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Sparsity-Aware Intelligent Spatiotemporal Data
Sensing for Energy Harvesting IoT System

Wen Zhang™', Mimi Xie

Abstract—In this era of the Internet of Things (IoT), the
increasing number of IoT devices benefit from energy harvest-
ing (EH) technology which enables a sustainable data acquisition
process, including data sensing, communication, and storing for
promoting the well beings of the society. However, intermit-
tent and low EH power confines the data acquisition process.
Specifically, due to frequent harvesting power outages and deple-
tion of energy for expensive data transmission to the IoT edge
server, insufficient energy is allocated for data sensing resulting in
the missing of key information. To address this issue, this article
proposes a sparsity-aware spatiotemporal data sensing frame-
work for EH IoT devices to minimize the data sensing rate/energy
while acquiring comprehensive information and reserving suffi-
cient energy. In this framework, the IoT devices sample critical
sparse spatiotemporal data, and then the sparse data are sent
to the edge server for reconstruction. To maximize the recon-
struction accuracy subject to the limited power supply and
intermittent work patterns of EH devices, we first propose the
QR-based algorithm QR-ST to initiate a sensing scheduling for
each EH device. Due to the unstable and intermittent work pat-
tern, the schedule needs to be dynamically fine-tuned based on
environmental inputs. Therefore, we further propose a multiagent
deep reinforcement learning-based method named S-Agents for
the IoT edge server to globally select the sensing devices at each
time slot, where the spatial and temporal features of recon-
structed data are guaranteed. Experimental results show that
the proposed framework reduced the reconstruction error by
66.30% compared with baselines.

Index Terms—Compressed sensing, energy harvesting (EH),
Internet of Things (IoT), reinforcement learning.

I. INTRODUCTION

N THIS era of Internet of Things (IoT), a plethora of

embedded devices are spatially deployed to continuously
retrieve data of interest in specific regions. However, due to
typically being powered by batteries, those embedded devices
are subjected to limited lifetime and high maintenance costs.
Energy harvesting (EH) technology that scavenges energy
from the ambient environment becomes a viable substitute
for the conventional battery by providing a sustainable power
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supply for embedded devices [1], [2]. Such upgrades can
enable perpetual low-power sensing for various next genera-
tions of IoT applications. However, the weak and intermittent
nature of EH power confines the performance of data sensing.
Specifically, to capture the important spatiotemporal features,
the EH devices at both specific locations and times need to
conduct data sensing. Yet, due to the harvesting power short-
age, a power outage may happen and the EH device will
miss sensing key spatiotemporal data. Moreover, due to the
expensive power consumption for communication, transmit-
ting sensed data to the edge server will deplete the harvested
energy rendering insufficient energy for sensing key spatiotem-
poral data [3], [4]. The situation will get worse when the
spatiotemporal data are with huge size such as 4-D spatiotem-
poral weather data [5]. Therefore, it is a grand challenge to
sense and transmit massive data with the EH IoT system.

To address this issue, we observed that most spatiotemporal
data are compressible and the key features can be captured
with sparsely sampling at both spatial and temporal domains.
In this background, by applying compressed sensing the-
ory [6], the aforementioned challenge of data sensing in the
EH IoT system can be naturally addressed by inferring the
missing data with the reconstruction values. To be more spe-
cific, temporally, for each EH IoT device, data sensing is only
needed at sporadic moments. Spatially, at each moment, only
a tiny subset of EH embedded devices are activated to obtain
the sparse data. Once these pieces of sparse data are sent to
the edge server, the whole map of observations can be recon-
structed. Consequently, not only the data absences caused by
the intermittent harvesting power can be compensated but also
enough energy can be reserved for communication.

Despite the advantages of compressed sensing, it is
extremely challenging to seek an optimal sensing activation
schedule for EH devices. On the one hand, if we activate too
many sensors frequently for improving reconstruction accu-
racy, the harvested energy is wasted for sensing redundant
data. On the other hand, if the sensed data are too sparse,
the reconstruction accuracy cannot be guaranteed. Therefore,
it is crucial to determine the optimal amount of spatiotem-
poral data. Based on the compressed sensing, this problem is
equivalent to searching the sparse measurement matrix through
an ly norm optimization, which is a complex NP problem.
However, for the heuristic solution, we can alternatively select
the sensing strategy on sensing time and locations. Yet such
optimization is a nonconvex problem that is still complex.

To address the aforementioned problem, this article lever-
ages multiagent deep reinforcement learning (DRL) for devel-
oping a sparsity-aware spatiotemporal data sensing framework
for EH systems. The sensing among spatially distributed EH
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devices can be formulated as the partially observable Markov
decision process (POMDP) and the complicated intermittent
feature of EH devices can be adapted by the strength of the
neural network. This framework aims to schedule sensing
operations for EH IoT devices in both spatial and temporal
domains. Our key idea includes two phases, the suggestion
phase and runtime phase. In the suggestion phase, motivated
by [7], we first generate an initial schedule for each device by
exploring the spatial and temporal features of historical data
with the proposed QR-ST algorithm. After that, in the runtime
phase, the developed DRL-based agent (S-Agents) deployed
on each device will take the suggested schedule and EH
status as inputs to determine the runtime sensing schedule
dynamically to withstand the weak and intermittent harvest-
ing power supply. To avoid stucking at local optimal, during
the training period, we train DRL agents distributively with
global rewards that reflect the reconstruction error. To precisely
measure the reconstruction error between the reconstructed
spatiotemporal data and the real spatiotemporal data, the mul-
tiresolution distance-based measurement is adopted. The main
contributions of this article are summarized as follows.

1) We propose a comprehensive spatiotemporal data sens-
ing framework for the EH IoT system, which consists
of the suggestion and the runtime phases.

2) To ensure a small DRL model size while considering
the limited computation capability of EH devices, we
propose QR-ST to find determined scheduling of data
sensing in the suggestion phase.

