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ABSTRACT
In this Review, we review some recent rigorous results on large N problems in quantum field theory, stochastic quantization, and singular
stochastic partial differential equations (SPDEs) and their mean field limit problems. In particular, we discuss the O(N) linear sigma model on
a two- and three-dimensional torus. The stochastic quantization procedure leads to a coupled system of N interacting Φ4 equations. In d = 2,
we show uniformity in N bounds for the dynamics and convergence to a mean-field singular SPDE. For large enough mass or small enough
coupling, the invariant measures [i.e., the O(N) linear sigma model] converge to the massive Gaussian free field, the unique invariant measure
of the mean-field dynamics, in a Wasserstein distance. We also obtain tightness for certain O(N) invariant observables as random fields in
suitable Besov spaces as N →∞, along with exact descriptions of the limiting correlations. In d = 3, the estimates become more involved since
the equation is more singular. We discuss in this case how to prove convergence to the massive Gaussian free field. The proofs of these results
build on the recent progress of singular SPDE theory and combine many new techniques, such as uniformity in N estimates and dynamical
mean field theory. These are based on joint papers with Scott Smith, Rongchan Zhu, and Xiangchan Zhu.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0089851

I. INTRODUCTION AND PHYSICS BACKGROUND
In quantum field theory (QFT), there are important models where the “field” takes values in an N-dimensional space. A natural question

is that what is the asymptotic behavior of such models as the dimensionality of the target space N →∞. The perspective of investigating these
questions in this Review is called stochastic quantization. Stochastic quantization is a procedure that formulates a quantum field theory in
terms of a stochastic partial differential equations (SPDEs). More precisely, for a quantum field theory where the target space has dimension
N, its stochastic quantization yields a system of N coupled SPDEs. This procedure, then, brings in many powerful analytical tools, including
the recent developments of SPDE solution theories and their a priori estimates, and mean field theory techniques. The purpose of this Review
is to survey the recent results along this direction.

For most of this Review, we will focus on the linear σ-model in two and three dimensions. However, we will first briefly review the origin
of the large N problems in physics.

A. Large N problem in QFT
Large N methods (or “1/N expansions”) in theoretical physics are ubiquitous and are generally applied to models where the dimen-

sionality of the target space is large. It was first noted by Stanley1 for lattice spin models (rather than QFT) that they exhibit considerable
simplification as N (the number of spin components) becomes large: at least at the level of free energy, as N →∞, these models become
the “spherical model,” which is a solvable model introduced by Berlin and Kac in 1952.2 See Baxter’s book,3 Sec. 5, for an expository dis-
cussion on spherical model. Later, the large N convergence to the spherical model was established at the level of free energies4 and, then, of
correlations.5,6 Again, in the context of spin systems, the authors of Ref. 7 found a systematic way to expand in powers of 1/N and obtained
1/N order corrections to the spherical model.
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In 1973, Wilson exploited this idea in quantum field theory.8 In particular, Wilson studied both bosonic (linear σ-model) and fermionic
models. The linear σ-model is the N-component generalization of the Φ4

d model, given by the (formal) measure

dνN(Φ) def= 1
ZN

exp
⎛
⎜
⎝

−∫
Td

N

∑
j=1

∣∇Φj∣2 + m
N

∑
j=1
Φ2

j + λ
2N

⎛
⎝

N

∑
j=1
Φ2

j
⎞
⎠

2

dx
⎞
⎟
⎠
DΦ (1.1)

over RN valued fieldsΦ = (Φ1,Φ2, . . . ,ΦN), where ZN is a normalization constant and DΦ is the formal “Lebesgue measure.” We will discuss
below the physics predictions and how they are related with our rigorous results. Soon later, Coleman, Jackiw, and Politzer9 calculated the
effective potential and studied spontaneous symmetry breaking of this model for d ⩽ 4; see also Ref. 10 for more extensive analysis in d = 4.11

Around the same time, Gross and Neveu12 studied the 1/N expansion for a two-dimensional fermionic model, where N Dirac fermions
interact via a quartic term (“four-fermion interactions”): namely, the Lagrangian is given by ∑N

i=1ψ̄i(i∂/)ψi + λ
N (∑N

i=1ψ̄ iψi)2. This model had
also been touched in Wilson’s paper.8 It was observed that the model has asymptotic freedom and symmetry breaking (for a discrete chiral
symmetry) and produces a fermion mass.

Another class of model considered from the 1970s is the nonlinear σ-models in two dimensions. For instance, see Ref. 13, which con-
sidered models where Φ takes values in a sphere in RN . It can be viewed as the limit of RN valued σ-model with a potential K(Φ ⋅Φ − a2)2

in a formal limit K →∞. The idea was also extended to CPN−1-type nonlinear σ-models14,15 (where more general homogeneous space G/H
valued models were also formulated).

Matrix-valued field theories are considered to be more difficult. In 1974, t’Hooft16 gave the solution of the two-dimensional Yang–Mills
model with the SU(N) gauge group as N →∞. After this seminal work by t’Hooft, the large N behavior of gauge theories was extensively
studied by physicists; see, e.g., Refs. 17–20. See also Ref. 21 (and the references therein) for a broad class of matrix models.

It is certainly impossible to list all the vast literature; instead, we refer to Ref. 22 for an edited comprehensive collection of articles on
large N as applied to a wide spectrum of problems in quantum field theory and statistical mechanics; see also the review articles23 and Ref. 24
or Coleman’s excellent book (Ref. 25, Chap. 8) for summaries of the progress.

B. Perturbation theory heuristics
A standard approach in quantum field theory is perturbation theory, namely, calculating physical quantities of a given model by pertur-

bative expansion in a coupling constant of the model. In large N problems, terms in perturbation theory can have different orders in 1/N, and
the “1/N expansion” is a re-organization of the series in the parameter 1/N, with each term typically being a (formal) sum of infinitely many
orders of the ordinary perturbation theory.

To explain this formalism a bit more, we first recall the usual perturbation theory for the Φ4 model with N = 1 and m = 0 (for simplicity)
in (1.1). This could be found in a standard QFT textbook, e.g., Peskin and Schroeder.26 Loosely speaking, the perturbative calculation of,
for instance, a two-point correlation of Φ is given by a sum of Feynman graphs with two external legs and degree-4 internal vertices that
represents the quartic interaction Φ4,

For the vector model (1.1) with N > 1, which was studied by Wilson,8 the perturbative calculation of the two-point correlation of Φi (with i
fixed) is also given by the sum of Feynman graphs with two external legs and degree-4 internal vertices, but now, each vertex carrying two
distinct summation variables and a factor 1/N that represents the interaction 1

N∑j,k Φ
2
j Φ2

k term in (1.1),

Heuristically, graph (a) is of order 1
N∑j ≈ O(1) and graph (b) is of order 1

N2∑j ≈ O( 1
N ). The philosophy of Ref. 8 is that graphs with “self-

loops” such as (a) get canceled by Wick renormalization,27 and all other graphs with internal vertices such as (b) are at least of order O(1/N)
and, thus, vanish, so the theory would be asymptotically Gaussian free field. (We rigorously prove this in Secs. VI and VIII C in 2D and 3D.)

Since model (1.1) is invariant under any O(N) rotation of Φ, it is more natural to study the O(N)-invariant observables than the field
itself, such as ∑N

j=1 Φ
2
j . One needs to find a suitable scaling for such observables to see interesting fluctuations. In the “law of large numbers

behavior” scaling 1
N∑

N
j=1 Φ

2
j , one would expect a deterministic limit. Interesting fluctuation, then, arises in the next scale.

Following the above heuristic, we assume that the model is Wick renormalized, and so the perturbation series does not contain self-
loops, and we consider 1√

N∑
N
j=1 : Φ2

j :. Note that here : Φ2
j : is the Wick square. The bubbled diagrams of the following form are all the O(1)

contributions to its two-point correlation:
(1.2)
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In fact, it is known in physics literature that these “bubble chains” are dominant (after Wick renormalization) contributions for this model: for
instance, if we consider another observable 1

N : (∑N
i=1 Φ

2
i )

2
:, the leading contribution to its one-point correlation would, then, be the “bubble

loops,” i.e., the above type of diagrams with x, y identified.

C. Dyson–Schwinger and dual field method
Besides directly examining the perturbation theory, alternative (and more systematic) methodologies of analyzing such expansion were

discovered in physics. We briefly recall some of them.
In Ref. 28, Schwinger–Dyson equations were used to study models of the type (1.1). These are essentially a type of integration by parts

formulas. They yield a hierarchy of relations for correlation functions of different orders. This hierarchy does not close, so it is somewhat
similar to perturbation theory, but one advantage of using Schwinger–Dyson equations is that one could again write a truncation remainder
in terms of correlations of the field. This will be useful for rigorous studies (see Ref. 29), and we will come back to this point in Sec. VII.

Schwinger–Dyson equations are particularly powerful when we move from vector valued models of the type (1.1) to matrix valued
models, such as Yang–Mills model. In the context of Yang–Mills model, the authors of Ref. 19 discovered relations between Wilson loop
observables among different loops, now called Makeenko–Migdal equations or master loop equations. These are also broadly used in the
study of random matrices, for instance, see the book30 by Guionnet.

