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Abstract: We develop a new stochastic analysis approach to the lattice Yang—Mills
model at strong coupling in any dimension d > 1, with t" Hooft scaling SN for the
inverse coupling strength. We study their Langevin dynamics, ergodicity, functional
inequalities, large N limits, and mass gap. Assuming |8| < % for the structure

group SO(N),or |B| < m for SU (N), we prove the following results. The invariant
measure for the corresponding Langevin dynamic is unique on the entire lattice, and the
dynamic is exponentially ergodic under a Wasserstein distance. The finite volume Yang—
Mills measures converge to this unique invariant measure in the infinite volume limit, for
which Log-Sobolev and Poincaré inequalities hold. These functional inequalities imply
that the suitably rescaled Wilson loops for the infinite volume measure has factorized
correlations and converges in probability to deterministic limits in the large N limit,
and correlations of a large class of observables decay exponentially, namely the infinite
volume measure has a strictly positive mass gap. Our method improves earlier results
or simplifies the proofs, and provides some new perspectives to the study of lattice
Yang-Mills model.
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1. Introduction

The purpose of this paper is to apply stochastic analysis and ergodic theory for Markov
processes to study the lattice Yang—Mills model with structure group G € {SO(N),
SU(N)}. In particular, we will consider the Langevin dynamics of these models, and
under explicit strong coupling assumptions, we will prove uniqueness of invariant mea-
sures in infinite volume, log-Sobolev and Poincaré inequalities, with some application
in large N limits of Wilson loops and exponential decay of correlations.

Lattice discretizations of the Yang—Mills theories were first proposed in the physics
literature by Wilson [Wil74] which lead to well-defined Gibbs measures on collections
of matrices. We refer to [Chal9b] for a nice review on the Yang—Mills model and
its gauge invariant discretization as well as the fundamental questions for the model.
Among the literature we only mention that approximate computations of the Wilson
loop expectations as the size N of the structure group becomes large was first suggested
by ’t Hooft [tH74], where the Yang—Mills Hamiltonian is multiplied by SN (known as
the 't Hooft scaling), which is closely related to our present article.

The problems we discuss in this paper have been of interest and studied for decades in
mathematical physics. A closely related earlier paper is by Osterwalder—Seiler [OS78],
which showed that for the lattice Yang—Mills theory, when the coupling is sufficiently
strong, the cluster expansion (or high-temperature expansion in statistical mechanics lan-
guage) for the expectation values of local observables (i.e. bounded functions of finitely
many edge variables) is convergent, uniformly in volume. The proof of this convergent
cluster expansion was sketched in [OS78] since it follows similarly as [GJS73] for P (¢)2
model (and also [Spe75]); in fact it is simpler than the P (¢)> model in [GJS73] since the
fields are bounded in lattice Yang—Mills theory. Moreover, as explained in [OS78], the
existence of a mass gap (exponential clustering) follows from convergence of the clus-
ter expansion, so do existence of the infinite volume limit and analyticity of Schwinger
functions in the inverse coupling. Uniqueness of infinite volume limit should also follow
from cluster expansion, see e.g. [AHKZ89] for the case of the P(¢), model. We also
refer to the book [Sei82] for these expansion techniques and results. As for the large N
limits, in the recent papers, factorization property of the Wilson loop expectations was
proved in [Chal9a, Corollary 3.2] and [Jaf16] under the assumption that j is sufficiently
small.

Given the earlier work, we revisit these problems in this article for a number of rea-
sons. First of all, the earlier work [OS78] didn’t consider 't Hooft scaling, but if we
translate their results into 't Hooft scaling where the Hamiltonian is multiplied by SN
then their condition amounts to requiring 8N to be small. However, to our best knowl-
edge, under the 't Hooft scaling SN uniqueness was not known for 8 in a fixed small
neighborhood of the origin when N is arbitrarily large (see for instance the discussion
after [Chal9a, Theorem 3.1]); this is the reason that [Chal9a] and [Jaf16] formulated
their large N results on a sequence of N-dependent finite volumes. One aim of this
paper is to establish uniqueness of infinite volume measures for § in a fixed and explicit
small neighborhood of the origin which is uniform in N, which allows us to prove the
existence of a mass gap and large N limits of Wilson loops directly in infinite volume
for this range of 8.
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Secondly, as another motivation of this paper, we develop new methods based on
stochastic analysis and give new proofs to these results. In these methods, the curvature
properties of the Lie groups are better exploited via the verification of the Bakry—Emery
condition. In particular, this allows us to perform more delicate calculations and obtain
more explicit smallness condition on inverse coupling. As another novelty we study the
Langevin dynamics (or stochastic quantization) and we prove uniqueness of the infinite
volume measures by showing that the dynamic on the entire Z? has a unique invariant
measure. To this end we employed coupling methods for our stochastic dynamics, which
is a variant of Kendall-Cranston’s coupling. Such stochastic coupling arguments were
used earlier in the stochastic analysis on manifolds, but to our best knowledge this
appears to be the first time that such coupling arguments are used in the setting of
statistical physics or lattice quantum field theory models with manifold target spaces.
For our coupling arguments we will also need to introduce suitable weighted distances on
the product manifolds, and in our calculations a subtle comparison between the weight
parameter and the curvature plays a key role in order to obtain ergodicity.

As the third motivation, it appears to us that some of the proofs in this paper are
simpler. For instance, the large N results on Wilson loops follow quickly from the
Poincaré inequality, which simply comes from the Bakry—Emery condition. Our proof of
exponential decay relies on some earlier ideas of Guionnet—Zegarlinski [GZ03] together
with our explicit bounds on commutators between derivatives and Markov generators on
Lie groups. This seems to be simpler than cluster expansion, or at least provides some
new perspectives.

1.1. Lattice Yang—Mills. We first recall the basic setup and definitions of the model.
Let A, = Z% N LT be a finite 4 dimensional lattice with side length L and unit
lattice spacing, and we will consider various functions on it with periodic boundary
conditions. We will sometimes write A = Ay for short. We say that a lattice edge of
74 is positively oriented if the beginning point is smaller in lexographic order than the
ending point. Let E* (resp. E ) be the set of positively (resp. negatively) oriented edges,
and denote by EXL, E,, the corresponding subsets of edges with both beginning and

ending points in Ay . Define E dgf E* U E~ and let u(e) and v(e) denote the starting

point and ending point of an edge e € E, respectively.

We write G for the Lie group SO(N) or SU (N) and g for the associated Lie algebra
50(N) or su(N). Note that we always view G as a real manifold (even for SU (N)), and
g as a real vector space, and we will write d(g) = dimp g.

To define the lattice Yang—Mills theory we need more notation, for which we closely
follow [Chal9a] and [SSZ22].

Apathisdefinedtobe asequenceofedgeseje; - - - e, withe; € Eandv(e;) = u(ej+1)
fori = 1,2,---,n — 1. The path is called closed if v(e,) = u(e1). A plaquette is a
closed path of length four which traces out the boundary of a square. Also, let P, be
the set of plaquettes whose vertices are all in Ay, and PXL be the subset of plaquettes
p = eqezezeq such that the beginning point of e is lexicographically the smallest among
all the vertices in p and the ending point of e; is the second smallest.

The lattice Yang-Mills theory (or lattice gauge theory) on A, for the structure group
G, with B € R the inverse coupling constant, is the probability measure a, v g on the
set of all collections Q = (Q¢).c E}, of G-matrices, defined as
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din,np (@ € 230 yexp (8@) T don(@o), (1.
eeEXL
with
$(0) E npre 3 Tr(0,), (12)

pEPXL

. .. def
where Z4, n g is the normalizing constant, O, = Q¢ Qc, Qc; Qc, for a plaquette
p = ejezezes, and oy is the Haar measure on G. Note that for p € PXL the edges

e3 and e4 are negatively oriented, so throughout the paper we define Q. def Qe_,ll for

e € E~, where e~! denotes the edge with orientation reversed. Also, Re is the real part,
which can be omitted when G = SO (N).

1.2. Main results. We will assume the following in our main results on lattice Yang—
Mills.

Assumption 1.1. Suppose that
N +2
rodef | 4 — 1 —=8N|Bl(d - 1) >0, G =SO(N),
ST IN+2

—1—-8N|Bld—-1) >0, G =SU(N).
Assumption 1.1 is equivalent to the following strong coupling assumption:

1 1
_ ., G=SO(N),
Bl < | 32@ =D " T6N@ ) " (13)

G=SU(N).

16(d— 1)

Define the (product) topological space Q dgf GE", which will serve as our infinite
volume configuration space. By Tychonoff’s theorem Q is compact. For eacha > 1 we
define the distance po,, On Q by

1
P2a(0.0) €Y <00, 0, (1.4)
ecE*

with |e| being the distance from 0 to e in Z¢. Here p (-, -) is the Riemannian distance on
G. The distances for different choices of a give equivalent topologies, and we just write
Poo When there is no confusion. Q is then a Polish space w.r.t. p. By standard results
in topology, the topology induced by p« is equivalent with the product topology on Q.

We can easily extend the measure w, n, g to the infinite volume configuration space
Q by periodic extension, which is still denoted as 114,y 5. Namely, we can construct a
random variable with law given by 4, v, g and extend the random variable periodically,
and the law of the periodic extension gives the desired extension of measure. Since G
and Q are compact, {ia; n,p}2>1 form a tight set.
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We will consider the Langevin dynamic on Q, formally given by

dQ = VS(Q)dr + v2dB , (1.5)

with B = (B,).cg+ being independent Brownian motions on G. This is formal since
we will need to “extend” VS to infinite volume in a suitable sense. More precisely, the
Langevin dynamic we consider is the following SDE system parametrized by e € E*:

1

dQ. = —>NB D (Qp— 0})Qedr
pEP,p>e
—%(N —1)Q.dt ++2dB,0Q,, if G=SO(N),
1 1 .
dQc=—3NB Y ((Qp— Q) — (@ — Q)N ) Qe
peP p=e
N2
dit ++/2dB, 0., if G = SU(N). (1.6)

Here B = (B.).cE is a collection of independent Brownian motions on the Lie algebra
g of G, and the terms linear in Q, arise from Casimir elements of the Lie algebras; we
will review these in Sect. 2.

Remark 1.1. We note that the above SDE (in finite volume) was used earlier in [SSZ22]
to derive the loop equations (i.e. Dyson—Schwinger or Makeenko—Migdal equations)
for Wilson loops of the model (1.1). These loop equations also hold for any infinite
volume tight limit of the measures, and in particular for the unique invariant measure
for B satisfying (1.3) as given in Theorem 1.2.

The study of a quantum field theory of the form (1.1) via a dynamic (1.5) is also
called stochastic quantization as first proposed by [Nel66,PW81].

We will prove that there exists a unique probabilistically strong solutions to SDE
(1.6) starting from any initial data in Q in Proposition 3.4. Hence the solutions form a
Markov process in Q and the related semigroup is denoted by (P;);>0.

Our first main result is as follows.

Theorem 1.2 (Uniqueness and ergodicity). Under Assumption 1.1, the following state-
ments hold.

(1) The invariant measure of the Markov semigroup (P;);>0 for the Langevin dynamic
(1.6) is unique. We denote this invariant measure by u}(\,M .

(2) Furthermore, every tight limit of {uAa,,N.gIL IS the same, and the whole sequence
{a,,N.p}L converges to py) ﬁ as L — oo.

(3) Finally, the Markov semigroup (P;);>0 is exponentially ergodic in the following
sense: there exists a constant a > 1 such that for any v € Z(Q)

Wy (WP, uy'y) < Cla)e™ Kst  t>o, (1.7)

for some Eg > 0 which only depends on the constant a, d, B and G (in particular
N).
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Here sz °>“ is the Wasserstein distance w.r.t. poo 4 given for any p, v € Z(Q)
. def .
Wy o) = inf (o )
TEL (

with €’ (u, v) being the set of couplings between u and v. Remark that I?S can be
explicitly given by (5.15) below and gives a lower bound of spectral gap for (P;);>0
in Wasserstein distance. In Theorem 1.4 we will see that Kg gives a lower bound of
spectral gap in Lz(u )

Remark 1.3. The periodic boundary condition in the definition of {iua, n,g}L is not
essential. By the same argument as in Theorem 3.5 the tight limit of {x A, ~ g} When
changing the periodic boundary condition to Dirichlet or other boundary conditions is
also the invariant measure of the SDE (1.6), hence, is the same as M}G‘fﬂ.

We remark that uniqueness for small 8 could possibly also be proven using the
method of Dobrushin, see e.g. [Dob70]. To this end one would also need to consider the
related Wasserstein metric with respect to the Riemannian distance similarly as we do
in this paper. However as we understand such an argument has not been carried out in
detail for lattice Yang Mills in the literature. Here we give a proof based on a new idea
which is a variant of Kendall-Cranston’s coupling used earlier in the stochastic analysis
on manifold.

The idea for the proof of Theorem 1.2 is to use finite dimensional approximation, for
which we construct a suitable coupling and find a suitable distance such that the asso-
ciated Wasserstein distance between the two finite dimensional approximations starting
from different initial distributions decays exponentially fast in time with uniform speed.