3) To distributively schedule sensing operations consider-
ing both spatial and temporal perspectives, we designed
a multiagent DRL-based method named S-Agents to
decide sensing operation dynamically subject to the
limited power supply.

To the best of our knowledge, this article is the first

work that proposes a sparsity-aware multiagent DRL-based
spatiotemporal data sensing framework for EH systems.

II. RELATED WORK

The existing works reconstruct data based on either only
temporal or only spatial features.

Temporal: In [8], ADMM is adopted for activation schedul-
ing of network sensors in periodical time to maximize the
reconstruction accuracy given the constraints on the available
number of activation time points for each device. Because we
are reconstructing the sparse data from a set of devices in the
network, the activated sensor can be scheduled to optimize
the local reconstruction data or to optimize the global recon-
struction through collaborative sensing. Jamali-Rad ef al. [9]
and Liu er al. [10] explored sensor selection in a distributed
and collaborative manner, respectively. Intuitively, the dis-
tributed strategies may get trapped into local optima. But
if we adopt the global strategies, while the network scale
is large, finding a global optimal schedule is difficult and
communication-intensive. Without the consideration of power
supply restrictions, most researches [8], [9], [10] are targeting
battery-powered devices. Calvo-Fullana et al. [11] investigated
the joint optimization of sensor selection and power alloca-
tion for the “EH” sensing system. In [11], the nonconvex
optimization problem is separated into a series of surrogate
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Fig. 1. Configuration of the (a) raw spatiotemporal data and (b) sparse data
through compressed sensing.

convex problems. Wang er al. [12] estimated the sparsity
order of high-dimensional signals, where an illustration appli-
cation is given by developing a two-step compressive spectrum
sensing algorithm for cognitive radios. Wang et al. [13]
also utilized the two-stage method to reduce the slow-time
dimension of the signal.

Spatial: Masazade et al. [14] investigated the target track-
ing problem with an extended Kalman filter, where only a few
sensors are activated and send their collected data to the data
center to save energy. Clark et al. [15] proposed a column-
pivoted QR decomposition to optimize the sensor selection
scheme for full-state data reconstruction. Without considera-
tion of cost constraints, Clark er al. [16] utilized the greedy
algorithm to optimize the sensor placement while applying
the sparsity-aware sensing to the facial recognition, climate
science, and fluid mechanics. Instead of using the traditional
universal basis in compressed sensing, Manohar et al. [7]
investigated the full-state data reconstruction while using the
tailored basis that is the eigenmodes extracted from the histor-
ical database. To explore EH-aware sparsity sensing, Calvo-
Fullana et al. [17] proposed a novel sensor selection scheme
for networks equipped with EH sensing devices. It mini-
mizes the reconstruction distortion while selecting reduced but
informative sensors.

Although great efforts have been devoted to sparsity-aware
sensing, no existing work has investigated reconstructing
the full-state data from both temporal and spatial features.
Different from the existing work, this article proposes sparsity-
aware spatiotemporal compressed sensing for EH IoT systems
based on the multiagent DRL-based method.

III. MOTIVATION OF SPATIOTEMPORAL SENSING

Fig. 1(a) visualizes an example of the raw spatiotemporal
data sensed by a 9 x 7 grid of devices at different lati-
tudes and longitudes, where different snapshots represent the
spatially distributed data at different time points. For each
snapshot, the cell in the grid indicates the data of one device.
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Fig. 2. Visualization of the sparsity-aware sensing (a) from temporal features
and (b) from spatial features.

The data at the same location in different snapshots repre-
sent temporal data of one device named trace. Therefore, the
spatiotemporal data are composed of a set of snapshots at con-
tinuous time points or a set of traces at spatially distributed
locations, as shown in Fig. 1(a). The snapshots capture the
spatial features at continuous time points and the traces cap-
ture the temporal features at spatially distributed locations.
Sparsity-aware sensing aims to select the activated sensors and
schedule the activation time to obtain the sparse data as shown
in Fig. 1(b) to capture the critical spatial and temporal features
for reconstructing Fig. 1(a) from Fig. 1(b) with the minimum
reconstruction error. Specifically, a gray cell indicates that the
corresponding device is inactivated, which results in that data’s
absence at a specific location and time point.

Spatiotemporal data have special properties since they con-
sist of not only the spatial features in snapshots but also the
temporal features in the traces. If we directly reconstruct the
traces for each device or reconstruct the snapshots at each
time point for the spatiotemporal data reconstruction, the spa-
tial or temporal features cannot be captured, respectively. This
problem is illustrated with the following two examples.

An example of data reconstruction from the trace is shown
in Fig. 2(a), where the device needs to figure out what time
the device should be activated to sense the sparse data of its
local trace so as to reconstruct the local trace data. In this sce-
nario, in order to maximize the trace reconstruction accuracy,
the devices mainly target on the points of time when data col-
lection has more contribution to reconstruction. Therefore, the
devices are actually finding the local optimal sensing scheduler
to collect the local temporal sparse data in a distributed manner
while not considering the sensing data of other devices. After
each device completes a reconstruction with maximum accu-
racy through temporal sparse data, it is highly possible that in
a set of specific time points, all sensors are inactivated such as
the time point 5 highlighted with a red dotted line in Fig. 2(a).
If this case is applied in spatiotemporal data reconstruction,
the spatial features of a snapshot at specific time points cannot
be guaranteed in the sense that no data are measured for these
snapshots, as indicated by the right square grid of Fig. 2(a).

An example of data reconstruction from the snapshot spatial
features is shown in Fig. 2(b), where the networked devices
mainly focus on which devices are activated for sensing at a
given time point in a collaborative manner. Because the spatial
data is location-related as shown in Fig. 2(b), a set of devices
at certain locations that have larger contributions to spatial data
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reconstruction are frequently activated to minimize the recon-
struction error, which results in the rare activation of certain
devices [e.g., the device located at the cell highlighted with
a dotted red square box in Fig. 2(b)]. Although each snap-
shot can be reconstructed with minimum error, the temporal
features of those devices that are never activated cannot be
captured, because those devices have never sensed any data,
as indicated in the right subfigure of Fig. 2(b).

