs, and provides some new perspectives to the study of lattice
Yang–Mills model.
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1. Introduction

The purpose of this paper is to apply stochastic analysis and ergodic theory for Markov
processes to study the lattice Yang–Mills model with structure group G ∈ {SO(N ),

SU (N )}. In particular, we will consider the Langevin dynamics of these models, and
under explicit strong coupling assumptions, we will prove uniqueness of invariant mea-
sures in infinite volume, log-Sobolev and Poincaré inequalities, with some application
in large N limits of Wilson loops and exponential decay of correlations.

Lattice discretizations of the Yang–Mills theories were first proposed in the physics
literature by Wilson [Wil74] which lead to well-defined Gibbs measures on collections
of matrices. We refer to [Cha19b] for a nice review on the Yang–Mills model and
its gauge invariant discretization as well as the fundamental questions for the model.
Among the literature we only mention that approximate computations of the Wilson
loop expectations as the size N of the structure group becomes large was first suggested
by ’t Hooft [tH74], where the Yang–Mills Hamiltonian is multiplied by βN (known as
the ’t Hooft scaling), which is closely related to our present article.

The problems we discuss in this paper have been of interest and studied for decades in
mathematical physics. A closely related earlier paper is by Osterwalder–Seiler [OS78],
which showed that for the lattice Yang–Mills theory, when the coupling is sufficiently
strong, the cluster expansion (or high-temperature expansion in statistical mechanics lan-
guage) for the expectation values of local observables (i.e. bounded functions of finitely
many edge variables) is convergent, uniformly in volume. The proof of this convergent
cluster expansion was sketched in [OS78] since it follows similarly as [GJS73] for P(φ)2
model (and also [Spe75]); in fact it is simpler than the P(φ)2 model in [GJS73] since the
fields are bounded in lattice Yang–Mills theory. Moreover, as explained in [OS78], the
existence of a mass gap (exponential clustering) follows from convergence of the clus-
ter expansion, so do existence of the infinite volume limit and analyticity of Schwinger
functions in the inverse coupling. Uniqueness of infinite volume limit should also follow
from cluster expansion, see e.g. [AHKZ89] for the case of the P(φ)2 model. We also
refer to the book [Sei82] for these expansion techniques and results. As for the large N

limits, in the recent papers, factorization property of the Wilson loop expectations was
proved in [Cha19a, Corollary 3.2] and [Jaf16] under the assumption that β is sufficiently
small.

Given the earlier work, we revisit these problems in this article for a number of rea-
sons. First of all, the earlier work [OS78] didn’t consider ’t Hooft scaling, but if we
translate their results into ’t Hooft scaling where the Hamiltonian is multiplied by βN

then their condition amounts to requiring βN to be small. However, to our best knowl-
edge, under the ’t Hooft scaling βN uniqueness was not known for β in a fixed small
neighborhood of the origin when N is arbitrarily large (see for instance the discussion
after [Cha19a, Theorem 3.1]); this is the reason that [Cha19a] and [Jaf16] formulated
their large N results on a sequence of N -dependent finite volumes. One aim of this
paper is to establish uniqueness of infinite volume measures for β in a fixed and explicit

small neighborhood of the origin which is uniform in N , which allows us to prove the
existence of a mass gap and large N limits of Wilson loops directly in infinite volume
for this range of β.
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Secondly, as another motivation of this paper, we develop new methods based on
stochastic analysis and give new proofs to these results. In these methods, the curvature
properties of the Lie groups are better exploited via the verification of the Bakry–Émery
condition. In particular, this allows us to perform more delicate calculations and obtain
more explicit smallness condition on inverse coupling. As another novelty we study the
Langevin dynamics (or stochastic quantization) and we prove uniqueness of the infinite
volume measures by showing that the dynamic on the entire Zd has a unique invariant
measure. To this end we employed coupling methods for our stochastic dynamics, which
is a variant of Kendall–Cranston’s coupling. Such stochastic coupling arguments were
used earlier in the stochastic analysis on manifolds, but to our best knowledge this
appears to be the first time that such coupling arguments are used in the setting of
statistical physics or lattice quantum field theory models with manifold target spaces.
For our coupling arguments we will also need to introduce suitable weighted distances on
the product manifolds, and in our calculations a subtle comparison between the weight
parameter and the curvature plays a key role in order to obtain ergodicity.

As the third motivation, it appears to us that some of the proofs in this paper are
simpler. For instance, the large N results on Wilson loops follow quickly from the
Poincaré inequality, which simply comes from the Bakry–Émery condition. Our proof of
exponential decay relies on some earlier ideas of Guionnet–Zegarlinski [GZ03] together
with our explicit bounds on commutators between derivatives and Markov generators on
Lie groups. This seems to be simpler than cluster expansion, or at least provides some
new perspectives.

1.1. Lattice Yang–Mills. We first recall the basic setup and definitions of the model.
Let �L = Zd ∩ LTd be a finite d dimensional lattice with side length L and unit

lattice spacing, and we will consider various functions on it with periodic boundary
conditions. We will sometimes write � = �L for short. We say that a lattice edge of
Zd is positively oriented if the beginning point is smaller in lexographic order than the
ending point. Let E+ (resp. E−) be the set of positively (resp. negatively) oriented edges,
and denote by E+

�L
, E−

�L
the corresponding subsets of edges with both beginning and

ending points in �L . Define E
def= E+ ∪ E− and let u(e) and v(e) denote the starting

point and ending point of an edge e ∈ E , respectively.
We write G for the Lie group SO(N ) or SU (N ) and g for the associated Lie algebra

so(N ) or su(N ). Note that we always view G as a real manifold (even for SU (N )), and
g as a real vector space, and we will write d(g) = dimR g.

To define the lattice Yang–Mills theory we need more notation, for which we closely
follow [Cha19a] and [SSZ22].

A path is defined to be a sequence of edges e1e2 · · · en with ei ∈ E andv(ei ) = u(ei+1)

for i = 1, 2, · · · , n − 1. The path is called closed if v(en) = u(e1). A plaquette is a
closed path of length four which traces out the boundary of a square. Also, let P�L

be
the set of plaquettes whose vertices are all in �L , and P+

�L
be the subset of plaquettes

p = e1e2e3e4 such that the beginning point of e1 is lexicographically the smallest among
all the vertices in p and the ending point of e1 is the second smallest.

The lattice Yang-Mills theory (or lattice gauge theory) on �L for the structure group
G, with β ∈ R the inverse coupling constant, is the probability measure μ�L ,N ,β on the
set of all collections Q = (Qe)e∈E+

�L
of G-matrices, defined as
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dμ�L ,N ,β(Q)
def= Z−1

�L ,N ,β exp
(
S(Q)

) ∏

e∈E+
�L

dσN (Qe) , (1.1)

with

S(Q)
def= NβRe

∑

p∈P+
�L

Tr(Q p), (1.2)

where Z�L ,N ,β is the normalizing constant, Q p
def= Qe1 Qe2 Qe3 Qe4 for a plaquette

p = e1e2e3e4, and σN is the Haar measure on G. Note that for p ∈ P+
�L

the edges

e3 and e4 are negatively oriented, so throughout the paper we define Qe
def= Q−1

e−1 for

e ∈ E−, where e−1 denotes the edge with orientation reversed. Also, Re is the real part,
which can be omitted when G = SO(N ).

1.2. Main results. We will assume the following in our main results on lattice Yang–
Mills.

Assumption 1.1. Suppose that

KS
def=

⎧
⎪⎨
⎪⎩

N + 2

4
− 1 − 8N |β|(d − 1) > 0, G = SO(N ) ,

N + 2

2
− 1 − 8N |β|(d − 1) > 0 , G = SU (N ) .

Assumption 1.1 is equivalent to the following strong coupling assumption:

|β| <

⎧
⎪⎨
⎪⎩

1

32(d − 1)
− 1

16N (d − 1)
, G = SO(N ) ,

1

16(d − 1)
, G = SU (N ) .

(1.3)

Define the (product) topological space Q
def= G E+

, which will serve as our infinite
volume configuration space. By Tychonoff’s theorem Q is compact. For each a > 1 we
define the distance ρ∞,a on Q by

ρ2
∞,a(Q, Q′)

def=
∑

e∈E+

1

a|e| ρ
2(Qe, Q′

e), (1.4)

with |e| being the distance from 0 to e in Zd . Here ρ(·, ·) is the Riemannian distance on
G. The distances for different choices of a give equivalent topologies, and we just write
ρ∞ when there is no confusion. Q is then a Polish space w.r.t. ρ∞. By standard results
in topology, the topology induced by ρ∞ is equivalent with the product topology on Q.

We can easily extend the measure μ�L ,N ,β to the infinite volume configuration space
Q by periodic extension, which is still denoted as μ�L ,N ,β . Namely, we can construct a
random variable with law given by μ�L ,N ,β and extend the random variable periodically,
and the law of the periodic extension gives the desired extension of measure. Since G

and Q are compact, {μ�L ,N ,β}L�1 form a tight set.
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We will consider the Langevin dynamic on Q, formally given by

dQ = ∇S(Q)dt +
√

2dB , (1.5)

with B = (Be)e∈E+ being independent Brownian motions on G. This is formal since
we will need to “extend” ∇S to infinite volume in a suitable sense. More precisely, the
Langevin dynamic we consider is the following SDE system parametrized by e ∈ E+:

dQe = −1

2
Nβ

∑

p∈P,p	e

(Q p − Q∗
p)Qedt

−1

2
(N − 1)Qedt +

√
2dBe Qe, if G = SO(N ),

dQe = −1

2
Nβ

∑

p∈P,p	e

(
(Q p − Q∗

p) − 1

N
tr(Q p − Q∗

p)IN

)
Qedt

− N 2 − 1

N
Qedt +

√
2dBe Qe, if G = SU (N ). (1.6)

Here B = (Be)e∈E is a collection of independent Brownian motions on the Lie algebra
g of G, and the terms linear in Qe arise from Casimir elements of the Lie algebras; we
will review these in Sect. 2.

Remark 1.1. We note that the above SDE (in finite volume) was used earlier in [SSZ22]
to derive the loop equations (i.e. Dyson–Schwinger or Makeenko–Migdal equations)
for Wilson loops of the model (1.1). These loop equations also hold for any infinite
volume tight limit of the measures, and in particular for the unique invariant measure
for β satisfying (1.3) as given in Theorem 1.2.

The study of a quantum field theory of the form (1.1) via a dynamic (1.5) is also
called stochastic quantization as first proposed by [Nel66,PW81].

We will prove that there exists a unique probabilistically strong solutions to SDE
(1.6) starting from any initial data in Q in Proposition 3.4. Hence the solutions form a
Markov process in Q and the related semigroup is denoted by (Pt )t�0.

Our first main result is as follows.

Theorem 1.2 (Uniqueness and ergodicity). Under Assumption 1.1, the following state-

ments hold.

(1) The invariant measure of the Markov semigroup (Pt )t�0 for the Langevin dynamic

(1.6) is unique. We denote this invariant measure by μym

N ,β .

(2) Furthermore, every tight limit of {μ�L ,N ,β}L is the same, and the whole sequence

{μ�L ,N ,β}L converges to μym

N ,β as L → ∞.

(3) Finally, the Markov semigroup (Pt )t�0 is exponentially ergodic in the following

sense: there exists a constant a > 1 such that for any ν ∈ P(Q)

W
ρ∞,a

2 (ν Pt , μ
ym

N ,β) � C(a)e−K̃S t , t � 0, (1.7)

for some K̃S > 0 which only depends on the constant a, d, β and G (in particular

N).
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Here W
ρ∞,a

2 is the Wasserstein distance w.r.t. ρ∞,a given for any μ, ν ∈ P(Q)

W
ρ∞,a

2 (μ, ν)
def= inf

π∈C (μ,ν)
π(ρ2

∞,a)1/2,

with C (μ, ν) being the set of couplings between μ and ν. Remark that K̃S can be
explicitly given by (5.15) below and gives a lower bound of spectral gap for (Pt )t�0
in Wasserstein distance. In Theorem 1.4 we will see that KS gives a lower bound of
spectral gap in L2(μym

N ,β).

Remark 1.3. The periodic boundary condition in the definition of {μ�L ,N ,β}L is not
essential. By the same argument as in Theorem 3.5 the tight limit of {μ�L ,N ,β}L when
changing the periodic boundary condition to Dirichlet or other boundary conditions is
also the invariant measure of the SDE (1.6), hence, is the same as μym

N ,β .

We remark that uniqueness for small β could possibly also be proven using the
method of Dobrushin, see e.g. [Dob70]. To this end one would also need to consider the
related Wasserstein metric with respect to the Riemannian distance similarly as we do
in this paper. However as we understand such an argument has not been carried out in
detail for lattice Yang Mills in the literature. Here we give a proof based on a new idea
which is a variant of Kendall–Cranston’s coupling used earlier in the stochastic analysis
on manifold.

The idea for the proof of Theorem 1.2 is to use finite dimensional approximation, for
which we construct a suitable coupling and find a suitable distance such that the asso-
ciated Wasserstein distance between the two finite dimensional approximations starting
from different initial distributions decays exponentially fast in time with uniform speed.

We define the cylinder functions C∞
cyl(Q) by

C∞
cyl(Q) =

{
F : F = f (Qe1 , . . . , Qen ), n ∈ N, ei ∈ E+, f ∈ C∞(Gn)

}
. (1.8)

We then obtain the following log-Sobolev inequality for μym

N ,β based on Bakry–Émery’s
criterion.

Theorem 1.4 (Log-Sobolev inequality). Under Assumption 1.1, the log-Sobolev in-

equality holds for the measure μym

N ,β in Theorem 1.2. Namely, for all cylinder functions

F ∈ C∞
cyl(Q) with μym

N ,β(F2) = 1,

μym

N ,β(F2 log F2) �
2

KS

∑

e∈E+

μym

N ,β(|∇e F |2). (1.9)

This implies the Poincaré inequality, i.e. for all cylinder functions F ∈ C∞
cyl(Q),

μym

N ,β(F2) �
1

KS

∑

e∈E+

μym

N ,β(|∇e F |2) + μym

N ,β(F)2, (1.10)

with ∇e the gradient w.r.t. the variable Qe.
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Theorem 1.4 follows from Theorem 1.2 and Corollary 4.5, which states the log-
Sobolev inequality for every tight limit of (μ�L ,N ,β)L�1. The RHS of (1.9) is the
Dirichlet form associated with the Langevin dynamic (see Proposition 3.7). Hence,
(1.9) holds for the functions in the domain of Dirichlet form by lower-semicontinuity.

As some simple applications of the Poincaré inequality, we show certain “suscepti-
bility” bounds on the field Qe and tr(Q p), see Corollaries 4.7 and 4.8. These examples
demonstrate how to choose suitable functions in these functional inequalities to yield
interesting bounds for the model.

Log-Sobolev and Poincaré inequalities in Theorem 1.4 follow by checking the Bakry–
Émery criteria [BE85,BGL14] directly for the finite dimensional approximation on the
product manifolds. As the Ricci curvatures of the target manifolds G are given by positive
constants, so are the Ricci curvatures of the configuration space (i.e. the product mani-
folds). The Hessian of the Hamiltonian could also be bounded by the Ricci curvatures
in the strong coupling regimes.

