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Abstract—Knowledge graph embedding is an effective way to represent knowledge graph, which greatly enhance the performances

on knowledge graph completion tasks, e.g., entity or relation prediction. For knowledge graph embedding models, designing a powerful

loss framework is crucial to the discrimination between correct and incorrect triplets. Margin-based ranking loss is a commonly used

negative sampling framework to make a suitable margin between the scores of positive and negative triples. However, this loss can not

ensure ideal low scores for the positive triplets and high scores for the negative triplets, which is not beneficial for knowledge

completion tasks. In this paper, we present a double limit scoring loss to separately set upper bound for correct triplets and lower bound

for incorrect triplets, which provides more effective and flexible optimization for knowledge graph embedding. Upon the presented loss

framework, we present several knowledge graph embedding models including TransE-SS, TransH-SS, TransD-SS, ProjE-SS and

ComplEx-SS. The experimental results on link prediction and triplet classification show that our proposed models have the significant

improvement compared to state-of-the-art baselines.

Index Terms—Knowledge graph, embedding, representation learning, knowledge graph completion, loss function

Ç

1 INTRODUCTION

KNOWLEDGE graphs (KGs) related researches have become
one of the major issues in artificial intelligence, due to

its effectiveness in representing, learning and predicting
structured information as well as building knowledge data-
base. In recent years, various available large-scale KGs such
as NELL [1], ProBase [2], [3], GeneOntology [4] and Yago
[5] have become very important resources to support many
AI related applications, such as question answering system
[6], [7], [8], [9], WebSearch [10], [11] and Information Extrac-
tion [12], [13], [14], [15], [16].

KGs are composed of entities and relations, where enti-
ties are nodes and relations are edges. A triplet ðh; r; tÞ is a
basic structural unit of KGs that represents a relationship r
from head entity h to tail entity t. Looking for more effective
representations of KGs, which are different from the sym-
bolic manner ðh; r; tÞ, are particularly important for knowl-
edge graph completion (KGC) tasks, such as link prediction
and triplet classification.

KG embedding is a promising approach to model the
relational facts into continuous vector space [17], [18], [19],

[20], [21], [22], [23]. In a KG embedding model, there are
two major components, the scoring triplets and the optimiz-
ing loss function. In the last few years, negative sampling
framework is very common for modeling KG embedding.
In this framework, for a correct triplet (h; r; t), a correspond-
ing incorrect triplet ðh0; r; t0Þ can be sampled from the data
set, then the pair of triplets {(h; r; t), (h0; r; t0)} as input are
measured by the scoring function and optimized by the loss
function. Fig. 1 simply demonstrates the process.

� The scoring function for a triplet is denoted as frðh; tÞ
which measures the matching of a triplet ðh; r; tÞ in
the embedding space. The score is usually low when
a triplet ðh; r; tÞ is correct, otherwise high for the cor-
rupted triplet ðh0; r; t0Þ. The ideal score of a positive
triplet ðh; r; tÞ is usually lower than its corresponding
negative triplet ðh0; r; t0Þ.

� The loss function for optimization is to distinguish the
scores of positive and negative triplets. One can learn
the embeddings of entities and relations by minimiz-
ing a designed loss, such asmargin-based ranking loss
functionmaxð0;mþ frðh; tÞ � frðh

0; t0ÞÞwhich expects
that the score of positive triplet ðh; r; tÞ is lower at least
bym than that of corresponding negative triplet.

Most of current negative sampling KG embedding models
focus on the first component that is to design effective scoring
functions frðh; tÞ for triplets, such as structured embedding
(SE) [24], latent factormodel (LFM) [25], [26], semanticmatch-
ing model (SME) [27], [28], neural tensor network model
(NTN) [17] and translation models [18], [19], [20], [21] etc.
There are fewer researches on loss functions, and the margin-
based ranking loss is the most common negative sampling
method for KG embeddingmodels.