Therefore, the sparsity-aware sensing of spatiotemporal data
requires consideration of not only the local sensing schedule
of each device for temporal data reconstruction from a long-
term perspective but also the selection of the activated devices
at each time point for global spatial data sensing.

IV. FUNDAMENTAL OF COMPRESSED SENSING

Compressed sensing is a well-known technology for effi-
cient data acquisition, which reconstructs the high-dimensional
original signal data from a small number of sparse data. Most
natural data, such as images or audio, can be written as a
sparse vector in a transform coordinate system, where only
a few coefficient parameters are active to record the large
mode amplitudes of signals. Those coefficients describe the
necessary features for accurate reconstruction. Mathematically,
given an original signal data as x € R” and a new coordinate
basis as W € R™", x can be identified as a sparse vector
s € R", given by (1). Specifically, ¥ is a transform basis such
as Fourier transform basis or wavelet basis

x = Us. )

In traditional compressed sensing application such as image
compression, the high-resolution data x is first obtained and
then the corresponding sparse vector s is computed. After
that, to alleviate the communication constraints, the transmitter
sends s to the receiver. The high resolution x can be obtained
by calculating (1) in receiver. Instead of measuring an original
full-state data x and then discarding most of its information
by calculating s to alleviate the constraints on communica-
tion resources, the sparsity-aware sampling directly measures
a subset of x, defined as ' y € R”,m << n. Assume the
measurement matrix is C € R™*" to identify the measure-
ment positions, the sparsity-aware sampling can be described
with (2). Once we compute s, we can reconstruct X by (1)

y = CWUs. 2)

While m < n, a set of s satisfies (2). Therefore, s is unde-
termined. To reduce the sampling cost, we aim to find the
sparsest s denoted as s*, which is given in

s* = argmin||s|lp, subject to: y = CWs 3)
S

where ||s||o is the /p norm of s. The /p norm optimization is
an NP problem; therefore, instead of optimizing the /p norm,
Donoho [18] proposed to solve /; while the random sampling
matrix CW satisfies the so-called restricted isometry property
(RIP) [6] conditions. In this case, we can also obtain the spar-
sity solution. Therefore, the /[y minimization is transformed to
the /; minimization problem as

s* = argmin|s||;, subject to: y = CWs. 4)
N
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From (2)-(4), if we know the measurement matrix, we
can figure out the sampling locations and time points from
both spatial and temporal perspectives. Following the sampling
locations and time points, we can sense y to reconstruct X.
However, due to the difficulties in computing RIP parameters,
it is hard to solve the exact measurement matrix CW.

V. SYSTEM MODEL
A. Scenario Description

Fig. 3 shows a three-layer edge system for spatiotempo-
ral data collection, which consists of three layers, including
the cloud center on the top layer, multiple edge servers in the
edge layer, and edge devices layer. In the bottom layer, the
edge devices harvest energy from the environment to provide
power supply for onboard data sensing, local computing, and
communication. The edge devices sense and transmit the data
to the edge server for preprocessing by the wireless link. In the
middle layer and top layer, both the edge servers and the cloud
center are powered by electricity. Also, the edge server is con-
nected to the cloud center through a wired link. Specifically,
in the middle layer, there is no communication among edge
servers because of the geographic limitations and the limited
transmission range.

This article considers a sparsity-aware edge data collection
scenario, where the EH devices sense data with a much smaller
measurement frequency than the typical full-state edge data
collection scenario. Given a constant time interval as v sec-
onds, per v seconds, each device decides if it will sense or
not for the current time interval. Due to the limited energy
and capability on computing, the EH devices transmit the
collected data to the corresponding edge server for recon-
struction. Because the edge servers lack the completed view
of the data from all edge devices, the edge servers can only
assist in reconstructing the local sparse data from the tempo-
ral dimension (local traces). To ensure the spatial features are
captured, the sparse data is backed up from all edge servers
to the cloud center, the cloud center will then reconstruct the
final spatiotemporal data for each time interval and calculate
the reconstruction errors.

B. Sensing System

In the bottom layer, the K EH devices are deployed with
the index set of X = {l,...,k,...,K}. The location of
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device k is notified with [laty, long]. The system periodic
operation time is slotted to 7 time slots labeled with 7 =
{1,...,t,...,T}. Therefore, the sensed data! of k are defined
as yr = [el11, ..o yle], .ol T1 ke K, t € T,yx € RT.
The spatiotemporal data for the whole system at the cloud
center are represented by Y = [y1, ¥2, ..., Yx]. In particular,
since the device senses sparse data, most elements in the Y
matrix are zeros.

C. Energy Model

The energy consumption of EH devices k consists of three
components, including sensing energy consumption, commu-
nication energy consumption for transmitting data to edge
servers, and computing energy consumption for S-Agent run-
ning to control the sensing. Thus, the total energy consumption
of k is given by

ptrans
Ejcost = E]s(ense psense 4 p}(rans 4 K hOmPY ksz 5)
Wk trans

where E}™*¢ is the energy consumption for k to sense one
bit data and b%"° represents the number of bits on sensing
data. Denote p;™", b"™", and wy,trans @s transmission power,
the number of transmission bits, and transmission rate, respec-
tively, where the transmission rate w can be retrieved by the
Shannon theory [19]. lckbc"mlf’“ckfk2 is the energy consumption
on computing b°°™P" bits data. xy is the hardware parameter
of k. c; and f; represent the needed number of CPU cycles
and the computing CPU frequency of k [20].