As a corollary of Theorem 1.4 we obtain the following large N properties of the
Wilson loops. For the rest of this paper, by a loop we mean an equivalent class of closed
paths (as defined in Sect. 1.1), where the equivalence relation ∼ is given by cyclic
permutations e1e2 · · · en ∼ ei ei+1 · · · ene1e2 · · · ei−1 for any i ∈ {1, ..., n}, and it has no
two successive edges of the form e−1e. We will always assume that a loop is non-empty,
i.e. has positive number of edges. Given a loop 	 = e1e2 · · · en , recall that the Wilson
loop variable W	 is defined as

W	
def= Tr(Qe1 Qe2 · · · Qen ) . (1.11)

Corollary 1.5 (Large N limit of Wilson loops). Under Assumption 1.1, for every Wilson

loop (1.11), writing Var and E for the variance and expectation under the measure μym

N ,β

in Theorem 1.2, one has

Var
( 1

N
W	

)
�

n(n − 3)

KS N
, G = SO(N ); Var

( 1

N
W	

)
�

4n(n − 3)

KS N
, G = SU (N ) .

(1.12)

In particular, we obtain the convergence

∣∣∣W	

N
− E

W	

N

∣∣∣ → 0 as N → ∞ (1.13)

in probability, and the factorization property of Wilson loops, i.e. for any loops 	1, . . . , 	m

lim
N→∞

∣∣∣E W	1 . . . W	m

N m
−

m∏

i=1

E
W	i

N

∣∣∣ = 0.

Corollary 1.5 is proven in Sect. 4. Our proof is novel which is based on the Poincaré
inequality (1.10). Note that our formulation of the result is different from [Cha19a] and
[Jaf16] in which the factorization property of Wilson loops was obtained by taking a
sequence of increasing finite lattices Zd = ∪∞

N=1�N , considering the correlations of
Wilson loops over �N , and taking infinite volume limit simultaneously as the large N

limit when sending N → ∞. In our approach, we work directly in infinite volume,
which seems more natural. The subtlety here, as mentioned above and also explained in
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[Cha19a], is that the ’t Hooft coupling places Nβ instead of β in front of the Hamiltonian
so one would require Nβ to be sufficiently small to obtain the infinite volume limit, which
would appear to be problematic when taking the large N limit afterwards. However,
thanks to our precise smallness condition on β in (1.3), we can take β small uniformly
in N . This also allows us to derive bounds on the variances of Wilson loops which are
explicit in terms of N . Our proof based on the Poincaré inequality which follows from the
Bakry–Émery condition also appears to be simpler than the arguments in aforementioned
previous work.

Furthermore, we obtain the following exponential decay property of the covariance.
Consider f ∈ C∞

cyl(Q) and we write � f for the set of the edges f depends on. Let |� f |
denote the cardinality of � f . We define

||| f |||∞ def=
∑

e∈� f

‖∇e f ‖L∞ ,

where C∞
cyl(Q) is introduced in (1.8) and ∇e is introduced in Sect. 3. We also write

d(A, B) for the distance between A, B ⊂ E+, which is given by the nearest distance
between the vertices in A and B.

Corollary 1.6. (Mass gap) Suppose that Assumption 1.1 holds. Writing Cov for the

covariance under the measure μym

N ,β in Theorem 1.2. For f, g ∈ C∞
cyl(Q), suppose that

� f ∩ �g = ∅. It holds that

|Cov( f, g)| � c1d(g)e−cN d(� f ,�g)
(
||| f |||∞|||g|||∞ + ‖ f ‖L2(μym

N ,β )‖g‖L2(μym

N ,β )

)
,

where c1 depends on |� f |, |�g| and cN depends on KS , N and d.

Note that f and g in the above corollary can be chosen to be Wilson loops, or functions
of an arbitrary number of Wilson loops, which are of particular interest in physics.

We also remark that exponential decay of correlations is also related to Wilson’s area
law for Wilson loops – see [Cha21, Theorem 2.4] in which it is proved that exponential
decay of correlations is a sufficient condition for “unbroken center symmetry”, which
implies confinement (slightly weaker than Wilson’s area law).

The proof of Corollary 1.6 is given in Sect. 4.
We conclude this subsection by some brief comments on the challenges or subtleties

in the proofs of the above results. One of the important ingredients in the proofs is to
estimate the Hessian or the general second order derivatives for the interaction S defined
in (1.2). Note that a term of the form N tr(Q p) in the interaction S would “appear” to be
of order N 2, which would be too large for us to obtain the desired results. In our proofs
we will properly arrange terms and apply certain properties of the Lie groups and we
will show that the relevant second order derivatives are actually at most of order |β|N .
See the explanations before Lemma 4.1 and the proof of Theorem 1.2 in Sect. 5 for more
details. This is one of the crucial reasons which allow us to compare the Ricci curvatures
of the Lie groups and Hessians to verify the Bakry–Émery condition by choosing β

small, and also prove ergodicity using a suitable weighted distance.

1.3. Relevant literature and possible directions. The study of properties of lattice gauge
theories recently attracts much interest. Besides the aforementioned work by [Cha19a,
Jaf16,Cha16] computed the leading terms of free energies, [BG18] provided an elaborate
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description of loop expectations in the planar setting, and [CJ16] derived 1/N expansions
in the SO(N ) case at strong coupling. Wilson loops (and also Wilson lines when coupled
with Higgs) for gauge theories with finite structure groups were studied in [Cha20,
FLV22,FLV21,Cao20,For21,Adh21]; see also [GS21] for the U (1) case. Moreover,
exponential correlation decay for lattice gauge theories with finite abelian structure
groups was obtained by [For22] using coupling argument, and for finite non-abelian
structure groups this was proved by [AC22] at weak coupling.

Our present article provides a new approach to study these models via stochastic
analysis and dynamical perspective; see also [SSZ22] for a new derivation of loop i.e.
Makeenko–Migdal equations for Wilson loops by such methods.

Remark 1.7. Here by “stochastic analysis approach”, we do not mean the stochastic
analysis approach for 2D Yang–Mills in continuum developed earlier by [GKS89,Dri89]
(See Def. 3.3 therein) in which parallel translations (which are related with Wilson loops)
are formulated as stochastic differential equations. See [Dri19] and references therein
for more recent literature in this direction. Our Yang–Mills SDE on the other hand is
the stochastic dynamic for the connection fields on a lattice with fixed spacing, which
is along the line of stochastic quantization.

We remark that the choice of constant positive curvature Lie groups SO(N ) and
SU (N ) in this article is a technical simplification for demonstrating our method, and
it should apply as well for other compact target spaces with constant or non-constant
positive curvatures. For instance it should apply to a lattice SO(N ) Yang–Mills model
coupled with a Higgs field 
 which takes values in a sphere in RN (i.e. rotator model)
via a gauge-covariant derivative term, whose action takes the form Re

∑
p Tr(Q p) +∑

e |Qe
v(e) − 
u(e)|2.
It would certainly be interesting to show if log-Sobolev inequalities still hold when the

lattice spacing vanishes, in the situations where the continuum limits of these models are
shown or expected to exist. In this direction, on the two dimensional torus, the continuum
limit of lattice approximations of the Yang–Mills measures on 1-forms was recently
obtained by Chevyrev [Che19], who also showed that a certain class of Wilson loop
observables of this random 1-form coincide in law with the corresponding observables
under the Yang–Mills measure in the sense of [Lev03]. Note that the Langevin dynamics
for Yang–Mills models on the two and three dimensional continuous torus were recently
constructed in [CCHS22a,CCHS22b] (see [Che22] for a review of these results), and
as mentioned in [CCHS22a] it would be interesting to show that the lattice dynamics of
the type (1.5) converge to the processes constructed in the above papers in two and three
dimensions. For some of the recent progress along this direction, see the proof of log-
Sobolev inequalities for the 
4

2,3 and sine-Gordon models [BD22,BB21], and the 1D
nonlinear σ -model (see [AD99,Hai16,BGHZ21]) for which the log-Sobolev inequality,
ergodicity and non-ergodicity (depending on the curvature of the target manifolds) were
obtained in [RWZZ20,CWZZ21]. It would also be interesting to see if the methods
developed in this paper can be applied to weak coupling i.e. large β regime (when the
structure group G is finite, see the recent progress [AC22] on mass gap in weak coupling
regime).

Notation. Given a Polish space E , we write C([0, T ]; E) for the space of continuous
functions from [0, T ] to E . We use P(E) to denote all the probability measures on E

with Borel σ -algebra.
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2. Notation and Preliminaries

In this section we collect some notation and standard facts about Riemannian geometry,
Lie groups and Brownian motions.

Riemannian mani f olds. Let M be a Riemannian manifold of dimension d. We
denote by C∞(M) the space of real-valued smooth functions on M . For x ∈ M we
denote by Tx M the tangent space at x with inner product 〈·, ·〉Tx M . For X ∈ Tx M ,
we write X f or X ( f ) for the differentiation of f along X at x . For a smooth curve
γ : [α, β] → M the tangent vector along γ is defined by

γ̇t f = d

dt
f (γt ), f ∈ C∞(M).

Let ∇ be the Levi-Civita connection, which is a bilinear operation associating to
vector fields X and Y a vector field ∇Y X . Recall that (∇Y X)(x) depends on Y only via
Y (x) for x ∈ M (e.g. [dC92, Remark 2.3]).

For f ∈ C∞(M), we denote by ∇ f the gradient vector field of f . We also write
Hess( f ) for the Hessian. It can be calculated in the following ways

Hess f (X, Y )
def= Hess( f )(X, Y ) = 〈∇X∇ f, Y 〉 = X (Y f ) − (∇X Y ) f . (2.1)

It is a two-tensor: Hess f (ϕX, Y ) = Hess f (X, ϕY ) = ϕHess f (X, Y ) for any ϕ ∈
C∞(M) so Hess f (X, Y )(x) depends only on X (x) and Y (x). Since Levi-Civita con-
nection is torsion-free, Hess( f ) is symmetric in X, Y .

The Riemann curvature tensor R(·, ·) associated to vector fields X, Y is an operator
defined by

R(X, Y )Z = ∇X (∇Y Z) − ∇Y (∇X Z) − ∇[X,Y ]Z .

Let {Wi }d
i=1 be an orthonormal basis of Tx M . The Ricci curvature tensor is defined by

Ricci(X, Y ) =
d∑

i=1

〈R(X, Wi )Wi , Y 〉Tx M (2.2)

and is independent of the choice of {Wi }. Note that Ricci(X, Y )(x) depends on X, Y

only via X (x), Y (x) for x ∈ M .
Let γ be a geodesic. A smooth vector field J is called a Jacobi field along γ : [0, t] →

M if ∇γ̇ ∇γ̇ J + R(J, γ̇ )γ̇ = 0. For any X ∈ Tγ0 M and Y ∈ Tγt M , there exists a Jacobi
field J along γ satisfying J0 = X and Jt = Y (c.f. [CE75, Section 1.5], [Wan06, Section
0.4] ).

Lie groups and algebras. For any matrix M we write M∗ for the conjugate trans-
pose of M . Let MN (R) and MN (C) be the space of real and complex N × N matrices.

For Lie groups SO(N ), SU (N ), we write the corresponding Lie algebras as so(N ),
su(N ) respectively. Every matrix Q in one of these Lie groups satisfies Q Q∗ = IN , and
every matrix X in one of these Lie algebras satisfies X + X∗ = 0. Here IN denotes the
identity matrix.

We endow MN (C) with the Hilbert-Schmidt inner product

〈X, Y 〉 = ReTr(XY ∗) ∀X, Y ∈ MN (C). (2.3)

We restrict this inner product to our Lie algebrag, which is then invariant under the adjoint
action. In particular for X, Y ∈ so(N ) or su(N ) we have 〈X, Y 〉 = −Tr(XY ). Note that
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tr(XY ) ∈ R since we have tr((XY )∗) = tr(Y ∗ X∗) = tr(XY ), and tr(A∗) = tr(A) for
any A ∈ MN (C).

Below G is always understood as SO(N ) or SU (N ). Every X ∈ g induces a right-
invariant vector field X̃ on G, and for each Q ∈ G, X̃(Q) is just given by X Q since G is
a matrix Lie group. Indeed, given any X ∈ g, the curve t �→ et X Q is well approximated
near t = 0 by Q + t X Q up to an error of order t2.

The inner product on g induces an inner product on the tangent space at every Q ∈ G

via the right multiplication on G. Hence, for X, Y ∈ g, we have X Q, Y Q ∈ TQ G, and
their inner product is given by Tr((X Q)(Y Q)∗) = Tr(XY ∗). This yields a bi-invariant
Riemannian metric on G.

For any function f ∈ C∞(G) and X ∈ g, the right-invariant vector field X̃ induced
by X acts on f at Q ∈ G by the right-invariant derivative

X̃ f (Q) = d

dt
|t=0 f (et X Q). (2.4)

We have

[̃X, Y ] = [X̃ , Ỹ ], namely, ([X, Y ]Q) f (Q) = [X Q, Y Q] f (Q),

where the [·, ·] is the Lie bracket on g on the LHS and the vector fields commutator on
the RHS. Also, for the Levi-Civita connection ∇ we have

∇X̃ (Ỹ ) = 1

2
[̃X, Y ]. (2.5)

We refer the above facts to [AGZ10, Appendix F], e.g. Lemma F.27 therein.
Brownian motions. Denote by B and B the Brownian motions on a Lie group G

and its Lie algebra g respectively. The Brownian motion B is characterized by

E
[
〈B(s), X〉〈B(t), Y 〉

]
= min(s, t)〈X, Y 〉 ∀X, Y ∈ g. (2.6)

By [L17, Sec. 1.4], the Brownian motions B and B are related through the following
SDE:

dB = dB ◦ B = dB B +
cg

2
Bdt, (2.7)

where ◦ is the Stratonovich product, and dB B is in the Itô sense. Here the constant cg

is determined by
∑

α v2
α = cg IN where (vα)

d(g)
α=1 is an orthonormal basis of g. Moreover,

by [L17, Lem. 1.2], 1

cso(N ) = −1

2
(N − 1), csu(N ) = − N 2 − 1

N
. (2.8)

Denote by δ the Kronecker function, i.e. δi j = 1 if i = j and 0 otherwise. For any
matrix M , we write M i j for its (i, j)th entry. The following holds by straightforward
calculations (see e.g. [SSZ22, (2.5)]):

d〈Bi j , Bk	〉 = 1

2
(δikδ j	 − δi	δ jk)dt, g = so(N ); (2.9a)

d〈Bi j , Bk	〉 =
(
− δi	δ jk +

1

N
δi jδk	

)
dt , g = su(N ). (2.9b)

1 Note that in [L17, Lem. 1.2], the scalar product differs from (2.3) by a scalar multiple depending on N

and g, so we accounted for this in the expression for cg above.
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2.1. Product manifolds and Lie groups. For Riemannian manifolds M1, M2, the tangent
space of the product manifolds T(x1,x2)(M1 × M2) is isomorphic with Tx1 M1 ⊕ Tx2 M2
which is endowed with the inner product

〈u1 + u2, v1 + v2〉T(x1,x2)(M1×M2) = 〈u1, v1〉Tx1 M1 + 〈u2, v2〉Tx2 M2 .

For a finite collection of Riemannian manifolds (Me)e∈A where A is some finite set, the
product is defined analogously.

If all Me are the same manifold M , the product is written as M A. In this case, given
a point x = (xe)e∈A ∈ M A, if ue ∈ Txe Me for some xe ∈ Me, we will sometimes view
ue as a tangent vector in Tx M A which has zero components for all ē �= e. Continuing
with this notation, if (vi

e)
i=1,...,d is a basis (resp. orthonormal basis) of Txe Me, then

(vi
e)

i=1,...,d
e∈A is a basis (resp. orthonormal basis) of Tx M A.

For Lie groups G1, G2, the group multiplication is defined on G1 × G2 component-
wise. The Lie algebra g of G1 × G2 is isomorphic to g1 ⊕ g2 where gi is the Lie algebra
of Gi . The Lie bracket on g1 ⊕ g2 is defined componentwise. If X = (X1, X2) ∈ g,
then induced the right-invariant vector field X̃(x) for every x ∈ G1 × G2 is equal to
(X̃1(x), X̃2(x)). In particular, (2.5) still holds for any two right-invariant vector fields
on the Lie group product.