The margin-based ranking loss (abbreviated as LR loss in
this paper) has achieved great success in KG embedding
learning, but this loss maybe lead to the overlapping
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between the positive and negative scores, and especially
cannot ensure that the positive triplet’s score frðh; tÞ is low
enough for a golden triplet ðh; r; tÞ [29]. Under a margin-
based ranking loss, there maybe three kinds of value distri-
butions for a pair of positive and negative triplets ffrðh; tÞ;
frðh

0; t0Þg, including flowfrðh; tÞ; highfrðh
0; t0Þg, flowfrðh; tÞ;

lowfrðh
0; t0Þg and fhighfrðh; tÞ; highfrðh

0; t0Þg. Among the
three cases, flowfrðh; tÞ; lowfrðh

0; t0Þg; fhighfrðh; tÞ; highfr
ðh0; t0Þg are both unexpected for entity prediction, because
low frðh

0; t0Þ and high frðh; tÞ are very prone to the overlap-
ping of the scores of the positive and negative entities.
TransE-RS and TransH-RS [29] presented to add a upper-
limit scoring loss on frðh; tÞ to guarantees low scores for
the golden triplets, which can effectively avoid fhighfr
ðh; tÞ; highfrðh

0; t0Þg case, and has significant improvement
compared to state-of-the-art baselines. But this combined
loss (abbreviated as LRS loss) still can not avoid the
flowfrðh; tÞ; lowfrðh

0; t0Þg case. Inspired by the upper-limit
scoring of LRS on the positive triplets, this paper also sets a
lower-limit score for negative triplets to further avoid
flowfrðh; tÞ; lowfrðh

0; t0Þg case, which can rank the correct
entities before the incorrect, and also provide more flexible
scoring control for the triplets. The intuitive examples and
detailed explanations are give in Section 3.4.

In this paper we present a novel double limit scoring loss
LSS for KG embedding learning, which has an upper-limit
score for positive triplets and a lower-limit score for nega-
tive triplets. Upon our LSS loss, we present our models
TransE-SS, TransH-SS, TransD-SS, ProjE-SS and ComplEx-
SS, by extending TransE [18], TransH [19], TransD [19],
ProjE [30] and ComplEx [31]. The effectiveness of the
extended models is evaluated on link prediction and triple
classification, using standard benchmark datasets of Word-
Net [32] and Freebase [33]. The main contributions of this
paper can be summarized as follows.

� A double limit scoring loss framework for KG
embedding models is presented, which enables posi-
tive and negative triplets to be more flexibly and
effectively optimized.

� Based on the double limit scoring loss, we derive
several new extended models TransE-SS, TransH-SS,
TransD-SS, ProjE-SS and ComplEx-SS from the cur-
rent state-of-the-art models. Our models improve
the performances of the algorithms without increas-
ing the parameter and computation complexity.

� Experiments are carried out on the datasets Word-
Net and Freebase, and the results show that our

proposal models have significant improvements
comparing with previous baselines in KG comple-
tion tasks.

The rest of this paper is organized as follows. In the next
section, some related works about KG embedding models
are given. The proposed LSS loss is presented and discussed
in Section 3. Upon LSS loss framework, some new models
including TransE-SS, TransH-SS, TransD-SS, ProjE-SS and
ComplEx-SS for KG embedding are also presented. In Sec-
tion 4, we detail the experimental studies on our models
and make discussions on how parameters affect the perfor-
mance of our model. Finally we give a conclusion for our
paper in the last section.

2 RELATED WORKS

2.1 Knowledge Graph Embedding Models

According to the definitions of different scoring functions,
the KG embedding models can be briefly classified into
translation models and semantic matching models.

The translation models define a score function to measure
the distance between two entities, and usually each relation is
regarded as a translation operator. TransE [18] is the most
widely used translationalmodel that regards a relationship as
a translation operation for a head-tail entity pair. This model
is very efficient to 1-to-1 relation, but it has issues for N-to-1,
1-to-N and N-to-N relations [19]. To address the issues of
TransE for complex relations, TransH [19] introduces rela-
tion-specific hyperplanes with normal vector to enable an
entity to have different roles. Furthermore, TransR/CTransR
[34] considers the relation-specific spaces instead of the
hyperplane in TransH. TransD [20] replaces transfer matrices
by the product of two projection vectors for an entity-relation
pair. TranSparse [21] simplifies TransR by adopting sparse
transfer matrices to project the head and tail entities. STransE
[35], utilizes transfermatrices tomap the head and tail embed-
dings into relation spaces separately. ITransF [36] is a general-
ization of STransE, which introduces sparse attention vectors
for each relation. TransF [22] weakens the scoring for the
translated head and the inverse translated tail.