Given at ¢ the power intensity of k as pi,, the harvested
energy is equal to Ej harvest = f Dk.1dt. Therefore, the remain-
ing energy of k at t time slot is (6). Note that Ej rest[t] <
Ermax Yt €T has to be satisfied, where Ej max is the energy
capacity of k

Ek,rest[t] = Ek,rest[t - 1] + Ek,harvest[t] - Ek,cost[t]- (6)

VI. PROBLEM FORMULATION

In this section, we aim to minimize the errors in the spa-
tiotemporal data reconstruction subject to the limited power
supply and intermittent work pattern of EH devices in the
EH IoT system. To formulate the reconstruction minimization
problem, we first introduce the required notations. X =
[X1, X2, ..., Xg] is the reconstructed data matrix for the cor-
responding sparse data Y. L is the label data of X. It means
while devices sense with the regular frequency, the collected
data would be L (the real data). Therefore, this article aims to
minimize the distance between the reconstructed data X and
the real data Y. However, the spatiotemporal data is a new data
type. Using the Euclidean distance calculation cannot precisely
capture the similarity/difference of spatial and temporal fea-
tures between two spatiotemporal data scenarios proved by [5].
Therefore, instead of minimizing the Euclidean distance of X
and L, we employ the multiresolution distance [5], [21] to
measure the similarity/difference.

Vdenotes vector or matrix transpose operation.

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on May 19,2023 at 21:09:43 UTC from IEEE Xplore. Restrictions apply.



4496

A. Distance Measurement on Spatiotemporal Data

The multiresolution distance-based measurement is
developed in [5] for the difference/similarity measurement on
spatiotemporal scenario data, whose effectiveness is ensured
by [21] and [22]. It calculates the difference of two spa-
tiotemporal data in multiresolution, where the spatiotemporal
data are scanned and compared with a set of size varying
windows. Given L and X as the real and reconstructed
spatiotemporal scenario data consisting of a set of snapshots
at the continuous time points as Fig. 1(a) and (b) indicated.
Define G as the sensing area and gx € G as the cell located in
[latg, long]. ¢ € Dy, is the square spatial window centered
at g, with size w and ®,, is the set of spatial windows with
size w in the space G. ¢, € Pj is the temporal window
starting from the instant ¢ with size & and & is the set of
temporal windows with size % in the time space 7. Therefore,
while the size of spatiotemporal moving window is w and
h, the distance of two scenarios dx .. 1s given by the
following:

dXLwh= Y, >

Dk wEPw Prn€Ph

2 2

82€Pk.w €Dt

1
— AXL, @)
[Pk, wllPr,n]| Pl

xz[q]

T 2 2

Ao wToh
LW 82EPk,w 4€ED1h

L.[q]

kz,wfq,h

(®)

AxL =

where |- | is the cardinality of the corresponding set. A;,, and
74,1 are the contribution factors to eliminate the border effect
on the distance calculation. The cells or time points at the
boundary are counted less than those at the center area. The
distance of X and L is given by (9) that is the weighted sum
of dx L.w» obtained at different spatiotemporal window size

hmax Wmax

Syt
Dxi=3 Yt O)
h=1 w=1 h=1 Zow=1 wth

where Wmpax and hpax are the maximum spatial and temporal
window sizes, respectively. §,, and o are weighting factors
that control the contributions of different spatial and temporal
resolutions to the distance calculation.

B. Optimization Goal

For the EH IoT system, each device k senses spatiotemporal
data in area G with the given power intensity py ;. Let a; be
the vector that represents if the device k performs sensing or
not at each time slot. The scheduler of device & is defined as

a[1]

ar= | alt] |ke K, teT,a, €{0,1}. (10)
ax[T]

Our objective is to seek the device scheduler A =
[a1, ap, ..., ag] that minimizes the reconstruction error on the
spatiotemporal data Dx 1. Mathematically

argmin Dxp,
A

subject to Ek,rest >0

Ek,rest < Ek,max .
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VII. ALGORITHM DESIGN
A. Architecture of Spatiotemporal Data Sensing

To address the challenge of limited computing, communi-
cation, and storage resources of EH devices, sparsity-aware
spatiotemporal data sensing in EH IoT system is developed
that address the conflicts of high demand on high-dimensional
data, the limited capability of EH devices, and limited lifetime
of battery-powered devices. The framework of sparsity-aware
spatiotemporal data sensing for the EH IoT system is shown
in Fig. 4, which is composed of two phases, including
the suggestion phase and the runtime phase.

In the suggestion phase, motivated by [7], we propose the
QR-ST algorithm, which adopts QR pivot factorization [7],
[16], [23] as foundation to find the global sensor selection
from the Spatial features of the historical snapshots at each
time point. Meanwhile, we also conduct the local sensing
scheduling from the Temporal features of the historical data
traces for each device. There are suggestions from both spatial
and temporal perspectives. When either global sensor selection
or local scheduling requests the sensor to perform sensing, the
final suggestion that is input into S-Agent is “Yes.” Recall that
the spatiotemporal data consist of either a set of the snapshots
at different time points (spatial features) or a set of data traces
from different devices (temporal features), whose examples are
described in Section IIT and Fig. 1. Specifically, with more
and more data stored in the historical database, we can update
the coherent spatial and temporal modes (Wsp1 and Wyp) per
Ty time with new historical data. Correspondingly, the deter-
mining schedules are updated for each Ty time periodically.
The mathematical explanation of Wy and Wy is elaborated
in Section VII-B.

Given the historical spatiotemporal data, the spatial modes
of snapshots and the temporal modes of data traces are deter-
mined. Therefore, the sensor selections and local schedules
calculated by the QR-ST algorithm are fixed. However, with-
out consideration of the variation in the complicated EH
environment, the fixed sensing operations are not environment
adaptive and might lead to poor reconstruction performance.
For example, the selected sensors cannot perform the sens-
ing task as expected caused by that the selected sensors are
sleeping due to the weak harvesting power, which leads to the
necessary reconstruction data being missing. To dynamically
fine-tune the scheduling of sparsity-aware sensing, we further
develop the DRL-based method for the EH IoT system.