The problem of the perturbative argument discussed in Sec. I B (besides being non-rigorous) is that keeping track of all the diagrams and
proving that there is no other diagrams appearing at the leading order are a combinatoric challenge; this challenge also exists when iteratively
applying Schwinger–Dyson equations. A better way is to introduce a “dual” field or “auxiliary” field, which we briefly review now. A very nice
exposition of this idea can be found in Coleman’s book (Ref. 25, Chap. 8) [see also the original paper9 or the review (Ref. 24, Sec. 2)]. The
exact ways of implementing this idea vary among the literature, but roughly speaking, one will shift the action in (1.1) by a quadratic term
involving a new field σ when calculating an expectation with respect to the measure dνN ,

∫ (⋅ ⋅ ⋅ )dνN(Φ) → ∫ exp
⎛
⎝

−∫
N
2λ

(σ − λ
N

N

∑
j=1
Φ2

j )2⎞
⎠

dσdνN(Φ).

This is because the integral over σ is simply a Gaussian integral, which yields a constant that can be absorbed into the partition function. We,
then, obtain exp(−S), where

S(σ,Φ) = ∫
N

∑
j=1

∣∇Φj∣2 + m
N

∑
j=1
Φ2

j + N
2λ
σ2 − 1

2

N

∑
j=1
σΦ2

j dx.

In particular, the quartic term is canceled. Still considering two-point correlation of Φi, for instance, one has the following type of diagrams:

Here, the dashed line represents the covariance of the “Gaussian measure” exp(− ∫ N
2λσ(x)2 dx), which is simply λ

N δ. Each internal vertex
is degree 3 because of the σΦ2

j interaction term.
One could study this theory of (σ,Φ), but as explained in Ref. 25, since the above action is quadratic in Φ, one could “integrate out”

(Φ1, . . . ,ΦN) and obtain an “effective action” for σ. This Gaussian integral would, however, yield a non-local interaction because of the term
∣∇Φj∣2, namely, a determinant det (−Δ + m − σ

2 )
N/2 or det (1 − 1

2(−Δ + m)−1σ)N/2 if we factor out the determinant of the massive Laplacian.
Many physical properties can be deduced from this dual field theory for σ, for instance, one could exponentiate this determinant to obtain a
measure of the form eNF(σ), where F has the form tr log(⋅ ⋅ ⋅) so that large N limit becomes a question of critical point analysis for F. The 1/N
expansion for correlations will also turn out to be a simple perturbative expansion in the dual picture.

D. Some previous rigorous results on large N
A rigorous study of large N in mathematical physics was initiated by Kupiainen29,31 around 1980. See also his review.32 The literature

mostly related to the present article is Ref. 29, which studied the linear sigma model in continuum in d = 2 (with Wick renormalization)
and proved that the 1/N expansion of the pressure (i.e., vacuum energy or log of partition per area) is asymptotic, and each order in this
expansion can be described by sums of infinitely many Feynman diagrams of certain types. This paper uses both Dyson–Schwinger equations
and the dual field method, together with constructive field theory methods, such as chessboard estimates33 based on reflection positivity. Borel
summability of the 1/N expansion of Schwinger functions for this model was discussed in Ref. 34.

Most of the other rigorous results are proved on lattices and, thus, ignore the small scale singularity (which is one of the key difficulties
in our work). We also review some of these results here even if they are not necessarily directly related to our results. In Ref. 31, Kupiainen
considered the N-component nonlinear sigma model (fields take values in a sphere in RN ) on the d-dimensional lattice with fixed lattice spac-
ing. As mentioned above, this simplifies to “spherical model” as N →∞, and for the spherical model, it is known that the critical temperature
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is 0 when d ⩽ 2 and is strictly positive when d > 2. The author of Ref. 31 proved that the large N expansion of correlation functions and free
energy is asymptotic above the spherical model critical temperature (meaning all temperature if d ⩽ 2), and a mass gap was established for
these temperatures when N is sufficiently large. The main idea therein was the dual field representation (for which the heuristic is discussed
in Sec. I C), which yields nonlocal expectations, and this technical difficulty was solved using random walk expansion ideas from Brydges and
Federbush.35 Asymptoticity was later extended to Borel summability by Ref. 36.

In the 1990s, Kopper, Magnen, and Rivasseau37 proved the mass gap for fermions in the Gross–Neveu model when N is sufficiently large,
and the model has at least two pure phases. They again work with the dual field as illustrated above (which ends up with a determinant of
Dirac operator) with suitable ultraviolet regularization and apply cluster and Mayer expansion techniques. Note that the Gross–Neveu model
action has a (discrete) chiral symmetry, which prohibits a mass, but the mass is acquired in a symmetry breaking. The authors of Ref. 38 (on
lattice Z2)39 [on R2 but with a certain ultraviolet cutoff and a “soft constraint” K(Φ ⋅ Φ − 1)2 in the potential], then, revisited the nonlinear σ
model and showed a mass gap for N sufficiently large, and they both work with dual fields and determinants using cluster expansions.

A large N limit and expansion for the Yang–Mills model have drawn much attention, following t’Hooft’s 1974 work.16 In two space
dimensions (continuum plane), Lévy40 proved the convergence of Wilson loop observables to the master field in the large N limit, with orthog-
onal, unitary, and symplectic structure groups. The master field is a deterministic object, which was described conjecturally by Singer in 199541

who pointed out its connections with free probability. Lévy’s work40 also rigorously establishes integration by parts, i.e., Schwinger–Dyson
equations both for finite N and in the large N limit for the expectations of Wilson loops, which in this context are called the Makeenko–Migdal
equations. Note that the two-dimensional Yang–Mills model has special integrability structures, which allows one to make sense of the ran-
dom Wilson loop observables in continuum—this was established by Lévy in Refs. 42 and 43, which Ref. 40 relies on. Around the same time,
Anshelevich and Sengupta44 also gave a construction of the master field in the large N limit via a different approach, which is based on the
use of free white noise and of free stochastic calculus; these methods were developed earlier by Sengupta in Refs. 45 and 46. On the lattice of
any dimension, we refer to Ref. 47 (respectively, Ref. 48) for computation of correlations of the Wilson loops in the large N limit (respectively,
1/N expansion), which relates to string theory.

We remark that while the Schwinger–Dyson equations for vector models (as we will discuss more in Sec. VII) are easy to derive,
Makeenko–Migdal equations for Yang–Mills models are more difficult to derive (rigorously). The first rigorous version was established for
the two-dimensional Yang–Mills model in continuum in Ref. 40, and alternative proofs and extensions were given in Refs. 49–52 on plane or
surfaces. On lattice, for finite N and in any dimension, these were derived by Chatterjee (Refs. 47 and 53) and, then, in Ref. 54 using stochastic
ordinary differential equations (ODEs) on Lie groups.

II. STOCHASTIC QUANTIZATION AND SPDE
Stochastic quantization refers a procedure to turn Euclidean quantum field theories to singular SPDEs and, thus, bring stochastic analysis

and PDE methods into the study. They were introduced by Parisi and Wu in Ref. 55. Given an action S(Φ), which is a functional of Φ, one
considers a gradient flow of S(Φ) perturbed by space-time white noise ξ,

∂tΦ = −δS(Φ)
δΦ

+ ξ. (2.1)

Here, δS(Φ)

δΦ is the variational derivative of the functional S(Φ); for instance, when S(Φ) = 1
2 ∫ (∇Φ)2dx is the Dirichlet form, δS(Φ)

δΦ = −ΔΦ
and (2.1) boils down to the stochastic heat equation,

∂tΦ = ΔΦ + ξ.

Note thatΦ can also be multi-component fields, with ξ being the likewise multi-component. Another example is the “dynamicalΦ4 equation,”

∂tΦ = ΔΦ − λΦ3 + ξ, (2.2)

and it arises from the gradient of ∫ 1
2 ∣∇Φ∣2 + λ

4Φ
4 dx, which is model (1.1) with m = 0, N = 1.

The significance of these “stochastic quantization equations” (2.1) is that given an action S(Φ), the formal measure that defines an
Euclidean quantum field theory

1
Z

e−S (Φ)DΦ (2.3)

is formally an invariant measure56 for Eq. (2.1). Here, DΦ is the formal Lebesgue measure and Z is a “normalization constant.” We emphasize
that (2.3) are only formal measures because, among several other reasons, there is no “Lebesgue measure” DΦ on an infinite-dimensional
space, and it is a priori not clear at all if the measure can be normalized. The task of constructive quantum field theory is to give precise
meaning or constructions to these formal measures. This area of study has yielded numerous deep results, which we do not mean to give a
full list of literature; we only refer to the book.57,58

Regarding the well-posedness of (2.2), in two dimensions, two classical works are Ref. 59 where martingale solutions are constructed and
Ref. 60 where local strong solutions are obtained, as well as the more recent approach to global well-posedness in Ref. 61. In three dimension,
the local strong solution is obtained as an application of regularity structures62 and, then,63 as an application of paracontrolled analysis.
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Given the very recent progress of SPDE, a new approach to construct the measure of the form (2.3) is to construct the long-time solution
to the stochastic PDE (2.1) and average the distribution of the solution over time. This approach has shown to be successful for the Φ4

model in d ⩽ 3 in a series of very recent studies, which starts with Ref. 64 on the 3D torus where a priori estimates were obtained to rule out
the possibility of finite time blow-up. Then, in Refs. 65 and 66, the authors established a priori estimates for solutions on the full space R3,
yielding the construction ofΦ4 quantum field theory on the whole R3 and verification of some key properties that this invariant measure must
satisfy as desired by physicists, such as reflection positivity. See also Ref. 67. Similar uniform a priori estimates are obtained by Ref. 68 using
the maximum principle.

