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Sparsity-Aware Intelligent Spatiotemporal Data

Sensing for Energy Harvesting IoT System
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Abstract—In this era of the Internet of Things (IoT), the
increasing number of IoT devices benefit from energy harvest-
ing (EH) technology which enables a sustainable data acquisition
process, including data sensing, communication, and storing for
promoting the well beings of the society. However, intermit-
tent and low EH power confines the data acquisition process.
Specifically, due to frequent harvesting power outages and deple-
tion of energy for expensive data transmission to the IoT edge
server, insufficient energy is allocated for data sensing resulting in
the missing of key information. To address this issue, this article
proposes a sparsity-aware spatiotemporal data sensing frame-
work for EH IoT devices to minimize the data sensing rate/energy
while acquiring comprehensive information and reserving suffi-
cient energy. In this framework, the IoT devices sample critical
sparse spatiotemporal data, and then the sparse data are sent
to the edge server for reconstruction. To maximize the recon-
struction accuracy subject to the limited power supply and
intermittent work patterns of EH devices, we first propose the
QR-based algorithm QR-ST to initiate a sensing scheduling for
each EH device. Due to the unstable and intermittent work pat-
tern, the schedule needs to be dynamically fine-tuned based on
environmental inputs. Therefore, we further propose a multiagent
deep reinforcement learning-based method named S-Agents for
the IoT edge server to globally select the sensing devices at each
time slot, where the spatial and temporal features of recon-
structed data are guaranteed. Experimental results show that
the proposed framework reduced the reconstruction error by
66.30% compared with baselines.

Index Terms—Compressed sensing, energy harvesting (EH),
Internet of Things (IoT), reinforcement learning.

I. INTRODUCTION

I
N THIS era of Internet of Things (IoT), a plethora of

embedded devices are spatially deployed to continuously

retrieve data of interest in specific regions. However, due to

typically being powered by batteries, those embedded devices

are subjected to limited lifetime and high maintenance costs.

Energy harvesting (EH) technology that scavenges energy

from the ambient environment becomes a viable substitute

for the conventional battery by providing a sustainable power
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supply for embedded devices [1], [2]. Such upgrades can

enable perpetual low-power sensing for various next genera-

tions of IoT applications. However, the weak and intermittent

nature of EH power confines the performance of data sensing.

Specifically, to capture the important spatiotemporal features,

the EH devices at both specific locations and times need to

conduct data sensing. Yet, due to the harvesting power short-

age, a power outage may happen and the EH device will

miss sensing key spatiotemporal data. Moreover, due to the

expensive power consumption for communication, transmit-

ting sensed data to the edge server will deplete the harvested

energy rendering insufficient energy for sensing key spatiotem-

poral data [3], [4]. The situation will get worse when the

spatiotemporal data are with huge size such as 4-D spatiotem-

poral weather data [5]. Therefore, it is a grand challenge to

sense and transmit massive data with the EH IoT system.

To address this issue, we observed that most spatiotemporal

data are compressible and the key features can be captured

with sparsely sampling at both spatial and temporal domains.

In this background, by applying compressed sensing the-

ory [6], the aforementioned challenge of data sensing in the

EH IoT system can be naturally addressed by inferring the

missing data with the reconstruction values. To be more spe-

cific, temporally, for each EH IoT device, data sensing is only

needed at sporadic moments. Spatially, at each moment, only

a tiny subset of EH embedded devices are activated to obtain

the sparse data. Once these pieces of sparse data are sent to

the edge server, the whole map of observations can be recon-

structed. Consequently, not only the data absences caused by

the intermittent harvesting power can be compensated but also

enough energy can be reserved for communication.

Despite the advantages of compressed sensing, it is

extremely challenging to seek an optimal sensing activation

schedule for EH devices. On the one hand, if we activate too

many sensors frequently for improving reconstruction accu-

racy, the harvested energy is wasted for sensing redundant

data. On the other hand, if the sensed data are too sparse,

the reconstruction accuracy cannot be guaranteed. Therefore,

it is crucial to determine the optimal amount of spatiotem-

poral data. Based on the compressed sensing, this problem is

equivalent to searching the sparse measurement matrix through

an l0 norm optimization, which is a complex NP problem.

However, for the heuristic solution, we can alternatively select

the sensing strategy on sensing time and locations. Yet such

optimization is a nonconvex problem that is still complex.

To address the aforementioned problem, this article lever-

ages multiagent deep reinforcement learning (DRL) for devel-

oping a sparsity-aware spatiotemporal data sensing framework

for EH systems. The sensing among spatially distributed EH
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devices can be formulated as the partially observable Markov

decision process (POMDP) and the complicated intermittent

feature of EH devices can be adapted by the strength of the

neural network. This framework aims to schedule sensing

operations for EH IoT devices in both spatial and temporal

domains. Our key idea includes two phases, the suggestion

phase and runtime phase. In the suggestion phase, motivated

by [7], we first generate an initial schedule for each device by

exploring the spatial and temporal features of historical data

with the proposed QR-ST algorithm. After that, in the runtime

phase, the developed DRL-based agent (S-Agents) deployed

on each device will take the suggested schedule and EH

status as inputs to determine the runtime sensing schedule

dynamically to withstand the weak and intermittent harvest-

ing power supply. To avoid stucking at local optimal, during

the training period, we train DRL agents distributively with

global rewards that reflect the reconstruction error. To precisely

measure the reconstruction error between the reconstructed

spatiotemporal data and the real spatiotemporal data, the mul-

tiresolution distance-based measurement is adopted. The main

contributions of this article are summarized as follows.

1) We propose a comprehensive spatiotemporal data sens-

ing framework for the EH IoT system, which consists

of the suggestion and the runtime phases.

2) To ensure a small DRL model size while considering

the limited computation capability of EH devices, we

propose QR-ST to find determined scheduling of data

sensing in the suggestion phase.

3) To distributively schedule sensing operations consider-

ing both spatial and temporal perspectives, we designed

a multiagent DRL-based method named S-Agents to

decide sensing operation dynamically subject to the

limited power supply.