With similar notation as above we can define product G A and its Lie algebra gA for a
finite set A. Given X ∈ gA, the exponential map t �→ exp(t X) is also defined pointwise

as exp(t X)e
def= et Xe for each e ∈ A.

In the following we choose G to be one of the matrix Lie groups as before. Define

the configuration space as the Lie group product QL = G
E+

�L , consisting of all maps

Q : e ∈ E+
�L

�→ Qe ∈ G. Let qL = g
E+

�L be the corresponding direct sum of g. Note
that qL is the Lie algebra of the Lie group QL . For any matrix-valued functions A, B on
E+

�L
, we denote by AB the pointwise product (Ae Be)e∈E+

�L
.

As above, the tangent space at Q ∈ QL consists of the products X Q = (Xe Qe)e∈E+
�L

with X ∈ qL , and given two such elements X Q and Y Q, their inner product is defined
by

〈X Q, Y Q〉TQQL
=

∑

e∈E+
�L

Tr(XeY ∗
e ).

The basis of the tangent space TQQL is given by {X i
e Q : e ∈ E+

�L
, 1 � i � d(g)}

where for each e, {X i
e}i is a basis for g.

Given any function f ∈ C∞(QL), the right-invariant derivative is given by
d
dt

|t=0 f (exp(t X)Q). For each Q ∈ QL , the gradient ∇ f (Q) is an element of the
tangent space at Q which satisfies for each X ∈ qL

〈∇ f (Q), X Q〉TQQL
= d

dt

∣∣∣
t=0

f (exp(t X)Q) = (X Q) f. (2.10)

We can write ∇ f =
∑d(g)

i=1

∑
e∈E+

�L

(vi
e f )vi

e with {vi
e : e ∈ E+

�L
, i = 1, · · · , d(g)}

being an orthonormal basis of TQQL . We then define

∇e f
def=

d(g)∑

i=1

(vi
e f )vi

e, �e f
def= div∇e f =

d(g)∑

i=1

〈∇vi
e
∇e f, vi

e〉.
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Here ∇e and �e can be viewed as the gradient and the Laplace–Beltrami operator (w.r.t.
the variable Qe) on G endowed with the metric given above.

3. Yang–Mills SDE

In this section we first recall the Langevin dynamics (1.6) associated to the lattice Yang–
Mills model in finite volume from [SSZ22]. We then extend the dynamics from finite
volume to the whole Zd and prove the global well-posdness of the SDE (1.6). Further-
more, we prove that every tight limit of (μ�L ,N ,β)L is an invariant measure for the SDE
(1.6).

We consider the Langevin dynamic for the measure (1.1), which is the following
SDE on QL

dQ = ∇S(Q)dt +
√

2dB , (3.1)

with B = (Be) being independent Brownian motions on G. Here dB can be viewed as
the white noise w.r.t. the inner product on TQQL .

We now recall the explicit expression for ∇S. To this end, we introduce the following
notation. For a plaquette p = e1e2e3e4 ∈ P , we write p 	 e1 to indicate that p is a
plaquette that starts from edge e1. Note that for each edge e, there are 2(d −1) plaquettes
in P such that p 	 e. For any Lie algebra g embedded into MN (C) (denoted as MN

below for short), it forms a closed subspace of MN , and therefore MN has an orthogonal
decomposition MN = g ⊕ g⊥. Given M ∈ MN , we denote by pM ∈ g the orthogonal
projection onto g.

Lemma 3.1. Writing · for matrix multiplication, for each e ∈ E+
�L

we have

∇S(Q)e = Nβ
∑

p∈P�L
,p	e

pQ∗
p · (Q∗

e)
−1 . (3.2)

Proof. See [SSZ22, Lemma 3.1]. We remark that in this calculation of the gradient of
S, for each fixed e, we replace the Q p in (1.2) where p contains e or e−1 by a product of
the form Qe Q·Q·Q·, which does not change the trace. This motivates our introduction
of the notation p 	 e. ��

The above result holds for general matrix Lie groups, and for our specific choices of
Lie groups, we have the SDE system (3.1) on the finite lattice �L more explicitly as

dQe = ∇S(Q)edt + cgQedt +
√

2dBe Qe , (e ∈ E+
�) (3.3)

∇S(Q)e =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−1

2
Nβ

∑

p∈P�L
,p	e

(Q p − Q∗
p)Qe , G = SO(N ) ,

−1

2
Nβ

∑

p∈P�L
,p	e

(
(Q p − Q∗

p) − 1

N
tr(Q p − Q∗

p)IN

)
Qe , G = SU (N ) .

(3.4)

We recall the following two results from [SSZ22, Lemmas 3.2-3.3].

Lemma 3.2. For fixed N ∈ N and any initial data Q(0) = (Qe(0))e∈E+
�L

∈ QL , there

exists a unique solution Q = (Qe)e∈E+
�L

∈ C([0,∞);QL) to (3.3).
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Lemma 3.3. (1.1) is invariant under the SDE system (3.3).

By global well-posedness of the SDE (3.3), the solutions form a Markov process
in QL . We use (P L

t )t�0 to denote the associated semigroup, i.e. for f ∈ C∞(QL),
(P L

t f )(x) = E f (Q(t, x)) for x ∈ QL , where Q(t, x) denotes the solution at time t

to (3.3) starting from x ∈ QL . We can also write down the Dirichlet form associated
with (P L

t )t�0. More precisely, for F ∈ C∞(QL) we consider the following symmetric
quadratic form

E L(F, F)
def=

∫
〈∇F,∇F〉TQQL

dμ�L ,N ,β

=
∑

e∈E+
�L

∫
〈∇e F,∇e F〉dμ�L ,N ,β

=
∑

e∈E+
�L

∫
tr(∇e F(∇e F)∗)dμ�L ,N ,β .

Using integration by parts formula for the Haar measure, we have that (E L , C∞(QL)) is
closable, and its closure (E L , D(E L)) is a regular Dirichlet form on L2(QL , μ�L ,N ,β).
(c.f. [FOT94].)

Recall S in (1.2). We write the generator associated to the above Dirichlet form for
F ∈ C∞(QL) as

LL F =
∑

e∈E+
�L

�e F +
∑

e∈E+
�L

〈∇S(Q)e,∇e F〉. (3.5)

We use D(LL) to denote the domain of the generator. Moreover, E L(F, G) =
−

∫
LL FGdμ�L ,N ,β for F, G ∈ C∞(QL). It is easy to see that (P L

t )t�0 is a μ�L ,N ,β -
version of the L2(μ�L ,N ,β)-semigroup associated with the Dirichlet form (E L , D(E L)).
(c.f. [MR92] or [FOT94].)

Recall that Q = G E+
. Now we extend �L to Zd and consider the SDE (1.6) on

the entire space. To this end, we write M E+

N =
∏

e∈E+ MN for the direct product of

infinitely many vector spaces MN (i.e. an element of M E+

N is allowed to have infinitely

many non-zero components). We define a norm on M E+

N by

‖Q‖2 def=
∑

e∈E+

1

2|e| |Qe|2, (3.6)

with |Qe|2 = 〈Qe, Qe〉 for 〈·, ·〉 as in (2.3) and |e| given by the distance from 0 to e in
Zd . (More precisely, |e| is the minimum of the distances from the two vertices of e to
0.) Now we give existence and uniqueness of solutions to (1.6).

Proposition 3.4. Fix N ∈ N, β ∈ R. For any Q0 ∈ Q, there exists a unique probabilis-

tically strong solution Q to (1.6) in C([0,∞);Q) starting from any Q0. Namely, for

a given probability space (�,F , P) and Brownian motion (Be)e∈E+ on it, there exists

an (Ft )t�0-adapted process Q ∈ C([0,∞);Q) and Q satisfy (1.6) P-a.s. with (Ft )t�0
given by normal filtration generated by the Brownian motion (Be)e∈E+ .
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Proof. For every initial data Q0 ∈ Q, we can easily find QL(0) ∈ QL with the periodic
extension still denoted by QL(0) such that ‖QL(0) − Q0‖ → 0 as L → ∞. Indeed,
we can set QL(0) as follows (the specification on E+

�L
\E+

�L−1
is just to ensure periodic

boundary condition):

QL
e (0) =

{
Qe(0) e ∈ E+

�L−1

IN e ∈ E+
�L

\E+
�L−1

.

By Lemma 3.2 we obtain a unique solution QL ∈ C([0,∞);QL) to (3.3) from QL(0).
We could also extend QL to Q by periodic extension. Since Q is compact, the marginal
laws of {QL} at each t � 0 form a tight set in Q.

Furthermore, using the SDE (3.3), for t � s � 0

QL
e (t) − QL

e (s) =
∫ t

s

∇S(QL)edr +
∫ t

s

cgQL
e dr +

√
2

∫ t

s

dBe QL
e .

By Itô’s formula and the fact that QL
e ∈ G which is compact, we have the following

bound for p � 1 and 0 � s, t � T

E|QL
e (t) − QL

e (s)|2p
� CN ,β,p,T (|t − s|2p + |t − s|p),

where CN ,β,p,T is a positive constant and may change from line to line. Since the above
constant is independent of e, we have

E‖QL(t) − QL(s)‖2p
� CN ,β,p,T (|t − s|2p + |t − s|p).

Hence, by Kolmogorov criterion we have for α < 1/2

sup
L

E
(

sup
s �=t∈[0,T ]

‖QL(t) − QL(s)‖
|t − s|α

)
< ∞.

Hence, the laws of {QL}, which are denoted by {PL} form a tight set in C([0,∞);Q)

equipped with the distance

ρ̃(Q, Q′)
def=

∞∑

n=0

2−n
(

1 ∧ sup
t∈[n,n+1]

‖Q(t) − Q′(t)‖
)
, Q, Q′ ∈ C([0,∞);Q).

We write PQ for one tight limit. For simplicity we still write {PL} for the converging
subsequence. Since (C([0,∞);Q), ρ̃) is a Polish space, existence follows from the usual
Skorohod Theorem and taking limit on the both sides of the equation. More precisely,
there exists a stochastic basis (�̃, F̃ , P̃) and C([0,∞);Q)-valued random variables

{Q̃L}L , Q̃ on it such that Q̃L d= PL , Q̃
d= PQ and Q̃L → Q̃ in C([0,∞);Q) P̃-a.s.,

L → ∞. As a result, for every F ∈ C∞
cyl(Q), which can be viewed as function on QL

for L large enough, we know that

F(Q̃L(t)) − F(QL(0)) −
∫ t

0
LL F(Q̃L(s))ds
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is a P̃-martingale, where LL is as in (3.5). Letting L → ∞

F(Q̃(t)) − F(Q0) −
∑

e∈E+

∫ t

0

(
�e F(Q̃(s)) + 〈Ze,∇e F〉(Q̃(s))

)
ds

is a P̃-martingale with

Ze(Q)
def=

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−1

2
Nβ

∑

p∈P,p	e

(Q p − Q∗
p)Qe , G = SO(N ) ,

−1

2
Nβ

∑

p∈P,p	e

(
(Q p − Q∗

p) − 1

N
tr(Q p − Q∗

p)IN

)
Qe , G = SU (N ) .

(3.7)

We then obtain a martingale solution to (1.6). By martingale representation theorem
we could construct a stochastic basis and on it Brownian motions (Be)e∈E+ and Q ∈
C([0,∞),Q) with law given by PQ such that Q and (Be)e∈E+ satisfy SDE (1.6), which
gives the existence of probabilistically weak solutions to SDE (1.6).

Now we prove pathwise uniqueness: Consider two solutions Q, Q′ ∈ C([0, T ];Q)

starting from the same initial data Q(0) ∈ Q and we apply Itô’s formula to calculate
d‖Q − Q′‖2. Since Qe, Q′

e ∈ G for every e ∈ E+, by the Burkholder–Davis–Gundy
inequality and (2.9) for the stochastic integral we obtain

E sup
t∈[0,T ]

|Qe − Q′
e|2

� CN ,β,T

∫ T

0
E|Qe − Q′

e|2ds + CN ,β,T

∑

p∈P,p	e

∑

ē∈p

∫ T

0
E|Qe − Q′

e||Q ē − Q′
ē|ds,

where CN ,β,T may change from line to line. We then use

2|Q ē − Q′
ē||Qe − Q′

e| � |Q ē − Q′
ē|2 + |Qe − Q′

e|2,

to obtain

1

2|e| E sup
t∈[0,T ]

|Qe − Q′
e|2 � CN ,β,T

1

2|e|

∫ T

0
E|Qe − Q′

e|2ds

+ CN ,β,T

∑

p∈P,p	e

∑

e �=ē∈p

1

2|ē|

∫ T

0
E|Q ē − Q′

ē|2ds.

Summing over e we get

E sup
t∈[0,T ]

‖Q − Q′‖2
� CN ,β,T

∫ T

0
E‖Q − Q′‖2ds.

Hence, pathwise uniqueness follows by Gronwall’s lemma. By Yamada–Watanabe Theo-
rem [Kur07], weak existence and pathwise uniqueness gives us existence and uniqueness
of strong solution. In particular one can consider other boundary conditions for finite L

and the infinite volume limit solution is the same which is the unique solution to SDE
(1.6). ��
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By Proposition 3.4, the solutions to (1.6) form a Markov process in Q. We denote by
(Pt )t�0 the associated semigroup. As we are in the compact setting, it is easy to obtain
the tightness of the field (μ�L ,N ,β)L in Q as L → ∞. Since by Lemma 3.3 μ�L ,N ,β is
an invariant measure for (3.3), we then obtain the following result.

Theorem 3.5. Every tight limit μN ,β of {μ�L ,N ,β} is an invariant measure for (1.6).

Proof. Suppose that a subsequence – still denoted by μ�L ,N ,β for simplicity – converges
to μN ,β weakly in Q. We start from the unique solutions QL to equation (3.3) with initial
distribution μ�L ,N ,β and the unique solutions Q to (1.6) with initial distribution μN ,β .
By exactly the same arguments as in the proof of Proposition 3.4, we know that the
laws of {QL} are also tight in C([0, T ];Q) and every tight limit satisfies equations
(1.6) with initial distribution μN ,β . By uniqueness of solution to (1.6) from Proposition
3.4, we have that the whole sequence of the laws of {QL} converge to the law of Q in
C([0, T ];Q). Since by Lemma 3.3 μ�L ,N ,β is an invariant measure for (3.3), the result
follows. ��

The dynamic (1.6) is gauge covariant in the following sense. For every G-valued
function g on Zd , one can define the gauge transformation g◦ Q by (g◦ Q)e = gx Qeg−1

y

where e = {xy}. If Q is a solution to (1.6), it is easy to check that g◦ Q also satisfies (1.6)
with Be replaced by gx Beg−1

x , which is still a Brownian motion in g. By Proposition
3.4, the uniqueness in law to SDE (1.6) holds. Hence, we obtain the following result.

Proposition 3.6. Fix N ∈ N, β ∈ R. Let Q and Q̄ be the unique solutions to (1.6) with

initial conditions Q0 and Q̄0 in Q respectively. If Q̄0 = g ◦ Q0 for some G valued

function g on Zd , then, Q̄(t) and g ◦ Q(t) are equal in law for all t � 0.

We can also write the Dirichlet form and generator associated with (1.6). Recall
C∞

cyl(Q) defined in (1.8). For every tight limit μN ,β and F ∈ C∞
cyl(Q) we define the

following symmetric quadratic form

EμN ,β (F, F)
def=

∑

e∈E+

∫
〈∇e F,∇e F〉dμN ,β

=
∑

e∈E+

∫
tr(∇e F(∇e F)∗)dμN ,β . (3.8)

By (3.5) and letting L → ∞ we have that for F, G ∈ C∞
cyl(Q)

EμN ,β (F, G) = −
∫

LF G dμN ,β , (3.9)

with

LF
def=

∑

e∈E+

�e F +
∑

e∈E+

〈Ze,∇e F〉,

for Ze in (3.7).