Large N problems in the stochastic quantization formalism have also been discussed (on a heuristic level) in the physics literature, for
instance, Refs. 69 and 70 and Ref. 71, Sec. 8. The review on large N by Moshe and Zinn-Justin (Ref. 24, Sec. 5.1) is close to our setting; it
makes an “ansatz” that 1

N∑
N
j=1 Φ

2
j in the equation would self-average in the large N limit to a constant; our results justified this ansatz and in

the non-equilibrium setting generalize it.

III. MEAN FIELD LIMITS FOR COUPLED STOCHASTIC DYNAMICS
As we will see, the methods in the proofs of our main theorems borrow some ingredients from mean field limit theory (MFT). To the

best of our knowledge, the study of mean field problems originated from the work of McKean.72 Typically, a mean field problem is concerned
with a system of N particles interacting with each other, which is often modeled by a system of stochastic ordinary differential equations, for
instance, driven by independent Brownian motions. A prototype of such systems has the form dXi = 1

N∑j f (Xi, Xj)dt + dBi; see, for instance,
the classical reference by Sznitman [Ref. 73, Sec. I(1)], and in the N →∞ limit, one could obtain decoupled SDEs each interacting with the
law of itself: we will briefly review this calculation below.

In simple situations, the interaction f is assumed to be “nice,” for instance, globally Lipschitz;72 much of the literature aims to prove such
limits under more general assumptions on the interaction; see Ref. 73 for a survey.74

We note that mean field limits are studied under much broader frameworks or scopes of applications, such as the mean field limit in the
context of rough paths (e.g., Refs. 75–77), mean field games (e.g., survey78), and quantum dynamics (e.g., Ref. 79 and the references therein).
We do not intend to have a comprehensive list, but rather refer to survey articles80,81 and the book (Ref. 82, Chap. 8) in addition to Ref. 73.

The study of the mean field limit for SPDE systems also has precursors; see, for instance, the book (Ref. 83, Chap. 9) or Ref. 84. However,
these results make strong assumptions on the interactions of the SPDE systems, such as linear growth and globally Lipschitz drift, and certainly
do not cover the singular regime where renormalization is required as in our case.

Before we delve into the mean field limit for singular SPDE systems, we briefly review a very simple example regarding SDEs, which is
taken from the work of Sznitman [Ref. 73, Sec. I(1)]. We will see that some of the simple ideas will be reflected when we move on to the much
more technical SPDE setting. Consider

dXi =
1
N

N

∑
j=1

f (Xi, Xj)dt + dBi (i = 1, . . . , N),

where Bi (i = 1, . . . , N) are independent Brownian motions. One can show that as N →∞, the solution converges to that of (“McKean–Vlasov
limit”)

dX̄i = ∫
R

f (X̄i, y)ut(y)dydt + dBi (i = 1, . . . , N), (3.1)

where ut = Law(X̄i(t)). Note that this is a decoupled system now. To prove the above result, we subtract the two systems and get

∂t(Xi − X̄i) =
1
N

N

∑
j=1

f (Xi, Xj) − ∫
R

f (X̄i, y)ut(y)dy

− 1
N

N

∑
j=1

f (X̄i, Xj) + 1
N

N

∑
j=1

f (X̄i, Xj) − 1
N

N

∑
j=1

f (X̄i, X̄j) + 1
N

N

∑
j=1

f (X̄i, X̄j). (3.2)

Here, the terms in the second line are put “by hand” and they obviously sum to zero. We, then, compare the first and third terms on the RHS
and the fourth and fifth terms and the second and the last term; we show that the differences all vanish as N →∞. The most important case
is as follows:

E
⎛
⎝

1
N

N

∑
j=1

( f (X̄i, X̄j) − ∫
R

f (X̄i, y)ut(y)dy)
⎞
⎠

2

∼ 1/N. (3.3)

Note that the nontriviality here is that the left-hand side “appears to be” 1/N2 times two summations, which would be O(1) as N →∞, but
actually, we have a decay of 1/N. To show this, note that f (X̄i, X̄j) − ∫R f (X̄i, y)ut(y)dy is mean-zero, so for j1 ≠ j2,

E[( f (X̄i, X̄j1) − ∫
R

f (X̄i, y)ut(y)dy)( f (X̄i, X̄j2) − ∫
R

f (X̄i, y)ut(y)dy)] = 0 (3.4)

since X̄j1 and X̄j2 are independent.
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To bound the other terms on the RHS of (3.2), we need some assumptions on f , for instance, we assume that f is globally Lipschitz.
Then, we can easily bound the other terms on the RHS of (3.2) by ∣Xj − X̄j∣. Upon taking expectation and by symmetry of law, these are just
E∣Xi − X̄i∣. We could, then, apply Gronwall’s lemma to show that Esupt∈[0,T]∣Xi(t) − X̄i(t)∣ ∼ 1/

√
N.

The key to the above argument is the decay in (3.3), which relies on the mechanism demonstrated in (3.4) for L2 products of independent
and mean-zero random variables. One also needs some way to “move” other terms from the RHS to the LHS using Gronwall’s lemma or
some other methods. We will see that the estimates in singular SPDEs will be much more complicated, but these basic mechanisms will still
be present. For instance, our Theorem 5.1 can be viewed as a result of this flavor, in an SPDE setting, and in fact, the starting point of our
proof is, indeed, close in spirit to Ref. 73, Sec. I(1) where one subtracts Xi from Y i to cancel the noise and, then, bound a suitable norm of the
difference.

IV. DA PRATO–DEBUSSCHE AND MOURRAT–WEBER ARGUMENTS FOR DYNAMICAL Φ4
2

Before discussing large N problems, we first briefly review the solution theory for the stochastic quantization of Φ4 on T2, i.e., the case
N = 1. For simplicity, here and in Secs.. V–VII, we set λ = 1. Equation (2.2) is only formal in d = 2 since Φ is expected to be distributional. To
give a meaning to it, one should regularize and insert renormalization terms (also often called “counter-terms” in the context of quantum field
theory85). Namely, we take a sequence of mollified noises ξε → ξ (for instance, convolving ξ with smooth functions χε, which approximate
Dirac distribution as ε→ 0) and consider the mollified equation,

∂tΦε = ΔΦε − (Φ3
ε − CεΦε) + ξε, (4.1)

where Cε diverges as ε→ 0 at a suitable rate, with some initial condition Φε(0) = ϕ.86 If the sequence of constants Cε is suitably chosen, the
sequence of smooth solutions Φε of (4.1) will converge to a nontrivial limit Φ = limε→0 Φε.

A. Renormalization
The following argument is originally given by Da Prato and Debussche.60 Write L = ∂t − Δ, and let Zε be the stationary solution to the

mollified linear stochastic heat equation LZε = ξε. The key observation is that the most singular part of Φ is Z, so if we decompose

Φε = Zε + Yε, (4.2)

we can expect the remainder Yε to converge in a space of better regularity. Substituting (4.2) into (4.1) yields

(4.3)

Here, we have defined

We will choose Cε = E[Z2
ε (0, 0)], and the reason will be clear below. Equation (4.3) now looks more promising since noise ξε (whose limit

is rough) has dropped out. This manipulation has not solved the problem of multiplying distributions since the limit of Zε is still a distribution,
which is why we need renormalization when define its powers. However, Zε is a rather concrete object since it is Gaussian distributed. This
makes it possible to study the renormalization and convergence of Z2

ε and Z3
ε via probabilistic methods. For example, consider the expectation

E[Zε(t, x)2] = ∫ P(t − s, x − y)P(t − r, x − z)χ(2)
ε (s − r, y − z) dsdydrdz, (4.4)

where χ(2)
ε is the convolution of the mollifier χε with itself and P is the heat kernel. Due to the singularity of the heat kernel P at the origin, this

integral diverges like O(log ε) as ε→ 0 in two spatial dimensions. The constant Cε defined above simply subtracts this divergent mean from
Z2
ε and similarly for the other term Z3

ε . This amounts to considering the renormalized Φ4 equation [Eq. (4.1)].
It can be shown that Zε, , and do converge to nontrivial limits in probability as space-time distributions of regularity C−κ for any

κ > 0.87 In fact, thanks to Gaussianity of Zε, given a smooth test function f , one can explicitly compute any probabilistic moment of ( f )
and prove its convergence. By choosing f from a suitable set of wavelets or Fourier basis, one can apply a version of Kolmogorov’s theorem
to prove that Zε, , and converge in C−κ. We denote these limits by Z, , and .

B. Fixed point argument
Passing (4.3) to the limit, we get

(4.5)
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We can prove the local well-posedness of this equation as a classical PDE by a standard fixed point argument. For this, we use a classical result
in harmonic analysis under the name “Young’s theorem” (e.g., Ref. 62, Proposition 4.14 and Ref. 88, Theorems 2.47 and 2.52), which states
that if f ∈ C α, g ∈ C β, and α + β > 0, then f ⋅ g ∈ C min(α,β). Thus, if we assume that Y ∈ C β for β ∈ (0, 2), then the worst term in the parentheses
in (4.5) has regularity −κ. By the classical Schauder estimate, which states that the heat kernel improves regularity by 2, the fixed point map

(4.6)

is well defined on Cβ since C−κ+2 ⊂ Cβ. With a bit of extra effort, one can show that over short time interval, the fixed point map is contractive
and, thus, has a fixed point in Cβ, which is the solution. To conclude, one has Φ = Z + Y , which is the local solution to the renormalized
Φ4 equation on T2; the above renormalization is well known as “Wick renormalization,” and a commonly used notation is to write the
equation as

∂tΦ = ΔΦ− : Φ3 : +ξ. (4.7)

C. A priori estimate
The global (long-time) bound is first established by Mourrat and Weber.61 The start point is a PDE energy estimate—here, it will be an

Lp estimate for Y . Namely, we multiply (4.5) by Yp−1 and integrate over space,

(4.8)

where ⟨, ⟩ denotes the L2 product. Note that the second term on the LHS arises from ΔY and the third term on the LHS arises from −Y3 in
(4.5) (this negative sign is crucial since it yields a positive quantity on the LHS).