To the best of our knowledge, this article is the first

work that proposes a sparsity-aware multiagent DRL-based

spatiotemporal data sensing framework for EH systems.

II. RELATED WORK

The existing works reconstruct data based on either only

temporal or only spatial features.

Temporal: In [8], ADMM is adopted for activation schedul-

ing of network sensors in periodical time to maximize the

reconstruction accuracy given the constraints on the available

number of activation time points for each device. Because we

are reconstructing the sparse data from a set of devices in the

network, the activated sensor can be scheduled to optimize

the local reconstruction data or to optimize the global recon-

struction through collaborative sensing. Jamali-Rad et al. [9]

and Liu et al. [10] explored sensor selection in a distributed

and collaborative manner, respectively. Intuitively, the dis-

tributed strategies may get trapped into local optima. But

if we adopt the global strategies, while the network scale

is large, finding a global optimal schedule is difficult and

communication-intensive. Without the consideration of power

supply restrictions, most researches [8], [9], [10] are targeting

battery-powered devices. Calvo-Fullana et al. [11] investigated

the joint optimization of sensor selection and power alloca-

tion for the “EH” sensing system. In [11], the nonconvex

optimization problem is separated into a series of surrogate

(a)

(b)

Fig. 1. Configuration of the (a) raw spatiotemporal data and (b) sparse data
through compressed sensing.

convex problems. Wang et al. [12] estimated the sparsity

order of high-dimensional signals, where an illustration appli-

cation is given by developing a two-step compressive spectrum

sensing algorithm for cognitive radios. Wang et al. [13]

also utilized the two-stage method to reduce the slow-time

dimension of the signal.

Spatial: Masazade et al. [14] investigated the target track-

ing problem with an extended Kalman filter, where only a few

sensors are activated and send their collected data to the data

center to save energy. Clark et al. [15] proposed a column-

pivoted QR decomposition to optimize the sensor selection

scheme for full-state data reconstruction. Without considera-

tion of cost constraints, Clark et al. [16] utilized the greedy

algorithm to optimize the sensor placement while applying

the sparsity-aware sensing to the facial recognition, climate

science, and fluid mechanics. Instead of using the traditional

universal basis in compressed sensing, Manohar et al. [7]

investigated the full-state data reconstruction while using the

tailored basis that is the eigenmodes extracted from the histor-

ical database. To explore EH-aware sparsity sensing, Calvo-

Fullana et al. [17] proposed a novel sensor selection scheme

for networks equipped with EH sensing devices. It mini-

mizes the reconstruction distortion while selecting reduced but

informative sensors.

Although great efforts have been devoted to sparsity-aware

sensing, no existing work has investigated reconstructing

the full-state data from both temporal and spatial features.

Different from the existing work, this article proposes sparsity-

aware spatiotemporal compressed sensing for EH IoT systems

based on the multiagent DRL-based method.

III. MOTIVATION OF SPATIOTEMPORAL SENSING

Fig. 1(a) visualizes an example of the raw spatiotemporal

data sensed by a 9 × 7 grid of devices at different lati-

tudes and longitudes, where different snapshots represent the

spatially distributed data at different time points. For each

snapshot, the cell in the grid indicates the data of one device.
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Fig. 2. Visualization of the sparsity-aware sensing (a) from temporal features
and (b) from spatial features.

The data at the same location in different snapshots repre-

sent temporal data of one device named trace. Therefore, the

spatiotemporal data are composed of a set of snapshots at con-

tinuous time points or a set of traces at spatially distributed

locations, as shown in Fig. 1(a). The snapshots capture the

spatial features at continuous time points and the traces cap-

ture the temporal features at spatially distributed locations.

Sparsity-aware sensing aims to select the activated sensors and

schedule the activation time to obtain the sparse data as shown

in Fig. 1(b) to capture the critical spatial and temporal features

for reconstructing Fig. 1(a) from Fig. 1(b) with the minimum

reconstruction error. Specifically, a gray cell indicates that the

corresponding device is inactivated, which results in that data’s

absence at a specific location and time point.

Spatiotemporal data have special properties since they con-

sist of not only the spatial features in snapshots but also the

temporal features in the traces. If we directly reconstruct the

traces for each device or reconstruct the snapshots at each

time point for the spatiotemporal data reconstruction, the spa-

tial or temporal features cannot be captured, respectively. This

problem is illustrated with the following two examples.

An example of data reconstruction from the trace is shown

in Fig. 2(a), where the device needs to figure out what time

the device should be activated to sense the sparse data of its

local trace so as to reconstruct the local trace data. In this sce-

nario, in order to maximize the trace reconstruction accuracy,

the devices mainly target on the points of time when data col-

lection has more contribution to reconstruction. Therefore, the

devices are actually finding the local optimal sensing scheduler

to collect the local temporal sparse data in a distributed manner

while not considering the sensing data of other devices. After

each device completes a reconstruction with maximum accu-

racy through temporal sparse data, it is highly possible that in

a set of specific time points, all sensors are inactivated such as

the time point 5 highlighted with a red dotted line in Fig. 2(a).

If this case is applied in spatiotemporal data reconstruction,

the spatial features of a snapshot at specific time points cannot

be guaranteed in the sense that no data are measured for these

snapshots, as indicated by the right square grid of Fig. 2(a).

An example of data reconstruction from the snapshot spatial

features is shown in Fig. 2(b), where the networked devices

mainly focus on which devices are activated for sensing at a

given time point in a collaborative manner. Because the spatial

data is location-related as shown in Fig. 2(b), a set of devices

at certain locations that have larger contributions to spatial data

reconstruction are frequently activated to minimize the recon-

struction error, which results in the rare activation of certain

devices [e.g., the device located at the cell highlighted with

a dotted red square box in Fig. 2(b)]. Although each snap-

shot can be reconstructed with minimum error, the temporal

features of those devices that are never activated cannot be

captured, because those devices have never sensed any data,

as indicated in the right subfigure of Fig. 2(b).