Proposition 3.7. (EμN ,β , C∞
cyl(Q)) is closable and its closure (EμN ,β , D(EμN ,β )) is a

regular Dirichlet form on L2(Q, μN ,β).
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Proof. It is sufficient to prove the closability of (EμN ,β , C∞
cyl(Q)). Let {Fn}n∈N ⊂

C∞
cyl(Q) be such that

lim
n→∞

μN ,β(F2
n ) = 0, lim

n,m→∞
EμN ,β (Fn − Fm, Fn − Fm) = 0.

Using (3.9), for G ∈ C∞
cyl(Q) we have

EμN ,β (G, Fn) = −
∫

LG Fn dμN ,β → 0.

Hence, the result follows from [MR92, Chapter I. Lemma 3.4]. ��

4. Log-Sobolev and Poincaré Inequalities and Applications

In this section we prove log-Sobolev inequality under the usual Bakry–Émery condition
(see (4.7) below). As applications we obtain large N limit, factorization property of
rescaled Wilson loops and the exponential decay of a large class of observables.

4.1. Log-Sobolev and Poincaré inequalities. In this section we first prove Log-Sobolev
and Poincaré inequalities for the probability measure μ�L ,N ,β on the finite dimensional
compact manifold QL . We then let L → ∞ to derive the log-Sobolev inequality for
every tight limit of μ�L ,N ,β . As simple application we give a proof of correlation bounds
(or susceptibility bounds) for the field Q, and that for the “microscopic Wilson loops”
tr(Q p) for plaquettes p.

Below to verify the Bakry–Émery’s condition we need to calculate HessS(v, v)(Q)

and Ricci(v, v)(Q) for v ∈ TQQL and Q ∈ QL , and we recall (2.1)(2.2) for their
definitions. Following the convention in Sect. 2.1, we write

v = (ve)e∈E+
�

=
∑

e∈E+
�

Xe Qe (4.1)

with Xe ∈ qL being zero for all components except for the component e. We also write
|v|2 = 〈v, v〉TQQL

.
We first compute HessS(v, v) for v ∈ TQQL . Note that as a “naive” guess, S defined

in (1.2) would appear to be of order N 2, since the trace of the orthogonal or unitary
matrix Q p would be generally bounded by N and there is another factor N outside the
summation. If the Hessian of S was indeed of order N 2, or N p for any p > 1, then in
Assumption 1.1 we would never be able to fix β small uniformly in N and ensure that
KS is strictly positive when N gets large. Fortunately in the next lemma by properly
arranging terms and using Hölder inequalities we prove that the Hessian is actually at
most of order N .

Lemma 4.1. For v = X Q ∈ TQQL we have

|HessS(v, v)| � 8(d − 1)N |β||v|2. (4.2)
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Proof. In the proof we omit the subscript L for simplicity. We view v = X Q ∈ TQQL

as a right-invariant vector field on QL generated by X ∈ qL . By (2.5) (and the discussion
in Sec. 2.1) we have ∇vv = 0. We apply the second identity in (2.1) and using (4.1) we
have

HessS(v, v) = v(v(S)) =
∑

e,ē∈E+
�

(X ē Q ē)(Xe Qe)S. (4.3)

Recall S from (1.2), which is a sum over plaquettes p ∈ P+
�L

, and is also a linear (affine)
function in each variable Qe. Since p ∈ P+, we can write Q p = Qe1 Qe2 Q∗

e3
Q∗

e4
where

e1, e2, e3, e4 ∈ E+. Then it is easy to calculate the derivatives using the definition (2.4),
for instance

(Xe3 Qe3)Q p = d

dt

∣∣∣
t=0

Qe1 Qe2(e
t Xe3 Qe3)

∗Q∗
e4

= Qe1 Qe2 Q∗
e3

X∗
e3

Q∗
e4

(4.4)

which is effectively just inserting the matrix X∗
e3

.
Note that:
(1) For the terms with e = ē, the term involving plaquette p in S is non-zero if and

only if the plaquette p contains e or e−1. In this case, we write p ∈ Pe, and there will be
2(d − 1) such plaquettes p. Direct calculation as in (4.4) yields a result of the following
form

(Xe Qe)(Xe Qe)tr(Q p) = tr(Y1 Qe1 Y2 Qe2 Q∗
e3

Y ∗
3 Q∗

e4
Y ∗

4 )

for some matrices Y1, Y2, Y3, Y4, in which three of them are IN and one of them is X2
e .

(2) For the terms with e �= ē, the summand on the RHS of (4.3) is non-zero if and
only if there exists a plaquette p which contains both e or e−1 and ē or ē−1. In this case,
we write p ∈ Pe,ē and there will be only one such plaquette, and

(X ē Q ē)(Xe Qe)tr(Q p) = tr(Y1 Qe1 Y2 Qe2 Q∗
e3

Y ∗
3 Q∗

e4
Y ∗

4 )

where two of Y1, Y2, Y3, Y4 are IN , and the other two are Xe and X ē.
In either case, there are two occurrences of X , so by cyclic invariance of trace we

can write the result into one of the following forms:

tr(Q Xe · Q̃ X ē), tr(Q Xe · (Q̃ X ē)
∗), tr((Q Xe)

∗ · Q̃ X ē), tr((Q Xe)
∗ · (Q̃ X ē)

∗)

for some Q, Q̃ ∈ G. By the Cauchy–Schwarz inequality for the Hilbert–Schmidt inner
product, each of these terms is bounded by

(
tr(Q Xe · (Q Xe)

∗)
) 1

2
(

tr(Q̃ X ē · (Q̃ X ē)
∗)

) 1
2 = |Xe||X ē|

and this is bounded by 1
2 (|Xe|2 + |X ē|2).

Therefore we have

1

N

∑

e=ē∈E+
�

|(X ē Q ē)(Xe Qe)S| �
∑

e∈E+
�

∑

p∈Pe

|β||Xe|2 =
∑

e∈E+
�

2|β|(d − 1)|Xe|2

= 2|β|(d − 1)|v|2
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and

1

N

∑

e �=ē∈E+
�

|(X ē Q ē)(Xe Qe)S| �
∑

e �=ē∈E+
�

∑

p∈Pe,ē

|β|
2

(|Xe|2 + |X ē|2)

=
∑

p∈P+
�

∑

e �=ē∈E+
�

1p∈Pe,ē
· |β|

2
(|Xe|2 + |X ē|2) =

∑

p∈P+
�

∑

e∈E+
�

1p∈Pe
· 3|β||Xe|2

=
∑

e∈E+
�

∑

p∈Pe

3|β||Xe|2 =
∑

e∈E+
�

6(d − 1)|β||Xe|2 = 6(d − 1)|β||v|2

which implies (4.2). ��

We denote the Riemannian distance on G by ρ. We write ρL for the induced Rie-
mannian distance on QL given by

ρL(Q, Q′)2 def=
∑

e∈E+
�L

ρ(Qe, Q′
e)

2, Q, Q′ ∈ QL .

For any μ, ν ∈ P(QL), we introduce the Wasserstein distance as

W ρL
p (μ, ν)

def= inf
π∈C (μ,ν)

π(ρ
p
L )1/p,

with C (μ, ν) being the set of couplings between μ and ν.
We then have the following result using the Bakry–Émery condition (4.7) and [Wan06,

Theorem 5.6.1], which was first proved by [Bak97] and [vRS05].

Theorem 4.2. Under Assumption 1.1, the following hold.

(1) The dynamic defined by the SDE (3.3) is exponentially ergodic in the sense that

W
ρL

2 (δQ P L
t , δQ̄ P L

t ) � e−KS tρL(Q, Q̄), t � 0, Q, Q̄ ∈ QL . (4.5)

(2) For 1 < p < 2

W ρL
p (μP L

t , ν P L
t ) � e−KS t W ρL

p (μ, ν), t � 0, μ, ν ∈ P(QL), (4.6)

In particular, invariant measure of (P L
t )t�0 is unique.

Proof. Using [Wan06, Theorem 5.6.1(1)(11)(12)] we know that (4.5), (4.6) and the
following condition are all equivalent: for every v = X Q ∈ TQQL ,

Ricci(v, v) − 〈∇v∇S, v〉 � KS |X |2. (4.7)

Here we recall that |v|2 = |X |2 and 〈∇v∇S, v〉 = HessS(v, v). By [AGZ10, (F.6)], for
any tangent vector u of G,

Ricci(u, u) =
(α(N + 2)

4
− 1

)
|u|2,
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withα = 1, 2 for SO(N ) and SU (N ) respectively. Since Ricci(v, v) =
∑

e Ricci(ve, ve)

and |X |2 =
∑

e |Xe|2, we have

Ricci(v, v) =
(α(N + 2)

4
− 1

)
|X |2. (4.8)

By Lemma 4.1 and definition of KS in Assumption 1.1, we obtain (4.7), and therefore
(4.5), (4.6) follow.

Uniqueness of invariant measure follows from (4.6) by letting t → ∞. ��

Remark 4.3. In general, if we do not require KS to be strictly positive as in Assumption
1.1, (4.5)–(4.6) still hold, and (4.7) is also equivalent with the following statements: for
any t � 0, f ∈ C1(QL)

|∇ P L
t f | � e−KS t P L

t |∇ f |, (4.9)

P L
t ( f 2 log f 2) − (P L

t f 2) log(P L
t f 2) �

2(1 − e−2KS t )

KS

P L
t |∇ f |2. (4.10)

We refer to [Wan06, Theorem 5.6.1] for these results and more equivalent statements.

As (4.7) is the Bakry–Émery’s condition, we have the following log-Sobolev inequal-
ity (c.f. [Wan06, Theorem 5.6.2]). In fact, it follows from taking integral w.r.t. μ�L ,N ,β

on the both sides of (4.10) and letting t → ∞.

Corollary 4.4. Under Assumption 1.1, the log-Sobolev inequality holds for each L > 1,

i.e. for F ∈ C∞(QL) with μ�L ,N ,β(F2) = 1,

μ�L ,N ,β(F2 log F2) �
2

KS

E L(F, F).

This implies the Poincaré inequality: for F ∈ C∞(QL),

μ�L ,N ,β(F2) �
1

KS

E L(F, F) + μ�L ,N ,β(F)2. (4.11)

We could view any probability measure ν in P(QL) as a probability measure in
P(Q) by periodic extension. Namely, we can construct a random variable with law
given by ν ∈ P(QL) and extend the random variable periodically. The law of the
periodic extension gives the desired extension of ν. Since G is compact, {μ�L ,N ,β}L

form a tight set and passing to a subsequence we obtain a tight limit, which is denoted
by μN ,β . Hence, by approximation we have the following results.

Corollary 4.5. Under Assumption 1.1, the log-Sobolev inequality holds, i.e. for cylinder

functions F ∈ C∞
cyl(Q) with μN ,β(F2) = 1,

μN ,β(F2 log F2) �
2

KS

EμN ,β (F, F). (4.12)

This implies the Poincaré inequality: for cylinder functions F ∈ C∞
cyl(Q)

μN ,β(F2) �
1

KS

EμN ,β (F, F) + μN ,β(F)2. (4.13)



826 H. Shen, R. Zhu, and X. Zhu

In Sect. 5 we will prove Theorem 1.2 which will then identify the tight limit μN ,β in
(4.12) and (4.13) as the measure μym

N ,β in Theorem 1.2; this then proves Theorem 1.4.

Remark 4.6. By the Poincaré inequality (4.11) and (4.13), the semigroup (P L
t )t�0 and

(Pt )t�0 satisfy

‖P L
t f − μ�L ,N ,β( f )‖L2(μ�L ,N ,β ) � e−t KS ‖ f ‖L2(μ�L ,N ,β ),

and

‖Pt f − μN ,β( f )‖L2(μN ,β ) � e−t KS ‖ f ‖L2(μN ,β ).

(c.f. [Wan06, Theorem 1.1.1]). However, this does not imply the uniqueness of the
invariant measure for (Pt )t�0.

The following two results are simple applications of the Poincaré inequality.

Corollary 4.7. Under Assumption 1.1, for every e0 ∈ E+ and every unit vector E in

MN we have

∑

e∈E+
�L

CovN ,β,L

(
〈Qe0 , E〉, 〈Qe, E〉

)
�

{
1/KS , G = SO(N ),

2/KS , G = SU (N ).

Here CovN ,β,L means covariance w.r.t. the measure μ�L ,N ,β . In particular,

∣∣∣
∑

e∈E+
�L

\{e0}
CovN ,β,L

(
〈Qe0 , E〉, 〈Qe, E〉

)∣∣∣ �

{
2/KS , G = SO(N ),

4/KS , G = SU (N ).

Proof. Let f = |E+
�L

|− 1
2
∑

e∈E+
�L

〈Qe, E〉. By direct calculation, one has ∇〈Qe, E〉 =
p(E Q∗

e)Qe, which implies that |∇ f |2 � γ with γ = 1 for G = SO(N ) and γ = 2 for
G = SU (N ), where for G = SU (N ) we used that for any matrices Q, Q′ ∈ MN

tr
(
(Q − 1

N
tr(Q)IN )(Q′ − 1

N
tr(Q′)IN )

)
= tr(Q Q′) − 1

N
tr(Q)tr(Q′). (4.14)

Hence, by the Poincaré inequality (4.11) we get

1

|E+
�L

|
∑

e,e′∈E+
�L

CovN ,β,L

(
〈Qe, E〉, 〈Qe′ , E〉

)
�

γ

KS

.

With periodic boundary condition we have translation invariance, so for fixed edge e0

∑

e∈E+
�L

CovN ,β,L

(
〈Qe0 , E〉, 〈Qe, E〉

)
�

γ

KS

,

which implies the first result and
∣∣∣

∑

e∈E+
�L

\{e0}
CovN ,β,L

(
〈Qe0 , E〉, 〈Qe, E〉

)∣∣∣ �
γ

KS

+ VarN ,β,L

(
〈Qe0 , E〉

)
,
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where we used triangle inequality and VarN ,β,L means variance under μ�L ,N ,β . Now
we take g = 〈Qe0 , E〉 and have |∇g|2 � γ . Then by the Poincaré inequality (4.11)

Var�L ,N ,β

(
〈Qe0 , E〉

)
�

γ

KS

.

Thus the second result follows. ��

Corollary 4.8. Under Assumption 1.1, it holds that for every plaquette p in P+
�L

∑

p̄∈P�L

CovN ,β,L

(
ReTrQ p, ReTrQ p̄

)
�

{
8N (d − 1)/KS , G = SO(N ),

16N (d − 1)/KS , G = SU (N ).

Here CovN ,β,L means covariance w.r.t. the measure μ�L ,N ,β . In particular, for every

plaquette p in P+
�L

∣∣∣
∑

p̄∈P�L
, p̄ �=p

CovN ,β,L

(
ReTrQ p, ReTrQ p̄

)∣∣∣ �

{(
8N (d − 1) + 4N

)
/KS , G = SO(N ),(

16N (d − 1) + 8N
)
/KS , G = SU (N ).

Proof. Let f = |P+
�L

|− 1
2
∑

p̄∈P+
�L

ReTrQ p̄. By the same calculation as (3.2) and (3.4)

for the action S we have

∇ fe =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

− 1

2|P+
�L

|1/2

∑

p∈P�,p	e

(Q p − Q∗
p)Qe , G = SO(N ) ,

− 1

2|P+
�L

|1/2

∑

p∈P�,p	e

(
(Q p − Q∗

p) − 1

N
trs(Q p − Q∗

p)IN

)
Qe , G = SU (N ) .