One, then, needs to control the terms on the RHS. We demonstrate the basic idea with the first term, namely, −⟨Yp−1, 3ZY2⟩. Standard
Besov space inequalities allow us to show that

∣⟨Yp−1, ZY2⟩∣ = ∣⟨Yp+1, Z⟩∣ ≲ ∥Yp+1∥Bα1,1
∥Z∥B−α∞,∞.

Recall that Z ∈ C−κ (which is essentially the same as the Besov space B−κ
∞,∞), so ∥Z∥B−α∞,∞ is well bounded.

One, then, has the following interpolation inequality:

∥Yp+1∥Bα1,1
≲ ∥Yp+1∥1−α

L1 ∥∇(Yp+1)∥αL1.

We would like to use Young’s inequality to write the product on the RHS into a sum and, then, “absorb” them by the second and third terms
on the LHS of (4.8). To this end, some manipulation is needed,

∥Yp∇Y∥αL1 ≲ ∥(Y
p−2

2 ∇Y)
2
∥
α
2
L1∥Yp+2∥

α
2
L1 ,

∥Yp+1∥1−α
L1 ≲ ∥Yp+2∥

p+1
p+2 (1−α)

L1 .

Now, we see that the terms on the LHS of (4.8) show up here. By Young’s inequality ab ⩽ aq1 + bq2 with a proper choice of q1, q2 such that
q−1

1 + q−1
2 = 1, we can, then, bound ∣⟨Yp−1, ZY2⟩∣ by (say) 1

10 times the second and third terms on the LHS of (4.8) plus a finite constant. The
other terms on the RHS of (4.8) are bounded in the same way. Putting these bounds together, one obtains global control on the Lp norm.

We emphasize that an energy identity of the form (4.8) followed by various bounds will be the start-point of our analysis below in the
large N problems.

V. MEAN FIELD LIMIT OF DYNAMICAL LINEAR σ-MODEL IN 2D
In this section, we consider the N-vector generalization of (4.7), which is the stochastic quantization of the linear σ-model in 2D,

LΦi = − 1
N

N

∑
j=1

: Φ2
j Φi : +ξi, Φi(0) = ϕi. (5.1)

Note that the solution Φi depends on N, but we omit this dependence in our notation. The solution theory in Refs. 60 and 61 explained in
Sec. IV corresponds to the case N = 1. For a fixed N, these well-posedness results are easy to generalize to the present setting. Our primary
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goal in this section is to explain a priori bounds, which are stable with respect to N, and we will, then, send N to infinity to obtain the following
mean field limit:

LΨi = − : E[Ψ2
i ]Ψi : +ξi, Ψi(0) = ψi. (5.2)

The precise meaning of this equation will be given in (5.3) and (5.10).
This equation is reminiscent of the mean field limit SDE (3.1) discussed in Sec. III in the sense that the equation is self-consistently

defined, which involves the law of the solution (here, it depends on the second moment of Ψi). On the formal level, this equation arises
naturally: assuming that the initial conditions {ϕi}N

i=1 are exchangeable,89 the components {Φi}N
i=1 will have identical laws so that replacing

the empirical average 1
N∑

N
j=1 Φ

2
j by its mean and re-labeling Φ as Ψ lead us to (5.2).

In two space dimensions, (5.2) is a singular SPDE where the ill-defined non-linearity also requires a renormalization. As far as we know,
this is the first example of singular “McKean–Vlasov SPDE,” which requires renormalization.

The above result is precisely given in the next theorem.

Theorem 5.1 (large N limit of the dynamics for d = 2). Let {(ϕN
i ,ψi)}N

i=1 be random initial datum in C−κ for some small κ > 0 and all
moments finite. Assume that for each i ∈ N, ϕN

i converges to ψi in Lp(Ω; C−κ) for all p > 1, 1
N∑

N
i=1∥ϕN

i − ψi∥p
C−κ converges in probability to 0,

and (ψi)i are iid.
Then, for each component i and all T > 0, the solution Φi to (5.1) converges in probability to Ψi in C([0, T], C−1(T2)) as N →∞, where

Ψi is the unique solution to the mean-field SPDE formally described by

LΨi = −E[Ψ2
i − Z̃2

i ]Ψi + ξi, Ψi(0) = ψi, (5.3)

and Z̃i is the stationary solution to LZ̃i = ξi. Furthermore, if (ϕN
i ,ψi)N

i=1 are exchangeable, then for each t > 0, it holds that

lim
N→∞

E∥Φi(t) −Ψi(t)∥2
L2(T2) = 0. (5.4)

Note that (5.3) is still “formal,” i.e., its meaning needs interpretation; see (5.10). We could actually prove this convergence result under
more general conditions for initial data (see Ref. 90, Sec. 4).

Remark 5.2. In one space dimension, the model does not need any renormalization, so the result is much simpler to understand. Consider
the equation on R+ × T,

LΦi = − 1
N

N

∑
j=1
Φ2

j Φi + ξi, Φi(0) = ϕi, (5.5)

with L = ∂t − Δ + m for m ⩾ 0, 1 ⩽ i ⩽ N. We assume that E∥ϕi∥2
L2 ≲ 1 uniformly in i, N. In d = 1, we can show that the limiting equation as

N →∞ is given by
LΨi = −μΨi + ξi, with μ(t, x) = E[Ψi(t, x)2]. (5.6)

Namely, 1
N∑

N
j=1 Φ

2
j in the equation self-average in the large N limit to its mean. See Ref. 90 of the supplementary material.

A. Uniformity in N bounds
Following the trick of Da-Prato and Debussche discussed in Sec. IV, we consider the decomposition Φi = Zi + Y i, where Zi is a solution

to the linear SPDE,
LZi = ξi, Zi(0) = zi, (5.7)

and Y i solves the remainder equation,

LYi = − 1
N

N

∑
j=1

(Y2
j Yi + Y2

j Zi + 2YjYiZj + 2Yj : ZiZj : + : Z2
j : Yi+ : ZiZ2

j :) (5.8)

with some initial condition Y i(0) = yi. Here, we assume that the initial datum satisfies E∥zi∥p
C−κ ≲ 1 for κ > 0 small enough and every p > 1,

and E∥yi∥2
L2 ≲ 1, uniformly in i, N. (5.8) has similar structure as (4.3): it has on the RHS terms cubic in Y and in Z and cross-terms between Y

and Z.
The notations : ZiZj :, : Z2

j :, and : ZiZ2
j : denote the Wick products. It is easier to explain the Wick products for Z̃i, which is the stationary

solution to LZ̃i = ξi. As in Sec. IV A and using the independence of (Z̃i)N
i=1, we should define

: Z̃iZ̃j :=
⎧⎪⎪⎪⎨⎪⎪⎪⎩

lim
ε→0

(Z̃2
i,ε − aε) (i = j),

lim
ε→0

Z̃i,εZ̃j,ε (i ≠ j),
: Z̃iZ̃2

j :=
⎧⎪⎪⎪⎨⎪⎪⎪⎩

lim
ε→0

(Z̃3
i,ε − 3aεZ̃i,ε) (i = j),

lim
ε→0

(Z̃i,εZ̃2
j,ε − aεZ̃i,ε) (i ≠ j),

(5.9)

J. Math. Phys. 63, 081103 (2022); doi: 10.1063/5.0089851 63, 081103-8

Published under an exclusive license by AIP Publishing

D
ow

nloaded from
 http://pubs.aip.org/aip/jm

p/article-pdf/doi/10.1063/5.0089851/16562498/081103_1_online.pdf



Journal of
Mathematical Physics REVIEW scitation.org/journal/jmp

where aε = E[Z̃2
i,ε(0, 0)] is a divergent constant independent of i (in fact, it is equal to Cε in Sec. IV A). As in Sec. V, the above limits exist in

C−κ for κ > 0. The Wick products : ZiZj :, : Z2
j :, and : ZiZ2

j : are just suitable modifications by additional terms involving the initial condition
z of Z (also subtracting the same aε; see Ref. 90, Sec. 2.1 for details).

A key step in Proof of Theorem 5.1 is a new uniformity in N bounds through suitable energy estimates on the remainder equation
[Eq. (5.8)]. This is inspired by the approach of a priori bounds in Ref. 61 discussed in Sec. IV C, but subtleties arise as we track carefully the
dependence of the bounds on N. Indeed, the approach to obtain global in time bounds for N = 1 is to exploit the damping effect from the
term −Y3 in (4.5), which corresponds to the term −Y2

j Yi. However, the extra factor 1/N makes this effect weaker as N becomes large. In fact,
the moral is that we cannot exploit the strong damping effect at the level of a fixed component Y i; rather, we are forced to consider aggregate
quantities, and ultimately, we focus on the empirical average of the L2-norm (squared) instead of the Lp-norm for arbitrary p, as in Sec. IV.
We skip the details in this expository note and jump into the discussion on the mean-field equation and the proof of convergence.