We define the cylinder functions Cpy (Q) by

C3(Q) = {F {F = f(Qu.....00)n €N, e; € E*, f e CO"(G”)}. (1.8)
We then obtain the following log-Sobolev inequality for 1) based on Bakry—Emery’s
criterion.

Theorem 1.4 (Log-Sobolev inequality). Under Assumption 1.1, the log-Sobolev in-
equality holds for the measure MYMﬁ in Theorem 1.2. Namely, for all cylinder functions

F € CX5(Q) with j1ys (F?) =1,

g (F2log F?) < Z unp (Ve FI). (1.9)

eeE+
This implies the Poincaré inequality, i.e. for all cylinder functions F € C Cyl(Q),
uNp(F?) < 2= Z uNp (Ve FIP) + iy (F)%, (1.10)
eeEJr

with V, the gradient w.r.t. the variable Q..
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Theorem 1.4 follows from Theorem 1.2 and Corollary 4.5, which states the log-
Sobolev inequality for every tight limit of (ua, . n,g)r>1. The RHS of (1.9) is the
Dirichlet form associated with the Langevin dynamic (see Proposition 3.7). Hence,
(1.9) holds for the functions in the domain of Dirichlet form by lower-semicontinuity.

As some simple applications of the Poincaré inequality, we show certain “suscepti-
bility”” bounds on the field Q. and tr(Q ), see Corollaries 4.7 and 4.8. These examples
demonstrate how to choose suitable functions in these functional inequalities to yield
interesting bounds for the model.

Log-Sobolev and Poincaré inequalities in Theorem 1.4 follow by checking the Bakry—
Emery criteria [BE85,BGL14] directly for the finite dimensional approximation on the
product manifolds. As the Ricci curvatures of the target manifolds G are given by positive
constants, so are the Ricci curvatures of the configuration space (i.e. the product mani-
folds). The Hessian of the Hamiltonian could also be bounded by the Ricci curvatures
in the strong coupling regimes.

As a corollary of Theorem 1.4 we obtain the following large N properties of the
Wilson loops. For the rest of this paper, by a loop we mean an equivalent class of closed
paths (as defined in Sect. 1.1), where the equivalence relation ~ is given by cyclic
permutations ejes - - - e, ~ ejejq] - - -eperer---ej—q forany i € {1, ..., n}, and it has no
two successive edges of the form e~ !e. We will always assume that a loop is non-empty,
i.e. has positive number of edges. Given a loop £ = eje; - - - ¢, recall that the Wilson
loop variable W, is defined as

w, 0., 0., 0.) . (L11)

Corollary 1.5 (Large N limit of Wilson loops). Under Assumption 1.1, for every Wilson
loop (1.11), writing Var and E for the variance and expectation under the measure M}(VMﬂ
in Theorem 1.2, one has

v(lw)<"("_3) G =SO(N): Vi (IW)<L(”_3) G = SU(N)
ar( — < , = ;o Varl — < R = .
Nt KsN Nt KsN
(1.12)

In particular, we obtain the convergence

We We

——E—’—>O as N — 00 (1.13)

N N
in probability, and the factorization property of Wilson loops, i.e. for any loops £1, . . . , £y,

m
lim (Eu - ]_[EW—" =0.
N—o00 N™ iy N

Corollary 1.5 is proven in Sect. 4. Our proof is novel which is based on the Poincaré
inequality (1.10). Note that our formulation of the result is different from [Chal9a] and
[Jaf16] in which the factorization property of Wilson loops was obtained by taking a
sequence of increasing finite lattices Z¢ = UX_; An, considering the correlations of
Wilson loops over Ay, and taking infinite volume limit simultaneously as the large N
limit when sending N — oo. In our approach, we work directly in infinite volume,
which seems more natural. The subtlety here, as mentioned above and also explained in
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[Chal9a], is that the 't Hooft coupling places N8 instead of 8 in front of the Hamiltonian
so one would require N8 to be sufficiently small to obtain the infinite volume limit, which
would appear to be problematic when taking the large N limit afterwards. However,
thanks to our precise smallness condition on $ in (1.3), we can take 8 small uniformly
in N. This also allows us to derive bounds on the variances of Wilson loops which are
explicitin terms of N. Our proof based on the Poincaré inequality which follows from the
Bakry—Emery condition also appears to be simpler than the arguments in aforementioned
previous work.

Furthermore, we obtain the following exponential decay property of the covariance.
Consider f € CS;Z(Q) and we write A ¢ for the set of the edges f depends on. Let |A ¢|
denote the cardinality of A y. We define

def
lfllc = Z Ve fllLee,

eehy

where CCO;’I(Q) is introduced in (1.8) and V, is introduced in Sect. 3. We also write

d(A, B) for the distance between A, B C E™*, which is given by the nearest distance
between the vertices in A and B.

Corollary 1.6. (Mass gap) Suppose that Assumption 1.1 holds. Writing Cov for the
covariance under the measure /L}(\,Mﬁ in Theorem 1.2. For f, g € CS;I(Q), suppose that
Ay N Ay, =@ It holds that

(Cov(f. )| < crd@e™ A2 (I fllocllghos + 11112y I8 26aps,) )

where ¢y depends on |Ay|, |Ag| and cn depends on Ks, N and d.

Note that f and g in the above corollary can be chosen to be Wilson loops, or functions
of an arbitrary number of Wilson loops, which are of particular interest in physics.

We also remark that exponential decay of correlations is also related to Wilson’s area
law for Wilson loops — see [Cha21, Theorem 2.4] in which it is proved that exponential
decay of correlations is a sufficient condition for “unbroken center symmetry”’, which
implies confinement (slightly weaker than Wilson’s area law).

The proof of Corollary 1.6 is given in Sect. 4.

We conclude this subsection by some brief comments on the challenges or subtleties
in the proofs of the above results. One of the important ingredients in the proofs is to
estimate the Hessian or the general second order derivatives for the interaction S defined
in (1.2). Note that a term of the form Ntr(Q ) in the interaction S would “appear” to be
of order N 2, which would be too large for us to obtain the desired results. In our proofs
we will properly arrange terms and apply certain properties of the Lie groups and we
will show that the relevant second order derivatives are actually at most of order |B|N.
See the explanations before Lemma 4.1 and the proof of Theorem 1.2 in Sect. 5 for more
details. This is one of the crucial reasons which allow us to compare the Ricci curvatures
of the Lie groups and Hessians to verify the Bakry—Emery condition by choosing A
small, and also prove ergodicity using a suitable weighted distance.

1.3. Relevant literature and possible directions. The study of properties of lattice gauge
theories recently attracts much interest. Besides the aforementioned work by [Chal9a,
Jaf16,Chal6] computed the leading terms of free energies, [BG18] provided an elaborate
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description of loop expectations in the planar setting, and [CJ16] derived 1/N expansions
in the SO (N) case at strong coupling. Wilson loops (and also Wilson lines when coupled
with Higgs) for gauge theories with finite structure groups were studied in [Cha20,
FLV22,FLLV21,Ca020,For21,Adh21]; see also [GS21] for the U(1) case. Moreover,
exponential correlation decay for lattice gauge theories with finite abelian structure
groups was obtained by [For22] using coupling argument, and for finite non-abelian
structure groups this was proved by [AC22] at weak coupling.

Our present article provides a new approach to study these models via stochastic
analysis and dynamical perspective; see also [SSZ22] for a new derivation of loop i.e.
Makeenko-Migdal equations for Wilson loops by such methods.

Remark 1.7. Here by “stochastic analysis approach”, we do not mean the stochastic
analysis approach for 2D Yang—Mills in continuum developed earlier by [GKS89,Dri89]
(See Def. 3.3 therein) in which parallel translations (which are related with Wilson loops)
are formulated as stochastic differential equations. See [Dril9] and references therein
for more recent literature in this direction. Our Yang—Mills SDE on the other hand is
the stochastic dynamic for the connection fields on a lattice with fixed spacing, which
is along the line of stochastic quantization.

We remark that the choice of constant positive curvature Lie groups SO (N) and
SU(N) in this article is a technical simplification for demonstrating our method, and
it should apply as well for other compact target spaces with constant or non-constant
positive curvatures. For instance it should apply to a lattice SO (N) Yang—Mills model
coupled with a Higgs field ® which takes values in a sphere in R" (i.e. rotator model)
via a gauge-covariant derivative term, whose action takes the form Re ) » Tr(Qp) +

Ze |Qecbv(e) - cI)u(e)|2-

It would certainly be interesting to show if log-Sobolev inequalities still hold when the
lattice spacing vanishes, in the situations where the continuum limits of these models are
shown or expected to exist. In this direction, on the two dimensional torus, the continuum
limit of lattice approximations of the Yang—Mills measures on 1-forms was recently
obtained by Chevyrev [Chel9], who also showed that a certain class of Wilson loop
observables of this random 1-form coincide in law with the corresponding observables
under the Yang—Mills measure in the sense of [Lev03]. Note that the Langevin dynamics
for Yang—Mills models on the two and three dimensional continuous torus were recently
constructed in [CCHS22a,CCHS22b] (see [Che22] for a review of these results), and
as mentioned in [CCHS22a] it would be interesting to show that the lattice dynamics of
the type (1.5) converge to the processes constructed in the above papers in two and three
dimensions. For some of the recent progress along this direction, see the proof of log-
Sobolev inequalities for the <I>‘2"3 and sine-Gordon models [BD22,BB21], and the 1D
nonlinear o-model (see [AD99,Hail6,BGHZ21]) for which the log-Sobolev inequality,
ergodicity and non-ergodicity (depending on the curvature of the target manifolds) were
obtained in [RWZZ20,CWZZ21]. It would also be interesting to see if the methods
developed in this paper can be applied to weak coupling i.e. large 8 regime (when the
structure group G is finite, see the recent progress [AC22] on mass gap in weak coupling
regime).

Notation. Given a Polish space E, we write C ([0, T']; E) for the space of continuous
functions from [0, T'] to E. We use & (E) to denote all the probability measures on E
with Borel o -algebra.
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2. Notation and Preliminaries

In this section we collect some notation and standard facts about Riemannian geometry,
Lie groups and Brownian motions.

Riemannian manifolds. Let M be a Riemannian manifold of dimension d. We
denote by C*° (M) the space of real-valued smooth functions on M. For x € M we
denote by T, M the tangent space at x with inner product (-, -)r, . For X € T, M,
we write Xf or X (f) for the differentiation of f along X at x. For a smooth curve
y ¢ [, B] — M the tangent vector along y is defined by

d
nf = AV C(M).

Let V be the Levi-Civita connection, which is a bilinear operation associating to
vector fields X and Y a vector field Vy X. Recall that (Vy X)(x) depends on Y only via
Y (x) for x € M (e.g. [dC92, Remark 2.3]).

For f € C°°(M), we denote by V f the gradient vector field of f. We also write
Hess( f) for the Hessian. It can be calculated in the following ways

Hess s (X, Y) el Hess(£)(X, ¥) = (VxV £ Y) = X(YF) — (VxD) F . (2.1)

It is a two-tensor: Hessr(¢X,Y) = Hessy(X,¢Y) = ¢Hessy(X,Y) for any ¢ €
C°(M) so Hess (X, Y)(x) depends only on X (x) and Y (x). Since Levi-Civita con-
nection is torsion-free, Hess( f) is symmetric in X, Y.

The Riemann curvature tensor Z (-, -) associated to vector fields X, Y is an operator
defined by

H(X,Y)Z =Vx(VyZ) —Vy(VxZ) - Vix nZ.

Let {W,-}l‘f:1 be an orthonormal basis of 7, M. The Ricci curvature tensor is defined by

d
Ricci(X, ¥) = Y (Z(X, W)Wi, Y)1,m 2.2)

i=1

and is independent of the choice of {W;}. Note that Ricci(X, Y)(x) depends on X, Y
only via X (x), Y(x) forx € M.

Let y be a geodesic. A smooth vector field J is called a Jacobi field along y : [0, ] —
MiftVyV, J+Z(J,y)y =0.Forany X € T,y)M and Y € T,, M, there exists a Jacobi
field J along y satisfying Jo = X and J; = Y (c.f. [CE75, Section 1.5], [Wan06, Section
0.47]).

Lie groups and algebras. For any matrix M we write M* for the conjugate trans-
pose of M. Let My (R) and My (C) be the space of real and complex N x N matrices.

For Lie groups SO(N), SU(N), we write the corresponding Lie algebras as so(N),
su(N) respectively. Every matrix Q in one of these Lie groups satisfies Q 0* = I, and
every matrix X in one of these Lie algebras satisfies X + X* = 0. Here Iy denotes the
identity matrix.

We endow My (C) with the Hilbert-Schmidt inner product

(X,Y) =ReTr(XY*) VX,Y € My(C). 2.3)

We restrict this inner product to our Lie algebra g, which is then invariant under the adjoint
action. In particular for X, Y € so(N) or su(N) we have (X, Y) = —Tr(XY). Note that
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tr(XY) € R since we have tr((XY)*) = tr(Y*X*) = tr(XY), and tr(A*) = tr(A) for
any A € My (C).

Below G is always understood as SO(N) or SU(N). Every X € g induces a right-
invariant vector field X on G, and for each Q € G, X (Q) is just given by X Q since G is
a matrix Lie group. Indeed, given any X € g, the curve r — ¢'X Q is well approximated
near ¢ = 0 by Q +¢X Q up to an error of order £2.