Thus in SO(N ) case we have

|∇ fe|2 = 1

4|P+
�L

|
∑

p, p̄∈P�,p, p̄	e

Tr
(
(Q p − Q∗

p)(Q p̄ − Q∗
p̄)

∗
)

�
4N (d − 1)2

|P+
�L

| ,

which implies that

|∇ f |2 � 8N (d − 1).

Here we used |P+
�L

| = 2(d−1)
4 |E+

�L
|, since each plaquette has 4 edges and each edge is

adjacent to 2(d − 1) plaquettes. Hence, applying the Poincaré inequality to f we get

1

|P+
�L

|
∑

p, p̄∈P+
�L

CovN ,β,L

(
ReTrQ p, ReTrQ p̄

)
�

8N (d − 1)

KS

.

We choose periodic boundary condition to have translation invariance and we get for
fixed p

∑

p̄∈P+
�L

CovN ,β,L

(
ReTrQ p, ReTrQ p̄

)
�

8N (d − 1)

KS

.
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Thus the first result follows and
∣∣∣

∑

p̄∈P+
�L

, p̄ �=p

CovN ,β,L

(
ReTrQ p, ReTrQ p̄

)∣∣∣ �
8N (d − 1)

KS

+ Var
(

ReTrQ p

)
.

Moreover, take f = ReTrQ p̄ and |∇ f |2 � 4N and we obtain

Var
(

ReTrQ p

)
�

4N

KS

.

Thus the second result follows for SO(N ) case. The result for the SU (N ) case follows
by similar arguments and using (4.14). ��

4.2. Application I: large N limit of Wilson loops. In the following we give the proof of
Corollary 1.5 by applying the Poincaré inequality.

Proof of Corollary 1.5. Since Theorem 1.2 identifies any tight limit μN ,β as the measure
μym

N ,β , it suffices to prove the result for any tight limit μN ,β . We apply the Poincaré
inequality (4.13) to Wilson loops defined in (1.11). Consider the SO(N ) case. Let

f (Q) = 1

N
W	 = 1

N
tr(Qe1 Qe2 . . . Qen ).

We get

μN ,β( f 2) − μN ,β( f )2 = Var
( 1

N
W	

)
.

We then need to calculate ∇ f which appears on the RHS of the Poincaré inequality. For
an edge which appears in the location x of the loop 	, we write

Q	 =
n∏

i=1

Qei
, Qax =

x−1∏

i=1

Qei
, Qbx =

n∏

i=x+1

Qei
.

We then have W	 = tr(Q	). For each e ∈ E+, we may have an edge ex in 	 which is e

or e−1, so by straightforward calculation we have

(∇W	)e = −1

2

n∑

x=1

1ex =e(Qex Qbx Qax − Q∗
ax

Q∗
bx

Q∗
ex

)Qe

+
1

2

n∑

x=1

1ex =e−1(Qbx Qax Q∗
e − Qe Q∗

ax
Q∗

bx
)Qe. (4.15)

Here, the calculation is similar as in Lemma 3.1 (see [SSZ22]). Namely, when ex = e, by
cyclic invariance of trace, we write W	 = tr(Qex Qbx Qax ), and for X ∈ g we compute

∂t |t=0tr(et X Qex Qbx Qax ) = tr(X Qex Qbx Qax ) = 〈X, p(Qex Qbx Qax )
∗〉

= 〈X Qex , p(Qex Qbx Qax )
∗Qex 〉 (4.16)

where p is defined in Lemma 3.1 and is the orthogonal projection of a matrix to the
Lie algebra g of skew-symmetric matrices, and X Qex is a tangent vector at Qex . On the
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other hand if ex = e−1, we write W	 = tr(Qbx Qax Q∗
e), so for X ∈ g similar calculation

as above yields

tr(Qbx Qax Q∗
e X∗) = 〈X, p(Qbx Qax Q∗

e)〉 = 〈X Qe, p(Qbx Qax Q∗
e)Qe〉 (4.17)

which gives the second term on the RHS of (4.15).
Using (4.15) we have

|(∇W	)e|2

= 1

4

n∑

x,y=1

1ex =ey=etr
(
(Qex Qbx

Qax Qex − Q∗
ax

Q∗
bx

)(Qey Qby
Qay Qey − Q∗

ay
Q∗

by
)∗

)

− 1

4

n∑

x,y=1

1
e−1

x =ey=e
tr
(
(Qbx

Qax − Qe Q∗
ax

Q∗
bx

Qe)(Qey Qby
Qay Qey − Q∗

ay
Q∗

by
)∗

)

− 1

4

n∑

x,y=1

1
ex =e−1

y =e
tr
(
(Qex Qbx

Qax Qex − Q∗
ax

Q∗
bx

)(Qby
Qay − Qe Q∗

ay
Q∗

by
Qe)

∗
)

+
1

4

n∑

x,y=1

1ex =ey=e−1 tr
(
(Qbx

Qax − Qe Q∗
ax

Q∗
bx

Qe)(Qby
Qay − Qe Q∗

ay
Q∗

by
Qe)

∗
)
.

Note that the trace of any SO(N ) matrix is bounded by N , and therefore each of the
four traces above is bounded by 4N .

Summing over e ∈ E+, we see that the Dirichlet form term in the Poincaré inequality
is bounded as follows:

EμN ,β ( f, f ) =
∑

e∈E+

μN ,β(|∇e f |2)

�
1

N

∑

e∈E+

n∑

x,y=1

(
1ex =ey=e + 1

e−1
x =ey=e

+ 1
ex =e−1

y =e
+ 1ex =ey=e−1

)
.

(4.18)

For any edge e ∈ E+ we let A(e) be the number of locations in 	 where e occurs and
B(e) be the number of locations in 	 where e−1 occurs. (4.18) is then bounded by

1

N

∑

e∈E+

(A(e) + B(e))2
�

n(n − 3)

N
,

where we used
∑

e∈E+(A(e) + B(e)) = n and A(e) + B(e) � n − 3. The Poincaré
inequality then yields

Var
( 1

N
W	

)
�

1

KS

n(n − 3)

N
.

Letting N → ∞, (1.13) follows for the SO(N ) case.
For G = SU (N ) we choose, with ι =

√
−1,

fR(Q) = 1

N
ReW	 = 1

N
Retr

(
Qe1 Qe2 . . . Qen

)
,
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f I (Q) = 1

N
ImW	 = − 1

N
Retr

(
ιQe1 Qe2 . . . Qen

)

to obtain the result for the real and imaginary parts. It is sufficient to calculate ∇ReW	.
Besides the terms in (4.15) we also have the following additional terms

1

2

n∑

x=1

1ex =e

1

N
tr(Qex Qbx Qax − Q∗

ax
Q∗

bx
Q∗

ex
)Qe

− 1

2

n∑

x=1

1ex =e−1
1

N
tr(Qbx Qax Qex − Qe Q∗

ax
Q∗

bx
)Qe.

(This is similar with how the second case in (3.4) was derived, namely, the projection p
appearing in (4.16)(4.17) should also make the matrices traceless in the SU (N ) case.)
Noting that (4.14) we have

|(∇ReW	)e|2 � 2
n∑

x,y=1

(
1ex =ey=e + 1

e−1
x =ey=e

+ 1
ex =e−1

y =e
+ 1ex =ey=e−1

)
N .

Summing over e ∈ E+ we get

E( fR, fR) �
2

N

∑

e∈E+

n∑

x,y=1

(
1ex =ey=e + 1

e−1
x =ey=e

+ 1
ex =e−1

y =e
+ 1ex =ey=e−1

)

�
2n(n − 3)

N
.

Similarly, we get

E( f I , f I ) �
2n(n − 3)

N
.

Hence, (1.13) holds for SU (N ).
To prove the factorization property, by the Cauchy–Schwarz inequality we have

N−n
∣∣∣E(W	1 . . . W	n ) − E(W	1 . . . W	n−1)EW	n

∣∣∣

� N−n
∣∣∣E(W	1 . . . W	n−1(W	n − EW	n )

∣∣∣

� Var
(W	n

N

)1/2
→ 0.

Hence, the result follows by induction. ��
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4.3. Application II: Mass gap. In this section we use the Poincaré inequality to prove
the existence of mass gap for lattice Yang–Mills. To this end, for f ∈ C∞

cyl(Q), recall
that � f is the set of edges f depends on. We define

||| f |||∞ def=
∑

e∈� f

‖∇e f ‖L∞ .

In this section it will be convenient for the calculations to consider an explicit choice of
an orthonormal basis of g. This choice is standard, see e.g. [AGZ10, Proposition E.15].
Let ekn ∈ MN for k, n = 1, . . . , N be the elementary matrices, namely its (k, n)-th
entry is 1 and all the other entries are 0. For 1 � k < N and ι =

√
−1, let

Dk = ι√
k + k2

(
− kek+1,k+1 +

k∑

i=1

ei i

)
.

For 1 � k, n � N , let

Ekn = ekn − enk√
2

, Fkn = ιekn + ιenk√
2

. (4.19)

Then:

• {Ekn : 1 � k < n � N } is an orthonormal basis of so(N ), and,
• {Dk : 1 � k < N } ∪ {Ekn, Fkn : 1 � k < n � N } is an orthonormal basis of
su(N ).

This then determines an orthonormal basis {vi
e} of g

E+
�L , which consists of right-invariant

vector fields on QL .
We first prove the following lemma for Lie brackets.

Lemma 4.9. It holds that for every vi
e

∑

j

|[vi
e, v

j
e ] f |2 �

1

2
|∇e f |2 for G = SO(N ),

∑

j

|[vi
e, v

j
e ] f |2 �

9

2
|∇e f |2 for G = SU (N ).

Proof. By direct calculation we have

ei j emn = δ jmein .

Using this and (4.19), we deduce

2[Ekn, Elm] = [ekn − enk, elm − eml ]
= δnlekm − δkmeln − δnmekl + δlkemn

− δklenm + δmnelk + δkmenl − δnlemk

= δnl(ekm − emk) + δkm(enl − eln) + δnm(elk − ekl) + δlk(emn − enm).

(4.20)

With this calculation, observe that if we fix (k, n) and vary (l, m), we either get 0 or
one of the orthonormal basis vectors of so(N ) up to a factor ± 1√

2
, and in the latter case
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different values of (l, m) yield different basis vectors. This implies that for G = SO(N ),
{[vi

e, v
j
e ], j = 1, . . . , d(g)} is a subset of orthonormal basis of TQe G up to a factor ± 1√

2
.

Hence, the result holds for SO(N ) by definition of |∇e f |2.
The proof for the SU (N ) case is similar but requires a bit more calculations. We have

2

ι
[Ekn, Flm] = [ekn − enk, elm + eml ]

= δnlekm − δkmeln + δnmekl − δlkemn

− δklenm + δmnelk − δkmenl + δnlemk

= δnl(ekm + emk) + δkm(−enl − eln) + δnm(elk + ekl) + δlk(−emn − enm).

(4.21)

When k = l �= n = m

2

ι
[Ekn, Flm] = δnm(elk + ekl) + δlk(−emn − enm) = 2ekk − 2enn . (4.22)

Furthermore

−2[Fkn, Flm] = [ekn + enk, elm + eml ]
= δnlekm − δkmeln + δnmekl − δlkemn

+ δklenm − δmnelk + δkmenl − δnlemk

= δnl(ekm − emk) + δkm(enl − eln) + δnm(ekl − elk) + δlk(enm − emn).

(4.23)

For Lie brackets involving D we have

[Ekn, emm] = (δmn Fmk − δmk Fmn)/ι.

[Fkn, emm] = ι(δmn Ekm + δmk Enm).

By this we obtain, for k < n,

[Ekn, Dm] =

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0 m + 1 < k
m√

m+m2
Fkn m + 1 = k

− 1√
m+m2

Fkn k � m < m + 1 < n

− m+1√
m+m2

Fkn k � m < m + 1 = n

0 k, n � m,

(4.24)

and

[Fkn, Dm] =

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0 m + 1 < k

− m√
m+m2

Ekn m + 1 = k

1√
m+m2

Ekn k � m < m + 1 < n

m+1√
m+m2

Ekn k � m < m + 1 = n

0 k, n � m.

(4.25)
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For vi
e = Ekn Qe or Fkn Qe, we decompose {v p

e , p = 1, . . . , d(g)} into the following
three sets

I1 = {Elm Qe, Flm Qe, 1 � l < m � N , l �= k or n �= m}, I2 = {Ekn Qe, Fkn Qe},
and

I3 = {Dk Qe, 1 � k � N − 1}.

By (4.20)-(4.23) we view {[vi
e, v

j
e ], v j

e ∈ I1} as a subset of orthonormal basis of TQe G

up to a factor ± 1√
2

. Hence,

∑

v
j
e ∈I1

|[vi
e, v

j
e ] f |2 �

1

2
|∇e f |2.

We further use (4.22) to have
∑

v
j
e ∈I2

|[vi
e, v

j
e ] f |2 � |∇e f |2|ekk − enn|2 = 2|∇e f |2.

We also use (4.24)-(4.25) to have

∑

v
j
e ∈I3

|[vi
e, v

j
e ] f |2 �

( (k − 1)2

k − 1 + (k − 1)2 1k�2 +
n2

n − 1 + (n − 1)2 +
n−2∑

m=k

1

m + m2

)
|∇e f |2

=
(

2 − 1

k
+

1

n − 1
+

n−2∑

m=k

(
1

m
− 1

m + 1
)

)
|∇e f |2 = 2|∇e f |2.

As a consequence, the result holds for vi
e = Ekn Qe or Fkn Qe.

For vi
e = Dm Qe as [Dl , Dm] = 0 we also use (4.24)-(4.25) to view {[vi

e, v
j
e ], j =

1, . . . , d(g)} as a subset of orthonormal basis up to a factor with absolute value smaller
than

√
2. We then have

∑

j

|[vi
e, v

j
e ] f |2 � 2|∇e f |2.

Hence, the result follows. ��
We first prove the following lemma. We write ē ∼ e if ē and e appear in the same

plaquette; more precisely, if there exists p ∈ P such that {e, e−1}∩ p �= ∅ and {ē, ē−1}∩
p �= ∅.

Lemma 4.10. Let {vi
e} be the orthonormal basis given above. For every f ∈ C∞(QL)

and every e ∈ E+
�L

, one has

|[vi
e,LL ] f (Q)| �

∑

E+
�L

�ē∼e

ae,ē|∇ē f (Q)|, ∀Q ∈ QL ,

with ae,ē = N |β|
√

d(g) for e �= ē and

ae,e = 2(d − 1)N |β|(
√

d(g) +
√

2N 1/2γ ) ,

where γ = 1 when G = SO(N ) and γ = 3
√

2 for G = SU (N ).
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Proof. In this proof all the sums over ē are restricted to E+
�L

. Since the metric on G

is bi-invariant and each vi
e is right-invariant which generates a one-parameter family of

isometries, vi
e commutes with the Beltrami-Laplacian �e. So we have

[vi
e,LL ] f = vi

eLL f − LLvi
e f

=
∑

ē∼e

〈
∇vi

e
∇ēS,∇ē f

〉
+

〈
∇eS , ∇vi

e
∇e f − ∇ev

i
e f

〉
.

Writing ∇ēS =
∑

j (v
j
ē S)v

j
ē , and using (2.5), the first term on the RHS is equal to

∑

ē∼e

〈 ∑

j

(vi
ev

j
ē S)v

j
ē ,∇ē f

〉
+

1

2

∑

j

〈
(v

j
e S)[vi

e, v
j
e ],∇e f

〉
.