In the training/runtime phase, with the determined global
sensor selection and local schedule as the suggestions, the
developed DRL-based agent named S-Agent is deployed on
each device to dynamically control the sensing operation at
each time point subject to the limited power supply of EH
devices. After that, the sensed sparse data are transmitted to the
corresponding edge server and backed up at the cloud center.
Once all edge servers complete data back-up, the cloud center
utilizing the transform basis Wgp[f] reconstructs the snapshot
at the current time point. The spatiotemporal reconstruction
error is broadcasted to all edge servers. It is worth noting that,
in the training stage, we have the historical full-state real data
to calculate the reconstruction errors. However, in the runtime
stage, if we perform sparsity-aware sensing all the time, we do
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Fig. 4. Framework of sparsity-aware spatiotemporal compressed data sensing in the EH IoT system.
not have the full-state real data to calculate the reconstruction  Algorithm 1: QR-ST
errors. Consequently, we cannot evaluate the performance dur- Input: LiVieZ={1,2,....1},rs, 11, T, K; /+ LiThe

ing runtime. Therefore, during runtime, the full-state data are
collected and uploaded periodically for the trained model val-
idation and updating. In particular, to train S-Agent and fully
utilize the computation resource at the edge, the experiences
of S-Agent are uploaded to the corresponding edge server for
learning at the off-peak time.

B. Design on the Suggestion Phase: QR-ST

The compressed sensing technology is widely used to
recover the data of unknown content with random measure-
ment on a universal basis W. When the data type information
is accessible such that we are measuring the soil humility or
the data is a solar power intensity, the main features can be
extracted from the historical data of representative cases to a
tailored basis. Therefore, the proposed QR-ST algorithm uti-
lizes QR pivot factorization to find the fixed global sensor
selection and local sensing scheduling by extracting Spatial
modes (Wgp) and Temporal modes (W) of historical spa-
tiotemporal data. From the spatial dimension, we can extract
the spatial features from the historical snapshots collected at a
certain time point ¢ that indicate the coherent spatial modes of
the snapshots at the ¢ time points (line 4 in Algorithm 1).
Thereby, the global sensor selection at each time point is
determined based on the spatial modes of historical snapshots,
where we can activate sensors that have more contributions to
the snapshot information (line 5 in Algorithm 1). Similarly, by

historical spatiotemporal data =/
Output: Wy,[1], Vt € T, Vit k> VK € I, B* T*,
// From Spatial dimension
fort < I to T do
Retrieve L[] from L, Vi € Z;
\Ifspl[t], S,V =svd(L[t]); /+ SVD and qr are the
existing packages in MATLAB or Python =x/
5 Q. R, E[1]* = gr(Wey(:, 1 : 15));
6 end
7 // From Temporal dimension
8
9

W N -

for k < 1 to K do
Retrieve Ly from Li, VieT,
10 \Ijtpl,kv S,V =svd(Ly);
11 Q.R, FZ =qr(Wy(, 1: ));
12 end
13 return (W [t]), (Wyp k), (E[*), (TF)

analyzing the temporal features and the temporal modes for the
historical data traces of each device k (line 10 in Algorithm 1),
we can obtain the determined local schedule for each device
k (line 11 in Algorithm 1).

Global Sensor Selection From Spatial Modes: Proper
orthogonal decomposition (POD) is a typical method used for
dimension reduction, which proposes to represent the high-
dimensional data as linear combinations of a small number
of orthonormal eigenmodes. Singular value decomposition
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(SVD) proposed in [24] is an efficient algorithm to retrieve
the dominant modes from data. Define the flatted snapshots
as [ = [L[e], ... . Llf], ..., k[ N[ e RE 1€ T Vke K.
Let I;[¢] be the ith snapshot of ¢ time point in the historical
snapshots database, so the matrix of historical snapshots at ¢
time point is L[¢] = [li[7], [7], ..., 1;[z]]. Then, the eigen-
modes of L[7] denoted as Wsp[7] can be the orthonormal left
singular vectors, which are obtained efficiently by SVD and
implemented in most computing software packages (line 4
in Algorithm 1). Given the tailored basis as Wgp[t] € REx7s
as the orthonormal eigenmodes of snapshots at ¢ time point,
according to the compressed sensing technology (1), we have

(1)

where z;, € R’s, ry << K is the POD coefficients that is used
for representing 1[¢] in Wyp[¢] coordinator.

From spatial (global) perspective, we aim to select a portion
of sensors from K at time point z. When we only measure at the
selected sensors, we can recover 1[¢]. Mathematically, define the
set of selected sensors at ¢t as E[tf] = {&1, &, ..., &), E[f] €
K Vt e T. Therefore, we aim to reconstruct the snapshot 1[z]
from the sensed sparse data y[f] = [lg, s, ..., ng]/ . Define
the measurement matrix as C. Based on (11), we have

I[1] = Wepi[1]zs

ylt] = Cl[t] = C\pspl[t]zs (12)

where each row of C is the canonical basis vector for RX with
the unit entry index at £ column and zeros at all other entries.
Recall that x[f] denotes the reconstructed data of 1[¢]. Thus,
we can reconstruct I[¢] by (13)2

(CYultD) "yl & =1y

(CUI ], & > 1y )

xX[7] = Wpiltlzs, where z; = {
where k is the cardinality of E[f]. Because ry affects the struc-
ture of CWyp[t], only when « = ry, (C\I/Spl[t])’1 exists. Thus,
if &k > rg, we adopt the Moore—Penrose pseudoinverse.