Therefore, the sparsity-aware sensing of spatiotemporal data

requires consideration of not only the local sensing schedule

of each device for temporal data reconstruction from a long-

term perspective but also the selection of the activated devices

at each time point for global spatial data sensing.

IV. FUNDAMENTAL OF COMPRESSED SENSING

Compressed sensing is a well-known technology for effi-

cient data acquisition, which reconstructs the high-dimensional

original signal data from a small number of sparse data. Most

natural data, such as images or audio, can be written as a

sparse vector in a transform coordinate system, where only

a few coefficient parameters are active to record the large

mode amplitudes of signals. Those coefficients describe the

necessary features for accurate reconstruction. Mathematically,

given an original signal data as x ∈ R
n and a new coordinate

basis as � ∈ R
n×n, x can be identified as a sparse vector

s ∈ R
n, given by (1). Specifically, � is a transform basis such

as Fourier transform basis or wavelet basis

x = �s. (1)

In traditional compressed sensing application such as image

compression, the high-resolution data x is first obtained and

then the corresponding sparse vector s is computed. After

that, to alleviate the communication constraints, the transmitter

sends s to the receiver. The high resolution x can be obtained

by calculating (1) in receiver. Instead of measuring an original

full-state data x and then discarding most of its information

by calculating s to alleviate the constraints on communica-

tion resources, the sparsity-aware sampling directly measures

a subset of x, defined as y ∈ R
m, m << n. Assume the

measurement matrix is C ∈ Rm×n to identify the measure-

ment positions, the sparsity-aware sampling can be described

with (2). Once we compute s, we can reconstruct x by (1)

y = C�s. (2)

While m < n, a set of s satisfies (2). Therefore, s is unde-

termined. To reduce the sampling cost, we aim to find the

sparsest s denoted as s∗, which is given in

s∗ = argmin
s

‖s‖0, subject to: y = C�s (3)

where ‖s‖0 is the l0 norm of s. The l0 norm optimization is

an NP problem; therefore, instead of optimizing the l0 norm,

Donoho [18] proposed to solve l1 while the random sampling

matrix C� satisfies the so-called restricted isometry property

(RIP) [6] conditions. In this case, we can also obtain the spar-

sity solution. Therefore, the l0 minimization is transformed to

the l1 minimization problem as

s∗ = argmin
s

‖s‖1, subject to: y = C�s. (4)
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Fig. 3. System model.

From (2)–(4), if we know the measurement matrix, we

can figure out the sampling locations and time points from

both spatial and temporal perspectives. Following the sampling

locations and time points, we can sense y to reconstruct x.

However, due to the difficulties in computing RIP parameters,

it is hard to solve the exact measurement matrix C�.

V. SYSTEM MODEL

A. Scenario Description

Fig. 3 shows a three-layer edge system for spatiotempo-

ral data collection, which consists of three layers, including

the cloud center on the top layer, multiple edge servers in the

edge layer, and edge devices layer. In the bottom layer, the

edge devices harvest energy from the environment to provide

power supply for onboard data sensing, local computing, and

communication. The edge devices sense and transmit the data

to the edge server for preprocessing by the wireless link. In the

middle layer and top layer, both the edge servers and the cloud

center are powered by electricity. Also, the edge server is con-

nected to the cloud center through a wired link. Specifically,

in the middle layer, there is no communication among edge

servers because of the geographic limitations and the limited

transmission range.

This article considers a sparsity-aware edge data collection

scenario, where the EH devices sense data with a much smaller

measurement frequency than the typical full-state edge data

collection scenario. Given a constant time interval as v sec-

onds, per v seconds, each device decides if it will sense or

not for the current time interval. Due to the limited energy

and capability on computing, the EH devices transmit the

collected data to the corresponding edge server for recon-

struction. Because the edge servers lack the completed view

of the data from all edge devices, the edge servers can only

assist in reconstructing the local sparse data from the tempo-

ral dimension (local traces). To ensure the spatial features are

captured, the sparse data is backed up from all edge servers

to the cloud center, the cloud center will then reconstruct the

final spatiotemporal data for each time interval and calculate

the reconstruction errors.

B. Sensing System

In the bottom layer, the K EH devices are deployed with

the index set of K = {1, . . . , k, . . . , K}. The location of

device k is notified with [latk, lonk]. The system periodic

operation time is slotted to T time slots labeled with T =

{1, . . . , t, . . . , T}. Therefore, the sensed data1 of k are defined

as yk = [yk[1], . . . , yk[t], . . . , yk[T]]′, k ∈ K, t ∈ T , yk ∈ R
T .

The spatiotemporal data for the whole system at the cloud

center are represented by Y = [y1, y2, . . . , yK]. In particular,

since the device senses sparse data, most elements in the Y

matrix are zeros.

C. Energy Model

The energy consumption of EH devices k consists of three

components, including sensing energy consumption, commu-

nication energy consumption for transmitting data to edge

servers, and computing energy consumption for S-Agent run-

ning to control the sensing. Thus, the total energy consumption

of k is given by

Ek,cost = Esense
k bsense + ptrans

k

btrans

ωk,trans
+ κkbcompuckf 2

k (5)

where Esense
k is the energy consumption for k to sense one

bit data and bsense represents the number of bits on sensing

data. Denote ptrans
k , btrans, and ωk,trans as transmission power,

the number of transmission bits, and transmission rate, respec-

tively, where the transmission rate ω can be retrieved by the

Shannon theory [19]. κkbcompuckf 2
k is the energy consumption

on computing bcompu bits data. κk is the hardware parameter

of k. ck and fk represent the needed number of CPU cycles

and the computing CPU frequency of k [20].