For the second term we use ∇e f =
∑

j (v
j
e f )v

j
e and (2.5) to write it as

∑

j

〈
∇eS, (vi

ev
j
e f )v

j
e + v

j
e f ∇vi

e
v

j
e − (v

j
e vi

e f )v
j
e

〉

=
∑

j

(v
j
e S)

〈
[vi

e, v
j
e ],∇e f

〉
+

1

2

∑

j

v
j
e f

〈
∇eS, [vi

e, v
j
e ]

〉
.

Therefore,

[vi
e,LL ] f =

∑

ē∼e

〈 ∑

j

(vi
ev

j
ē S)v

j
ē ,∇ē f

〉
+

3

2

∑

j

(v
j
e S)

〈
[vi

e, v
j
e ],∇e f

〉

+
1

2

∑

j

v
j
e f

〈
∇eS, [vi

e, v
j
e ]

〉 def=
3∑

k=1

Ik .

For I1, by similar calculation as in the proof of Lemma 4.1, we have |vi
ev

j
ē S| � N |β|

for e �= ē; also, |vi
ev

j
e S| � 2(d − 1)N |β| since for each edge e there are 2(d − 1)

plaquettes containing e or e−1. Combining with Hölder’s inequality we have

|I1| =
∣∣∣
∑

ē∼e

∑

j

(vi
ev

j
ē S)v

j
ē f

∣∣∣ �
∑

ē∼e

( ∑

j

|vi
ev

j
ē S|2

)1/2( ∑

j

|v j
ē f |2

)1/2

� N |β|
√

d(g)
∑

ē∼e,ē �=e

|∇ē f | + 2(d − 1)N |β|
√

d(g)|∇e f |.

For I2 and I3, fixing the edge e we recall our choice of the orthonormal basis
{vi

e}1�i�d(g) above. Using Lemma 4.9 we then have

|I2 + I3| �
3

2

(∑

j

|v j
e S|2

)1/2( ∑

j

|[vi
e, v

j
e ] f |2

)1/2

+
1

2

(∑

j

|v j
e f |2

)1/2( ∑

j

|[vi
e, v

j
e ]S|2

)1/2
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�
√

2γ1

( ∑

j

|v j
e S|2

)1/2(∑

j

|v j
e f |2

)1/2
=

√
2γ1|∇eS||∇e f |

� 2
√

2(d − 1)N 3/2γ |β||∇e f |,

where γ1 = 1 for G = SO(N ) and γ1 = 3 for G = SU (N ) and we use (3.4) to bound
|∇eS| by 2(d − 1)N 3/2|β|γ /γ1 in the last inequality. Hence, the result follows. ��

The next corollary together with uniqueness in Sect. 5 proves Corollary 1.6.

Corollary 4.11. Suppose that Assumption 1.1 holds. For f, g ∈ C∞
cyl(Q), suppose that

� f ∩ �g = ∅. Then one has

|Cov( f, g)| � c1d(g)e−cN d(� f ,�g)(||| f |||∞|||g|||∞ + ‖ f ‖L2‖g‖L2),

where c1 depends on |� f |, |�g|, and cN depends on KS , N and d. Here the covariance

and L2 are with respect to every tight limit of {μ�L ,N ,β}L .

Proof. With the calculations and bounds obtained in the previous lemmas, together with
our Poincaré inequality, to prove exponential decay we can then apply an argument es-
sentially from [GZ03, Section 8.3]. We write μL = μ�L ,N ,β for simplicity and consider

|CovμL
( f, g)| = |μL( f g) − μL( f )μL(g)| = |μL(P L

t ( f g)) − μL(P L
t f )μL(P L

t g)|
= |μL(P L

t ( f g) − P L
t f P L

t g) + CovμL
(P L

t f, P L
t g)|

� |μL(P L
t ( f g) − P L

t f P L
t g)| + VarμL

(P L
t f )1/2VarμL

(P L
t g)1/2.

(4.26)

Recall that the Poincaré inequality is equivalent to the following:
Var(P L

t f ) � e−2t KS ‖ f ‖2
L2(μL )

(see Remark 4.6). Therefore by the Poincaré inequality,
the last term in (4.26) is bounded by

VarμL
(P L

t f )1/2VarμL
(P L

t g)1/2
� e−2t KS ‖ f ‖L2(μL )‖g‖L2(μL ). (4.27)

As LL is uniform elliptic operator with smooth coefficient, by Hörmander’s Theorem
(c.f. [Nua06, Theorem 2.3.3]) P L

t f ∈ C∞(QL). Now we consider P L
t ( f g)− P L

t f P L
t g

in (4.26) and we omit L for notation simplicity. Recall that Pt and L commute on the
domain D(L) (see e.g. [MR92, Chap. I Exercise 1.9]). We have

Pt ( f g) − Pt f Pt g =
∫ t

0

d

ds
[Ps(Pt−s f Pt−s g)]ds

=
∫ t

0

[
PsL(Pt−s f Pt−s g) − Ps(LPt−s f Pt−s g + Pt−s f LPt−s g)

]
ds

= 2
∑

e

∫ t

0
Ps〈∇e Pt−s f,∇e Pt−s g〉ds

= 2
∑

e,i

∫ t

0
Ps[(vi

e Pt−s f ) · (vi
e Pt−s g)]ds.

Here, to obtain the third line from the second line, recalling the definition of L, by
∇( f g) = g∇ f + f ∇g the first order terms cancel, and it then follows from �( f g) =
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g� f + f �g + 2〈∇ f,∇g〉. Note that for every e, i , we have (Psv
i
e f ) · (Psv

i
eg) = 0 since

� f ∩ �g = ∅. From this we then have
∑

e,i

(vi
e Pt−s f )(vi

e Pt−s g) =
∑

e,i

(vi
e Pt−s f − Pt−sv

i
e f ) · (vi

e Pt−s g − Pt−sv
i
eg)

+
∑

e,i

(vi
e Pt−s f − Pt−sv

i
e f ) · (Pt−sv

i
eg)

+
∑

e,i

(vi
e Pt−s g − Pt−sv

i
eg) · (Pt−sv

i
e f )

def=
∑

e

(I 1
e + I 2

e + I 3
e ).

Suppose for the moment that we can prove the following: for any c > 0 and f ∈
C∞

cyl(QL), there exists B > 0 such that for d(e,� f ) � Bt one has

∑

i

‖vi
e Pt f − Ptv

i
e f ‖L∞ � d(g)e−2cd(e,� f )||| f |||∞. (4.28)

We choose t ∼ d(� f ,�g)/B below. Applying (4.28) to the function g with e ∈ � f (in
which case I 2

e = 0 since vi
eg = 0) and using (4.9)

‖I 1
e + I 3

e ‖L∞ �
∑

i

‖vi
e Pt−s f ‖L∞‖vi

e Pt−s g − Pt−sv
i
eg‖L∞

� d(g)e−2cd(� f ,�g)||| f |||∞|||g|||∞.

Similarly for e ∈ �g , I 3
e = 0 and

‖I 1
e + I 2

e ‖L∞ � d(g)e−2cd(�g,� f )|||g|||∞||| f |||∞.

For e /∈ � f ∪ �g we have I 2
e = I 3

e = 0 and d(e,� f ) � d(�g,� f )/2 or d(e,�g) �

d(�g,� f )/2. For both cases we have

‖I 1
e ‖L∞ � d(g)e−cd(� f ,�g)−c(d(e,� f )∧d(e,�g))||| f |||∞|||g|||∞.

With these bounds on I 1
e , I 2

e , I 3
e , we sum over e and obtain that for d(� f ,�g) � Bt

‖Pt ( f g) − Pt f Pt g‖L∞ � c1d(g)e−cd(� f ,�g)||| f |||∞|||g|||∞. (4.29)

Substituting (4.27) and (4.29) into (4.26) we get

|CovμL
( f, g)| � c1d(g)e−cd(� f ,�g)||| f |||∞|||g|||∞ + e−2t KS ‖ f ‖L2‖g‖L2 ,

where c1 depends on |� f | and |�g| and is independent of L . Since t ∼ d(� f ,�g)/B,
letting L → ∞ the result follows.

It remains to check the claimed bound (4.28). We use a similar argument as in [GZ03,
Theorem 8.2] which we adapt into our setting. We have

vi
e Pt f − Ptv

i
e f =

∫ t

0

d

ds

(
Pt−sv

i
e Ps f

)
ds =

∫ t

0
Pt−s[vi

e,L]Ps f ds. (4.30)
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By Lemma 4.10, we have

‖[vi
e,L]Ps f ‖L∞ �

∑

ē∼e

ae,ē‖∇ē Ps f ‖L∞ ,

for constants ae,ē which are uniformly bounded in e, ē. Hence, by (4.30)

∑

i

‖vi
e Pt f ‖L∞ �

∑

i

‖vi
e f ‖L∞ +

∫ t

0

∑

ē

De,ē‖∇ē Ps f ‖L∞ds,

with a matrix D such that De,ē = d(g)ae,ē if e ∼ ē and De,ē = 0 otherwise. Since
e /∈ � f we get vi

e f = 0 and by iteration

∑

i

‖vi
e Pt f ‖L∞ �

∞∑

n=Ne

tn

n!
∑

ē

D
(n)
e,ē

∑

i

‖vi
ē f ‖L∞ ,

with Ne = d(e,� f ) and D
(n)
e,ē � Cn

0 with C0 = d(g)(ae,e + 6(d − 1)ae,ē). As a result,

using n! � en log n−2n , for 2 − log B + log C0 + C0
B

� −2c and d(e,� f ) � Bt we have

∑

i

‖vi
e Pt f ‖L∞ �

∞∑

n=Ne

tn

n!Cn
0 d(g)||| f |||∞ �

(C0t)Ne

Ne!
etC0 d(g)||| f |||∞

� d(g)e−2cd(e,� f )||| f |||∞.

Hence, (4.28) follows. ��

Remark 4.12. From the above proof one can see

cN ∼ KS

d(g)(ae,e + 6(d − 1)ae,ē)
,

but this is not necessarily optimal.

5. Uniqueness of Invariant Measure

In this section we prove Theorem 1.2. As the results (4.5) and (4.6) in Theorem 4.2
depend on ρL , we cannot simply send L → ∞ to conclude the result for (Pt )t�0 on
Q. The idea of our proof is to construct a suitable coupling and find a suitable distance
ρ∞,a such that for any μ, ν ∈ P(QL), the Wasserstein distance w.r.t. ρ∞,a between
μP L

t and ν P L
t decays exponentially fast in time. Recall that ρ∞,a is given in (1.4) and

we will choose a suitable parameter a > 1 below.
We denote CRicci,N = α(N+2)

4 − 1 which is a constant arising from Ricci curvature
in (4.8), where α = 1, 2 for SO(N ) and SU (N ) respectively. For any μ, ν ∈ P(Q),
we introduce the Wasserstein distance

W
ρ∞,a
p (μ, ν)

def= inf
π∈C (μ,ν)

π(ρ
p
∞,a)1/p.
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Recall that the generator LL is given by

LL F =
∑

e∈E+
�L

�e F +
∑

e∈E+
�L

〈∇S(Q)e,∇e F〉. (5.1)

For fixed Q ∈ QL define

C
def= {(Q, Q′) : Q′ ∈ cut(Q)}, D

def= {(Q, Q) : Q ∈ QL}, (5.2)

where cut(Q) consists of conjugate points of Q and points having more than one minimal
geodesics to Q.

In the following we prove the result for any a > 1.

Lemma 5.1. Suppose that K̃S

def= CRicci,N − (4 + 4
√

a)N |β|(d − 1) > 0. Then for

every L ∈ Z,

W
ρ∞,a

2 (μP L
t , ν P L

t ) � e−K̃S t W
ρ∞,a

2 (μ, ν), t � 0, μ, ν ∈ P(QL).

Here we use periodic extension to view every measure as a probability on Q.

Proof. To prove the statement we will construct a suitable coupling (Q(t), Q′(t))t�0
between the two Markov processes associated to the generator LL starting from two
different points (Q, Q′). We will then use Itô’s fomula to calculate dρ2

∞,a(Q(t), Q′(t))
and obtain

ρ2
∞,a(Q(t), Q′(t)) � e−2K̃S tρ2

∞,a(Q(0), Q′(0)), t � 0. (5.3)

Suppose that (5.3) holds and we use P
Q,Q′
t to denote the distribution of the coupling

(Q(t), Q′(t)). Then for any μ, ν ∈ P(QL) and π ∈ C (μ, ν) we set

πt
def=

∫
P

Q,Q′
t π(dQ, dQ′) ∈ C (μP L

t , ν P L
t ).

Hence, for t � 0

W
ρ∞,a

2 (μPt , ν Pt )
2

�

∫
ρ2

∞,adπt � e−2K̃S tπ(ρ2
∞,a),

and the result follows. In the following we prove (5.3) in three steps.
Step 1. Construction of coupling (Q(t), Q′(t))t�0 and calculation of dρ2(Qe(t),

Q′
e(t)).
The usual coupling for Brownian motions and diffusions on Riemannian manifolds

is the Kendall–Cranston’s coupling (c.f. [Ken86]). In our case we adapt a construction
in [Wan06, Proposition 2.5.1] to cancel the noise part, with one of the key modifications
due to our new weighted distance on our product manifold.

More precisely, let (Q(t), Q′(t)) be the coupling on QL ×QL starting from (Q, Q′)
given by the following generator

Lc =
∑

e∈E+
�L

�Qe +
∑

e∈E+
�L

�Q′
e

+ 2
dim qL∑

i, j=1

〈
PQ,Q′vi , v

′
j

〉
TQ′QL

viv
′
j +∇S(Q) + ∇S(Q′),

(5.4)
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where �Qe f (Q, Q′) = (�e f (·, Q′))(Q), �Q′
e

f (Q, Q′) = (�e f (Q, ·))(Q′) and
{vi }, {v′

j } are orthonormal bases of tangent spaces at Q and Q′, and PQ,Q′ : TQQL →
TQ′QL is the parallel translation along the geodesic from Q to Q′. It is easy to see
that Lc is independent of the choices of the basis {vi }, {v′

j }. In fact, to construct such
coupling we need to avoid the cut locus C and the diagonal set D by suitable cut-off
approximation and we refer to Appendix A and [Wan06, Section 2.1] for more details
on the construction.

We intend to apply Itô’s formula to ρ2
e with ρe

def= ρ(Qe, Q′
e). To this end, we

consider the projection map πe : QL → G defined by πe Q
def= Qe. We then write

ρ̂e( · ; Q′
e) for the pull-back of the function ρ(·, Q′

e) via the map πe. Namely, fixing any
Q′

e ∈ G, the function ρ̂e( · ; Q′
e) is a function on QL defined by

ρ̂e(Q; Q′
e)

def= ρ(πe Q, Q′
e) = ρ(Qe, Q′

e) for Q ∈ QL .

Similarly we define function ρ̂e(Qe; · ) on QL as

ρ̂e(Qe; Q′)
def= ρ(Qe, πe Q′) = ρ(Qe, Q′

e) for Q′ ∈ QL .

We can also write ρe = ρ(πe Q, πe Q′) and view ρe as a function on QL × QL .
For R ∈ N, we choose a smooth cut-off function χR : [0,∞) → [0,∞) satisfying

χR(x) = x for x � 1/R and χR |[0, 1
2R

] = 0 and χ ′
R � 0.