Therefore, to capture more features in Wyp[f], the global
sensor selection optimizes E[f] (CWgp[f]) to maximize the
product of its eigenvalue as

argmax |detCW g, [7]].
2] VieT

(14)

Through the matrix QR factorization with column decompo-
sition (line 5 in Algorithm 1), r sensors locations are conducted
from the basis mode Wgy[7] by

v/, [1C = QR (15)

where Q, R, and C are a unitary matrix, an upper-triangular
matrix, and a column permutation matrix, respectively, that
are decomposed from matrix \Ilgp] [f]. Through the obtained
measurement matrix C, E can be retrieved. Repeat to compute
E[#] for each time slot, the determined global sensor selection
E* = {E[t]* Vr e T} for each time slot is calculated.

Local Sensing Scheduling From Temporal Modes: To cap-
ture the features in temporal dimension, we also train the
Wik € RT*"t a5 the orthonormal eigenmodes of the traces
at location k with the historical temporal traces Ly =
M, bk, ..., &l (dine 10 in Algorithm 1). Similarly, define

2% denotes the Moore—Penrose pseudoinverse.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 41, NO. 11, NOVEMBER 2022

Xy = [xe[11, x[2], ..., x[T1), k € K as the reconstructed
traces at k and l; being the real trace of k. By seeking the
optimal local schedule T't = {y1,y2,..., v}, Tk € T to
maximize (16) for each device k (line 11 in Algorithm 1),
we then can reconstruct x; Vk € K via (17)

I} = argmax |detCW,| (16)
|y VkelC
CUy) 'yi, ¢ =,
x; = Wipiz;, where z; = { EC‘PEPB*YZI{ g - r[ (17)
P ) I

Therefore, the determined local schedule of each device k,
' ={I'; Vk e K}, is calculated.

C. Design on the Run-Time Phase: S-Agents

As shown in Fig. 4, we deploy a unique DRL model
named S-Agent on each EH device to control the run-
time sensing operation. This article adopts deep-Q-network
(DQN) [25], [26] as underlying methods. We define si as
the environment states of device k at ¢ time slot. During the
learning period, based on the state s, the neural networks
of the S-Agent compute a control action ai,. Following
ak:, the device k executes the corresponding action that
leads to the environment transit to the next state sk yi.
Meanwhile, a feedback reward ry ;11 is returned to the agent
for the action evaluation. The agent aims to select action
ax; Yt € T to maximize the expected long-term reward
named g-value Q(s,a)”™ = E[R]|s; = s,a; = al, where
identifies the policy that maps the state to the action and
R =02,y "'rys1, v" € (0, 1]. y' is the factor to discount
future reward.

Learning: During the learning period, the S-Agent k has
two neural networks, including the target network and local
network parameterized by 6 and 6;. At each time slot, based
on the state sy, the local network 6; will output ai; to con-
trol the sensing operation. The target network will output the
corresponding “label” data simultaneously. The S-Agent col-
lects its own experiences experience = (S; ¢, @i, Fi,t+1, Si,t+1)
and uploads the experience set to the relay buffer on the edge
server at off-peak time. The minimum batch size experiences
is randomly sampled from the replay buffer to optimize the
local network and target network (line 31 in Algorithm 2).
To stabilize the optimization, the target network will be for-
bidden from updating weights for m interactions. After the m
interactions, the target network updates the weight by copying
weights from the local network (lines 34-36 in Algorithm 2).
The loss function of the local network is given by (18). To
avoid local minimum and learn from the environment, DRL
agents are expected to take more actions on exploration at
an early age. After getting familiar with the environment,
agents should exploit based on their experience. Thus, this
article adopts the decaying epsilon-greedy exploration pol-
icy [25] (line 13-23 in Algorithm 2). The algorithm details
are described in Algorithm 2. Specifically, all S-Agents have
the same architecture with different weights

2.

Sk,t,0k,t»
Tk,t+15Sk,t+1

L6k) = (ri,t+l + y max O(sk.r+1, ai,141: 0")

€Gi

2
— O(sk,r, anrs 9)) . (18)
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Algorithm 2: Learning Procedure for S-Agents

Input: max_episodes, m, n_node, > {y', €start, €end» decay_steps, 8} (for
learning and exploration)
{Ek,sense’(ks P}fansa wk,tmnsckﬂfkv Vk € K}

Output: optimized S-Agents 6y, Vk € KC

1 Initialize n_node local neural networks, 60y, Vk;

2 Initialize n_node target neural networks, 0,2 <~ 6k, Vk;

3 Initialize the corresponding replay buffer, Gy, Vk;

4 n_episode < 0;

5 Epsilons = 0.01 / np.logspace(-2, 0, decay_steps,False)-0.01;

6 Epsilons = Epsilons * (€ssart - €ond) + €starts

7 while n_episode < max_episodes do

8 Reset EH IoT system environment;

9

Stepr, < 0 Vk;
10 for r < 1 to T do
1 for k < 1 to n_node do
12 /I Update €
13 if 1 >= decay_steps then
14 | €= ¢enas
15 else
16 | € =Epsilons][t];
17 end
18 /I Epsilon-greedy exploration policy
19 if np.random.rand() > € then
20 aky = argmax Q(Sg s, g r);
Vay, 1€{0,1)
21 else
2 | ag,; = np.random.randint(len(Q (s, )));
23 end
24 if ar; == 1 and Ey ot > E}™°b*™¢ then
25 Perform sensing; /* apy €0, 1} ;a5 ==1
Sensing; Otherwise, Sleeping */
26 Calculate Ey .5 based on (6)
27 end
28 Environment transit to s ;41; Feedback 7 141
29 experiencey = (Sk,z, Qk, 1> Th,1+1- Sk,1+1);
30 Save experience to buffer Gy;
31 if |G| > mini_batchsize then
32 Randomly sample mini-batch of experiences;
33 Optimize 0 with sampled experiences;
34 if Stepy%m == 0 then
35 ‘ Update target network 011 from 6;
36 end
37 end
38 Stepy = Stepy + 1
39 end
40 end
41 n_episode = n_episode + 1
42 end

MDP Settings: In a view of the architecture indicated
in Fig. 4 and the discussions above, we define the distributed
S-Agents POMDP as follows.