The semantic matching models define a score function as
similarity by matching latent semantics of entities and rela-
tions. RESCAL [37] is a tensor factorization model that enco-
des each relation as a matrix to model pairwise interactions
between latent semantics of entities. Someother tensor factori-
zation based works have been proposed [38], [39], [40], [41],
[42], [43], [44], [45], [46]. Semantic Matching Energy (SME)
[27], [28] aims to capture correlations between entities and
relations via multiple matrix products and Hadamard prod-
uct, which considers both linear and bilinear form of semantic
matching energy functions for optimization. Single Layer
Model (SLM) [17] introduces single layer of neural network
for semantic matching. NTN Model (NTN) [17] extends the
SLM by considering the second-order correlations into non-
linear transformation. However, the complexity of the model
is much higher, making it difficult to handle large scale
graphs. DistMult [47] considers second-order correlations
between entity embeddings by using a quadratic form, and
defines a bilinearmatching function as scoring function. HolE
[48] takes full advantages of the powerful expression of
RESCAL and the simplicity of DistMult to embed entities and

Fig. 1. Example of knowledge graph embedding method.
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relations as vectors. ComplEx [31] is an extension of DistMult,
which embeds entities and relations into a complex-valued
space for better modeling asymmetric relations. ProjE [30] is
the state-of-the-art neural based model for learning KG
embeddings, which is a neural network with a combination
layer and a projection (i.e., output) layer. ConvE [49] uses con-
volutional and fully-connected layers to model the interac-
tions between input entities and relationships. Multiple-step
relation path based models such as PTransE [50], RTransE
[51] and Goal-Directed Random Walk [52] can achieve excel-
lent performance with extended path information, but the
size of these models grow exponentially as the path-length
increases. Recently RotatE [53] presents a Hadmard product
scoring function to model and infer all the various relation
patterns of KG, including symmetry, inversion and composi-
tion, which significantly outperform existing state-of-the-art
models for link prediction.

2.2 Loss Functions

From the view of negative sampling optimization for KG
embedding, we summarize the related losses as follows.

Margin-based ranking loss LR is a usual used loss func-
tion for KG embedding models, which has successfully
been used for LFM [26], SME [27], NTN [17], TransE [18],
TransH [19], TransR [34], and TransD [20] etc. The LR loss is
:

LR ¼
X

ðh;r;tÞ2D

ðh0 ;r;t0Þ2D0

½m1 þ frðh; tÞ � frðh
0; t0ÞÞ�þ; (1)

where ½x�þ ¼ maxð0; xÞ is a rectified linear unit that denotes
the positive part of x. m1 > 0 is the margin between the pos-
itive and negative triplets, and D is the set of positive trip-
lets. D

0 ¼ fðh0; r; tÞjh0 2 Eg [ fðh; r; t0Þjt0 2 Eg denotes the
set of corrupted triplets, including training triplets with
either the head or tail replaced by a random entity.

TransE-RS and TransH-RS [29] present to add a limit-
based scoring loss term ½frðh; tÞ � m2�þ for positive triplet into
themargin-based ranking loss framework. The combined loss
framework (abbreviated asLRS) for KG embedding is:

LRS ¼
X

ðh;r;tÞ2D;

ðh0 ;r;t0Þ2D0

½m1 þ frðh; tÞ � frðh
0; t0Þ�þ þ �½frðh; tÞ � m2�þ;

(2)

where �;m2 > 0. Comparing with LR loss, LRS loss expects
not only marginal discrimination between positive and neg-
ative triplets’ scores, but also low scores for positive triplets.