Since ρ2
e is smooth near the diagonal, we claim that by Itô’s formula (see [Wan06,

Section 2.1], [Hsu02, Section 6.5]), and writing ρe(t) = ρ(Qe(t), Q′
e(t)), we have

dχR(ρ2
e (t)) � 2χ ′

R(ρ2
e (t))ρe(t)J (Q(t), Q′(t))dt (5.5)

for t < T
def= inf{t � 0, Q(t) = Q′(t)} where J is a continuous function on QL × QL

such that J � IS on (D ∪ C)c. Here

IS(Q, Q′)
def= I (Qe, Q′

e) +
(
(∇S)ρ̂e( · ; Q′

e)

)
(Q) +

(
(∇S)ρ̂e(Qe; · )

)
(Q′) , (5.6)

and I (x, y) is the index along γ : [0, ρ(x, y)] → G which is the minimal geodesic
from x to y in G:

I (x, y)
def=

dimg−1∑

i=1

∫ ρ(x,y)

0

(
|∇γ̇ Ji |2 − 〈R(Ji , γ̇ )γ̇ , Ji 〉

)
s
ds,

where {Ji }dimg−1
i=1 are Jacobi fields along γ such that at x and y, they, together with γ̇ ,

form an orthonormal basis. Note that the reason to derive a bound in terms of J instead
of IS in (5.5) is that J is defined everywhere on QL ×QL whereas IS is not well-defined
on C ∪ D. In Step 2 below we control IS by a continuous function on QL × QL , which
can also control J .

The rigorous derivation of (5.5) follows by cut-off approximation to avoid the cut
locus C and the diagonal set D (c.f. [Wan06, Theorem 2.1.1], [Hsu02, Theorem 6.6.2]).
In the following we give the idea on how the terms in (5.6) arise and we put more details
of the construction and derivation of (5.5) in Appendix A.
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For t < T and (Q(t), Q′(t)) /∈ C ∪ D, on the support of χR(ρ2
e ), IS(Q, Q′) is

given by Lcρe. To prove this, since ρe = ρ(πe Q, πe Q′) = ρ(Qe, Q′
e) only depends on

Qe, Q′
e (i.e. independent of the values of Q, Q′ on the other edges), we can write the

first three terms in Lcρe as (see the RHS of (5.4))

�Qeρ(Qe, Q′
e) + �Q′

e
ρ(Qe, Q′

e) + 2
d(g)∑

i, j=1

〈
PQe,Q′

e
ve,i , v′

e, j

〉
TQ′

e
G
ve,iv

′
e, j ρ(Qe, Q′

e),

(5.7)

with {ve,i } and {v′
e, j } being an orthonormal basis of the tangent space at Qe, Q′

e and
PQe,Q′

e
: TQe G → TQ′

e
G being the parallel translation along the geodesic from Qe to

Q′
e. Here we used the fact that

PQe,Q′
e
(ve) = (PQ,Q′v)e ∀v ∈ TQQL

(in particular the e component of the geodesic from Q to Q′ is the geodesic from Qe to
Q′

e.)
By the second variational formula (c.f. [CE75, p21-22], [Ken86, Theorem 2], [Hsu02,

Lemma 6.6.1]) we know that (5.7) is equal to I (Qe, Q′
e).

Moreover, the last two terms involving ∇S in Lc give rise to the last two terms in
(5.6).

The quadratic variation of the martingale part from applying Itô’s formula to ρe is

|〈γ̇ , γ̇ 〉(Q′
e) − 〈γ̇ , γ̇ 〉(Qe)|2 +

d(g)−1∑

i=1

|〈Ji , γ̇ 〉(Q′
e) − 〈Ji , γ̇ 〉(Qe)|2 (5.8)

by the first variation formula (c.f. [CE75, p5], [Hsu02, Section 6.6]). Since {Ji }dimg−1
i=1

together with γ̇ form an orthonormal basis, each term in (5.8) is zero, which implies
that the martingale part is zero. We also refer to the derivation of (A.5) in Appendix A
for more details on the calculation of the quadratic variation.

Step 2. Estimate the RHS of (5.6).
In this step we estimate the RHS of (5.6) and prove that for t < T

∂tρ
2
e � −2CRicci,N ρ2

e + 2N |β|
∑

p,p	e

ρe

(
ρe +

∑

e �=ē∈p

ρē

)
. (5.9)

By the index lemma (see [Wan06, Theorem 2.1.4] or [Hsu02, Lemma 6.7.1]), for
x = Qe, y = Q′

e with γ : [0, ρe] → G the minimal geodesic from Qe to Q′
e, where we

recall that ρe = ρ(Qe, Q′
e), we have

I (Qe, Q′
e) � −

∫ ρe

0
Ricci(γ̇ , γ̇ )ds = −CRicci,N ρe. (5.10)

In the following we consider the last two terms in (5.6). Given Q, Q′ ∈ QL as above,
we define a path � : [0, ρe] → QL which goes from Q to Q′ as follows. For any
ē ∈ E+

�L
, we can find a geodesic γ ē : [0, ρē] → G ē from Q ē to Q′

ē. Here ρē is the
length of the geodesic. We then set

�(s) =
(
γ̃ ē(s)

)
ē∈E+

�L

∈ QL (s ∈ [0, ρe]) where γ̃ ē(s) = γ ē(ρēs/ρe).
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We can check that we indeed have �(0) = Q and �(ρ) = Q′ and � is the geodesic
from Q to Q′. Also, we have

πe(�(s)) = γ (s) (∀s ∈ [0, ρe]).

With the above notation at hand, we write the last two terms in (5.6) as
(
(∇S)ρ̂e( · ; Q′

e)

)
(Q) +

(
(∇S)ρ̂e(Qe; · )

)
(Q′) = 〈∇S, γ̇ 〉(Q′) − 〈∇S, γ̇ 〉(Q),

(5.11)

with γ̇ extended as a tangent vector field on QL along the curve �, which is still denoted
by γ̇ , by setting all the other components as zero.

We then write (5.11) as
∫ ρe

0

( d

ds

〈
∇S(�(s)), γ̇ (s)

〉)
ds =

∫ ρe

0

(
�̇〈∇S, γ̇ 〉

)
(�(s))ds.

Hence, we get

(5.11) =
∫ ρe

0

(
�̇〈∇S, γ̇ 〉

)
(�(s))ds.

Below we estimate the above integral. With a slight abuse of notation, for an edge
e ∈ E+

�L
we write e ∈ p if {e, e−1} ∩ p �= ∅, namely we view edges as undirected in

the calculation below. We also extend ˙̃γ ē, ē ∈ E+
�L

as tangent vector field on QL along

�, which is still denoted by ˙̃γ ē, by setting all the components other than ē to be zero.
Then recalling our formula for S we have

∫ ρe

0

(
�̇〈∇S, γ̇ 〉

)
(�(s))ds = Nβ

∑

p	e

∑

ē∈p

∫ ρe

0

˙̃γ ē(γ̇ Retr(Q p))ds

� N |β|
∑

p	e

∑

ē∈p

∫ ρe

0
| ˙̃γ ē||γ̇ | ds

� N |β|
∑

p	e

(
ρe +

∑

e �=ē∈p

ρē

)
, (5.12)

where we used |γ̇ | = 1 and | ˙̃γ ē| = ρē/ρe. Here we calculate ˙̃γ ē(γ̇ Retr(Q p)) as follows:
for Q p = Qe Q ē Q1 Q2 with Q1, Q2 ∈ G we get

˙̃γ ē(γ̇ Retr(Q p)) = d

dt

∣∣∣
t=0

d

ds

∣∣∣
s=0

Retr
(
γ (s)γ̃ ē(t)Q1 Q2

)

= Retr
(
γ̇ ˙̃γ ē Q1 Q2

)
,

the absolute value of which by Hölder’s inequality for trace is bounded by | ˙̃γ ē| |γ̇ |.
Similar calculation holds for Q p = Qe Q1 Q ē Q2 and Q p = Qe Q1 Q2 Q ē and we use
similar argument as in the proof of Lemma 4.1 to control γ̇ γ̇ Retr(Q p) by |γ̇ |2. Hence,
by (5.5), (5.6), (5.10), (5.12), we get

∂tχR(ρ2
e ) � −2CRicci,N χ ′

R(ρ2
e ) ρ2

e + 2χ ′
R(ρ2

e )N |β|
∑

p,p	e

(
ρ2

e +
∑

e �=ē∈p

ρēρe

)
.
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Letting R → ∞ and by dominated convergence theorem and the fact that χ ′
R is uniformly

bounded in R, (5.9) holds.
Step 3. Derivation of (5.3).
We extend (Q(t), Q′(t))t�0 periodically as a process on Q×Q, which is still denoted

as (Q(t), Q′(t))t�0. (5.9) also holds for the extension. By (5.9) we have

∂tρ
2
e � −2CRicci,N ρ2

e + 2N |β|
(

2(d − 1)ρ2
e +

∑

p,p	e

∑

e �=ē∈p

ρēρe

)
.

In the following we bound ρēρe. To obtain the desired rate given by K̃S t , we need to
control ρēρe in different ways depending on the relations between |e| and |ē|. We first
fix a plaquette p and consider two edges ē �= e.
For the edges satisfying |e| = |ē| 2 we have

2ρēρe � ρ2
ē + ρ2

e .

For the edges satisfying |e| �= |ē| we have

2√
a

ρēρe �
1

a
ρ2

ē + ρ2
e .

The reason for the choice of the above weight is as follows: there is one plaquette p

such that only one edge ē �= e in p with the same distance as |e| and other edges with
the distance larger than |e|. Thus, since for each edge e there are 2(d − 1) plaquettes in
P such that p 	 e, we get

2N |β|
∑

p,p	e

∑

e �=ē∈p

ρēρe

�
√

aN |β|
∑

p,p	e

∑

|e|�=|ē|∈p

(1

a
ρ2

ē + ρ2
e

)
+ N |β|

∑

p,p	e

∑

|e|=|ē|∈p,e �=ē

(
ρ2

ē + ρ2
e

)

=
√

aN |β|
∑

p,p	e

∑

|e|�=|ē|∈p

1

a
ρ2

ē + (4
√

a + 2)(d − 1)N |β|ρ2
e

+ N |β|
∑

p,p	e

∑

|e|=|ē|∈p,e �=ē

ρ2
ē

where the first sum for ē with |e| �= |ē| includes two edges and the second sum for ē

with |e| = |ē| contains only one edge. Note that we also get an extra 1
a

before ρ2
ē with

|ē| = |e| + 1, which can be put into the weight 1
a|ē| . Substituting the above calculation

into (5.9) and using again the fact that for each edge e there are 2(d − 1) plaquettes in
P such that p 	 e we get

1

a|e| ∂tρ
2
e � −2CRicci,N

1

a|e| ρ
2
e + (4

√
a + 6)N |β|(d − 1)

1

a|e| ρ
2
e

+ N |β|
∑

p,p	e

(√
a

∑

|e|�=|ē|∈p

1

a|ē| ρ
2
ē +

∑

|e|=|ē|∈p,e �=ē

ρ2
ē

)
.

2 If two edges e �= ē share the same vertex and this vertex is closer to origin, we may have |e| = |ē|.
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Taking sum over e we notice that ρ2
e also appears when calculating 1

a|ē| ∂tρ
2
ē with ē

and e in the same plaquette, which at most gives 2
√

aN |β| 1
a|e| ρ

2
e and N |β| 1

a|e| ρ
2
e from

1
a|ē| ∂tρ

2
ē with |ē| �= |e| and |ē| = |e|, respectively. Since for each edge e there are 2(d−1)

plaquettes in P such that p 	 e, we get

∑

e∈E+

1

a|e| ∂tρ
2
e � −2CRicci,N

∑

e∈E+

1

a|e| ρ
2
e + (8 + 8

√
a)N |β|(d − 1)

∑

e∈E+

1

a|e| ρ
2
e .

(5.13)

Hence, (5.3) follows from Gronwall’s lemma. ��

Remark 5.2. In general, even if K̃S � 0, Lemma 5.1 still holds, but in that case the
bound would not be useful for us.

Now we prove Theorem 1.2. One of the important ingredients in the proof is that
under Assumption 1.1, the condition of Lemma 5.1 can indeed be satisfied by tuning the
weight parameter a > 1 to be sufficiently close to 1, see Eq. (5.15) below. The crucial
reason for this proof to work is that the last term in our bound (5.13) is of order N ,
rather than N p for some p > 1. This is a nontrivial point: indeed, that term comes from
bounding the ∇S terms on the right-hand side of (5.6), but note that S defined in (1.2)
would appear to be of order N 2 if one naively bound tr(Q p) � N , in which case the
proof would break down. In fact in the previous proof we instead apply the property of
the Lie group G and Hölder inequality to separate different vector fields appearing in
the second order derivative of S, which could finally be bounded by sum of Riemannian
distances up to a factor N |β|.

Proof of Theorem 1.2. For any two invariant measures μ, ν of (1.6), we can find two
sequences {μL}, {νL} ⊂ P(QL) such that their periodic extensions over the entire Q,
which are still denoted by μL , νL , converge to μ, ν weakly in Q, with the distance
induced by ‖ · ‖ defined in (3.6). Indeed, let Q(0) : � → Q be a random variable such

that Law(Q(0)) = μ, and then define μL
def= Law(QL(0)) where QL(0) : � → QL is

given by

QL
e (0) =

{
Qe(0) e ∈ E+

�L−1

IN , e ∈ E+
�L

\E+
�L−1

,

then {μL} satisfy the desired property. The sequence {νL} can be constructed in the same
way.

By Lemma 3.2 we obtain the unique solution QL ∈ C([0,∞);QL) to (3.3) start-
ing from the initial distribution μL ∈ P(QL). By periodic extension we view QL ∈
C([0,∞);Q). Recall that (P L

t )t�0 is the Markov semigroup associated with the solution
to (3.3). By global well-posedness of (3.3), we obtain for F ∈ C∞

cyl(Q) and t � 0

∫
P L

t FdμL = EF(QL(t)).

Similarly, using Proposition 3.4 we obtain unique solutions Q ∈ C([0,∞);Q) to (1.6)
starting from the initial distribution μ. Recall that (Pt )t�0 is the Markov semigroup for
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the Markov process associated to (1.6). By uniqueness in law of the solution to (1.6) we
have

∫
Pt Fdμ = EF(Q(t)).

As μL converges to μ weakly in Q, by the same argument as in the proof Proposi-
tion 3.4, the law of {QL} is tight in C([0,∞);Q) and the tight limit satisfies the limit
equation (1.6) with the initial distribution μ. By uniqueness in law of equation (1.6),
which follows from pathwise uniqueness in Proposition 3.4 and Yamada–Watanabe The-
orem, the law of QL converges weakly to the law of Q in C([0,∞);Q), as L → ∞.
As a result, for F ∈ C∞

cyl(Q) we have
∫

P L
t FdμL = EF(QL(t)) → EF(Q(t)) =

∫
Pt Fdμ, L → ∞. (5.14)

Similarly, we obtain
∫

P L
t FdνL →

∫
Pt Fdν, L → ∞.

Moreover, by the condition KS > 0, there exists a > 1 such that

K̃S = CRicci,N − (4 + 4
√

a)N |β|(d − 1) > 0. (5.15)

We then invoke Lemma 5.1 to have
∣∣∣
∫

Fdμ −
∫

Fdν

∣∣∣ =
∣∣∣
∫

Pt Fdμ −
∫

Pt Fdν

∣∣∣

= lim
L→∞

∣∣∣
∫

P L
t FdμL −

∫
P L

t FdνL

∣∣∣

= lim
L→∞

inf
π∈C (μL P L

t ,νL P L
t )

∣∣∣
∫

(F(x) − F(y))dπ(x, y)

∣∣∣

� CF lim
L→∞

W
ρ∞,a

2 (μL P L
t , νL P L

t )

� CF e−K̃S t lim
L→∞

W
ρ∞,a

2 (μL , νL) � C(a)e−K̃S t

where CF only depends on F , and the constant C(a) is independent of L by boundedness
of ρ∞,a , i.e. supQ,Q′∈Q ρ∞,a(Q, Q′) < ∞. Letting t → ∞ we have

∣∣∣
∫

Fdμ −
∫

Fdν

∣∣∣ = 0.

Hence, μ = ν. This gives the uniqueness of invariant measure, as denoted by μym

N ,β in
the theorem.