B. The mean-field SPDE
We now discuss a bit more the solution theory for the mean-field SPDE (5.3). While the notion of solution we use is again via the Da-

Prato/Debussche trick, the well-posedness theory requires more care than that for Φ4
2 discussed in Sec. IV since here the equation depends

on its own law and we cannot proceed by pathwise arguments alone. Again, we understand (5.3) via the decomposition Ψi = Zi + Xi with Xi
satisfying

LXi = −(E[X2
j ]Xi + E[X2

j ]Zi + 2E[XjZj]Xi + 2E[XjZj]Zi) + (⋅ ⋅ ⋅ ). (5.10)

This follows by a bit algebra, noting that Z2
i and Z̃2

i in (5.3) “basically” cancel, except that the latter one is stationary, while the former one is
not—this is the term (⋅ ⋅ ⋅) that we omit in the following discussion. What is more important is that here we actually introduced an independent
copy (Xj, Zj) of (Xi, Zi) inside E, which turns out to be useful for both the local and global well-posedness of (5.3). Indeed, one point is that
the term E[XjZj]Zi in (5.10) cannot be understood in a classical sense; however, we can view it as a conditional expectation E[XjZjZi∣Zi] and
use properties of the Wick product ZiZj [such as in (5.9)] to give a meaning to this. In fact, after taking expectation, E[X2

j ]Xi in (5.10) also
plays the role of the damping mechanism, which helps us to obtain uniform bounds on the mean-squared L2-norm of Xi.

Assume the corresponding decomposition for initial datum ψi = zi + ηi. We denote L2
TL2 = L2([0, T], L2). We have the following.

Lemma 5.3. There exists a universal constant C such that

sup
t∈[0,T]

E∥Xi∥2
L2 + E∥∇Xi∥2

L2
T L2 + ∥EX2

i ∥2
L2

T L2 + mE∥Xi∥2
L2

T L2 ⩽ C∫
T

0
Rdt + E∥ηi∥2

L2. (5.11)

Here, R contains terms that only depend on renormalized powers of Z and are well bounded. It has the following explicit form where
i ≠ j and s > 0 is a sufficiently small parameter:

R def= 1 + (E∥Zi∥2
C−s)

2
1−s + E∥ : Z2

j Zi : ∥2
C−s + C(E∥ : ZjZi : ∥2

C−s)2 + C(E∥ : Z2
i : ∥C−s)4

.

Recall in Sec. IV that the start point of the global estimate is an energy identity (4.8). The proof of Lemma 5.3 is again the same as in
Sec. IV based on an energy identity,

1
2

d
dt

E∥Xi∥2
L2 + E∥∇Xi∥2

L2 + ∥EX2
i ∥2

L2 + mE∥Xi∥2
L2 = I1 + I2 + I3, (5.12)

where
I1 def= E⟨Xi, : ZiZ2

j :⟩, I2 def= E⟨X2
i , : Z2

j :⟩ + 2E⟨XiXj, ZiZj⟩, I3 def= 3E⟨X2
i Xj, Zj⟩. (5.13)

We, then, proceed by bounding I1,2,3 by 1
10(E∥∇Xi∥2

L2 + ∥EX2
i ∥2

L2) plus terms that only depend on Z (which eventually constitute R). We refer
to Ref. 90, Sec. 3.2 for these details.

C. Proof of convergence
We now explain the basic ideas in the Proof of Theorem 5.1. Recall that Φi = Y i + Zi and Ψi = Xi + Zi, and we define (in the same spirit

as we did in Sec. III)
vi

def= Yi − Xi.

Now, we have the following energy identity:

1
2

d
dt

N

∑
i=1

∥vi∥2
L2 +

N

∑
i=1

∥∇vi∥2
L2 + m

N

∑
i=1

∥vi∥2
L2 + 1

N

N

∑
i,j=1

∥Yjvi∥2
L2 + 1

N

XXXXXXXXXXX

N

∑
j=1

Xjvj

XXXXXXXXXXX

2

L2

=
3

∑
k=1

IN
k , (5.14)
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where

IN
1

def= − 1
N

N

∑
i,j=1

(2⟨vivj, : ZjZi :⟩ + ⟨v2
i , : Z2

j : +2⟨v2
i Yj, Zj⟩),

IN
2

def= − 1
N

N

∑
i,j=1

⟨vivj, (XiYj + (3Xj + Yj)Zi)⟩,

IN
3

def= − 1
N

N

∑
i,j=1

⟨[: Z2
j : −E : Z2

j : + Xj(Xj + 2Zj) − EXj(Xj + 2Zj)](Xi + Zi), vi⟩. (5.15)

In the definition of IN
3 , to have a compact formula, we slightly abuse the notation for the contribution of the diagonal part i = j, where we

understand ZiZj to be : Z2
i : and : Z2

j : Zi to be : Z3
i :. The above could be viewed as a much more complicated version of (4.8).

Next, we bound IN
1,2,3 one by one. This requires substantial calculations, but we illustrate a key point with IN

3 in the following. Define

Gj
def= (X2

j − EX2
j ) + 2(XjZj − EXjZj) + (: Z2

j : −E : Z2
j :) def= G(1)

j + G(2)
j + G(3)

j .

It is not very hard [see Ref. 90, (4.18)] to prove the following bound for s > 0 small:

IN
3 ⩽ C(R̄N + R̄′

N) + 1
8

1
N

∥
N

∑
i=1

Xivi∥
2

L2

+ 1
4

N

∑
i=1

∥vi∥2
H1

+ C(
N

∑
i=1

∥vi∥2
L2)[RZ

N + 1 + 1
N

N

∑
i=1

(∥Xi∥4/(1−2s)
L4 + ∥ΛsXi∥4

L4)], (5.16)

with Λ = (1 − Δ) 1
2 and

R̄N
def= 1

N

XXXXXXXXXXX

N

∑
j=1

G(1)
j

XXXXXXXXXXX

2

Hs

+ ∑
k∈{2,3}

1
N

XXXXXXXXXXX

N

∑
j=1

G(k)
j

XXXXXXXXXXX

2

H−s

, R̄′
N

def= ∑
k∈{2,3}

1
N2

N

∑
i=1

∥
N

∑
j=1

G(k)
j Zi∥2

H−s ,

RZ
N

def= ( 1
N

N

∑
i=1

∥Λ−sZi∥2
L∞)

1
1−s

.

A key point is that G(k)
j are centered. In addition, components of X are independent, and so are components of Z. Therefore, although the

terms in R̄N , R̄′
N appear to be “order O(N),” we can actually show that upon taking expectation that they are bounded uniformly in N.

Essentially, this boils down to the following fact: for mean-zero independent random variables U1, . . . , UN taking values in a Hilbert space H,
we have (“gaining a factor 1/N”)

E∥
N

∑
i=1

Ui∥
2

H

= E
N

∑
i=1

∥Ui∥2
H. (5.17)

This is ultimately similar to the mechanism (3.4) in Sec. III for the ODE case. After considerably technical estimates, we can show that
supt∈[0,T]∥vi(t)∥2

L2 → 0 in probability, as N →∞, and Theorem 5.1 holds (see Ref. 90, Sec. 4 for details).

VI. CONVERGENCE OF (WICK RENORMALIZED) LINEAR σ-MODEL TO GAUSSIAN FREE FIELD IN 2D
In this section, we are only interested in the stationary setting, and we simply write Z for the stationary solution to the linear equation

LZ = ξ.
We now study the invariant measure for the mean field Eq. (5.3), namely,

LΨ = −E[Ψ2 − Z2]Ψ + ξ, (6.1)

with E[Ψ2 − Z2] = E[X2] + 2E[XZ] for X = Ψ − Z. The remainder X satisfies

LX = −E[X2 + 2XZ](X + Z), X(0) = Ψ(0) − Z(0). (6.2)

An immediate observation is that Z is a stationary solution to (6.1). This follows since the unique solution to (6.2) starting from zero is
identically zero [or one could simply set Ψ = Z in (6.1)]. Since the (massive) Gaussian free field N (0, 1

2(−Δ + m)−1) is invariant measure for
the Z equation, we see that Gaussian free field is an invariant measure for (6.1).

J. Math. Phys. 63, 081103 (2022); doi: 10.1063/5.0089851 63, 081103-10

Published under an exclusive license by AIP Publishing

D
ow

nloaded from
 http://pubs.aip.org/aip/jm

p/article-pdf/doi/10.1063/5.0089851/16562498/081103_1_online.pdf



Journal of
Mathematical Physics REVIEW scitation.org/journal/jmp

A. Uniqueness of invariant measure for mean-field equation
Below, we use a semigroup P∗

t ν to denote the law of Ψ(t) with the initial condition distributed according to a measure ν. A natural
question is whether (6.1) has a unique invariant measure. Since the equation involves its own law, it is unclear if the general ergodic theory
can be applied directly in this setting. Fortunately, it has a strong damping property in the mean-square sense, which comes to our rescue and
allows us to proceed directly by a priori estimates.

Remark 6.1. If we assume that E[Ψ2 − Z2] =: μ is simply a constant, then uniqueness is a simple calculation. Note that the lim-
iting equation LΨ = −μΨ + ξ has a Gaussian invariant measure N (0, 1

2(−Δ + m + μ)−1). Assuming Ψ ∼ N (0, 1
2(−Δ + m + μ)−1) and

Z ∼ N (0, 1
2(−Δ + m)−1), the self-consistent condition E[Ψ2 − Z2] = μ then yields

1
2 ∑k∈Z2

( 1
∣k∣2 + m + μ

− 1
∣k∣2 + m

) = μ.