Given at t the power intensity of k as pk,t, the harvested

energy is equal to Ek,harvest =
∫

pk,tdt. Therefore, the remain-

ing energy of k at t time slot is (6). Note that Ek,rest[t] ≤

Ek,max ∀t ∈ T has to be satisfied, where Ek,max is the energy

capacity of k

Ek,rest[t] = Ek,rest[t − 1] + Ek,harvest[t] − Ek,cost[t]. (6)

VI. PROBLEM FORMULATION

In this section, we aim to minimize the errors in the spa-

tiotemporal data reconstruction subject to the limited power

supply and intermittent work pattern of EH devices in the

EH IoT system. To formulate the reconstruction minimization

problem, we first introduce the required notations. X =

[x1, x2, . . . , xK] is the reconstructed data matrix for the cor-

responding sparse data Y. L is the label data of X. It means

while devices sense with the regular frequency, the collected

data would be L (the real data). Therefore, this article aims to

minimize the distance between the reconstructed data X and

the real data Y. However, the spatiotemporal data is a new data

type. Using the Euclidean distance calculation cannot precisely

capture the similarity/difference of spatial and temporal fea-

tures between two spatiotemporal data scenarios proved by [5].

Therefore, instead of minimizing the Euclidean distance of X

and L, we employ the multiresolution distance [5], [21] to

measure the similarity/difference.

1′denotes vector or matrix transpose operation.
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A. Distance Measurement on Spatiotemporal Data

The multiresolution distance-based measurement is

developed in [5] for the difference/similarity measurement on

spatiotemporal scenario data, whose effectiveness is ensured

by [21] and [22]. It calculates the difference of two spa-

tiotemporal data in multiresolution, where the spatiotemporal

data are scanned and compared with a set of size varying

windows. Given L and X as the real and reconstructed

spatiotemporal scenario data consisting of a set of snapshots

at the continuous time points as Fig. 1(a) and (b) indicated.

Define G as the sensing area and gk ∈ G as the cell located in

[latk, lonk]. φk,w ∈ �w is the square spatial window centered

at gk with size w and �w is the set of spatial windows with

size w in the space G. φt,h ∈ �h is the temporal window

starting from the instant t with size h and �h is the set of

temporal windows with size h in the time space T . Therefore,

while the size of spatiotemporal moving window is w and

h, the distance of two scenarios dX,L,w,h is given by the

following:

dX,L,w,h =
∑

φk,w∈�w

∑

φt,h∈�h

1

|φk,w||φt,h||�h|
�XL (7)

�XL =

∣

∣

∣

∣

∑

gz∈φk,w

∑

q∈φt,h

xz[q]

λz,wτq,h

−
∑

gz∈φk,w

∑

q∈φt,h

lz[q]

λz,wτq,h

∣

∣

∣

∣

(8)

where | · | is the cardinality of the corresponding set. λz,w and

τq,h are the contribution factors to eliminate the border effect

on the distance calculation. The cells or time points at the

boundary are counted less than those at the center area. The

distance of X and L is given by (9) that is the weighted sum

of dX,L,w,h obtained at different spatiotemporal window size

DX,L =

hmax
∑

h=1

wmax
∑

w=1

dX,L,w,h

δwαh
∑hmax

h=1

∑wmax

w=1 δwαh

(9)

where wmax and hmax are the maximum spatial and temporal

window sizes, respectively. δw and αh are weighting factors

that control the contributions of different spatial and temporal

resolutions to the distance calculation.

B. Optimization Goal

For the EH IoT system, each device k senses spatiotemporal

data in area G with the given power intensity pk,t. Let ak be

the vector that represents if the device k performs sensing or

not at each time slot. The scheduler of device k is defined as

ak =

⎡

⎢

⎢

⎢

⎣

ak[1]

· · ·

ak[t]

· · ·

ak[T]

⎤

⎥

⎥

⎥

⎦

k ∈ K, t ∈ T , ak ∈ {0, 1}. (10)

Our objective is to seek the device scheduler A =

[a1, a2, . . . , aK] that minimizes the reconstruction error on the

spatiotemporal data DX,L. Mathematically

argmin
A

DX,L

subject to Ek,rest ≥ 0

Ek,rest ≤ Ek,max.

VII. ALGORITHM DESIGN

A. Architecture of Spatiotemporal Data Sensing

To address the challenge of limited computing, communi-

cation, and storage resources of EH devices, sparsity-aware

spatiotemporal data sensing in EH IoT system is developed

that address the conflicts of high demand on high-dimensional

data, the limited capability of EH devices, and limited lifetime

of battery-powered devices. The framework of sparsity-aware

spatiotemporal data sensing for the EH IoT system is shown

in Fig. 4, which is composed of two phases, including

the suggestion phase and the runtime phase.

In the suggestion phase, motivated by [7], we propose the

QR-ST algorithm, which adopts QR pivot factorization [7],

[16], [23] as foundation to find the global sensor selection

from the Spatial features of the historical snapshots at each

time point. Meanwhile, we also conduct the local sensing

scheduling from the Temporal features of the historical data

traces for each device. There are suggestions from both spatial

and temporal perspectives. When either global sensor selection

or local scheduling requests the sensor to perform sensing, the

final suggestion that is input into S-Agent is “Yes.” Recall that

the spatiotemporal data consist of either a set of the snapshots

at different time points (spatial features) or a set of data traces

from different devices (temporal features), whose examples are

described in Section III and Fig. 1. Specifically, with more

and more data stored in the historical database, we can update

the coherent spatial and temporal modes (�spl and �tpl) per

TU time with new historical data. Correspondingly, the deter-

mining schedules are updated for each TU time periodically.

The mathematical explanation of �spl and �tpl is elaborated

in Section VII-B.

Given the historical spatiotemporal data, the spatial modes

of snapshots and the temporal modes of data traces are deter-

mined. Therefore, the sensor selections and local schedules

calculated by the QR-ST algorithm are fixed. However, with-

out consideration of the variation in the complicated EH

environment, the fixed sensing operations are not environment

adaptive and might lead to poor reconstruction performance.

For example, the selected sensors cannot perform the sens-

ing task as expected caused by that the selected sensors are

sleeping due to the weak harvesting power, which leads to the

necessary reconstruction data being missing. To dynamically

fine-tune the scheduling of sparsity-aware sensing, we further

develop the DRL-based method for the EH IoT system.