1) sk € S: The state of environment is captured by
the tuple of {Ej rest, , @}, where Ej req is the current
onboard energy to indicate if the EH device has the
residual energy to perform sensing. The real time ¢ gives
the information to agent so as to select if sensing to cap-
ture the temporal features. Q € {0, 1} is the suggestion
from QR-ST.

2) ar; € A: The action ax, € {0, 1} that indicates if the
EH device performs sensing operation or not at ¢ time
slot. Note that in Section VI we describe ay ; as ai[t].

3) Psy(ar;) € P: Psy(ay) is the state transition probability
from state s into state s’ while taking action ay ;.

4) rr: € R: The reward function is defined as (19), which
reflects the global reconstruction errors before . Dx 1,
is calculated by (9), where X[f] = [x[1], x[2], ..., x[f]].
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TABLE I
PARAMETERS ON EH DEVICE AND DISTANCE MEASUREMENT

Notation Definition Value/Range
E;°"¢ Unit sensing energy le-5 J/bits
P Power of transmission 0.05w

fr CPU frequency 16MHz
hmax maximum window size 24

Wimaw maximum window size 24

Ow weighted factor e 0-8(w=1)
ap weighted factor e~ 0-8(w=1)
Bk maez Energy capacity 1J

Therefore, X[7] has a different size on snapshots at
different time slots. To ensure fairness, (19) is the recon-
struction errors divided by the number of snapshots.
Recall that the snapshot x[f] is reconstructed by (13)
and L[] is the real full-state spatiotemporal data

Tk.1+1 = min (O, log< (19)

o)
> t—o DXLt

VIII. EVALUATION

We developed a solar energy-powered IoT data collection
simulator to evaluate the S-Agents. The device power traces
are downloaded from [27].

A. Experiment Settings

EH IoT Sensing: We simulate 343-device EH IoT sensing
system by following the similar model architecture in Fig. 3,
where the devices begin operating from 8:00 A.M. to 18:00
P.M. to sense the luminosity data. The devices are expected to
transmit the collected data to the edge server per 5 min. For
the sensed data of devices, we adopt the real luminosity data
sensed by 343 devices in the United States in 2006 downloaded
from the database [28]. Overall, we have spatiotemporal data
about luminosity for 365 days. The spatiotemporal data for
each day consist of either 343 data traces or 156 snapshots.
We randomly select the luminosity traces on 150 days from
343 devices trained W, for 156 time slots and Wy for 343
devices. After that, the luminosity traces of 115 days are for
the S-Agent training. The leftover 100 days of data are used to
evaluate the reconstruction errors. Table I lists the parameters
used in our EH IoT device simulation [29] and multiresolution
distance measurement [21].

S-Agent: We train S-Agent 115 episodes, which matches
our EH IoT system simulation for 115 days. For POMDP, we
set discount factor y = 0.9 and the learning rate § = Se*.
The architecture of the target neural network model and local
neural network model are both 3-64-256-2. At the beginning
of each day, the environment will be reset, and all measured
parameters will be reinitialized. This is for a fair comparison
which prevents the system from being influenced by residual
effects such as remaining energy from the previous day.

Baselines: We compare our S-Agent algorithm with the fol-
lowing four benchmarks to show the influence of each phase
in our framework.

1) QR-ST baseline provides the determined sensing sched-

ule with QR pivot factorization based method; compared
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Fig. 6.  Average reconstruction errors of spatiotemporal data for 100 test
days.

with the proposed S-Agents, the QR-ST algorithm pro-
vides a fixed schedule without consideration for dynamic
fine-tuning of the sensing operation with DRL for the
environmental variation.

2) DQN baseline adopts the DQN algorithm to schedule
sensing; when compared with the proposed S-Agents,
the preliminary suggestion from QR-ST is not provided
in the DQN baseline.

3) CS baseline provides the sensing scheduling with S-
Agents that reconstructs data with a universal basis,
Fourier basis, where the S-Agents reconstruct data with
the tailored basis Wy and Wyp.

4) Q-table baseline provides the sensing scheduling with
the Q-table deployed on each device; This baseline aims
to explore if we can save more computing resources
by replacing the neural network with Q-table without
sacrificing the performance of sparsity-aware sensing.

B. Overall Performance

We first evaluate the overall performance with measured
average reconstruction error during the training period and test
sets. Fig. 5 indicates the reconstruction error versus 115 train-
ing days. In the training period, the S-Agent does not only
converges faster than the typical DQN but also achieves a
much lower reconstruction error. The only difference between
the S-Agent and the typical DQN is the S-Agent with the sug-
gestions from QR-ST and the DQN without that. Although
the distributed Q-table has the fastest convergent speed, its
reconstruction error is almost 3x that of the S-Agents.

Fig. 6 overviews the average spatiotemporal data reconstruc-
tion error for 100 test days with the multiresolution distance-
based measurement and Euclidean distance measurement. No
matter which measurement we adopt, the S-Agent achieves
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Fig. 7. Reconstructed snapshot at 10:00 by (a) S-Agent, (b) DQN, (c) QR-ST,
and (d) CS.

the best performance on the reconstruction error. With the
multiresolution distance-based measurement, the performance
for different algorithms is distinguished, where the S-Agent
decreases the reconstruction error to 6.78, reduced by 66.30%
compared with DQN which has the best performance among
the baselines. Although there is a much smaller difference
among algorithms under Euclidean distance measurement, the
S-Agent still outperforms all baselines.