For μ + m ⩾ 0, we only have one solution μ = 0 since the LHS is monotonically decreasing in μ.
If d = 1 as in Remark 5.2 and μ is a constant, then it is the unique solution to 1

2∑k∈Z
1

k2+m+μ = μ.

More precisely, from the basic energy identity (5.12), we can prove that (Ref. 90, Lemma 5.3)

1
2

d
dt

E∥Xi∥2
L2 + 1

2
E∥∇Xi∥2

L2 + mE∥Xi∥2
L2 + ∥EX2

i ∥2
L2 ≲ 1. (6.3)

As a consequence, noting that ∥EX2
i ∥2

L2 ⩾ (E∥Xi∥2
L2)2

, it is not hard to deduce

sup
t>0

(t ∧ 1)E[∥Xi(t)∥2
L2] ≲ 1, (6.4)

where the implicit constant is independent of the initial data. On the other hand, from (5.12), one can also prove

d
dt

E∥Xi∥2
L2 + mE∥Xi∥2

L2 ⩽ C0(E∥ : Z2Z1 : ∥2
C−s + (E∥Z1∥2

C−s)
1

1−s + 1)E∥Xi∥2
L2 =: m0E∥Xi∥2

L2. (6.5)

Applying Gronwall’s inequality over [1, t] leads to

e(m−
m0
2 )tE∥Xi(t)∥2

L2 ≲ E∥Xi(1)∥2
L2 ,

so if m is sufficiently large, i.e., m ⩾ m0, using (6.4) and taking the supremum over t ⩾ 1, we see that Ψ approaches Z in the L2 sense
exponentially fast,

sup
t⩾1

e
mt
2 E∥Ψ(t) − Z(t)∥2

L2 ⩽ C. (6.6)

From this bound, we can easily deduce that for sufficiently large mass, the unique invariant measure to (6.1) is Gaussian. To this end, define
the C−1-Wasserstein distance,

W′
p(ν1, ν2) ∶= inf

π∈C(ν1 ,ν2)

(∫ ∥ϕ − ψ∥p
C−1π(dϕ, dψ))

1/p
, (6.7)

where C(ν1, ν2) denotes the collection of all couplings of ν1, ν2 satisfying ∫ ∥ϕ∥p
C−1νi(dϕ) < ∞.

Theorem 6.2. For sufficiently large m, the unique invariant measure to (6.1) supported on C−κ is N (0, 1
2(−Δ + m)−1), the law of the

Gaussian free field.

B. Large N limit of the linear σ-model in 2D
The solutions (Φi)1⩽i⩽N to (5.1) form a Markov process on (C−κ)N , which admits a unique invariant measure, henceforth denoted by

νN . Denote by νN,i the marginal law of the ith component and νN
k by the marginal law of the first k components. Our goal in this section is

to study the large N behavior of νN and show that for sufficiently large mass, as N →∞, its marginals are simply products of the Gaussian
invariant measure for Ψ identified in Theorem 6.2. For this, we rely heavily on the estimates for the remainder Y . It will be convenient to have
a stationary coupling of the linear dynamic LZi = ξi and the nonlinear dynamic (5.1), respectively, namely, there exists a stationary process
(ΦN

i , Zi)1⩽i⩽N such that the components ΦN
i , Zi are stationary solutions to (5.1) and LZi = ξi, respectively.
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Write W2 for the C−κ-Wasserstein distance, which is defined as in (6.7) with C−1 replaced by C−κ and p replaced by 2.

Theorem 6.3. Let ν = N (0, 1
2(m − Δ)−1) be the Gaussian free field with covariance 1

2(m − Δ)−1. For sufficiently large m, one has

W2(νN,i, ν) ⩽ CN− 1
2 . (6.8)

Furthermore, νN
k converges to ν × ⋅ ⋅ ⋅ × ν as N →∞.

The stationarity of the joint law of (Φi, Zi) implies that Y i = Φi − Zi is also stationary. The key step to prove Theorem 6.3 is to show

E∥YN
i ∥2

H1 ⩽ CN−1, (6.9)

which implies (6.8) by the definition of the Wasserstein metric and the embedding H1 ↪ C−κ in d = 2. By symmetry of law,

E∥YN
i ∥2

H1 = 1
N

N

∑
j=1

E∥∇Yj∥2
L2 + 1

N

N

∑
j=1

E∥Yj∥2
L2.

Now, again, using the energy identity for Y i, combined with the stationarity of (Yj)j and (Zj)j, we find

1
N

N

∑
j=1

E∥∇Yj∥2
L2 + m

N

N

∑
j=1

E∥Yj∥2
L2 + 1

N2 E∥
N

∑
i=1

Y2
i ∥

2

L2

⩽ C
N

ER0
N + E

⎛
⎝

1
N

N

∑
j=1

∥Yj∥2
L2 ⋅ DN

⎞
⎠

for certainly quantities R0
N and DN , which only depend on Zj, : ZiZj :, : Z2

j :, and : ZiZ2
j :. For instance,

R0
N = 1

N2

N

∑
i=1

XXXXXXXXXXX

N

∑
j=1

∇−s(: Z2
j Zi :)

XXXXXXXXXXX

2

L2

. (6.10)

To show the decay (6.9), we note that R0
N apparently behaves as O(N) as N becomes large (three sums vs N−2). However, it turns out that

ER0
N ∼ O(1). This is because ∇−s(: Z2

j Zi :) is centered (mean-zero), and they are independent for different values of j—a phenomena already
hinted in (3.3).

Unfortunately, DN needs to be treated differently since it is not centered. Setting A def= EDN , we may re-center DN above,

1
N

N

∑
j=1

E∥∇Yj(t)∥2
L2 + (m − A) 1

N

N

∑
j=1

E∥Yj(t)∥2
L2 + 1

N2 E∥
N

∑
i=1

Y2
i (t)∥

2

L2

⩽ C
1
N

ER0
N + 1

2
1

N2 E
⎛
⎝

N

∑
j=1

∥Yj∥2
L2
⎞
⎠

2

+ E∣DN − A∣2. (6.11)

The explicit form of DN is rather complicated, so we do not give it here, but just as what we did for ER0
N , we can use centering and independence

to show that
E∣DN(t) − A∣2 ⩽ C

N
. (6.12)

These bounds, then, yield (6.9), provided that m ⩾ A + 1 so that the second term on the LHS is positive. This is where we need to assume m
large in this proof. (Remark that if we did not set λ = 1, then assuming λ > 0 small rather than m large, our argument will also work.)

VII. EXACT CORRELATION FORMULAS FOR SOME O(N) INVARIANT OBSERVABLES
Now, we discuss observables in the stationary setting. In QFT models with continuous symmetries, physically interesting quantities

involve not only more than just a component of the field itself but also quantities composed of the fields, which preserve the symmetries,
called invariant observables. For a linear σ model, a natural quantity that is invariant under O(N)-rotation is the “length” of Φ; another being
the quartic interaction in (1.1). We, thus, consider the following two O(N) invariant observables, where Φ is distributed as νN :

1√
N

N

∑
i=1

: Φ2
i :,

1
N

: (
N

∑
i=1
Φ2

i )
2

: . (7.1)
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We establish the large N tightness of these observables as random fields in suitable Besov spaces by using the iteration to derive improved
uniform estimates in the stationary case. Note that the author of Ref. 29 considered correlations of these observables. Our SPDE approach
allows us to study these observables as random fields with precise regularity as N →∞, which is new.

Theorem 7.1. For m large enough, the following result holds for any κ > 0:

● 1√
N∑

N
i=1 : Φ2

i : is tight in B−2κ
2,2 , and 1

N : (∑N
i=1 Φ

2
i )2 : is tight in B−3κ

1,1 .
● The Fourier transform of the two point correlation function of 1√

N∑
N
i=1 : Φ2

i : in the limit as N →∞ is given by the explicit formula

2Ĉ2/(1 + 2Ĉ2), where C = 1
2(m − Δ)−1 and Ĉ is the Fourier transform. Moreover,

lim
N→∞

E
1
N

: (
N

∑
i=1
Φ2

i )
2

:= −4∑
k∈Z2

Ĉ2(k)2/(1 + 2Ĉ2(k)). (7.2)

The exact expectation formula (7.2) above was also derived in Ref. 29, Theorem 3. In our theorem above, we also showed that the limiting
observables can be viewed as random fields in suitable Besov spaces.

This shows that although (for large enough m) the invariant measure of Φi converges as N →∞ to the Gaussian free field, the limits of
observables (7.1) have different laws than those if Φi in (7.1) were replaced by Zi,

1√
N

N

∑
i=1

: Z2
i :,

1
N

: (
N

∑
i=1

Z2
i )

2

: . (7.3)

A simple application of the Wick theorem shows that the two-point correlation of the first observable is 2C2 and the expectation of the second
one is 0. We remark that expanding 1/(1 + 2Ĉ2) into geometric series, we, indeed, get the sum of “bubble diagrams” in (1.2), as predicted by
perturbation theory in physics.

The tightness part of Theorem 7.1 requires establishing upper bounds on the Besov norms of the observables. However, upper bounds
obtained from PDE estimates are clearly not enough to prove exact correlation formulas in the second part of the theorem. We now focus
on the second part of the theorem since it is more interesting, and we only consider the first observable below, and we denote its two point
correlation function by GN .