In the training/runtime phase, with the determined global

sensor selection and local schedule as the suggestions, the

developed DRL-based agent named S-Agent is deployed on

each device to dynamically control the sensing operation at

each time point subject to the limited power supply of EH

devices. After that, the sensed sparse data are transmitted to the

corresponding edge server and backed up at the cloud center.

Once all edge servers complete data back-up, the cloud center

utilizing the transform basis �spl[t] reconstructs the snapshot

at the current time point. The spatiotemporal reconstruction

error is broadcasted to all edge servers. It is worth noting that,

in the training stage, we have the historical full-state real data

to calculate the reconstruction errors. However, in the runtime

stage, if we perform sparsity-aware sensing all the time, we do
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Fig. 4. Framework of sparsity-aware spatiotemporal compressed data sensing in the EH IoT system.

not have the full-state real data to calculate the reconstruction

errors. Consequently, we cannot evaluate the performance dur-

ing runtime. Therefore, during runtime, the full-state data are

collected and uploaded periodically for the trained model val-

idation and updating. In particular, to train S-Agent and fully

utilize the computation resource at the edge, the experiences

of S-Agent are uploaded to the corresponding edge server for

learning at the off-peak time.

B. Design on the Suggestion Phase: QR-ST

The compressed sensing technology is widely used to

recover the data of unknown content with random measure-

ment on a universal basis �. When the data type information

is accessible such that we are measuring the soil humility or

the data is a solar power intensity, the main features can be

extracted from the historical data of representative cases to a

tailored basis. Therefore, the proposed QR-ST algorithm uti-

lizes QR pivot factorization to find the fixed global sensor

selection and local sensing scheduling by extracting Spatial

modes (�spl) and Temporal modes (�tpl) of historical spa-

tiotemporal data. From the spatial dimension, we can extract

the spatial features from the historical snapshots collected at a

certain time point t that indicate the coherent spatial modes of

the snapshots at the t time points (line 4 in Algorithm 1).

Thereby, the global sensor selection at each time point is

determined based on the spatial modes of historical snapshots,

where we can activate sensors that have more contributions to

the snapshot information (line 5 in Algorithm 1). Similarly, by

Algorithm 1: QR-ST

Input: Li, ∀i ∈ I = {1, 2, . . . , I}, rs, rt, T, K; /* LiThe

historical spatiotemporal data */

Output: �spl[t], ∀t ∈ T , �tpl,k, ∀k ∈ K, �∗, 
∗;

1 // From Spatial dimension
2 for t ← 1 to T do

3 Retrieve L[t] from Li, ∀i ∈ I;
4 �spl[t], S, V = svd(L[t]); /* SVD and qr are the

existing packages in MATLAB or Python */

5 Q, R, �[t]∗ = qr(�spl(:, 1 : rs)
′);

6 end
7 // From Temporal dimension
8 for k ← 1 to K do

9 Retrieve Lk from Li, ∀i ∈ I;
10 �tpl,k, S, V = svd(Lk);

11 Q, R, 
∗
k

= qr(�tpl(:, 1 : rt)
′);

12 end
13 return 〈�spl[t]〉, 〈�tpl,k〉,〈�[t]∗〉, 〈
∗

k
〉

analyzing the temporal features and the temporal modes for the

historical data traces of each device k (line 10 in Algorithm 1),

we can obtain the determined local schedule for each device

k (line 11 in Algorithm 1).

Global Sensor Selection From Spatial Modes: Proper

orthogonal decomposition (POD) is a typical method used for

dimension reduction, which proposes to represent the high-

dimensional data as linear combinations of a small number

of orthonormal eigenmodes. Singular value decomposition
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(SVD) proposed in [24] is an efficient algorithm to retrieve

the dominant modes from data. Define the flatted snapshots

as l[t] = [l1[t], . . . , lk[t], . . . , lK[t]′, l[t] ∈ R
K, t ∈ T ∀k ∈ K.

Let li[t] be the ith snapshot of t time point in the historical

snapshots database, so the matrix of historical snapshots at t

time point is L[t] = [l1[t], l2[t], . . . , lI[t]]. Then, the eigen-

modes of L[t] denoted as �spl[t] can be the orthonormal left

singular vectors, which are obtained efficiently by SVD and

implemented in most computing software packages (line 4

in Algorithm 1). Given the tailored basis as �spl[t] ∈ R
K×rs

as the orthonormal eigenmodes of snapshots at t time point,

according to the compressed sensing technology (1), we have

l[t] = �spl[t]zs (11)

where zs ∈ R
rs , rs << K is the POD coefficients that is used

for representing l[t] in �spl[t] coordinator.

From spatial (global) perspective, we aim to select a portion

of sensors from K at time point t. When we only measure at the

selected sensors, we can recover l[t]. Mathematically, define the

set of selected sensors at t as �[t] = {ξ1, ξ2, . . . , ξκ }, �[t] ∈

K ∀t ∈ T . Therefore, we aim to reconstruct the snapshot l[t]

from the sensed sparse data y[t] = [lξ1
, lξ2

, . . . , lξκ ]′. Define

the measurement matrix as C. Based on (11), we have

y[t] = Cl[t] = C�spl[t]zs (12)

where each row of C is the canonical basis vector for RK with

the unit entry index at ξ column and zeros at all other entries.

Recall that x[t] denotes the reconstructed data of l[t]. Thus,

we can reconstruct l[t] by (13)2

x[t] = �spl[t]zs, where zs =

{

(C�spl[t])
−1y[t], κ = rs

(C�spl[t])
†y[t], κ > rs

(13)

where κ is the cardinality of �[t]. Because rs affects the struc-

ture of C�spl[t], only when κ = rs, (C�spl[t])
−1 exists. Thus,

if κ > rs, we adopt the Moore–Penrose pseudoinverse.