The inner product on g induces an inner product on the tangent space atevery Q € G
via the right multiplication on G. Hence, for X, Y € g, we have XQ,Y Q € TpG, and
their inner product is given by Tr((X Q)(Y Q)*) = Tr(XY*). This yields a bi-invariant
Riemannian metric on G. N

For any function f € C°°(G) and X € g, the right-invariant vector field X induced
by X actson f at Q € G by the right-invariant derivative

~ d
Xf(Q) = 5|z=of(e’XQ). (2.4)
We have
[X.Y]=[X.Y], namely, ([X,Y]1Q)f(Q)=I[XQ.YQlf(Q).

where the [-, -] is the Lie bracket on g on the LHS and the vector fields commutator on
the RHS. Also, for the Levi-Civita connection V we have

~ 1
Vz(Y) = E[X’ Y]. (2.5)
We refer the above facts to [AGZ10, Appendix F], e.g. Lemma F.27 therein.
Brownian motions. Denote by B and B the Brownian motions on a Lie group G
and its Lie algebra g respectively. The Brownian motion B is characterized by

E[(B(s), X)(B(), Y)] — min(s, 1)(X,Y) VX,Y €g. (2.6)

By [L17, Sec. 1.4], the Brownian motions B and B are related through the following
SDE:

dB =dBoB =dB B + %ESBdt, 2.7)

where o is the Stratonovich product, and dB B is in the It6 sense. Here the constant ¢

2 _ (9)

is determined by ) _, v = cgly where (vm)z:1 is an orthonormal basis of g. Moreover,

by [L17, Lem. 1.2], !
N2 —1
N

Denote by é the Kronecker function, i.e. §;; = 1if i = j and O otherwise. For any

matrix M, we write M/ for its (i, j)th entry. The following holds by straightforward
calculations (see e.g. [SSZ22, (2.5)]):

1
Cso(N) = _E(N - 1), Csu(N) = — (2.8)

i, 1
d(B", B*) = 5 G je = Siedjudr, g = s0(N); (2.9a)

ij ke 1
d(BY, B*") = ( —8iedjk + N‘Sijaké) de , g = su(N). (2.9b)

! Note that in [L17, Lem. 1.2], the scalar product differs from (2.3) by a scalar multiple depending on N
and g, so we accounted for this in the expression for c¢g above.
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2.1. Product manifolds and Lie groups. For Riemannian manifolds M, M», the tangent
space of the product manifolds Ty, v,)(M1 X M>) is isomorphic with Ty, M| & Ty, M>
which is endowed with the inner product

(wy +uz, vi +02)7, (M xMy) = (U1, V1) T My + (U2, V2) T, M

For a finite collection of Riemannian manifolds (M,).c4 where A is some finite set, the
product is defined analogously.

If all M, are the same manifold M, the product is written as M*. In this case, given
apoint x = (Xp)eeca € MA, ifu, € Ty, M, for some x, € M,, we will sometimes view
u, as a tangent vector in Ty M A which has zero components for all ¢ # e. Continuing
with this notation, if (v yi=les is a basis (resp. orthonormal basis) of 7y, M., then

(ve)eeA ~4 i a basis (resp. orthonormal basis) of T.MA.

For Lie groups G1, G2, the group multiplication is defined on G| x G, component-
wise. The Lie algebra g of G| x G is isomorphic to g; @ g, where g; is the Lie algebra
of G;. The Lie bracket on g1 @ g is defined componentwise. If X = (X1, X») € g,
then induced the right-invariant vector field X (x) for every x € G| x G is equal to
(X 1(x), X 2(x)). In particular, (2.5) still holds for any two right-invariant vector fields
on the Lie group product.

With similar notation as above we can define product G4 and its Lie algebra g for a
finite set A. Given X € g, the exponential map ¢ > exp(zX) is also defined pointwise

as exp(tX)e. def rXe for cach e € A.
In the following we choose G to be one of the matrix Lie groups as before. Define
the configuration space as the Lie group product @y = G Ex, , consisting of all maps

Q:ec E+L — Q. e G.Letq, =g iy be the corresponding direct sum of g. Note
that q is the Lie algebra of the Lie group Q. For any matrix-valued functions A, B on
E;'\L, we denote by AB the pointwise product (A, Be),c E} -

L

As above, the tangent space at Q € Q. consists of the products X O = (X, QE)eeEX
L

with X € qr, and given two such elements X Q and Y Q, their inner product is defined
by

(XQ0.YQ)ry0, = Y Tr(X.Y)).

ecEt
AL

The basis of the tangent space TpQy is given by {XiQ te € EXL, 1 <i <d(g)}

where for each e, {Xé},- is a basis for g.

Given any function f € C%(Qpr), the right-invariant derivative is given by
%b:of(exp(tX)Q). For each Q € Qp, the gradient V f(Q) is an element of the
tangent space at Q which satisfies for each X € q,

d
T fexp(tX)Q) = (XQO)f. (2.10)
t1t=0

(VI(Q), X0O)ry0, =
We can write Vf = Zd(g) Ze€E+ (L f)vl with {vl : e € EXL,i =1,---,d(g)

being an orthonormal basis of Tp Q L ‘We then define

d(g) d(g)

v.s dEfZ(véf)vé, Bef B AVTef = Y (T Ve v,

i=1
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Here V, and A, can be viewed as the gradient and the Laplace—Beltrami operator (w.r.t.
the variable Q,) on G endowed with the metric given above.

3. Yang-Mills SDE

In this section we first recall the Langevin dynamics (1.6) associated to the lattice Yang—
Mills model in finite volume from [SSZ22]. We then extend the dynamics from finite
volume to the whole Z¢ and prove the global well-posdness of the SDE (1.6). Further-
more, we prove that every tight limit of (x4, v,g)L is an invariant measure for the SDE
(1.6).

We consider the Langevin dynamic for the measure (1.1), which is the following
SDE on Q.

dQ = VS(Q)dr + v/2dB | (3.1)

with 8 = (28,) being independent Brownian motions on G. Here dB can be viewed as
the white noise w.r.t. the inner product on Tp Q; .

‘We now recall the explicit expression for VS. To this end, we introduce the following
notation. For a plaquette p = ejezezes € P, we write p > e; to indicate that p is a
plaquette that starts from edge e . Note that for each edge e, there are 2(d — 1) plaquettes
in P such that p > e. For any Lie algebra g embedded into My (C) (denoted as My
below for short), it forms a closed subspace of M, and therefore M has an orthogonal
decomposition My = g @ g*. Given M € My, we denote by pM € g the orthogonal
projection onto g.

Lemma 3.1. Writing - for matrix multiplication, for each e € E7, we have
L

VS(@. =N Y. pQL-(QH7". (3.2)

PEPA, .p~e

Proof. See [SSZ22, Lemma 3.1]. We remark that in this calculation of the gradient of
S, for each fixed e, we replace the Q, in (1.2) where p contains e or e~ ! by a product of
the form Q. Q.Q.Q., which does not change the trace. This motivates our introduction
of the notation p > e. O

The above result holds for general matrix Lie groups, and for our specific choices of
Lie groups, we have the SDE system (3.1) on the finite lattice A; more explicitly as

dQe = VS(Q)edr + cgQedr ++/2dBe Qe , (e € E}) (3.3)
—%Nﬂ Y (©Qp— 040, G =SO(N) .
VS ={ " |
N8 Y ((@p— Q) = @y = QP)IN)Qe . G =SUW).
PEPA, ,p>e
34

We recall the following two results from [SSZ22, Lemmas 3.2-3.3].

Lemma 3.2. For fixed N € N and any initial data Q(0) = (QE(O))eeEX € 9y, there
L
exists a unique solution Q = (Qe)eeEX e C([0, 00); Q1) to (3.3).
L
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Lemma 3.3. (1.1) is invariant under the SDE system (3.3).

By global well-posedness of the SDE (3.3), the solutions form a Markov process
in Qr. We use (P,L),>0 to denote the associated semigroup, i.e. for f € C*(Qpr),
(P,Lf)(x) = Ef(Q(t, x)) for x € Qp, where Q(z, x) denotes the solution at time ¢
to (3.3) starting from x € Q. We can also write down the Dirichlet form associated
with (P,L)t>0. More precisely, for F € C*°(Qy) we consider the following symmetric
quadratic form

def
ELF, F) = / (VF,VF)r,0,d1a, .N.p

> / (VoF. VoF)dua, n.p

ecE™
AL

> / (Ve F (Ve F)*)dpa, v .p-

ecE™
AL

Using integration by parts formula for the Haar measure, we have that (£, C*(Q})) is
closable, and its closure (¢, D(EL)) is a regular Dirichlet form on L*(Qy , KA. N.B)-
(ctf. [FOT94].)

Recall S in (1.2). We write the generator associated to the above Dirichlet form for
F € C®(Q)) as

LLF= ) AJF+ Y (VS(Q). V.F). (3.5)

ecEY ecE™
AL AL

We use D(Lr) to denote the domain of the generator. Moreover, EL(F, G) =
— f LrFGdpp, ngfor F,G e C®(Qy). Itis easy to see that (Pf),;o isapa, ng-
version of the L2 (1, v p)-semigroup associated with the Dirichlet form (£, D(EL)).
(c.f. [MR92] or [FOT94].)

Recall that Q = GE". Now we extend A . to Z4 and consider the SDE (1.6) on
the entire space. To this end, we write M ﬁ = ]_[ee g+ My for the direct product of

infinitely many vector spaces My (i.e. an element of M 5+ is allowed to have infinitely
many non-zero components). We define a norm on M 11\1? by

1
I €Y Siep, (3.6)

ecE*

with Q.2 = (Q., Q,) for (-, ) as in (2.3) and |e| given by the distance from O to e in
Z4. (More precisely, |e| is the minimum of the distances from the two vertices of e to
0.) Now we give existence and uniqueness of solutions to (1.6).

Proposition 3.4. Fix N € N, g € R. Forany Q° € Q, there exists a unique probabilis-
tically strong solution Q to (1.6) in C([0, 00); Q) starting from any Q°. Namely, for
a given probability space (2, F, P) and Brownian motion (B,).cg+ on it, there exists
an (F1)r>o0-adapted process Q € C([0, co); Q) and Q satisfy (1.6) P-a.s. with (F;):>0

given by normal filtration generated by the Brownian motion (B,)ecg+.
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Proof. For every initial data Q° € Q, we can easily find Q% (0) € Q; with the periodic
extension still denoted by 0% (0) such that ||QL(0) — QO|| — 0 as L — o0. Indeed,
we can set Q% (0) as follows (the specification on EXL \E Xkl is just to ensure periodic
boundary condition):

Q.00 eekE},
IN e c EXL\EXL_I .

oLo) = {

By Lemma 3.2 we obtain a unique solution QL € C([0, 00); Q) to (3.3) from QL 0).
We could also extend QF to Q by periodic extension. Since Q is compact, the marginal
laws of {Q*} at each ¢ > 0 form a tight set in Q.

Furthermore, using the SDE (3.3), for > s > 0

t t t
Qf(t)—Qf(s):/ VS(QL)edr+/ chfdr+«/§/ dB, Q.

N N

By It6’s formula and the fact that Qg € G which is compact, we have the following
boundfor p > 1and 0 < 5,1 < T

E|QL(r) — QE(5)1*? < Cwppr(lt —s[*P + |t — s|P),

where Cy g, 1 18 a positive constant and may change from line to line. Since the above
constant is independent of e, we have

E||QL(t) — QEF )PP < Cnppr(t — P + 1t —5]P).

Hence, by Kolmogorov criterion we have for o < 1/2

Ly _ oL
supE( sup o=@ — 0 (S)ll)<oo

L “s#tel0,T] |t —s|*

Hence, the laws of {Q}, which are denoted by {P*} form a tight set in C ([0, 00); Q)
equipped with the distance

50.0) T Y 2 (1 s o0 - Q). 0.0 € 10,00 Q).
n=0

te[n,n+1]

We write P for one tight limit. For simplicity we still write {P*} for the converging
subsequence. Since (C ([0, 00); Q), p) is a Polish space, existence follows from the usual
Skorohod Theorem and taking limit on the both sides of the equation. More precisely,

there exists a stochastic basis (fZ, F , I@’) and C ([0, 00); Q)-valued random variables
{0}, O on it such that Q% 4 PL, O 4 P2 and QY — Q in C([0, 00); Q) P-as.,
L — oo. As aresult, for every F € C?;I(Q), which can be viewed as function on 9y,
for L large enough, we know that

~ t ~
F(Q* (1)) — F(Q"(0)) — /O L F(0(s))ds
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is a }fD-martingale, where £ is as in (3.5). Letting L — oo
~ l ~ ~
FQ) ~F(Q% — /0 (AcF(O(6) + (Ze, VeF)(D(s) )ds
ecE*

isa I@-martingale with

1

—3NB Y (Qp— Q). G=SOW),
def PEP,p>e
Ze(Q) = !
—5NB Y («0p-0p)- (@) - 0})IN)Qe. G =SUW).

pEP,p>e
(3.7)

We then obtain a martingale solution to (1.6). By martingale representation theorem
we could construct a stochastic basis and on it Brownian motions (B,)ecg+ and Q €
C([0, 00), Q) with law given by P9 such that Q and (B,)ecg+ satisfy SDE (1.6), which
gives the existence of probabilistically weak solutions to SDE (1.6).