A. Dyson–Schwinger equations
First, we need an algebraic step, which proves the following identity:

(1 + 2(N + 2)
N

Ĉ2)ĜN = 2Ĉ2 + Q̂N/N, (7.4)

where

QN(x − z) = −∫ C(x − y)C(x − z)E
⎛
⎝

: Φi∑
j
Φ2

j (y) : Φi(z)
⎞
⎠

dy + 6 pt correlation, (7.5)

where we have omitted the explicit form of the extra terms, but they are essentially some six-point correlations of Φ. The proof of (7.4)
relies on the iterative application of the Dyson–Schwinger equation. Write Φ2 def= ∑N

i=1 Φ
2
i . The Dyson–Schwinger equation is a hierarchy of

equations, which relate correlation functions of different orders. For instance, we have

∫ C(x − z)E[Φ1(x) : Φ1Φ2(z) : : Φ2(y) :]dz

= −E[: Φ2(x) : : Φ2(y) :] + 2NC(x − y)E[Φ1(x)Φ1(y)],

which relate two-point, four-point, and six-point correlations. In addition,

1
N ∫ C(x − z1)C(x − z2)E[: Φ1Φ2(z1) : : Φ1Φ2(z2) : : Φ2(y) :]dz1dz2

= −2∫ C(x − y)C(x − z)E[: Φ1Φ2(z) : Φ1(y)] dz

+ N + 2
N ∫ C(x − z)2E[: Φ2(y) : : Φ2(z) :]dz

− ∫ C(x − z)E[Φ1(x) : Φ1Φ2(z) : : Φ2(y) :]dz,
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which relate four-point, six-point, and eight-point correlations. Since Φ is distributional, the rigorous meaning of these equations should be
given via a suitable approximation. We refer to this approximation and the derivation of these equations to Ref. 90, Appendix C.

B. Iterative PDE arguments
We, then, use the PDE estimate to obtain the following lemma. This combined together with the above identity (7.4), then, yields the

formula in Theorem 7.1.

Lemma 7.2. Q̂N/N → 0 as N →∞.

The lemma is, of course, not obvious at all since there is a sum in (7.5). One needs to gain some factors of 1/N.
To explain the proof of this lemma, we only focus on the first term on the RHS of (7.5). Again, we decompose Φi = Zi + Y i. We have

E
⎛
⎝

: Zi∑
j

Z2
j (y) : Zi(z)

⎞
⎠
= 0,

so it remains to bound the other terms involving Y . In fact, via Holder inequality and other manipulations, it boils down to proving bounds
of the following type:

E(∑
i
∥Yi∥2

L2)
p

< C, E∥Yi∥p
Lp < N

p
2 .

We roughly discuss the proof for the first bound, and the second one is similar. Let F = 1
N ∥∑N

i=1Y2
i ∥2

L2 and U = ∑N
i=1∥Y2

i ∥2
L2 . Similarly, as how

we got (6.11), we can prove that
E[Uq−1F] + (m − A)E[Uq] ⩽ C + CN−1/2(EUq+1)q/(q+1). (7.6)

Here, A is a constant, which plays a similar role as in (6.11). The strategy now is to first use the dissipative quantity on the LHS to obtain
E(Uq) ⩽ CN

q−1
2 and then use the massive term on the LHS to iteratively decrease the power of N and eventually arrive at E(Uq) ⩽ C.

Indeed, first, observe that F ⩾ N–1U2 so that E(Uq−1F) ⩾ N−1E(Uq+1). Hence, Young’s inequality with exponents (q + 1, q+1
q ) leads to

E(Uq) ⩽ CN
q−1

2 .
Discarding the dissipative term, using (7.6) again, we have

EUq ≲ (EUq+1)
q

q+1 N−1/2 + 1 ≲ N
q2

2(q+1)− 1
2 + 1. (7.7)

We can, then, iterate this procedure and eventually bring down the power of N to 0. See Ref. 90, Sec. 6 for details.

VIII. CONVERGES OF (RENORMALIZED) LINEAR σ-MODEL TO GAUSSIAN FREE FIELD IN 3D
As we explained in Sec. II, the analysis in three space dimensions is significantly harder. Hairer’s theory of regularity structures produces

the first construction of the local solution of dynamical Φ4
3. Our discussion below is, then, much motivated by the SPDE construction of Φ4

3
quantum field theory by Gubinelli and Hofmanova66 based on paracontrolled distributions.

We first recall some basics of paracontrolled distributions. In general, as mentioned in Sec. IV B, the product fg of two distributions
f ∈ Cα, g ∈ Cβ is well defined if and only if α + β > 0. In terms of Littlewood–Paley blocks, the product fg of two distributions f and g can be
formally decomposed as

f g = f ≺ g + f ○ g + f ≻ g,

with91

f ≺ g = g ≻ f = ∑
j⩾−1

∑
i<j−1

Δi fΔjg, f ○ g = ∑
∣i−j∣⩽1

Δi fΔjg.

We also denote ≽ def= ≻ +○ and ≼ def= ≺ +○. We write for some constant L > 0

U>
def= ∑

j>L
Δj, U⩽

def= ∑
j⩽L
Δj. (8.1)

In Ref. 92, we considered the linear σ-model on a three-dimensional torus, which is defined as a measure νN given by the limit of the
following measures on the discrete torus T3

ε :

1
Z

exp
⎛
⎜
⎝

−∫
T3
ε

N

∑
j=1

∣∇εΦj∣2 + (m − N + 2
N

λaε + 3(N + 2)
N2 λ2b̃ε)

N

∑
j=1
Φ2

j + λ
2N

⎛
⎝

N

∑
j=1
Φ2

j
⎞
⎠

2

dx
⎞
⎟
⎠
DΦ
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as lattice spacing ε→ 0. Here, aε and b̃ε are renormalization constants given below.93 We showed that for sufficiently large m or small λ, as
N →∞, its k-component marginals converge to products of the Gaussian free field measure. The basic philosophy is similar as in Sec. VI, but
the analysis in 3D case is much more complicated than its counterpart in 2D.

We start with the renormalized stochastic dynamics. Let ξi,ε be a mollification of the space-time white noise ξi on R × T3. The
corresponding SPDE is given by

LΦi,ε + λ
N

N

∑
j=1
Φ2

j,εΦi,ε + (− N + 2
N

λaε + 3(N + 2)
N2 λ2b̃ε)Φi,ε = ξi,ε. (8.2)

Let Zi and Zi,ε be i.i.d. mean zero Gaussian processes, which are stationary solutions to

LZi = ξi, LZi,ε = ξi,ε. (8.3)

We, then, proceed in a kind of similar manner as in the previous sections, namely, write Φ as a sum of (explicit, stochastic) leading order
terms plus a remainder, establish an energy identity for this remainder, bound various terms in this identity, and finally apply these bounds
to prove the Gaussian free field limit.

A. Stochastic leading terms
As in the study of Φ4

3, we first introduce the “leading order perturbative terms,” but now, these terms come with “indices on noises.”
First, we have the Wick powers,

(8.4)

where aε = E[Z2
i,ε(0, 0)]. Note that these are basically the same as in (5.9) except that the second definition here still depends on ε (i.e., no

“lim”), and in 3D, the constant diverges as aε ∼ 1/ε. Here, we could think of the subscripts as indices assigned to the noises in the trees in the
“handwriting” order. The limit for is in CTC−1−κ for κ > 0 and T > 0.

Let be the stationary solution to , i.e.,

Set where the limit is in CTC
1
2 −κ. To define the “next order perturbative terms,” let D

def= m − Δ and define

Here, c1 equals 1
2 if i = k ≠ j = ℓ or i = ℓ ≠ j = k, equals 1 if i = k = j = ℓ, and is 0 otherwise, and c2 equals 1 if j = k ≠ i, equals 3 if j = k = i, and

equals 0 otherwise. In addition, and are renormalization constants and ∣bε − b̃ε∣ ≲
t−γ for any γ > 0 uniformly in ε. We denote collectively as

(8.5)

Then, we can prove that each of these objects converges in probability as ε→ 0 in CTCατ , where for each tree τ, ατ = (− 5
2 − κ)#noises

+ 2#edges. For example, for τ = , ατ = −1 − 2κ.
Before decomposing Φ, an important idea in Ref. 66 is to introduce one more auxiliary object Xi defined via the following equation:

(8.6)
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B. Decomposition
With the stochastic objects at hand, we have the following decompositions:

Φi = Zi + Xi + Yi,

with Y i satisfying the following equation:94

(8.7)

Here, the first line in (8.7) is the expansion of (Yj + Xj)2(Yi + Xi + Zi); the terms containing and correspond to the remaining terms
in the paraproduct expansion of 2(Y j + Xj)ZjZi and (Yi + Xi)Z2

j , respectively.
Recall that D = m − Δ, and we define

(8.8)

where in the last step we defined Pi. We can, then, prove the following energy identity.

Lemma 8.1. Energy balance is given by

1
2

N

∑
i=1

d
dt

∥Yi∥2
L2 + m

N

∑
i=1

∥φi∥2
L2 +

N

∑
i=1

∥∇φi∥2
L2 + λ

N
∥

N

∑
i=1

Y2
i ∥

2

L2

= Θ + Ξ.

Here,

and

It is straightforward to derive the above energy identity, at least formally. In this derivation, however, new renormalization would appear
to be necessary when we take the inner product, but in the end, they cancel each other. See Ref. 92 for details.