Therefore, to capture more features in �spl[t], the global

sensor selection optimizes �[t] (C�spl[t]) to maximize the

product of its eigenvalue as

�[t]∗ = argmax
�[t] ∀t∈T

|detC�spl[t]|. (14)

Through the matrix QR factorization with column decompo-

sition (line 5 in Algorithm 1), r sensors locations are conducted

from the basis mode �spl[t] by

� ′
spl[t]C

′ = QR (15)

where Q, R, and C are a unitary matrix, an upper-triangular

matrix, and a column permutation matrix, respectively, that

are decomposed from matrix � ′
spl[t]. Through the obtained

measurement matrix C, � can be retrieved. Repeat to compute

�[t] for each time slot, the determined global sensor selection

�∗ = {�[t]∗ ∀t ∈ T } for each time slot is calculated.

Local Sensing Scheduling From Temporal Modes: To cap-

ture the features in temporal dimension, we also train the

�tpl,k ∈ R
T×rt as the orthonormal eigenmodes of the traces

at location k with the historical temporal traces Lk =

[l1,k, l2,k, . . . , lI,k] (line 10 in Algorithm 1). Similarly, define

2†denotes the Moore–Penrose pseudoinverse.

xk = [xk[1], xk[2], . . . , xk[T]]′, k ∈ K as the reconstructed

traces at k and lk being the real trace of k. By seeking the

optimal local schedule 
k = {γ1, γ2, . . . , γζ }, 
k ∈ T to

maximize (16) for each device k (line 11 in Algorithm 1),

we then can reconstruct xk ∀k ∈ K via (17)


∗
k = argmax


k ∀k∈K

|detC� tpl| (16)

xk = �tplzt, where zt =

{

(C�tpl)
−1yk, ζ = rt

(C�tpl)
†yk, ζ > rt.

(17)

Therefore, the determined local schedule of each device k,


∗ = {
∗
k ∀k ∈ K}, is calculated.

C. Design on the Run-Time Phase: S-Agents

As shown in Fig. 4, we deploy a unique DRL model

named S-Agent on each EH device to control the run-

time sensing operation. This article adopts deep-Q-network

(DQN) [25], [26] as underlying methods. We define sk,t as

the environment states of device k at t time slot. During the

learning period, based on the state sk,t, the neural networks

of the S-Agent compute a control action ak,t. Following

ak,t, the device k executes the corresponding action that

leads to the environment transit to the next state sk,t+1.

Meanwhile, a feedback reward rk,t+1 is returned to the agent

for the action evaluation. The agent aims to select action

ak,t ∀t ∈ T to maximize the expected long-term reward

named q-value Q(s, a)π = E[Rπ
t |st = s, at = a], where π

identifies the policy that maps the state to the action and

Rk,t =
∑∞

t′=t γ
′t′−trt′+1, γ

′ ∈ (0, 1]. γ ′ is the factor to discount

future reward.

Learning: During the learning period, the S-Agent k has

two neural networks, including the target network and local

network parameterized by θk and θ ′
k. At each time slot, based

on the state sk,t, the local network θk will output ak,t to con-

trol the sensing operation. The target network will output the

corresponding “label” data simultaneously. The S-Agent col-

lects its own experiences experience = (si,t, ai,t, ri,t+1, si,t+1)

and uploads the experience set to the relay buffer on the edge

server at off-peak time. The minimum batch size experiences

is randomly sampled from the replay buffer to optimize the

local network and target network (line 31 in Algorithm 2).

To stabilize the optimization, the target network will be for-

bidden from updating weights for m interactions. After the m

interactions, the target network updates the weight by copying

weights from the local network (lines 34–36 in Algorithm 2).

The loss function of the local network is given by (18). To

avoid local minimum and learn from the environment, DRL

agents are expected to take more actions on exploration at

an early age. After getting familiar with the environment,

agents should exploit based on their experience. Thus, this

article adopts the decaying epsilon-greedy exploration pol-

icy [25] (line 13–23 in Algorithm 2). The algorithm details

are described in Algorithm 2. Specifically, all S-Agents have

the same architecture with different weights

L(θk) =
∑

sk,t,ak,t,
rk,t+1,sk,t+1

∈Gi,t

(

ri,t+1 + γ max
a

Q
(

sk,t+1, ak,t+1; θ ′
)

− Q
(

sk,t, ak,t; θ
)

)2
. (18)
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Algorithm 2: Learning Procedure for S-Agents

Input: max_episodes, m, n_node, > {γ ′, εstart, εend, decay_steps, δ} (for
learning and exploration)
{Ek,senseκk, ptrans

k
, ωk,transck, fk,∀k ∈ K}

Output: optimized S-Agents θk, ∀k ∈ K

1 Initialize n_node local neural networks, θk , ∀k;

2 Initialize n_node target neural networks, θ ′
k

← θk , ∀k;

3 Initialize the corresponding replay buffer, Gk , ∀k;
4 n_episode ← 0;
5 Epsilons = 0.01 / np.logspace(-2, 0, decay_steps,False)-0.01;
6 Epsilons = Epsilons * (εstart - εend) + εstart;
7 while n_episode < max_episodes do
8 Reset EH IoT system environment;
9 Stepk ← 0 ∀k;

10 for t ← 1 to T do
11 for k ← 1 to n_node do
12 // Update ε

13 if t >= decay_steps then
14 ε = εend ;
15 else
16 ε = Epsilons[t];
17 end
18 // Epsilon-greedy exploration policy
19 if np.random.rand() > ε then
20 ak,t = argmax

∀ak,t∈{0,1}

Q(sk,t, ak,t);

21 else

22 ak,t = np.random.randint(len(Q(sk,t)));
23 end
24 if ak,t == 1 and Ek,rest > Esense

k
bsense then

25 Perform sensing; /* ak,t ∈ {0, 1};ak,t == 1
Sensing; Otherwise, Sleeping */

26 Calculate Ek,rest based on (6)
27 end
28 Environment transit to sk,t+1; Feedback rk,t+1
29 experiencek = (sk,t, ak,t, rk,t+1, sk,t+1);
30 Save experience to buffer Gk;
31 if |Gk| ≥ mini_batchsize then
32 Randomly sample mini-batch of experiences;
33 Optimize θk with sampled experiences;
34 if Stepk%m == 0 then

35 Update target network θ ′
k

from θk;

36 end
37 end

38 Stepk = Stepk + 1
39 end
40 end
41 n_episode = n_episode + 1
42 end

MDP Settings: In a view of the architecture indicated

in Fig. 4 and the discussions above, we define the distributed

S-Agents POMDP as follows.