Now we prove pathwise uniqueness: Consider two solutions Q, Q' € C([0, T]; Q)
starting from the same initial data Q(0) € Q and we apply Itd’s formula to calculate
d|Q — Q'||I%. Since Q., Q) € G for every e € E*, by the Burkholder—Davis—Gundy
inequality and (2.9) for the stochastic integral we obtain

E sup |Q.— Q.7
t€l0,T]

T T
< cN,ﬁ,T/ E[Q,— Q)% ds+Cnpr Y Z/ E|Q. — 0,|Q; — Qjlds,
0 peEP,p>e ecp 0
where C g 7 may change from line to line. We then use
21Q; — Q41Q. — Q1 <1Qz — QL +10. — O,

to obtain

1 72 1 r 112
soE sup [Qe — Q| éCN,ﬁ,TW ElQ. — Q.| ds
, 0

1 T
sevpr Y Wfo E|Q; — 0}ds.

peP,p>eeFecp

Summing over e we get

T
E sup [0 Q< CN,,s,Tf E|Q — 0'|%ds.
t€[0,7T] 0

Hence, pathwise uniqueness follows by Gronwall’s lemma. By Yamada—Watanabe Theo-
rem [Kur(7], weak existence and pathwise uniqueness gives us existence and uniqueness
of strong solution. In particular one can consider other boundary conditions for finite L
and the infinite volume limit solution is the same which is the unique solution to SDE
(1.6). |
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By Proposition 3.4, the solutions to (1.6) form a Markov process in Q. We denote by
(P1)s>0 the associated semigroup. As we are in the compact setting, it is easy to obtain
the tightness of the field (ua, v g)r in Q as L — oo. Since by Lemma 3.3 ua, v g is
an invariant measure for (3.3), we then obtain the following result.

Theorem 3.5. Every tight limit iy g of {|ta, N g} is an invariant measure for (1.6).

Proof. Suppose that a subsequence —still denoted by 4, v, g for simplicity — converges
to un, g weakly in Q. We start from the unique solutions Q to equation (3.3) with initial
distribution A, v, and the unique solutions Q to (1.6) with initial distribution py g.
By exactly the same arguments as in the proof of Proposition 3.4, we know that the
laws of {Q} are also tight in C([0, T']; Q) and every tight limit satisfies equations
(1.6) with initial distribution y g. By uniqueness of solution to (1.6) from Proposition
3.4, we have that the whole sequence of the laws of {Q} converge to the law of Q in
C([0, T]; Q). Since by Lemma 3.3 14, v, is an invariant measure for (3.3), the result
follows. O

The dynamic (1.6) is gauge covariant in the following sense. For every G-valued
function g on Z¢, one can define the gauge transformation go Q by (g0 Q). = gx Qe gy 1
where e = {xy}.If Q isasolutionto (1.6), it is easy to check that g o Q also satisfies (1.6)
with B, replaced by g, B.g; ! which is still a Brownian motion in g. By Proposition
3.4, the uniqueness in law to SDE (1.6) holds. Hence, we obtain the following result.

Proposition 3.6. Fix N € N, ,B € R. Let Q and Q be the unique solutions to (1.6) with
initial conditions Q° and Q° in Q respectively. If Q° = g o Q° for some G valued
function g on 74, then, O(t) and g o Q(t) are equal in law for all t > 0.

We can also write the Dirichlet form and generator associated with (1.6). Recall
Ly,(Q) defined in (1.8). For every tight limit uy g and F € C (Q) we define the
following symmetric quadratic form

EMNB(F, F) def Z‘ /(VeF, V.F)dun g
ecE*

Z / tr(Ve F (Ve F)*)dun . (3.8)

ecE*

By (3.5) and letting L — oo we have that for F, G € Ccyl(Q)

EMNA(F, G) = — / LFGdpy,p, (3.9)
with
def
LE= ) AF+ ) (Z,VF),
ecE* ecE™*
for Z, in (3.7).

Proposition 3.7. (E#N.8, CS;I(Q)) is closable and its closure (EMN-F, D(EMN-F)) is a
regular Dirichlet form on L*(Q, N, B)-
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Proof. 1t is sufficient to prove the closability of (E#N.£, CS;I(Q)). Let {F,}lhen C
CCO;’[(Q) be such that

im py g(Fp) =0,  lim_EMVE(F, — Fy, Fy — Fy) = 0.
n— o0

n,m— 00

Using (3.9), for G € CS;}(Q) we have

EMNE(G, Fy) = —/LZG Fuduyp — 0.

Hence, the result follows from [MR92, Chapter I. Lemma 3.4]. O

4. Log-Sobolev and Poincaré Inequalities and Applications

In this section we prove log-Sobolev inequality under the usual Bakry—Emery condition
(see (4.7) below). As applications we obtain large N limit, factorization property of
rescaled Wilson loops and the exponential decay of a large class of observables.

4.1. Log-Sobolev and Poincaré inequalities. In this section we first prove Log-Sobolev
and Poincaré inequalities for the probability measure 4, n g on the finite dimensional
compact manifold Q;. We then let L — oo to derive the log-Sobolev inequality for
every tight limitof 5, n g. As simple application we give a proof of correlation bounds
(or susceptibility bounds) for the field Q, and that for the “microscopic Wilson loops”
tr(Q ) for plaquettes p.

Below to verify the Bakry—Emery’s condition we need to calculate Hesss (v, v)(Q)
and Ricci(v, v)(Q) for v € TpQr and Q € Q;, and we recall (2.1)(2.2) for their
definitions. Following the convention in Sect. 2.1, we write

V= ecrr = ) XeQe 1)

ecE}

with X, € qr being zero for all components except for the component e. We also write
|U|2 = (U, U>TQQL'

We first compute Hesss (v, v) for v € Tp Q.. Note that as a “naive” guess, S defined
in (1.2) would appear to be of order N2, since the trace of the orthogonal or unitary
matrix Q, would be generally bounded by N and there is another factor N outside the
summation. If the Hessian of S was indeed of order N2, or N” for any p > 1, then in
Assumption 1.1 we would never be able to fix 8 small uniformly in N and ensure that
K s is strictly positive when N gets large. Fortunately in the next lemma by properly
arranging terms and using Holder inequalities we prove that the Hessian is actually at
most of order N.

Lemma 4.1. Forv = XQ € TpQy we have

|Hesss (v, v)| < 8(d — 1)N|ﬁ||v|2. “4.2)
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Proof. In the proof we omit the subscript L for simplicity. We view v = XQ € Tp Q.
as aright-invariant vector field on Qy, generated by X € qr. By (2.5) (and the discussion
in Sec. 2.1) we have V,v = 0. We apply the second identity in (2.1) and using (4.1) we
have

Hesss (v, v) = v((S) = Y (X:02)(X.Q)S. (4.3)

> +
e,eeEA

Recall S from (1.2), which is a sum over plaquettes p € 77+L , and is also a linear (affine)
function in each variable Q.. Since p € P*, we can write Q,, = Q¢, Q., 0;, 0y, where

e1, ey, e3,eq4 € E*. Then it is easy to calculate the derivatives using the definition (2.4),
for instance

d
(Xe3Qe3)Qp = Il Qe Qeale 50,008, = 00106, 05, X5, 05, (44)

which is effectively just inserting the matrix X7, .

Note that:

(1) For the terms with e = e, the term involving plaquette p in S is non-zero if and
only if the plaquette p contains e or ¢!, In this case, we write p € P,, and there will be
2(d — 1) such plaquettes p. Direct calculation as in (4.4) yields a result of the following
form

(Xe Q) (X Qo)tr(Q ) = tr(Y1Qe, Y2 0o, Q.Y Q5 Vi)

for some matrices Y1, Y», Y3, Y4, in which three of them are Iy and one of them is XZ.

(2) For the terms with ¢ # e, the summand on the RHS of (4.3) is non-zero if and
only if there exists a plaquette p which contains both e or ¢! and & or ! In this case,
we write p € P, ; and there will be only one such plaquette, and

(Xz02)(Xe Qotr(Qp) = (Y1 Qe Y2 Qe, 0, Y5 Oy, Y5)

where two of Yy, Y3, Y3, Yy are Iy, and the other two are X, and X;.
In either case, there are two occurrences of X, so by cyclic invariance of trace we
can write the result into one of the following forms:

r(QX, - 0Xz), tr(QX.-(0Xa)%), t(0X)* 0Xz), t((QXe)* - (0Xa)*)

for some Q, O € G. By the Cauchy—Schwarz inequality for the Hilbert—Schmidt inner
product, each of these terms is bounded by

1 1
(X, - (@X0M)" (r(0Xe - (0X0)")" = IX.IXel
and this is bounded by §(|X.|? + | Xz|?).
Therefore we have

% D I(Xe 0 (X QSI < D Y IBIIX S = Y 21Bld — DIX, [

e=ecE} ecE} pePe ecE}

=2|BI(d — Dv|?
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and
LY mooxoasi< S Blix e
N e e e e X 2 e e
e#eek}, eF#e€EY pePes;
18]
=2 X hpep S UXLPHIXa) = 30 D7 Lpep, - 3IBIIXL
peP; e#ecE} peP) ecE}
=Y D 3IBIXS = D 6(d — DIBIIXI* = 6(d — D)|BIv]?
ecE} pePe ecE}
which implies (4.2). |

We denote the Riemannian distance on G by p. We write py, for the induced Rie-
mannian distance on Qj given by

(0.0 E S p(0.. 002 0.0 €0

ecE™
AL

For any u, v € #(Qr), we introduce the Wasserstein distance as

def .
WPL(u,v) = inf  w(pP)VP,
ph (e, v) reHum) (pr)

with €’(u, v) being the set of couplings between  and v.
We then have the following result using the Bakry—Emery condition (4.7) and [Wan06,
Theorem 5.6.1], which was first proved by [Bak97] and [VRSO05].

Theorem 4.2. Under Assumption 1.1, the following hold.
(1) The dynamic defined by the SDE (3.3) is exponentially ergodic in the sense that

Wit B Pl 85 PM) <eXS'pr(0,0), 120, 0,0€Qr.  (45)
(2) For1 < p<?2
WP (uPr vPl) <eKSTWhL(u,v), 120, pove 2(Qr), (46

In particular, invariant measure of (P}‘),}o is unique.
Proof. Using [Wan06, Theorem 5.6.1(1)(11)(12)] we know that (4.5), (4.6) and the
following condition are all equivalent: for every v = XQ € TpQy,

Ricci(v, v) — (V,VS, v) > Ks|X|2 4.7)

Here we recall that [v]? = | X|? and (V, VS, v) = Hessgs (v, v). By [AGZ10, (F.6)], for
any tangent vector u of G,

N+2

Ricci(u, u) = (¥ - 1>|u|2,
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witha = 1, 2for SO (N) and SU (N) respectively. Since Ricci(v, v) = ), Ricci(ve, ve)
and |X|? = > |X.|%, we have

M_l)p(ﬁ

Ricci(v, v) = ( 7

(4.8)

By Lemma 4.1 and definition of K in Assumption 1.1, we obtain (4.7), and therefore
4.5), (4.6) follow.
Uniqueness of invariant measure follows from (4.6) by letting 1 — oo. O

Remark 4.3. In general, if we do not require K g to be strictly positive as in Assumption
1.1, (4.5)-(4.6) still hold, and (4.7) is also equivalent with the following statements: for
any 1 >0, f € C'(Qr)

\VPLf| < e KstpLv ), 4.9)
2(1 — e—2Ks?)

PEIV A2 (410
Ks IV (4.10)

PE(f 10g £2) — (PE fH10g(PE ) <

We refer to [Wan06, Theorem 5.6.1] for these results and more equivalent statements.

As (4.7) is the Bakry—Emery’s condition, we have the following log-Sobolev inequal-
ity (c.f. [Wan06, Theorem 5.6.2]). In fact, it follows from taking integral w.r.t. jia, v g
on the both sides of (4.10) and letting t — oo.

Corollary 4.4. Under Assumption 1.1, the log-Sobolev inequality holds for each L > 1,
i.e. for F € C°(Qp) with ua, n.g(F?) =1,
2
papNp(FPlog F?) < ——EN(F, F).
Ks
This implies the Poincaré inequality: for F € C*(Qp),

2 I .z 2
A, N pa(F7) < K_Sg (F,F)+pupa, Np(F). (4.11)

We could view any probability measure v in Z(Qy) as a probability measure in
Z(Q) by periodic extension. Namely, we can construct a random variable with law
given by v € £(Q) and extend the random variable periodically. The law of the
periodic extension gives the desired extension of v. Since G is compact, {ta, N g}L
form a tight set and passing to a subsequence we obtain a tight limit, which is denoted
by un,s. Hence, by approximation we have the following results.