C. Reconstruction Visualization

We randomly select the snapshots at 10:00 and 16:00 on one
day to visualize the reconstruction details of three baselines.
Since the reconstruction error completed by Q-table is obvi-
ously larger than other methods, we do not show it. Figs. 7
and 8 visualize the real data, the reconstructed data, and
the collected sparse data of snapshots at 10:00 and 16:00,
respectively. The green indicates the real data. The blue is
reconstructed by the red collected data that is sparse. Ideally,
the reconstructed data are expected to exactly coincide with the
real data. Meanwhile, the fewer data required to be collected,
the better is. Specifically, the luminosity value of the collected
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Fig. 8. Reconstructed snapshot at 16:00 by (a) S-Agent, (b) DQN, (c) QR-ST,
and (d) CS.

data at -1 indicates that the sensing at that device or time point
is skipped. For readability, we only indicate a portion of recon-
structed data and real data. The S-Agent can precisely capture
the spatial features both at 10:00 and 16:00. DQN completes
a better reconstruction at 10:00 compared with its reconstruc-
tion at 16:00. It is worth mentioning that at 16:00 QR-ST
almost achieves the same reconstruction as that of S-Agent
with the peak reconstruction performance among baselines.
However, it does not capture any features at 10:00. No device
collects data at 10:00 AM for QR-ST, which is the situation
analyzed in Fig. 2(a). Therefore, due to the unstable environ-
ment of the EH IoT system, a fixed sensing strategy, such as
QR-ST, cannot be adaptive with environmental variation. Due
to the randomness of compressed sensing, the reconstruction
in Figs. 7 and 8 is severely fluctuated.

Figs. 9 and 10 visualize the reconstruction from temporal
dimension. It indicates the real luminosity data, reconstructed
luminosity data, and collected luminosity data of two devices,
located at [25.75°N, 80.85°W] and [36.25°N, 102.95°W],
respectively. In Fig. 9, from 8:00 to 12:00, the number of
collected data of four algorithms is almost the same. The
S-Agents is the only one to successfully reconstruct the data
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Fig. 9. Reconstructed traces at [25.75°N, 80.85°W] by (a) S-Agent, (b) DON,
(c) QR-ST, and (d) CS.

at around 9:00. Moreover, from 16:00 to 18:00, although
S-Agents captures three real data that is more than the num-
ber of collected data by other baselines, the reconstruction
of S-Agents is merged better with the real data. In Fig. 10,
also only S-Agents completed the reconstruction from 16:00
to 18:00. Excepting the CS, the other three methods achieve
an outstanding reconstruction from 8:00 to 14:00, especially
for the S-Agents with a smaller number of data collection.

D. Energy Discussion

We further explore the device’s energy consumption
of Fig. 9. Fig. 11 indicates the runtime energy usage of Fig. 9
given the corresponding sensing strategy. Without compressed
sensing, the EH IoT devices are frequently interrupted because
of the weak power supply. Due to the sparse sensing, the
interruption is rarely caused by sensing. Furthermore, the
energy of the S-Agent is sharply down from 8:00 to 9:00
to sense data, which reflects the S-Agent dynamically fine-
tune the sensing strategy so as to collect the most critical data
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Fig. 11. Energy cost on sensing for the device of Fig. 9.

with limited energy. It actually implies the energy allocation
capability of the S-Agent.

The raw data in Table II indicates the data size of luminos-
ity data in 2006 collected by 343 devices without applying the
sparsity-aware sensing. Table II shows the total data size col-
lected in our simulation for reconstructing while we applied
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TABLE II
ToOTAL COLLECTED DATA SIZE (KB)

Methods Raw S-Agent | DQN OR- CS Q-
Data ST table
Data Size 1.5e3 1.34e2 1.40e2| 1.31e2| 2.61e2| 3.24e2
TABLE III
OVERHEAD ON MCU OF DIFFERENT ALGORITHMS
Methods FLOPs Latency Energy
overhead
S-Agents 33.855k 6.8us 6.8e-6J
DQN 33.727k 6.2us 6.2e-6]
OR-ST - - -
CS 33.855k 6.8 6.8e-6]
Q-table 1.561k 0.27us 2.7e-5]

the algorithms of S-Agent, DQN, QR-ST, CS, and Q-table for
the sparsity-aware sensing. Fig. 6 and Table II indicate that the
S-Agent only needs to collect 8.93% data that can reconstruct
the full-state data with 7.86 errors. Thus, we can save the sens-
ing and communication resources on the 91.07% redundant
data while the full-state data is reconstructed with 7.86 errors
(6.78 errors with multiresolution distance measurement).

E. Overhead Evaluation

We discuss the overhead of the different algorithms
in Table III, which illustrates the number of floating-point
operations (FLOPs), runtime, and energy overhead of the
proposed S-Agents and four benchmarks, where the FLOPs are
the number of FLOPs on running a 3-64-256-2 fully connected
neural network, runtime is tested on TI MSP430FR6989
LaunchPad [29], and the energy overhead is the processing
energy costs while the processing power is 0.001 J/s. The QR-
ST does not have overhead because the QR-ST algorithm
uses the fixed scheduling that is calculated by the servers.
Therefore, at the runtime stage, the QR-ST algorithm only
needs to retrieve the decision from the memory. The runtimes
of the S-Agents and the CS are slightly higher than that of
the DON, which is caused by that DQN does not take any sug-
gestion from the QR-ST so that its FLOPs are less than that
of the S-Agents and the CS. Although the overhead of the S-
Agents are the highest among the four benchmarks in terms
of the FLOPs, runtime, and energy overhead on processing,
its reconstruction effectiveness dramatically outperforms that
of the four benchmarks.

IX. CONCLUSION

This article aims to construct a sparsity-aware spatiotempo-
ral data sensing framework for the EH-powered IoT system
by employing the multiagent DRL to optimize the sensor
selection from spatial perspective and sensing scheduling from
temporal perspective. We first construct a comprehensive spa-
tiotemporal data sensing for the EH-powered IoT system. With
the consideration of limited computation capability of EH
IoT devices, we then develop QR-ST to compute the deter-
mined spatiotemporal sensing scheduling. Through leveraging
the determined sensing scheduling, the DRL-based S-Agents is
further developed to dynamically fine-tune sensing operation
in the runtime.
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