1) sk,t ∈ S: The state of environment is captured by

the tuple of {Ek,rest, t,Q}, where Ek,rest is the current

onboard energy to indicate if the EH device has the

residual energy to perform sensing. The real time t gives

the information to agent so as to select if sensing to cap-

ture the temporal features. Q ∈ {0, 1} is the suggestion

from QR-ST.

2) ak,t ∈ A: The action ak,t ∈ {0, 1} that indicates if the

EH device performs sensing operation or not at t time

slot. Note that in Section VI we describe ak,t as ak[t].

3) Pss′(ak,t) ∈ P: Pss′(at) is the state transition probability

from state s into state s′ while taking action ak,t.

4) rk,t ∈ R: The reward function is defined as (19), which

reflects the global reconstruction errors before t. DX,L

is calculated by (9), where X[t] = [x[1], x[2], . . . , x[t]].

TABLE I
PARAMETERS ON EH DEVICE AND DISTANCE MEASUREMENT

Therefore, X[t] has a different size on snapshots at

different time slots. To ensure fairness, (19) is the recon-

struction errors divided by the number of snapshots.

Recall that the snapshot x[t] is reconstructed by (13)

and L[t] is the real full-state spatiotemporal data

rk,t+1 = min

(

0, log

(

t
∑t

τ=0 DX[t],L[t]

))

. (19)

VIII. EVALUATION

We developed a solar energy-powered IoT data collection

simulator to evaluate the S-Agents. The device power traces

are downloaded from [27].

A. Experiment Settings

EH IoT Sensing: We simulate 343-device EH IoT sensing

system by following the similar model architecture in Fig. 3,

where the devices begin operating from 8:00 A.M. to 18:00

P.M. to sense the luminosity data. The devices are expected to

transmit the collected data to the edge server per 5 min. For

the sensed data of devices, we adopt the real luminosity data

sensed by 343 devices in the United States in 2006 downloaded

from the database [28]. Overall, we have spatiotemporal data

about luminosity for 365 days. The spatiotemporal data for

each day consist of either 343 data traces or 156 snapshots.

We randomly select the luminosity traces on 150 days from

343 devices trained �spl for 156 time slots and �tpl for 343

devices. After that, the luminosity traces of 115 days are for

the S-Agent training. The leftover 100 days of data are used to

evaluate the reconstruction errors. Table I lists the parameters

used in our EH IoT device simulation [29] and multiresolution

distance measurement [21].

S-Agent: We train S-Agent 115 episodes, which matches

our EH IoT system simulation for 115 days. For POMDP, we

set discount factor γ = 0.9 and the learning rate δ = 5e−4.

The architecture of the target neural network model and local

neural network model are both 3-64-256-2. At the beginning

of each day, the environment will be reset, and all measured

parameters will be reinitialized. This is for a fair comparison

which prevents the system from being influenced by residual

effects such as remaining energy from the previous day.

Baselines: We compare our S-Agent algorithm with the fol-

lowing four benchmarks to show the influence of each phase

in our framework.

1) QR-ST baseline provides the determined sensing sched-

ule with QR pivot factorization based method; compared
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Fig. 5. S-Agent reconstruction error versus with training day.

Fig. 6. Average reconstruction errors of spatiotemporal data for 100 test
days.

with the proposed S-Agents, the QR-ST algorithm pro-

vides a fixed schedule without consideration for dynamic

fine-tuning of the sensing operation with DRL for the

environmental variation.

2) DQN baseline adopts the DQN algorithm to schedule

sensing; when compared with the proposed S-Agents,

the preliminary suggestion from QR-ST is not provided

in the DQN baseline.

3) CS baseline provides the sensing scheduling with S-

Agents that reconstructs data with a universal basis,

Fourier basis, where the S-Agents reconstruct data with

the tailored basis �spl and �tpl.

4) Q-table baseline provides the sensing scheduling with

the Q-table deployed on each device; This baseline aims

to explore if we can save more computing resources

by replacing the neural network with Q-table without

sacrificing the performance of sparsity-aware sensing.

B. Overall Performance

We first evaluate the overall performance with measured

average reconstruction error during the training period and test

sets. Fig. 5 indicates the reconstruction error versus 115 train-

ing days. In the training period, the S-Agent does not only

converges faster than the typical DQN but also achieves a

much lower reconstruction error. The only difference between

the S-Agent and the typical DQN is the S-Agent with the sug-

gestions from QR-ST and the DQN without that. Although

the distributed Q-table has the fastest convergent speed, its

reconstruction error is almost 3× that of the S-Agents.

Fig. 6 overviews the average spatiotemporal data reconstruc-

tion error for 100 test days with the multiresolution distance-

based measurement and Euclidean distance measurement. No

matter which measurement we adopt, the S-Agent achieves

(a)

(b)

(c)

(d)

Fig. 7. Reconstructed snapshot at 10:00 by (a) S-Agent, (b) DQN, (c) QR-ST,
and (d) CS.

the best performance on the reconstruction error. With the

multiresolution distance-based measurement, the performance

for different algorithms is distinguished, where the S-Agent

decreases the reconstruction error to 6.78, reduced by 66.30%

compared with DQN which has the best performance among

the baselines. Although there is a much smaller difference

among algorithms under Euclidean distance measurement, the

S-Agent still outperforms all baselines.

C. Reconstruction Visualization

We randomly select the snapshots at 10:00 and 16:00 on one

day to visualize the reconstruction details of three baselines.