Corollary 4.5. Under Assumption 1.1, the log-Sobolev inequality holds, i.e. for cylinder

functions F € CZ(Q) with un p(F?) =1,

2
i p(F2log F?) < =" (F, F). (4.12)
S
This implies the Poincaré inequality: for cylinder functions F € C%(Q)

cyl

1
i p(F?) < —EMNI(F, F) + g (F)*. (4.13)
S
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In Sect. 5 we will prove Theorem 1.2 which will then identify the tight limit g in
(4.12) and (4.13) as the measure /L}{VMﬁ in Theorem 1.2; this then proves Theorem 1.4.

Remark 4.6. By the Poincaré inequality (4.11) and (4.13), the semigroup (P[) >0 and
(Pr)r>0 satisfy

L —tK
1PEF = ar v N2 gin, g < €SI F 200, -

and

—tK

1P = sy < €K1 1i2guy -

(c.f. [Wan06, Theorem 1.1.1]). However, this does not imply the uniqueness of the
invariant measure for (P;);>0.

The following two results are simple applications of the Poincaré inequality.

Corollary 4.7. Under Assumption 1.1, for every ey € E* and every unit vector E in
My we have

Z Covzv,ﬁ,L((QeO, E), (Q,, E)) <

ecEt
AL

1/Ks, G = SO(N),
2/Ks, G = SU(N).

Here Covy g 1 means covariance w.r.t. the measure |, N, g. In particular,

> compa((Qe B (00 B))| <

ecE}, \feo)

2/Ks, G =SO(N),
4/Ks, G = SU(N).

Proof. Let f = |E1+\L|’% ZeeE}: (Q., E). By direct calculation, one has V(Q,, E) =
L

p(E Q})Q., which implies that IVfI? <y withy =1forG = SO(N) and y = 2 for
G = SU(N), where for G = SU(N) we used that for any matrices Q, Q' € My

tr((Q - %tr(Q)IN)(Q’ - %MQ’)M)) =t (QQ) - %tr(Q)tr(Q’)- (4.14)

Hence, by the Poincaré inequality (4.11) we get

L Z COVN,/g’L<(Qg,E),<Qe’, E>)<KL3

E+
| AL| e, €E}
L

With periodic boundary condition we have translation invariance, so for fixed edge eq

|4

> Covwpr ({Qar BN, (Qe B)) < 3.

ecE XL
which implies the first result and

| X Covnpr((Qar E)(Qe BY)| < o+ Varwpn ((Q B0).

eeE}, \feo)
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where we used triangle inequality and Vary g ; means variance under ua; n g. Now
we take g = (Q,,, E) and have |[Vg|? < y. Then by the Poincaré inequality (4.11)

14
VarAL,N,ﬂ<(QeO, E)) < —0.
Ks
Thus the second result follows. O

Corollary 4.8. Under Assumption 1.1, it holds that for every plaquette p in PXL

Z Covy g1 (ReTer, ReTrQ,;) <

{8N(d —1)/Ks, G=SON),
PEPA,

I6N(d — 1)/Ks, G = SU(N).

Here Covy g 1 means covariance w.r.t. the measure |, n,g. In particular, for every
plaquette p in Py
(8N(d —1)+4N)/Ks, G =SO(N),

‘ Z CovN,ﬁ,L(ReTer, ReTrQﬁ)’ < {(IGN(d T SN)/KS, G = SUMN).

PEPaL P#D

Proof. Let f = IPXL I_% Zﬁepr ReTrQ 5. By the same calculation as (3.2) and (3.4)
for the action S we have

1
—3pr > (Qp— 050, G=SO(N).
V= ! ALl PEPA,p=e
e 1 " 1 %
s L (©@r=0p - g - epin)ee.  G=sUM).
AL pEPA,p>e

Thus in SO (N) case we have

AN(d — 1)?

1 * * )k
Vil=—r ) Tr((Qp—Q,,)(Q;s—Q,;) ) < GAR

= 1p*
Pa,l p.PEPN.p.P>e
which implies that

IV <8N(d — 1).

Here we used IPXL | = @wju |, since each plaquette has 4 edges and each edge is
adjacent to 2(d — 1) plaquettes. Hence, applying the Poincaré inequality to f we get
8N —1)

Ks '

1
P

3 cOvN,,g,L(ReTrQ,,,ReTrQ,;) <
P.PEP] .
We choose periodic boundary condition to have translation invariance and we get for
fixed p
8N — 1)

Z CovN,ﬂ,L<ReTer, ReTrQﬁ> < Ks

ﬁeP}'\L
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Thus the first result follows and
8N —1)

‘ Z CovN,ﬁ,L<ReTer, ReTrQ;,)‘ <
Ks

peP}, . p#p

+ Var (ReTrQ p>.

Moreover, take f = ReTrQp and |V f |2 < 4N and we obtain

Var(ReTrQ ) < 4N

pP) = KS :
Thus the second result follows for SO (N) case. The result for the SU (N) case follows
by similar arguments and using (4.14). O

4.2. Application I: large N limit of Wilson loops. In the following we give the proof of
Corollary 1.5 by applying the Poincaré inequality.

Proof of Corollary 1.5. Since Theorem 1.2 identifies any tight limit u g as the measure
M}{th[ﬁ’ it suffices to prove the result for any tight limit 1y g. We apply the Poincaré
inequality (4.13) to Wilson loops defined in (1.11). Consider the SO (N) case. Let

1 1
N = ZWe = Zt(Qe, Qey - - Qoy)-

We get

1
un p(f2) — unp(f)F = Var(ﬁwe).

We then need to calculate V f which appears on the RHS of the Poincaré inequality. For
an edge which appears in the location x of the loop ¢, we write

n x—1 n
0=[]C: Qu=[]C Cn=1]] Qe
i=1 i=1

i=x+1

We then have W, = tr(Qy). For each ¢ € E*, we may have an edge e, in £ which is e
or e~ !, so by straightforward calculation we have

] n
(VWoe = =3 > 1e—e(Qe, b, Qu, — Q% O 03 ) Qe

x=1
1 é * * *
3D M=o 100, 0a, Q7 — 00, 0,) Qe (4.15)
x=1
Here, the calculation is similar as in Lemma 3.1 (see [SSZ22]). Namely, when e, = e, by
cyclic invariance of trace, we write Wy = tr(Q,, Op, Qq, ), and for X € g we compute

O li=otr(e'* Qe, Qp, Qu,) = r(X Qe, Qb Qu,) = (X, P(Qe, O, Qu,)*)
= (X Qe P(Qe, Ob, Qa,)* Qe,) (4.16)

where p is defined in Lemma 3.1 and is the orthogonal projection of a matrix to the
Lie algebra g of skew-symmetric matrices, and X Q. is a tangent vector at Q. On the
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other hand if e, = e~!, we write W, = tr(Qp, Qa, OF), so for X € g similar calculation
as above yields

tr(Qp, Qu, Qe X™) = (X, Pp(Qb, Qa, 7)) = (X Qe P(Qb, 0, Q) Q) (4.17)

which gives the second term on the RHS of (4.15).
Using (4.15) we have

(Y Wp)el?

1 n
=1 2 le—e=etr((Qe, Op, Qa, Qc, — 03, €5,)(Qe, O, Qa, Qe — 05, 05 ))

x,y=1

1 n
— 1 2 oo, (2, Qu, — 0e07, 0, 00)(Q, 0b, Qa, e, — 03,057

x,y=1

1 n
- Z] L, o1 7((Qe, Ob, Qa, Qe — Q3 0, )(Qp, Qu, — Qe Qs 05, 00 )

X, y=

1 n

+g Z] L, —e, e 16((Qh, Qu, — 060}, OF, 00)(Qp, Qu, — 003, 0F, 0))-

X, y=
Note that the trace of any SO (N) matrix is bounded by N, and therefore each of the
four traces above is bounded by 4N .

Summing over e € E™, we see that the Dirichlet form term in the Poincaré inequality
is bounded as follows:

EMNE(f, ) =Y unp(VefP)

ecE*
1 n
<X (1EX:ey:e LR DTS S +1ex:ey:efl).
ecEt x,y=1

(4.18)

For any edge ¢ € E* we let A(e) be the number of locations in £ where e occurs and
B(e) be the number of locations in £ where e~ ! occurs. (4.18) is then bounded by

% > (A(e) + B(e))* < @

ecE*

)

where we used ), _z+(A(e) + B(e)) = n and A(e) + B(e) < n — 3. The Poincaré
inequality then yields
1 1 n(n—-3)
Var(—Wg) L ——".
N Ks N

Letting N — oo, (1.13) follows for the SO(N) case.
For G = SU(N) we choose, with ¢t = 4/—1,

_ LRew, = 1R
fr(Q) = ReW, = wRetr(Qe, Q- Qo )
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£1(0) = “1mw ——lRetr< 0000, ... 0 )
1 = N L= N L el ey - en

to obtain the result for the real and imaginary parts. It is sufficient to calculate VReW,.
Besides the terms in (4.15) we also have the following additional terms

l & 1
3 Zlex:eﬁmgex Qb, Qu, — O} O} 03 ) Q.
x=1

1 1
- 5 Z lex=e—1 ﬁtr(be an Qex = Qe QZX QZX)Qe-
x=1

(This is similar with how the second case in (3.4) was derived, namely, the projection p
appearing in (4.16)(4.17) should also make the matrices traceless in the SU (N) case.)
Noting that (4.14) we have

n
(VReWDe2 <2 37 (Teymeyme # 1oLy + 1y iy + Lepey1 )N
x,y=1

Summing over e € E* we get

2 n
E(fr: fR) < N Z Z (lexze}:e + le;l=ey=e + lex=e;l=e + lex:e,v:efl)

ecEt x,y=1
< 2n(n — 3).
N

Similarly, we get

2n(n — 3)

1. fD) < N

Hence, (1.13) holds for SU (N).
To prove the factorization property, by the Cauchy—Schwarz inequality we have

N*}’l

EWy, ... W) —EWg, ... Wg,_)EW,,

SN TEW, ... W, (Wy, —EW,,)
W, 172

<Var( l") -0
N

Hence, the result follows by induction. O
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4.3. Application II: Mass gap. In this section we use the Poincaré inequality to prove
the existence of mass gap for lattice Yang-Mills. To this end, for f € C 5 (Q), recall
that A  is the set of edges f depends on. We define

1o €55 1, £l

echy

In this section it will be convenient for the calculations to consider an explicit choice of
an orthonormal basis of g. This choice is standard, see e.g. [AGZ10, Proposition E.15].
Let ex, € My for k,n = 1,..., N be the elementary matrices, namely its (k, n)-th
entry is 1 and all the other entries are 0. For | < k < N and( = =1, let

—k+k ( kej+1,k+1 +Z€zz)

For1 <k,n <N, let

€kn — €nk lekn + Lenk
Ei, = %, Fi, = % 4.19)
Then
o {Er, : 1 <k <n < N}isan orthonormal basis of so(N), and,
o {Dy : 1 <k < N}U{Ew, Frn : 1 < k < n < N} is an orthonormal basis of
su(N).

. +
This then determines an orthonormal basis {v} } of gEAL , which consists of right-invariant
vector fields on 9y .
We first prove the following lemma for Lie brackets.

Lemma 4.9. It holds that for every v’
> oIk vllf1? <
J
> ok vl1f1?
J

Proof. By direct calculation we have

IV fI* for G =SO(N),

N =

Vo fI*> for G = SU(N).

N o

€ijemn = (Sjmeiw
Using this and (4.19), we deduce

2[Ekns Eim] = lexn — enk» etm — emi]
= Sni€km — Skmein — Snmekl + Sikemn
— Skienm + Smneik + Skmeni — Sniemk
= Sui(exm — emk) + Skm(ens — €in) + Sum(erx — exr) + S (emn — erzzl)zo)

With this calculation, observe that if we fix (k, n) and vary (I, m), we either get O or

one of the orthonormal basis vectors of so(N) up to a factor +-L 7 and in the latter case
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differer_lt values of (I, m) yield different basis vectors. This implies that for G = SO (N),
{[vé, vll, Jj =1,...,d(g)}is asubset of orthonormal basis of T, G up to a factor i\/LE'

Hence, the result holds for SO (N) by definition of |V, f 2.
The proof for the SU (N) case is similar but requires a bit more calculations. We have

2
T[Ekn, Fim] = lekn — enks eim + emi]
= Sni€km — Skmeln + Snmekl — Sikemn
— Ski€nm + Smneik — Skmeni + Sniemi
= Spi(exm + emi) + Skm(—ens — ein) + Spm (et + exr) + Sii(—emn — enm)-
“4.21)

Whenk =1#n=m

2
T[Ekn’ Fim] = 8um (eix + exr) + Sk (—emn — enm) = 2exx — 2enn. (4.22)
Furthermore

—2[Fin, Fim] = lekn + enk, €1m + emi]
= Sni€km — Skmeln + Spmexl — Sikemn
+ 8kienm — Smn€lk + Skment — Sniemk

= i (e — emk) + Skm(enr — ein) + Spm(exr — eix) + Six(enm — €mn)-

(4.23)
For Lie brackets involving D we have
[Ekn, emm] = Smn Fmk — (Smkan)/L
[Fins €mm] = t(SmnEkm + Smk Enm)-
By this we obtain, for k < n,
0 m+1 <k
__m__ _
WF](” m+1=k
(Ekn> D] =\ =7z Fien k<m<m+1<n (4.24)
m+1
_ < =
«/WFI‘" k<m<m+l=n
0 k,n <m,
and
0 m+1 <k
J— m —
WE/(,, m+1=k
[Fkn’ Dm]= «/F ﬁEkn kém <m+1l<n (425)

mil g k<m<m+l=n

«/m+m2
0 k,n <m.
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For vi, = En Q. or Fi;, Q., we decompose (v?, p=1,...,d(g)}into the following
three sets

I ={EmQe¢, FimQe, 1 <l <m <N, l#korn#m}, Ip={EpnQec FinQec},
and

I3 ={DrQc, 1 <k<N-—1}

By (4.20)-(4.23) we view {[v!, vl1, v} € I} as a subset of orthonormal basis of To,G
1

up to a factor + 7 Hence,
o 1
D I vl P < SIVefIP.
UZG[]
We further use (4.22) to have
D v 1P < Ve f P lerk — ennl® =2V f .
UCI;EIZ
We also use (4.24)-(4.25) to have

n—2

o k —1)2 n’ 1
2 v, velf| \<k—1+(k—1)2 k>2+n—1+(n—1)2+mz_km+m2>| e/l

U£EI3

k n—1 m+

1 1 =2 1
—(2- 7+ +Y - 1>)|vef|2=2|vef|2.
m=k

As a consequence, the result holds for vé = Eyn, Qe or Fi,, Qe

For vi = D, Q. as [Dy, D;,] = 0 we also use (4.24)-(4.25) to view {[v!, vl j =
1,...,d(g)} as a subset of orthonormal basis up to a factor with absolute value smaller
than +/2. We then have

Y Ik vl 1P <20V IR
J

Hence, the result follows. |

We first prove the following lemma. We write e ~ e if e and e appear in the same
plaquette; more precisely, if there exists p € P suchthat {e, e"'}Np # @and {e, e~ '}N
p#F Q.