By Theorem 3.5, every tight limit is the invariant measure of (1.6). Hence, it is also
unique and the second result of the theorem follows.

To prove the last statement (1.7), taking now an arbitrary probability measure ν on
Q we also have {νL} constructed similarly as above. We denote by QνL and Qν the
processes starting from νL and ν, respectively. We also have, as in (5.14),

∫
P L

t FdνL = EF(QνL (t)) → EF(Qν(t)) =
∫

Pt Fdν, L → ∞. (5.16)
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Recall {μL} and μ = μym

N ,β as the unique invariant measure given above. By triangle
inequality and Lemma 5.1 we have for t � 0

W
ρ∞,a

2 (ν Pt , μ) � W
ρ∞,a

2 (νL P L
t , ν Pt ) + W

ρ∞,a

2 (νL P L
t , μL P L

t ) + W
ρ∞,a

2 (μ,μL)

� W
ρ∞,a

2 (νL P L
t , ν Pt ) + e−K̃S t W

ρ∞,a

2 (μL , νL) + W
ρ∞,a

2 (μ,μL)

� Eρ2
∞,a(QνL (t), Qν(t)) + C(a)e−K̃S t + W

ρ∞,a

2 (μ,μL). (5.17)

As Q is compact w.r.t. the distance ρa
∞, QνL (t) is tight in (Q, ρa

∞). Using (5.16) we
then have for t � 0

Eρ2
∞,a(QνL (t), Qν(t)) → 0, L → ∞.

Letting L → ∞ in (5.17), we have

W
ρ∞,a

2 (ν Pt , μ) � C(a)e−K̃S t ,

which is (1.7). It is clear from (5.15) that K̃S only depends on the constant a, d, β and
dimension of G. ��
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Appendix A. Construction of Coupling

In this appendix, we follow [Ken86], [Wan06, Section 2.1] to construct the coupling

(Q(t), Q′(t))t�0

starting from (Q, Q′) by approximation, and prove (5.5). The coupling argument pre-
sented here is similar with [Wan06, Chapter 2] but a main difference is that the above
reference applies Itô’s formula to a distance on a given manifold – which would be ρL

(not ρe) in our case, but we will apply Itô’s formula to the quantity χR(ρ2
e ).

Before proceeding we recall the basic definitions and notations (c.f. [Hsu02, Chap-
ter 2] for more detailed explanations). Recall that QL is a Riemannian manifold with
dimension d = |E+

�L
|d(g). Let O(QL) be the orthonormal frame bundle over QL , which
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is a d(d + 1)/2-dimensional Riemannian manifold. Given l ∈ Rd , let Hl be the corre-
sponding horizontal vector field on O(QL). Denote by π : O(QL) → QL be the canon-
ical projection. For any 
 ∈ O(QL) we have 
l ∈ Tπ
QL and Hl(
) ∈ T
O(QL)

is the horizontal lift of 
l ∈ Tπ
QL to 
. In particular, let {li }d
i=1 be an orthonormal

basis of Rd , define the horizontal Laplace operator

�O(QL )
def=

d∑

i=1

H2
li
,

which is independent of the choice of the basis {li }. Moreover, for any vector field Z on

QL we define its horizontal lift by H
Z
def= H
−1 Z (
) for 
 ∈ O(QL), where 
−1 Z

is the unique vector l ∈ Rd such that Zπ
 = 
l.
As in [Hsu02, Chapter 6], for a function f defined on O(QL) × O(QL), we denote

by Hli ,1 f and Hli ,2 f the derivatives of f with respect to the horizontal vector field Hli

on the first and the second variable respectively. The horizontal Laplacian on the first
and the second variable are

�O(QL ),1 =
d∑

i=1

H2
li ,1, �O(QL ),2 =

d∑

i=1

H2
li ,2.

Construction of coupling. Consider the following Stratonovich SDE with Q(t)
def=

π(
t )

d
t =
d∑

i=1

H
t (
t ) ◦ dNt , dNt =
√

2dBt + 
−1
t ∇S(Q(t))dt, (A.1)

where (Bt )t�0 is a standard d-dimensional Brownian motion and π
0 = Q. Then Q(t)

is an LL -diffusion process (LL as in (3.5)) starting from Q and 
t is called its horizontal
lift.

As the Riemannian distance is not smooth on C and D defined in (5.2), we introduce
cut-off approximation as follows: For any n � 1 and ε ∈ (0, 1), let hn,ε ∈ C∞(QL ×QL)

such that 0 � hn,ε � 1 − ε, hn,ε|Cc
n

= 1 − ε and hn,ε|C2n = 0, where

Cn
def=

{
(Q, Q′) : ρQL×QL

((Q, Q′), C) �
1

n

}
, n � 1,

with ρQL×QL
the Riemannian distance on QL ×QL . Let gn ∈ C∞(QL ×QL) such that

0 � gn � 1, gn(Q, Q′) = 0 if ρL(Q, Q′) �
1

2n
and gn(Q, Q′) = 1 if ρL(Q, Q′) �

1
n

.

Let �
n,ε
t and N

n,ε
t solve the following SDE with Q̃n,ε(t)

def= π�
n,ε
t

d�
n,ε
t =

d∑

i=1

H�
n,ε
t

(�
n,ε
t ) ◦ dN

n,ε
t ,

dN
n,ε
t =

√
2(hn,εgn)(Q(t), Q̃n,ε(t))(�

n,ε
t )−1 PQ(t),Q̃n,ε(t)
t dBt

+
√

2(1 − (hn,εgn)2(Q(t), Q̃n,ε(t))) dB ′
t + (�

n,ε
t )−1∇S(Q̃n,ε(t)) dt,

(A.2)
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where B ′
t is a Brownian motion in Rd independent of Bt , π�0 = Q′ and PQ,Q′ :

TQQL → TQ′QL is parallel translation along the geodesic from Q to Q′. As the co-
efficients are smooth on the compact manifold, we have unique solutions (
t , �

n,ε
t ) to

(A.1) and (A.2).
The generator for (
t , �

n,ε
t ) is then given by

L
n,ε

O(QL )
= �O(QL ),1 + �O(QL ),2 + 2

d∑

i=1

(hn,εgn)Hl∗i ,2 Hli ,1 + H
∇S + H�∇S,

with l∗i (
,�) = �−1 Pπ
,π�
li ∈ Rd .
We then consider the following approximation to the generator Lc defined in (5.4).

Ln,ε =
∑

e∈E+
�L

�Qe +
∑

e∈E+
�L

�Q′
e

+ 2gnhn,ε

dim qL∑

i, j=1

〈PQ,Q′vi , v
′
j 〉TQ′QL

viv
′
j

+ ∇S(Q) + ∇S(Q′),

with {vi }, {v′
j } as in the definition of Lc in (5.4).

It is easy to see that L
n,ε

O(QL )
is a lift of Ln,ε. Namely, for f ∈ C2(QL × QL) and

F(
,�) = f (π
, π�), one has L
n,ε

O(QL )
F(
,�) = Ln,ε f (π
, π�). We then know

(Q(t), Q̃
n,ε
t ) = (π
t , π�t ) starting from (Q, Q′) is generated by Ln,ε (c.f. [Wan06,

Section 2.1]). Since the marginal operators of Ln,ε coincide with LL , (Qt , Q̃
n,ε
t ) gives

a coupling of LL -diffusions starting from different initial data.
Let PQ denote the law of LL -diffusion (Q(t))t�0 starting from Q ∈ QL in

C([0,∞);QL) endowed with the distance

ρ̃L(Q, Q′)
def=

∞∑

n=0

2−n
(

1 ∧ sup
t∈[n,n+1]

ρL(Q(t), Q′(t))
)
, Q, Q′ ∈ C([0,∞);QL).

As the marginal law of (Q, Q̃n,ε)n,ε is tight in C([0,∞);QL), the joint law P
Q,Q′
n,ε of

(Q, Q̃n,ε)n,ε is also tight. Therefore, for every ε > 0 there exists a probability measure

P
Q,Q′
ε and a subsequence, which is still denoted by P

Q,Q′
n,ε such that P

Q,Q′
n,ε → P

Q,Q′
ε

weakly in C([0,∞);QL). Moreover, we could find P
Q,Q′
εk

and PQ,Q′
such that P

Q,Q′
εk

→
PQ,Q′

weakly in C([0,∞);QL). PQ,Q′
is then the desired coupling of PQ and PQ′

.

Proof of inequality (5.5). In the following we prove (5.5).
Following [Ken86], [Wan06, Section 2.1] we apply Itô’s formula to χR(ρ2)(Qe(t),

Q̃
n,ε
e (t)) and use χ ′

R � 0 to obtain

dχR(ρ2)(Qe(t), Q̃n,ε
e (t))

= dM
n,ε
t + 2(4ρ2χ ′′

R(ρ2) + 2χ ′
R(ρ2))(1 − gnhn,ε)(Q(t), Q̃n,ε(t))dt − dL

n,ε
t

+1Cc∩Dc 2χ ′
R(ρ2)ρ

(
gnhn,ε IS + (1 − gnhn,ε)Z

)
(Q(t), Q̃n,ε(t))dt. (A.3)

Here ρ = ρ(Qe(t), Q̃
n,ε
e (t)) and f (ρ2) = f (ρ2)(Qe(t), Q̃

n,ε
e (t)) for f ∈ {χ ′

R, χ ′′
R}.

The term M
n,ε
t is a martingale with quadratic variation process given by

∫ t

0
4(2χ ′

R(ρ2)ρ)2(1 − gnhn,ε)(Q(s), Q̃n,ε(s))ds,
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and L
n,ε
t is a non-decreasing process which increases only when (Q(t), Q̃n,ε(t)) ∈ C .

The term IS is given in (5.6) and finally

Z(Q, Q′) = �ρ(·, Q′
e)(Qe) + �ρ(Qe, ·)(Q′

e)

+
(
(∇S)ρ̂e(·, Q′

e)

)
(Q) +

(
(∇S)ρ̂e(Qe, ·)

)
(Q′). (A.4)

with � being the Laplace–Beltrami operator on G.
In fact, to derive (A.3), we may first apply Itô’s formula to dρ(Qe(t), Q̃

n,ε
e (t)) and

then apply Itô’s formula again to χR(ρ2). Suppose for now that the quadratic variation
process of the martingale part Mρ for ρ is given by

〈M
ρ
t 〉 = 4

∫ t

0
(1 − gnhn,ε)(Q(s), Q̃n,ε(s))ds. (A.5)

Then the second term on the r.h.s. of (A.3) comes from 〈M
ρ
t 〉. As explained in (5.6)–(5.7)

the last line in (A.3) comes from Ln,ερ.
We now verify (A.5). Using (A.1) and (A.2) we have, for ρ̃(
,�) = ρ(πeπ
,πeπ�),

d〈M
ρ
t 〉 = 2

d∑

i=1

[∣∣∣Hli ,1ρ̃ + gnhn,ε Hl∗i ,2ρ̃

∣∣∣
2

+
(
1 − (gnhn,ε)

2)∣∣Hli ,2ρ̃
∣∣2

]
dt.

As ρ̃ only depends on the component at e, this now boils down to standard arguments.
Namely, since the above quantity is independent of the choice of basis, we can write the
above terms as vector fields on G, and choose basis in such a way that one basis vector
is tangent to the geodesic and the others are perpendicular to the geodesic, and use the
first variation formula to derive (A.5) (c.f. [Hsu02, Section 6.6]).

In the following we send n → ∞, ε → 0 to derive (5.5).
Let (x(t), y(t)) be the canonical process on (C([0,∞);QL)×C([0,∞);QL),F ×

F ) and let {Ft }t�0 be the natural filtration. On the support of χR using Laplacian
comparison theorem (c.f. [Hsu02, Corollary 3.4.4]) we know that Z defined in (A.4)
satisfies Z � CR for some constant CR > 0. Since the support of χR(ρ2) ⊂ {ρ2 �

1
2R

}
and for n large enough ρL(x, y) � ρ(xe, ye) � 1/

√
2R � 1/n, gn(x, y) = 1 on the

support of χR(ρ2), we obtain that

χR(ρ2)(Qe(t), Q̃n,ε
e (t)) −

∫ t

0
2(4ρ2χ ′′

R(ρ2) + 2χ ′
R(ρ2))(1 − hn,ε)(Q(s), Q̃n,ε(s))

+2χ ′
R(ρ2)ρ

(
hn,ε J + (1 − hn,ε)CR

)
(Q(s), Q̃n,ε(s)) ds

is a supermartingale, where J is as in (5.5). Therefore,

S
n,ε
t

def= χR(ρ2)(xe(t), ye(t)) −
∫ t

0
2(4ρ2χ ′′

R(ρ2)

+ 2χ ′
R(ρ))(xe(s), ye(s))(1 − hn,ε)(x(s), y(s))

+ 2(χ ′
R(ρ2)ρ)(xe(s), ye(s))

(
hn,ε J + (1 − hn,ε)CR

)
(x(s), y(s)) ds

is a P
Q,Q′
n,ε -supermartingale.
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Furthermore, since by [Wan06, Lemma 2.1.2] P
Q,Q′
ε ((x(s), y(s)) ∈ C) = 0 for

s > 0, using the same argument as in [Wan06, Proof part (b) of Theorem 2.1.1] we let
n → ∞ and obtain that

Sε
t

def= χR(ρ2)(xe(t), ye(t)) −
∫ t

0
2ε(4ρ2χ ′′

R(ρ2) + 2χ ′
R(ρ))(xe(s), ye(s))

+ 2(χ ′
R(ρ2)ρ)(xe(s), ye(s))

(
(1 − ε)J + εCR

)
(x(s), y(s)) ds

ia a P
Q,Q′
ε -supermartingale.

Letting ε → 0 we obtain that

St
def= χR(ρ2)(xe(t), ye(t)) − 2

∫ t

0
(χ ′

R(ρ2)ρ)(xe(s), ye(s))J (x(s), y(s)) ds

is a PQ,Q′
-supermartingale. Hence, by Doob–Meyer’s decomposition

dχR

(
ρ2(xe(t), ye(t))

)
= dMt + 2(χ ′

R(ρ2)ρ)

(
xe(t), ye(t)

)
J (x(t), y(t))dt − dL t ,

(A.6)

with M a martingale and L a predictable increasing process.
In the following we prove M = 0. Similarly we use the above argument for

f (χR(ρ2(xe(t),

ye(t)))) with 0 � f ∈ C2(R+), f ′ � 0 and we have that

f
(
χR(ρ2)(xe(t), ye(t))

)
− 2

∫ t

0

(
f ′(χR(ρ2))χ ′

R(ρ2)ρ

)(
xe(s), ye(s)

)
J (x(s), y(s)) ds

is a PQ,Q′
-supermartingale. Choosing f (r) = exp(mr), m ∈ N and setting

�t
def= exp

(
mχR

(
ρ2(xe(t), ye(t))

))
,

we have that

�t − 2m

∫ t

0
�1

s J (x(s), y(s)) ds

is a PQ,Q′
-supermartingale with

�1
s =

(
exp(mχR(ρ2))χ ′

R(ρ2)ρ

)
(xe(s), ye(s)).

By Doob–Meyer’s decomposition,

d�t = dM̃t + 2m�1
t J (x(t), y(t))dt − dL̃ t , (A.7)

where M̃t is a martingale and L̃ t is predictable increasing.
On the other hand, applying Itô’s formula to (A.6) we obtain

d�t = m �t dMt +
1

2
m2 �t d〈Mt , Mt 〉 + 2m �1

t J (x(t), y(t)) dt − m �t dL t . (A.8)

Comparing (A.7) and (A.8) we obtain d〈M, M〉t �
2
m

dL t . Letting m → ∞, we get
d〈M, M〉t = 0. Hence, (5.5) follows.
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