Since the reconstruction error completed by Q-table is obvi-

ously larger than other methods, we do not show it. Figs. 7

and 8 visualize the real data, the reconstructed data, and

the collected sparse data of snapshots at 10:00 and 16:00,

respectively. The green indicates the real data. The blue is

reconstructed by the red collected data that is sparse. Ideally,

the reconstructed data are expected to exactly coincide with the

real data. Meanwhile, the fewer data required to be collected,

the better is. Specifically, the luminosity value of the collected
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(a)

(b)

(c)

(d)

Fig. 8. Reconstructed snapshot at 16:00 by (a) S-Agent, (b) DQN, (c) QR-ST,
and (d) CS.

data at -1 indicates that the sensing at that device or time point

is skipped. For readability, we only indicate a portion of recon-

structed data and real data. The S-Agent can precisely capture

the spatial features both at 10:00 and 16:00. DQN completes

a better reconstruction at 10:00 compared with its reconstruc-

tion at 16:00. It is worth mentioning that at 16:00 QR-ST

almost achieves the same reconstruction as that of S-Agent

with the peak reconstruction performance among baselines.

However, it does not capture any features at 10:00. No device

collects data at 10:00 AM for QR-ST, which is the situation

analyzed in Fig. 2(a). Therefore, due to the unstable environ-

ment of the EH IoT system, a fixed sensing strategy, such as

QR-ST, cannot be adaptive with environmental variation. Due

to the randomness of compressed sensing, the reconstruction

in Figs. 7 and 8 is severely fluctuated.

Figs. 9 and 10 visualize the reconstruction from temporal

dimension. It indicates the real luminosity data, reconstructed

luminosity data, and collected luminosity data of two devices,

located at [25.75◦N, 80.85◦W] and [36.25◦N, 102.95◦W],

respectively. In Fig. 9, from 8:00 to 12:00, the number of

collected data of four algorithms is almost the same. The

S-Agents is the only one to successfully reconstruct the data

(a)

(b)

(c)

(d)

Fig. 9. Reconstructed traces at [25.75◦N, 80.85◦W] by (a) S-Agent, (b) DQN,
(c) QR-ST, and (d) CS.

at around 9:00. Moreover, from 16:00 to 18:00, although

S-Agents captures three real data that is more than the num-

ber of collected data by other baselines, the reconstruction

of S-Agents is merged better with the real data. In Fig. 10,

also only S-Agents completed the reconstruction from 16:00

to 18:00. Excepting the CS, the other three methods achieve

an outstanding reconstruction from 8:00 to 14:00, especially

for the S-Agents with a smaller number of data collection.

D. Energy Discussion

We further explore the device’s energy consumption

of Fig. 9. Fig. 11 indicates the runtime energy usage of Fig. 9

given the corresponding sensing strategy. Without compressed

sensing, the EH IoT devices are frequently interrupted because

of the weak power supply. Due to the sparse sensing, the

interruption is rarely caused by sensing. Furthermore, the

energy of the S-Agent is sharply down from 8:00 to 9:00

to sense data, which reflects the S-Agent dynamically fine-

tune the sensing strategy so as to collect the most critical data
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(a)

(b)

(c)

(d)

Fig. 10. Reconstructed traces at [36.25◦N, 102.95◦W] by (a) S-Agent, (b)
DQN, (c) QR-ST, and (d) CS.

Fig. 11. Energy cost on sensing for the device of Fig. 9.

with limited energy. It actually implies the energy allocation

capability of the S-Agent.

The raw data in Table II indicates the data size of luminos-

ity data in 2006 collected by 343 devices without applying the

sparsity-aware sensing. Table II shows the total data size col-

lected in our simulation for reconstructing while we applied

TABLE II
TOTAL COLLECTED DATA SIZE (KB)

TABLE III
OVERHEAD ON MCU OF DIFFERENT ALGORITHMS

the algorithms of S-Agent, DQN, QR-ST, CS, and Q-table for

the sparsity-aware sensing. Fig. 6 and Table II indicate that the

S-Agent only needs to collect 8.93% data that can reconstruct

the full-state data with 7.86 errors. Thus, we can save the sens-

ing and communication resources on the 91.07% redundant

data while the full-state data is reconstructed with 7.86 errors

(6.78 errors with multiresolution distance measurement).

E. Overhead Evaluation

We discuss the overhead of the different algorithms

in Table III, which illustrates the number of floating-point

operations (FLOPs), runtime, and energy overhead of the

proposed S-Agents and four benchmarks, where the FLOPs are

the number of FLOPs on running a 3-64-256-2 fully connected

neural network, runtime is tested on TI MSP430FR6989

LaunchPad [29], and the energy overhead is the processing

energy costs while the processing power is 0.001 J/s. The QR-

ST does not have overhead because the QR-ST algorithm

uses the fixed scheduling that is calculated by the servers.

Therefore, at the runtime stage, the QR-ST algorithm only

needs to retrieve the decision from the memory. The runtimes

of the S-Agents and the CS are slightly higher than that of

the DQN, which is caused by that DQN does not take any sug-

gestion from the QR-ST so that its FLOPs are less than that

of the S-Agents and the CS. Although the overhead of the S-

Agents are the highest among the four benchmarks in terms

of the FLOPs, runtime, and energy overhead on processing,

its reconstruction effectiveness dramatically outperforms that

of the four benchmarks.

IX. CONCLUSION

This article aims to construct a sparsity-aware spatiotempo-

ral data sensing framework for the EH-powered IoT system

by employing the multiagent DRL to optimize the sensor

selection from spatial perspective and sensing scheduling from

temporal perspective. We first construct a comprehensive spa-

tiotemporal data sensing for the EH-powered IoT system. With

the consideration of limited computation capability of EH

IoT devices, we then develop QR-ST to compute the deter-

mined spatiotemporal sensing scheduling. Through leveraging

the determined sensing scheduling, the DRL-based S-Agents is

further developed to dynamically fine-tune sensing operation

in the runtime.
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