Lemma 4.10. Let {vé} be the orthonormal basis given above. For every f € C*(Qp)
and every e € E;'\L, one has

W LLF@I< Y acalVaf (@1 VQe Q.

EXL Se~e
with a, ; = N|B|/d(g) for e # e and

e =2(d = DN|BI(/d(@) +V2N2y) |
where y = 1 when G = SO(N) and y = 3+/2 for G = SU(N).
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Proof. In this proof all the sums over e are restricted to EXL. Since the metric on G
is bi-invariant and each v/, is right-invariant which generates a one-parameter family of
isometries, v, commutes with the Beltrami-Laplacian A.. So we have

Wi, LL1f =viLpf — Lovlf
= Z(VUZ:VES’ ng)+(VeS s Vvévef - vevéf) .

e~e
Writing V;§ = Zj (ng)vg, and using (2.5), the first term on the RHS is equal to

Z(;(%%&% Vef)+ % S (@l vl ver).

e~e j

J

For the second term we use V, f = Zj (vZ f)vg and (2.5) to write it as

> (es. wivd pyvd 4l £ 9,08 = @i vl

J

= > i1l vl1.ver)+ % >l f(ves. i vll).
j j
Therefore,

[}, Lo1f = Z<Z(U£v£«9)v£, Véf> + % Z(lﬁ&([vi, vl1, Vef>
J

e~e j
1 ; i .\ def :
+§Zvéf<ve8,[v;,v£]> = ;Ik-
j =

For I1, by similar calculation as in the proof of Lemma 4.1, we have Iv(’; vg S| < N|B|
for e # e; also, |vév£8| < 2(d — 1)N|B] since for each edge e there are 2(d — 1)
plaquettes containing e or e ~'. Combining with Hélder’s inequality we have

1= Sl s < 3 (X winis?) (S wl )"
e J J

e~e j e~e

<NIBWA@) Y IVefl+2(d— DNIBIVd(@)IVef.

e~e,e#e

For I and I3, fixing the edge e we recall our choice of the orthonormal basis
{v,}1<i<d(g) above. Using Lemma 4.9 we then have

L+ Il < g(;'vzaz)m(;uvi, 1)
() (il vdise)
J J
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<Van( L wise) " (X wirP) " = vanivesives
J J

< 2V2(d — DNy |8V, 11,

where y; = 1 for G = SO(N) and y; = 3 for G = SU(N) and we use (3.4) to bound
|V, S| by 2(d — 1)N3/2|B|y /¥ in the last inequality. Hence, the result follows. O

The next corollary together with uniqueness in Sect. 5 proves Corollary 1.6.

o0

L‘yl(Q)y suppose that

Corollary 4.11. Suppose that Assumption 1.1 holds. For f, g € C
Af N Ag = @. Then one has

|Cov(f, &) < c1d(g)e” N ArAd (| Flloollglloo + I £ 1l L2 11g 1l 2),

where c1 depends on |A 7|, |Ag|, and cy depends on Ks, N and d. Here the covariance
and L?* are with respect to every tight limit of {a,, N gL

Proof. With the calculations and bounds obtained in the previous lemmas, together with
our Poincaré inequality, to prove exponential decay we can then apply an argument es-
sentially from [GZ03, Section 8.3]. We write it = wa,, N, for simplicity and consider

ICovy, (fs ) = lur(f8) — ne(Hir (@l =l (PE(fg) — n(PEHHur(Plg)l
= |uL(PL(fg) — PEfPFg)+Covy, (PEf. PFg)l
<lun(PE(fe) — PEFPE)| + Var,, (PE £)!/*Var,, (PEg)!/2.
(4.26)

Recall that the Poincaré inequality is equivalent to the following:
Var(PL f) < e 2 Ks| f ||%2 (1, (see Remark 4.6). Therefore by the Poincaré inequality,
the last term in (4.26) is bounded by

Vary,, (PF )/ *Vary,, (PF)'? < e 58| £l 12, g1l 2 (4.27)

(1L)*

As L is uniform elliptic operator with smooth coefficient, by Hormander’s Theorem
(c.f. [Nua06, Theorem 2.3.3]) Pth € C*°(Qr). Now we consider P,L (fg)— P,LfPtLg
in (4.26) and we omit L for notation simplicity. Recall that P; and £ commute on the
domain D(L) (see e.g. [MR92, Chap. I Exercise 1.9]). We have

T d
Pt(fg)_PtfPtg:/O a[Ps(Pt—sfPt—sg)]dS
t
:/0 [PSE(Pl—sfPt—sg) - PS(EPt—sfPt—sg+Pt—stPl—sg)]ds

t
=2 fo Py(VePi_g f, Ve Pr_g)ds
e
t . .
=23 [ RIGLP-p) - WPl
- JO
e,

Here, to obtain the third line from the second line, recalling the definition of L, by
V(fg) = gV f + fVg the first order terms cancel, and it then follows from A(fg) =
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gAf+ fAg+2(V f, Vg). Note that for every e, i, we have (Psvﬁ,f) . (vaég) = 0 since
Ay N Ay = @. From this we then have

D WP WP sg) =Y WP f — Pi_gvlf) - (WiPr_yg — Pi_svlg)

e, e,

+ > WP f = Posvlf) - (Pi—svlg)

e,i

+ Y (WP 58 — P_sv}g) - (Pi_sv}f)

e,i

defZ(I +12+12).

e

Suppose for the moment that we can prove the following: for any ¢ > 0 and f €
CL‘,’;’[(QL), there exists B > 0 such that for d(e, A y) > Bt one has

D LR f = Pl fllee < d(@e* N flloo. (4.28)
i

We choose t ~ d(A ¢, Ag)/B below. Applying (4.28) to the function g withe € A ¢ (in
which case 12 = 0 since v g = 0) and using (4.9)

1)+ e <Y I0EP— flleelviPsg — ProgvigllLes
i
< d(@e AR Fllsollglloo-
Similarly for e € Ag, Ie?’ = 0 and

11} + 12 1 < d(g)e VP A gl ool f lloo-

Fore ¢ Ay U Ag we have 12 = 13 =0andd(e,Ay) > d(Ag, Ar)/20rd(e, Ag) =
d(Ag, Ay)/2. For both cases we have

I e < d(g)e™cdPrbo)=cdEeApnrde b)) £l llglloo

With these bounds on I1 ILZ, 13, we sum over e and obtain that for d(A r, Ag) > Bt

1P (fg) — Prf PigllLe < crd(@e “““ 29| fllsllglloo- (4.29)
Substituting (4.27) and (4.29) into (4.26) we get

ICovyi, (f, @)1 < crd(@e WA 29 Flissliglos + e 2 XS | £ll 2 l1gl 2,

where ¢; depends on |A ¢| and |Ag| and is independent of L. Since t ~ d(Af, Ag)/B,
letting L — oo the result follows.

It remains to check the claimed bound (4.28). We use a similar argument as in [GZ03,
Theorem 8.2] which we adapt into our setting. We have

. . 1 d . 1 .
VP f— Pl f = /0 - (P,,Sv;Ps f) ds = /0 Pi_lvi, L1P fds.  (4.30)
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By Lemma 4.10, we have

Ik, L1Ps fllzoe <D ae el Ve P f i,

e~e

for constants a, ; which are uniformly bounded in e, e. Hence, by (4.30)

t
S0Pl € Yl I+ [ 3 DeallVePuflids,
i i 07

with a matrix D such that D, ; = d(g)a.; if e ~ e and D, ; = 0 otherwise. Since
e ¢ Ay wegetv, f =0 and by iteration

o0
S P flle <Y ;ZDE’L?ZIIU%J‘IIL%,
i i

n=N, e

with N, = d(e, A ) and D) < C! with Co = d(g)(ac.. + 6(d — 1)a, z). As a result,

ee

using n! > e” logn=2n for2 — log B +log Co + % < —2candd(e, Ay) > Bt we have

(Cor)"e

e @l
X

o0
, t"
D wePflle < Y = Cid@ I flloo <
: .

n=N,
< d(@e D flloo.
Hence, (4.28) follows. |

Remark 4.12. From the above proof one can see

Ks
d(g)(ae,e + 6(d - l)ae,é) '

CN

but this is not necessarily optimal.

5. Uniqueness of Invariant Measure

In this section we prove Theorem 1.2. As the results (4.5) and (4.6) in Theorem 4.2
depend on p;, we cannot simply send L — oo to conclude the result for (P;);>0 on
Q. The idea of our proof is to construct a suitable coupling and find a suitable distance
Poo.a Such that for any p, v € Z(Qr), the Wasserstein distance w.r.t. po o between
wPE and vPF decays exponentially fast in time. Recall that puo 4 is given in (1.4) and
we will choose a suitable parameter a > 1 below.

We denote Cricci,n = @N42) _ | which is a constant arising from Ricci curvature
in (4.8), where « = 1,2 for SO(N) and SU (N) respectively. For any u, v € Z(Q),
we introduce the Wasserstein distance
def

inf 7 (pkoa)'/”.

Wpoo,u( ,U)
b H TEE (ju,v)
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Recall that the generator £, is given by

L F = Z AF + Z (VS(Q)e, V. F). (5.1)

eeEj\L eeEj\L
For fixed Q € Qy define

def def
C=1{Q,0):0¢ecu(Q), D= {(Q,Q:0¢€QL}, (5.2)
where cut(Q) consists of conjugate points of Q and points having more than one minimal
geodesics to Q.
In the following we prove the result for any a > 1.

~ d
Lemma 5.1. Suppose that Ks :ef CricciN — (4 +4/a)N|B|(d — 1) > 0. Then for
every L € Z,

Wy (uPl vl < e KSTWI N (u,v), 120, pve 2(Qu).

Here we use periodic extension to view every measure as a probability on Q.

Proof. To prove the statement we will construct a suitable coupling (Q(t), Q'(t)):>0
between the two Markov processes associated to the generator £; starting from two
different points (Q, Q). We will then use Itd’s fomula to calculate d,ogo‘ (0@, Q'(1))
and obtain

P2 a(0(0), Q'(1) < e 2Ks1 o2 (0(0), Q'(0)), 1> 0. (5.3)

Suppose that (5.3) holds and we use IP’,Q’Q/ to denote the distribution of the coupling
(Q(), Q'(1)). Then for any u, v € Z(Qr) and w € € (1, v) we set

def/PQ 9'7dQ,dQ") € C(uPL, vPL).
Hence, fort > 0

szoo'a (P, UPt)2 < /pgo,adnt < 6_2K5t7f(pgo,a),

and the result follows. In the following we prove (5.3) in three steps.

STEP 1. Construction of coupling (Q(r), Q'(7));>0 and calculation of dp2(Q.(1),
0, ().

eThe usual coupling for Brownian motions and diffusions on Riemannian manifolds

is the Kendall-Cranston’s coupling (c.f. [Ken86]). In our case we adapt a construction
in [Wan06, Proposition 2.5.1] to cancel the noise part, with one of the key modifications
due to our new weighted distance on our product manifold.