The next step, similarly as in the 2D case, is to prove the uniformity in N estimates based on Lemma 8.1.
The main results are Theorems 8.2 and 8.3. The key step to prove these theorems is to obtain the following bound:

∫
T

0
(Θ + Ξ)dt ⩽ δ

⎛
⎝

N

∑
j=1

∥∇φj∥2
L2

T L2 +
N

∑
j=1

∥Yj∥2
L2

T H1−2κ + λ
N

∥
N

∑
i=1

Y2
i ∥

2

L2
T L2

⎞
⎠

+ Cδλ(1 + λ55)∫
T

0
(

N

∑
i=1

∥Yi∥2
L2)(R1

N + R2
N + Q3

N)ds + λ(1 + λ)Q4
N

(8.9)
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for a small constant δ > 0 with certain quantities R1
N , R2

N , Q3
N , Q4

N , which only depend on the “perturbative objects” (8.5) and X in (8.6). The
main technical step is, then, to show the following.

Theorem 8.2. There exists a constant C > 0 independent of N, λ, and m ⩾ 1 such that

⎛
⎝

N

∑
j=1

∥Yj(T)∥2
L2
⎞
⎠

+ 1
2

N

∑
j=1

∥∇φj∥2
L2

T L2 + m
N

∑
j=1

∥Yj∥2
L2

T L2 + 1
8

N

∑
j=1

∥Yj∥2
L2

T H1−2κ + λ
N

∥
N

∑
i=1

Y2
i ∥

2

L2
T L2

⩽
⎛
⎝

N

∑
j=1

∥Yj(0)∥2
L2
⎞
⎠

+ λ(1 + λ)Q4
N +

N

∑
j=1

∥Yj∥2
L2

T L2 + Cλ(1 + λ55)∫
T

0
(

N

∑
i=1

∥Yi∥2
L2)(R1

N + R2
N + Q3

N)ds.

Furthermore, by using the dissipation effect from the term 1
N ∥∑N

i=1Y2
i ∥2

L2
T L2 , the empirical averages of the L2 norms of Y i can be controlled

pathwise in terms of a Z dependent quantity Q(Z) with finite moment, as stated in the following theorem.

Theorem 8.3. There exists Q(Z) with EQ(Z) ⩽ C independent of N such that

sup
t∈[0,T]

1
N

N

∑
j=1

∥Yj(t)∥2
L2 + m

N

N

∑
j=1

∥Yj∥2
L2

T L2 + 1
2N

N

∑
j=1

∥∇φj∥2
L2

T L2

+ 1
8N

N

∑
j=1

∥Yj∥2
L2

T H1−2κ + λ
2N2 ∥

N

∑
i=1

Y2
i ∥

2

L2
T L2

⩽ Q(Z) + 2
N

N

∑
i=1

∥Yi(0)∥2
L2.

The above bounds are inputs of the proof of convergence of measures, which we discuss below.

C. Convergence of measures
The proof of convergence of the renormalized linear sigma model in 3D to the Gaussian free field is based on the similar idea as in the

2D case, Sec. VI. However, there are several new technical issues in 3D, which we now explain.
Recall that in 3D, we have a new decomposition

Φi = Zi + Xi + Yi,

where Xi solves (8.6) and Y i solves (8.7). Similarly, as in Sec. VI, we consider a stationary process (Φi, Zi)1⩽i⩽N such that the components Φi
are the limiting solution to (8.2) and Zi is the stationary solution to LZi = ξi. Similarly, as in (6.9), the convergence of measures eventually
boils down to proving

E∥Φ̃i(0) − Zi(0)∥2
H

1
2 −2κ =

1
t ∫

t

0
E∥Φ̃i(s) − Zi(s)∥2

H
1
2 −2κds

⩽ 2
t ∫

t

0
E∥Xi(s)∥2

H
1
2 −2κds + 2

t ∫
t

0
E∥Yi(s)∥2

H
1
2 −2κds

?
⩽CN−1.

(8.10)

For the term with X, it turns out that we have
N

∑
i=1

∥Xi∥2
L2

T H
1
2 −2κ ≲ λ2Q0

N , (8.11)

where Q0
N only involves the “perturbative objects,”

and we have E∣Q0
N ∣q ≲ 1 for every q ⩾ 1 uniformly in N. The nontriviality of (8.11) is that the left-hand side appears to be O(N), but the

right-hand side is of order O(1), despite the fact that Q0
N appears to be “three sums times 1/N2.” Thus, we essentially gain a factor of 1/N.

(8.11) immediately gives
1
t ∫

t

0
E∥Xi(s)∥2

H
1
2 −2κds = 1

tN∫
t

0
E

N

∑
i=1

∥Xi(s)∥2
H

1
2 −2κds ≲ 1

tN
EQ0

N ≲ Ct

tN
, (8.12)

so we get the desired estimate for the first term in (8.10).
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The proof of (8.11) is based on a priori estimates on the PDE (8.6). We only demonstrate why the expectation of Q0
N is bounded uniformly

in N. We have for s = 1
2 − 2κ,

We have three summation indices and a factor 1/N2. However, if i, j1, j2 are all different by independence and the fact that Wick products are
mean zero, the terms are zero. [Note that this comes from the same idea as (6.10) in the 2D case.]

We remark that the same mechanism also applies to higher order perturbative objects, such as (see Ref. 92, Lemma 3.4).
Next, we turn to the term with Y in (8.10). The start-point is similar to (6.11), but the analysis is more involved. From Theorem 8.2, we

can deduce a bound of the form

1
8∫

t

0
E(

N

∑
i=1

∥Yi(s)∥2
H1−2κ)ds + (m − 1)∫

t

0
E(

N

∑
i=1

∥Yi(s)∥2
L2)ds + λ

N
E∫

t

0
∥

N

∑
i=1

Y2
i ∥

2

L2

ds

⩽ 2NE∥Φ̃i(0) − Zi(0)∥2
L2 + 2

N

∑
i=1

E∥Xi(0)∥2
L2 + Ct + Cλ∫

t

0
E(

N

∑
i=1

∥Yi(s)∥2
L2)ERN ds

+ Cλ∫
t

0
E[(

N

∑
i=1

∥Yi(s)∥2
L2)∣RN − E[RN]∣]ds. (8.13)

Here, C is independent of λ, m, and N.
The quantity RN has a complicated expression, which we do not give here, but the only point that matters is that it is defined via the

perturbative objects in Sec. VIII A. Moreover, all the terms in RN − ERN are summations of terms of the form

1
N l

N

∑
i1 ⋅ ⋅ ⋅il=1

Mi1 ,...,il

for a certain choice of l, where each Mi1 ,...,il is mean-zero and has bounded second moment, and they satisfy a crucial independence condition:
Mi1 ,...,il and Mj1 ,...,jl are independent when the 2l indices i1, . . . , il, j1, . . . , jl are all different. For any such sum, one can prove that

E
⎡⎢⎢⎢⎢⎣

⎛
⎝

1
N l

N

∑
i1 ⋅ ⋅ ⋅il=1

Mi1 ,...,il

⎞
⎠

2⎤⎥⎥⎥⎥⎦
⩽ C/N,

where C only depends on l and is independent of N. From these estimates, we can eventually deduce (8.10); see Ref. 92, Sec. 5 for details.
We remark that we can also show the tightness of some observables in suitable Besov spaces in 3D; see Ref. 92, Theorem 1.2.

IX. DISCUSSIONS ON POSSIBLE FUTURE DIRECTIONS
We complete this Review by discussing some possible future problems.

(1) For the linear σ-model on a three-dimensional torus, we only studied stationary solutions and their large N limit in Ref. 92. It would
be interesting to generalize the mean field limit for the dynamics in 2D discussed in Sec. V to 3D.

(2) In 2D, besides the tightness of the two observables in (7.1), we also prove exact formulas for their correlations as N →∞ (Theorem 7.1);
it would be interesting to prove exact correlation formulas for other O(N)-invariant observables in the large N limit. In 3D, we only
obtained the tightness of observables 1√

N∑
N
i=1 : Φ2

i : as random fields when N becomes large in Ref. 92, so it would be interesting to
derive the exact correlation formulas for it in the large N limit.

(3) It would be interesting to obtain a 1/N expansion for correlations of the field or the observables and prove bounds on the remainder
of this 1/N expansion. In 2D, one might be able to incorporate the dual field approach discussed in Sec. I C as in the work of Kupi-
ainen (Ref. 29, Sec. 4) and, then, bound the remainder of this 1/N expansion using PDE estimates. In fact, for the usual perturbation
expansion for Φ4

2, we have already given new bounds on the remainder (which implies asymptoticity of the expansion) in Ref. 95.
(4) Could any results discussed in this Review be generalized to infinite volume?
(5) For fermionic models, could we make any prediction by physicists, e.g., Ref. 12, rigorous? Recently, the authors of Ref. 96 proposed a

rigorous framework for stochastic quantization of fermionic fields (at least on lattice), which might be a reasonable start-point.
(6) It would be interesting to study large N behavior of matrix-valued dynamics or develop estimates on the dynamics to deduce large N

results on matrix-valued QFT (e.g., Ref. 21), for instance, (1.1) with Φ being matrix valued, either on lattice or in continuum. Besides
vector and matrix models, tensor models and their large N problems were also proposed in physics.
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(7) Among the matrix models, Yang–Mills models are of great interest; see the recent progress on large N problems for lattice Yang–Mills
model in Refs. 47 and 48. In equilibrium, Wilson loop observables converge to the deterministic limit, i.e., master fields. It would be
interesting to use the dynamic to study such questions: in Ref. 97, the deterministic large N limit was shown using the dynamic, and it
would be interesting to study higher order 1/N corrections. Another possible question is to obtain a certain deterministic limit for the
dynamics as N →∞. Reference 54 is also an initial attempt where the master loop equation for finite N is derived using the stochastic
dynamic on lattice. On a two- and three-dimensional continuum torus, these dynamics are constructed for short time.98,99
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