More precisely, let (Q(¢), Q'(¢)) be the coupling on Q;, x Q starting from (Q, Q')
given by the following generator

dim qy,

/ I

=Y 2o+ Y 8g+2 Y (Poguivy) o, HUHVS(@) +VS(0),
e€E+ e€E+ i,j=1

(5.4)
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where Ag, f(Q,0) = (Acf(, N)(Q), Ag, f(Q,0) = (A f(Q,))(Q) and
{vi}, {v}} are orthonormal bases of tangent spaces at Q and Q’, and Py o : TpQr —
Ty Qy is the parallel translation along the geodesic from Q to Q’. It is easy to see
that £¢ is independent of the choices of the basis {v;}, {v;}. In fact, to construct such
coupling we need to avoid the cut locus C and the diagonal set D by suitable cut-off
approximation and we refer to Appendix A and [Wan06, Section 2.1] for more details
on the construction.

We intend to apply 1t6’s formula to ,oe2 with p, dgf p(Qe, 0)). To this end, we

consider the projection map w, : Q; — G defined by 7, Q dgf Q.. We then write
Pe( - 5 Q1) for the pull-back of the function p (-, Q) via the map 7. Namely, fixing any
0, € G, the function g, ( - ; Q) is a function on Qy, defined by

N def
e(Q: 0)) = p(eQ, QL) = p(Qe. Q) for Q € Q.
Similarly we define function p,(Q.; -) on Qp as

pe(0e: 0) Y (00 70 = p(0.. Q) for Q'€ Q.

We can also write p, = p (7. Q, m,Q’) and view p, as a function on Q; x Qj.
For R € N, we choose a smooth cut-off function xz : [0, 0c0) — [0, co) satisfying
xRr(x) = x forx > 1/R and XR'[O,#] =0and xp > 0.

Since ,oe2 is smooth near the diagonal, we claim that by Itd’s formula (see [Wan06,
Section 2.1], [Hsu02, Section 6.5]), and writing p. (1) = p(Q.(?), O, (1)), we have

dxr(p2(1)) < 2xR(P2(1)) pe() T (Q (1), Q' (1))dt (5.5)

fort < T dﬁf inf{t >0, Q(t) = Q’(¢)} where J is a continuous function on Q; x Q.
such that J > Is on (D U C)¢. Here

150, ©) € 1000, 0 +((V8)5.(+5 00) (@) + (V955 ))(@) . (56)

and I (x, y) is the index along y : [0, p(x, y)] — G which is the minimal geodesic
from x to y in G:

def "R o ) o
I,y = ) /O (1972 = @i 727, 00 ds,
i=l

where {J,-}?;"Ig_l are Jacobi fields along y such that at x and y, they, together with y,
form an orthonormal basis. Note that the reason to derive a bound in terms of J instead
of Is in (5.5) is that J is defined everywhere on Q; x Qj whereas I is not well-defined
on C U D. In Step 2 below we control /s by a continuous function on Q; x Qj, which
can also control J.

The rigorous derivation of (5.5) follows by cut-off approximation to avoid the cut
locus C and the diagonal set D (c.f. [Wan06, Theorem 2.1.1], [Hsu02, Theorem 6.6.2]).
In the following we give the idea on how the terms in (5.6) arise and we put more details
of the construction and derivation of (5.5) in Appendix A.
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Fort < T and (Q(t), Q'(t)) ¢ C U D, on the support of XR(,og), Is(0, Q) is
given by L p,. To prove this, since p, = p (7. Q, 7. Q") = p(Q., Q) only depends on
Q., 0, (i.e. independent of the values of Q, Q' on the other edges), we can write the
first three terms in L€ p, as (see the RHS of (5.4))

d(g)
AQ.p(Qes Q)+ Dg;p(Qe O +2 Y (Po,.0vei v;,,)TQ,Gve,iv;,,MQe, Q).
ij=1 e
(5.7)

with {v, ;} and {vé’ j} being an orthonormal basis of the tangent space at Q., O/, and
Pg, 0, : To,G — T, G being the parallel translation along the geodesic from Q. to
Q.. Here we used the fact that

PQesQ/e (Ue) = (PQ,Q/U)e VU S TQ QL

(in particular the e component of the geodesic from Q to Q' is the geodesic from Q. to
Q..

By the second variational formula (c.f. [CE75, p21-22], [Ken86, Theorem 2], [Hsu02,
Lemma 6.6.1]) we know that (5.7) is equal to 1 (Q,, Q).

Moreover, the last two terms involving VS in L give rise to the last two terms in
(5.6).

The quadratic variation of the martingale part from applying Itd’s formula to p, is

d(g)—1

7. 71Q0) = (7. PN QIP+ Y [ 7)(Q)) = (i )@ (5.8)

i=1

by the first variation formula (c.f. [CE75, p5], [Hsu02, Section 6.6]). Since {J;}¢ "
together with y form an orthonormal basis, each term in (5.8) is zero, which implies
that the martingale part is zero. We also refer to the derivation of (A.5) in Appendix A
for more details on the calculation of the quadratic variation.

STEP 2. Estimate the RHS of (5.6).

In this step we estimate the RHS of (5.6) and prove that fort < T

002 < —2Ckiccin ol +2NIBI Y pe(pet Y o). (5.9)
p.p>e eF#eep

By the index lemma (see [Wan06, Theorem 2.1.4] or [Hsu02, Lemma 6.7.1]), for
x = Q.,y= 0, withy : [0, p.] > G the minimal geodesic from Q. to O/, where we
recall that p, = p(Q., Q). we have

Pe
1(Qe, Q) < —/0 Ricci(y, y)ds = —CRicci, N Pe- (5.10)

In the following we consider the last two terms in (5.6). Given Q, Q' € Q; as above,
we define a path T' : [0, p,] — Qg which goes from Q to Q' as follows. For any
e € E} , we can find a geodesic y¢ : [0, pz] — G¢ from Q; to Q. Here p; is the
length of the geodesic. We then set

Fo=(7®) ., € (el whre 7) =y (pes/po.

ecE?
AL
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We can check that we indeed have T'(0) = Q and I'(p) = Q' and T is the geodesic
from Q to Q’. Also, we have

7 (T'(s)) = y(s) (Vs €0, pel)-
With the above notation at hand, we write the last two terms in (5.6) as
(V51 00) (@) +((V8)pe(Qi ))(Q) = (VS, 7)(Q) = (VS 7)(Q),
(5.11)

with y extended as a tangent vector field on Q along the curve I', which is still denoted
by y, by setting all the other components as zero.
We then write (5.11) as

/0 " (Evswn, yo))as = /0 " (v ) s

Hence, we get

e .
(5.11) = / (r(vs, ))))(F(s))ds.
0

Below we estimate the above integral. With a slight abuse of notation, for an edge
e € EXL we write e € p if {e,e”'} N p # @, namely we view edges as undirected in

the calculation below. We also extend )55 ,€ € EXL as tangent vector field on Q along

I, which is still denoted by )5‘? , by setting all the components other than e to be zero.
Then recalling our formula for S we have

/O " (r<vs, y‘>)<r(s>)ds 53 fo * e (i Reu( 0,))ds

p>eecp

<N|ﬂ|ZZ/OpE|yLE||y'|ds

p>eecp

<SNIBLY. (et Y e). (5.12)

p>e e#eep

where we used || = 1 and |)jé| = pz/pe. Here we calculate )jé())Retr(Qp)) as follows:
for Q) = 0.0Q:0102 with Q1, Q2 € G we get

d

PR = | | Ret(y0)7*()0102)

= Retr()?)jéQl Qz),

s=0

the absolute value of which by Holder’s inequality for trace is bounded by |)55| V1.
Similar calculation holds for @, = 0.010:;02 and Q, = Q.0102Q; and we use
similar argument as in the proof of Lemma 4.1 to control y yRetr(Q ) by |y |>. Hence,
by (5.5), (5.6), (5.10), (5.12), we get

0 xR (p7) < —2CRicei N XR(02) P2 +2XR(PDINIBI Y (pez £ pere).
p,p>e eF#eep
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Letting R — oo and by dominated convergence theorem and the fact that x j, is uniformly
bounded in R, (5.9) holds.

STEP 3. Derivation of (5.3).

We extend (Q(1), Q'(1)),>0 periodically as a process on Q x Q, which is still denoted
as (Q(t), Q'(1))r>0. (5.9) also holds for the extension. By (5.9) we have

002 < —2Ckicin o2 +2NIBI(2@ = Do+ D Y pene).
p.p>ee#ecp

In the following we bound p;p,.. To obtain the desired rate given by K st, we need to
control pzp, in different ways depending on the relations between |e| and |e|. We first
fix a plaquette p and consider two edges ¢ # e.

For the edges satisfying |e| = |e| 2 we have

206 < 2+ p2.
For the edges satisfying |e| # |e| we have

2 1 2, 2
ﬁpépe X pe Pe -

The reason for the choice of the above weight is as follows: there is one plaquette p
such that only one edge ¢ # e in p with the same distance as |e| and other edges with
the distance larger than |e|. Thus, since for each edge e there are 2(d — 1) plaquettes in
‘P such that p > e, we get

2NIBL Y D pepe

p.p>e€e#tecp
<vavip Y Y (Geeed)enp Y Y (2+02)
p.p>ele|#lelep p.p>e |e|=|e|€p,e#e

1
=VaNIBl 35 3 —pi+@Ja+2)d—DNIBIP;

p.p>ele|#lelep

+NIBL Y. > p?

P.p>e |e|=le|ep,eF£e

where the first sum for e with |e| # |e| includes two edges and the second sum for e
with |e| = |e| contains only one edge. Note that we also get an extra % before ,og with

le|] = |e| + 1, which can be put into the weight [ﬁ Substituting the above calculation
into (5.9) and using again the fact that for each edge e there are 2(d — 1) plaquettes in
P such that p > e we get

1 1 1
07 < —2CRicei NP7+ (4Wa+ONIBIA = D p?

+N|ﬂ|2(f 3 |e‘pe > ).

p.p-e lel#lelep le|=le|lep,e#e

2 If two edges e # e share the same vertex and this vertex is closer to origin, we may have |e| = |e]|.
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Taking sum over e we notice that pg also appears when calculating ﬁat ,og with e

and e in the same plaquette, which at most gives 2./aN|B| # pe2 and N || ﬁ ,oe2 from

ﬁat ,og with |e| # |e| and |e| = |e|, respectively. Since for each edge e there are 2(d — 1)

plaquettes in P such that p > e, we get

1 2 1 2 1 2
D el < “2Ckiccin Y ol + BHSVONIBIE = 1) Y~
ecE* ecE* ecE*

(5.13)

Hence, (5.3) follows from Gronwall’s lemma. O

Remark 5.2. In general, even if K s < 0, Lemma 5.1 still holds, but in that case the
bound would not be useful for us.

Now we prove Theorem 1.2. One of the important ingredients in the proof is that
under Assumption 1.1, the condition of Lemma 5.1 can indeed be satisfied by tuning the
weight parameter a > 1 to be sufficiently close to 1, see Eq. (5.15) below. The crucial
reason for this proof to work is that the last term in our bound (5.13) is of order N,
rather than N” for some p > 1. This is a nontrivial point: indeed, that term comes from
bounding the VS terms on the right-hand side of (5.6), but note that S defined in (1.2)
would appear to be of order N if one naively bound tr(Q p) < N, in which case the
proof would break down. In fact in the previous proof we instead apply the property of
the Lie group G and Holder inequality to separate different vector fields appearing in
the second order derivative of S, which could finally be bounded by sum of Riemannian
distances up to a factor N|S]|.

Proof of Theorem 1.2. For any two invariant measures p, v of (1.6), we can find two
sequences {ur}, {vp} € £(Qr) such that their periodic extensions over the entire O,
which are still denoted by up, vr, converge to u, v weakly in O, with the distance
induced by || - || defined in (3.6). Indeed, let Q(0) : 2 — Q be a random variable such

that Law(Q(0)) = u, and then define iy, def Law(Q%(0)) where QL (0) : @ — Qy is
given by

0.(0)  ecE}f,

+ +
Iy, ee B} \E} .

0L (0) = :
then {1 } satisfy the desired property. The sequence {vy } can be constructed in the same
way.

By Lemma 3.2 we obtain the unique solution 0L e C([0, 00); Q1) to (3.3) start-
ing from the initial distribution 1; € 22(Qp). By periodic extension we view QL e
C([0, 00); Q). Recall that (PtL ):>0 1s the Markov semigroup associated with the solution
to (3.3). By global well-posedness of (3.3), we obtain for F € CZ(Q) and 7 > 0

/ PFFdup = EF(Q"(1)).

Similarly, using Proposition 3.4 we obtain unique solutions Q € C([0, 00); Q) to (1.6)
starting from the initial distribution . Recall that (P;),>¢ is the Markov semigroup for
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the Markov process associated to (1.6). By uniqueness in law of the solution to (1.6) we
have

f P,Fdu = EF(Q(1).

As pg, converges to u weakly in O, by the same argument as in the proof Proposi-
tion 3.4, the law of {QL} is tight in C([0, 00); Q) and the tight limit satisfies the limit
equation (1.6) with the initial distribution . By uniqueness in law of equation (1.6),
which follows from pathwise uniqueness in Proposition 3.4 and Yamada—Watanabe The-
orem, the law of Q% converges weakly to the law of Q in C([0, 00); Q), as L — o0.
As aresult, for F € CS;’I(Q) we have

/P,LFdM =EF(Q%(t)) » EF(Q()) = / P,Fdu, L — oo. (5.14)
Similarly, we obtain
/PtLdeL — /Pthv, L — oo.
Moreover, by the condition Ks > 0, there exists @ > 1 such that

Ks = CRricciy — (4 +4/a)N|BI(d — 1) > 0. (5.15)

We then invoke Lemma 5.1 to have

)deM—/de( - ’fPthu—/Pthv‘
— lim ’[P,LquL—/P,LdeL’
L—o0

[0 - Fonarc.y)

= lim inf
L—>00ne® (uy PE,vL PE)

< Cp lim Wy (ur PE, v PF)

< Cpe X" lim Wy™“(ur, vr) < Cla)e™ X'
L—o0

where C r only depends on F, and the constant C (a) is independent of L by boundedness
of Poo,as 1-€. SUPy oreQ Poc,a(Q, Q') < oo. Letting 1 — oo we have

‘/Fd“_/Fd"’:O'

Hence, n = v. This gives the uniqueness of invariant measure, as denoted by M}(vh,dﬁ in
the theorem.

By Theorem 3.5, every tight limit is the invariant measure of (1.6). Hence, it is also
unique and the second result of the theorem follows.

To prove the last statement (1.7), taking now an arbitrary probability measure v on
Q we also have {vy} constructed similarly as above. We denote by Q"% and QV the
processes starting from vy, and v, respectively. We also have, as in (5.14),

/P,LdeL —EF(Q": (1)) — EF(Q"(t)) = / P Fdv, L — oo. (5.16)
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Recall {itr} and u = u}vMﬁ as the unique invariant measure given above. By triangle
inequality and Lemma 5.1 we have for r > 0

Wy WP ) < Wy (WL PE v P + Wy™ (L PEL PP + W)™ (. )

<
WY (vp PE VP + e KSTWI (g, vp) + Wiy ™ (w, )
<

EpZ, (0" (1), Q"(1)) + Cl@e K + Wi (u. pup).  (5.17)

As Q is compact w.r.t. the distance pg,, QVL(¢) is tight in (Q, pZ ). Using (5.16) we
then have forr > 0

Ep ,(0"(1), Q"(1)) = 0, L — cc.
Letting L — oo in (5.17), we have
W) Py, w) < ClayeKst,

which is (1.7). It is clear from (5.15) that Eg only depends on the constant a, d, 8 and
dimension of G. o
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Appendix A. Construction of Coupling

In this appendix, we follow [Ken86], [Wan06, Section 2.1] to construct the coupling

(Q1), Q' (1))i>0

starting from (Q, Q’) by approximation, and prove (5.5). The coupling argument pre-
sented here is similar with [Wan06, Chapter 2] but a main difference is that the above
reference applies Itd’s formula to a distance on a given manifold — which would be py,
(not p,) in our case, but we will apply 1td’s formula to the quantity x R(,oez).

Before proceeding we recall the basic definitions and notations (c.f. [Hsu02, Chap-
ter 2] for more detailed explanations). Recall that Q; is a Riemannian manifold with
dimensiond = |E XL |d(g).Let 0(Qp) be the orthonormal frame bundle over Q. , which
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is a d(d + 1)/2-dimensional Riemannian manifold. Given / € R?, let H; be the corre-
sponding horizontal vector field on &(Qp). Denote by 7 : (Qr) — Qp be the canon-
ical projection. For any ® € 0(Qp) we have &l € T,¢Q and H)(P) € TeO(Qy)
is the horizontal lift of ®/ € T;¢Qy to ®. In particular, let {l,-},?d:1 be an orthonormal

basis of R, define the horizontal Laplace operator

d
def 2
Mgy = Y_HP
i=1

which is independent of the choice of the basis {/;}. Moreover, for any vector field Z on

Q1 we define its horizontal lift by HepZ dgf Hg-1,(®) for & € 0(QL), where o1z
is the unique vector [ € R4 such that Z, ¢ = ®I.

As in [Hsu02, Chapter 6], for a function f defined on 0(Qr) x 0(Qr), we denote
by Hj, 1 f and Hj, » f the derivatives of f with respect to the horizontal vector field Hj,
on the first and the second variable respectively. The horizontal Laplacian on the first
and the second variable are

d d
P P
Apop1 = Z Hi . Ao = ZHzi,z'
i=1 i=1

Construction of coupling. Consider the following Stratonovich SDE with Q(¢) dEf

7 (Py)
d
dd, = Z Hp,(®:) odN;,  dN, = v2dB, + ©;'VS(Q(1))dt, (A.1)
i=1
where (B;);>0 is a standard d-dimensional Brownian motion and 7 ®y = Q. Then Q(¢)
is an L -diffusion process (L asin (3.5)) starting from Q and ®; is called its horizontal
lift.
As the Riemannian distance is not smooth on C and D defined in (5.2), we introduce

cut-off approximation as follows: Foranyn > lande € (0, 1),leth, . € C*(QrLx QL)
suchthat 0 < hye <1 —¢, hyelce =1 —¢and hyelc,, =0, where

& €00 oo ) )< o) nz

with pg, « g, the Riemannian distance on Oy, >< Qr.Letg, € C*(Qr x Q) such that

0< g <1,8.(Q,0)=0if pr(Q, Q) < 5; and g,(Q, Q') = 1if pr.(Q, Q) >

Let W™ and N/"* solve the following SDE with 0" (1) def yhe

d
AW =) " Hype (9]°°) 0 AN,
i=1

AN = V/2(hy e 80)(Q(0), O™ () (W)™ Py e ey @1 dBy

201 = (heg)®(0(1), 07 (1)) dB] + (9"5) "' VS(D" (1) dr,
(A.2)
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where B, is a Brownian motion in R4 independent of B;, ¥y = Q' and Po.o
ToQr — T Qy is parallel translation along the geodesw from Q to Q'. As the co-
efficients are smooth on the compact manifold, we have unique solutions (®;, ¥;") to
(A.1) and (A.2).

The generator for (®,, ¥;"®) is then given by

d
Lo, =Do@pa+Ae©0n2+2) (hnegn) Hy 2Hy 1 + HoVS + Hy VS,
i=1

with (@, W) = W P g g @l € RY.
We then consider the following approximation to the generator £¢ defined in (5.4).

dim qz,
& / /
LV = 3" Ao+ Y Ag +28hae Y (Po.ovi, V)1y0,viv)
EGEXL EEEXL i,j=1

+VS(0) +VS(0,

with {v;}, {v’ } as in the definition of £ in (5.4).
It is easy to see that Eﬁ(g ) is a lift of £™¢. Namely, for f € C*(Qr x Q1) and
F(®, V) = f(wd, 7¥), one has ’C()’(Q )F(<I> ) = L™ f (D, V). We then know

(0(1), Q%) = (wd,, mW,) starting from (Q, Q') is generated by £ (c.f. [Wan06
Section 2.1]). Since the marginal operators of £™*¢ coincide with L, (Q;, Q, ‘) gives
a coupling of £ -diffusions starting from different initial data.

Let P9 denote the law of £ -diffusion (O(t))r>0 starting from QO € QO in
C([0, 00); Q1) endowed with the distance

50002 (1n s pQ®L QD). 0.0 € C10.00% Q).

n=0 te[n,n+1]

As the marginal law of (Q, 0"), . is tight in C([0, 00); Q). the joint law P22 of
(Q, Q™%),.¢ is also tight. Therefore, for every ¢ > 0 there exists a probability measure
EQ % and a subsequence, which is still denoted by IP’,%;Ql such that ]P;,Q,’SQ, — ]P’EQ o
weakly in C ([0, c0); Q). Moreover, we could find IP’% 2" and P2-Q' such that ]P’ng’ o
po.< weakly in C([0, c0); Qr). P2-2 s then the desired coupling of P2 and P2,

Proof of inequality (5.5). In the following we prove (5.5).
Following [Ken86] [Wan06, Section 2.1] we apply Itd’s formula to XR(pz)(Qe(t),
QZ “(1)) and use XR > 0 to obtain

dxr(0%)(Qe(t), QT4 (1))
= dM]" +2(4p x5 (0%) + 2% R (0* N (1 — guhn.e)(Q(1), O™ (1))dr — dL}"*

+Heenp 20 (09 (8ahnels + (1 = guhn.) Z)(Q(0), 0" (dr. (A3)

Here p = ,O(Qc(t) 0" (1) and f(p?) = f(p2)(Qe(1). Qe (1)) for f € {xp. xk)-

The term M, is a martingale with quadratic variation process given by

t ~
/0 4Q2xR(P7IP)2(1 = guhne)(Q(s), O™ (s))ds,
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and L;"s is a non-decreasing process which increases only when (Q(?), @"'E(t)) eC.
The term Ig is given in (5.6) and finally

Z(Q, 0) = (-, 0)(Qe) + Ap(Qe, )(Q))
(V95 00)(@ + ((V9)5e(0e.0) (@) (Ad)

with A being the Laplace—Beltrami operator on G.

In fact, to derive (A.3), we may first apply Itd’s formula to dp (Q.(?), QZ (t)) and
then apply Itd’s formula again to xz(p2). Suppose for now that the quadratic variation
process of the martingale part M? for p is given by

4 ~
(Mf) = 4/0 (1 = gnhn,e)(Q(s), O™ (s))ds. (A.5)

Then the second term on the r.h.s. of (A.3) comes from (M,p ). As explained in (5.6)—(5.7)
the last line in (A.3) comes from £™¢p.
We now verify (A.5). Using (A.1) and (A.2) we have, for p(®, ¥) = p(w,7 P, . w V),

(S

d(Mf)y = Z HH[ 10+ &nhn, e Hx 2/0) (gflhna€)2)|Hli>2'3|2]dt

As p only depends on the component at e, this now boils down to standard arguments.
Namely, since the above quantity is independent of the choice of basis, we can write the
above terms as vector fields on G, and choose basis in such a way that one basis vector
is tangent to the geodesic and the others are perpendicular to the geodesic, and use the
first variation formula to derive (A.5) (c.f. [Hsu02, Section 6.6]).

In the following we send n — o0, ¢ — 0 to derive (5.5).

Let (x (), y(¢)) be the canonical process on (C ([0, 00); Qr) x C([0, 00); Q1), .F X
F) and let {%;},>0 be the natural filtration. On the support of xg using Laplacian
comparison theorem (c.f. [Hsu02, Corollary 3.4.4]) we know that Z defined in (A.4)
satisfies Z < Cp for some constant Cg > 0. Since the support of xr (0?) C {p* > ﬁ}
and for n large enough oL(x,y) = p(xe, Ye) = 1/@ > 1/n, g,(x,y) = 1 on the
support of x R(,o ), we obtain that

- t
X () Qel0), 02700 = [ 26402040 + 2041 = (051, 7 (5)
420 (P0 (e d + (1= B )Cr)(Q (), B (5)) ds

is a supermartingale, where J is as in (5.5). Therefore,

9 P00 — [ 2645707
+ 2RO (), 36D = Iy ) (K (5), ¥(6)
+ 200k (0P e (5), o) (e + (1 = 1. )Cr ) (¥(5), ¥(5)) ds

isa IP’,%EQ -supermartingale.
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Furthermore, since by [Wan06, Lemma 2.1.2] P22 ((x(s), y(s)) € C) = 0 for
s > 0, using the same argument as in [Wan06, Proof part (b) of Theorem 2.1.1] we let
n — oo and obtain that

t
5¢ 9 R (PP (e (1), ye(1)) — /0 26(@p 1 5(0%) + 20k (0)) (xe(5). ye(5))

+ 20 (PP (s, 3e(6)) (1 = £ +6Cr) (x(5), y(s)) ds

/
iaa Pg’Q -supermartingale.
Letting ¢ — 0 we obtain that

t
S T R (DD (xe0), ye (1)) — 2 /0 X (0P (Xe(5). ye ()T (x(s), y(s)) ds

isa ]P’Q’Q/—supermartingale. Hence, by Doob—Meyer’s decomposition

Ak (02 (ke(0), 3e(1)) = dMy + 200 (070 (3e(1), ye(D) J (x(0), y(1))dr = dLy,
(A.6)

with M a martingale and L a predictable increasing process.
In the following we prove M = 0. Similarly we use the above argument for

F R (P*(xe (1),
ye(1)))) with 0 < f € C2(R*), f’ > 0 and we have that

t
7 ()60 3600) = 2 [ (5 P20 (%), 76)) T (x(5) 3052 ds
0

isa IP’Q’Q/-supermartingale. Choosing f(r) = exp(mr), m € N and setting

2 € exp (mxr (00, 3 ),

we have that
t
g —Zm/ B (x(s), y(s)) ds
0

isa ]P’Q’Q/—supermartingale with

By = (eXp(mXR(pz))x}g(pz)p>(xe(S), Ve ($)).
By Doob-Meyer’s decomposition,
dE, = dM; +2mE} J (x (1), y(1))dt — dL,, (A7)

where Mt is a martingale and Zt is predictable increasing.
On the other hand, applying It6’s formula to (A.6) we obtain

1
dE, = m B, dM, + Em2 2, d(M,, M) +2m B} J(x(t), y(t))dt —m B,dL,. (A.8)

Comparing (A.7) and (A.8) we obtain d(M, M), < %ldL[. Letting m — oo, we get
d(M, M), = 0. Hence, (5.5) follows.
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