Some other negative sampling losses for KG embedding
models also try to make the discriminative marginal scores
between the true and false triplets. HolE [48] suggests to use
the margin-based ranking loss based on logistic function to
discriminate the probabilities of true and false triplets. Trouil-
lon and Nickel [54] present maximum likelihood of the logis-
tic model which correspond to the softplus function as a
differentiable alternative to margin-based ranking loss. Com-
plEx [31] defines a negative log-likelihood loss for modelling
the discrimination. ProjE [30] also uses a negative sampling
pointwise loss to rank the probability of true triples higher
than the probability of false ones. RotatE [53] makes the true
and false triplets as far away from a margin as possible. In

addition to the negative sampling KG embedding methods,
the neural network framework with cross-entropy loss and
multi-label 1-k binary cross-entropy [49] [55], have been
developed for KG embedding in recent years. In this paper,
our work mainly focuses on improving the marginal ranking
lossLR and the combined lossLRS for KG embedding.

3 THE PROPOSED METHODS

From the related works summarized in previous section, we
find that most of the negative sampling KG embedding
models are under the margin-based ranking loss LR, which
can not ensure low score for the golden triplet. LR loss tries
frðh0; t0Þ � frðh; tÞ � m1, otherwise the parameters of the loss
function will be updated. Although such loss can obtain a
margin m1 between frðh; tÞ and frðh

0; t0Þ, but it may not
ensure the score of correct triplet to be small enough to hold
ðh; r; tÞ [29]. Combined limit-based scoring loss LRS frame-
work [29] can improve the limit capacity for golden triplet
greatly. However, margin-based ranking loss term ½m1 þ
frðh; tÞ � frðh

0; t0Þ�þ in LRS is composed of frðh; tÞ and
frðh

0; t0Þ, LRS loss is still difficult to independently control
the scores of negative triplets ðh0; r; t0Þ without affecting that
of positive ones. Moreover, both LR and LRS could not
avoid the overlap of the positive and negative triplets’
scores for complex relations completely.

In this section, we first present double limit scoring loss
LSS for optimizing KG embedding models, and give the
metrics of our loss for optimization. Second upon LSS loss
framework, we present several KG embedding models,
TransE-SS, TransH-SS, TransD-SS, ProjE-SS and ComplEx-
SS. Third we introduce the optimization of our LSS loss for
the extended models, and at last the merits of our proposed
loss are demonstrated by an intuitive numeric example.

3.1 Double Scoring Loss

A good loss framework for KG embedding tries to distin-
guish positive and negative triplet structures, meanwhile
expects to learn the low score for correct triplet and the high
score for incorrect triplet. In order to effectively distinguish
positive and negative triplets through their scores, we pro-
pose the double scoring loss (denoted as LSS), which con-
sists of two scoring loss terms, and sets an upper bound for
scoring positive triplets and a lower bound for scoring nega-
tive triplets separately. To this aim, we need to first define
two limit-based scoring loss terms, LSneg and LSpos .

LSneg is the lower-limit scoring loss for negative triplets,

LSneg ¼
X

ðh0;r;t0Þ2D0

½m3 � frðh
0; t0Þ�þ: (3)

By the negative triplets ðh0; r; t0Þ, LSneg will be optimized to
obtain higher scores than a given lower-limit m3, i.e.
frðh

0; t0Þ � m3.
In contrast, we define the upper-limit scoring loss LSpos

for correct triplets,

LSpos ¼
X

ðh;r;tÞ2D

½frðh; tÞ � m2�þ; (4)

LSpos is also used in LRS loss, and sets the upper bound m2

for the positive triplet’s scores frðh; tÞ, i.e., frðh0; t0Þ � m2.
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Mathematically in all, the proposed double scoring loss is
defined as:

LSS ¼ LSpos þ �LSneg ;

where � � 0 is a parameter that balances the two limit-
based scoring loss terms. A more detailed formula of the
loss function is written as:

LSS ¼
X

ðh;r;tÞ2D

ðh0 ;r;t0Þ2D0

f½frðh; tÞ � m2�þ þ �½m3 � frðh
0; t0Þ�þg:

(5)

Merits of Double Scoring Loss. Double scoring loss LSS fur-
ther improves combined limit-based scoring loss LRS by
replacing margin-based ranking loss term with the scoring
loss term for negative triplet. The new loss dose not only
have more flexible parameter tuning for negative triplets,
but also restrict negative triplets without affecting positive
ones directly. In details,

(1). Marginal scoring for positive and negative triplets,
as an important goal of original margin-based rank-
ing loss, can also be implemented by the double scor-
ing loss. We usually set m3 > m2 for the double
scoring loss aiming at making frðh; tÞ � m2 and
frðh0; t0Þ � m3. It means that we expect the margin
between frðh; tÞ and frðh0; t0Þ is at least m3 � m2.

(2). Ranking scores frðh; tÞ � frðh0; t0Þ, which is another
aim of margin-based ranking loss, is also realized by
the double scoring loss. If frðh; tÞ � m2 and frðh

0; t0Þ �
m3 by settingm3 > m2, obviously frðh; tÞ < frðh

0; t0Þ.
(3). From the respect of avoiding overlaps between the

score distributions of positive and negative, LSS loss
can ensure low score for positive triplets and high
score for negative triplets by setting double scoring
limit, i.e., small m2 and large m3.

(4). LSS loss provides independent scoring limits for pos-
itive and negative triplets. Compared with LR and
LRS , the mechanism makes the learning process of
parameter more effective flexible, and the optimiza-
tion for negative triplets more independent.

Comparing with the combined scoring loss LRS

[29], our loss further replaces the margin-based
ranking loss item with a scoring loss for negative
triplets, and have more direct scoring control for
negative triplets.

3.2 Models

Upon the proposed double scoring loss, we extend TransE
[18], TransH [19], TransD [20], ProjE [30] and ComplEx [31]
separately to TransE-SS, TransH-SS, TransD-SS, ProjE-SS
and ComplEx-SS. In this subsection, among the knowledge
embedding models mentioned in related work, TransE and
TransH have lower time complexities, and TransD, ProjE
and ComplEx have much better predictive performances on
KG completions. Our models, TransE-SS, TransH-SS and
TransD-SS separately share the same scoring functions of
TransE, TransH and TransD. ProjE-SS and ComplEx-SS
extend the scoring by probability activation function based
on the former models.

3.2.1 TransE-SS

Same to TransE, our TransE-SS regards each relation as a
translation operation between the head embedding and tail
embedding on the same vector space.

For a triplet ðh; r; tÞ, TransE-SS defines a scoring function
frðh; tÞ to measure its plausibility:

frðh; tÞ ¼ khþ r� tk; (6)

with restrictions kek2 ¼ 1; krk2 ¼ 1, where h; r; t 2 Rm are
the embeddings of h; r; t respectively. This scoring function
expects that the score is high for a positive, and low for a
negative triplet.

Different from TransE that uses margin-based ranking
loss LR (Eq. (3)), TransE-SS uses the proposed double scor-
ing loss LSS (Eq. (5)) for optimization and training.

3.2.2 TransH-SS

TransE-SS is very efficient to 1-to-1 relation, but same to
TransE, it still has the issues for N-to-1, 1-to-N and N-to-N
relations. For example, by a 1-to-N relation, a head will only
be translated to the same tail, that is, if r is a 1-to-N relation
for fðh; r; tiÞgi¼1;2;...;N , then t1 ¼ t2 ¼ . . . ¼ tN , which does
not handle the facts [19].

To address the issues of TransE-SS for complex relations,
TransH-SS also uses the same scoring function as TransH
[18], which models entities and relations as low-dimensional
embedding vectors, and uses a hyperplane determined by the
normal vectorwr 2 Rm to translation operation.

For a triplet ðh; r; tÞ, TransH-SS first projects the head and
tail entity embeddings h; t into the hyperplane and gets the
projections as

h? ¼ h�w
T
hw

t? ¼ t�w
T
tw:

Then TransH conducts the translation operation and defines
the scoring function as

frðh; tÞ ¼ kh? þ r� t?k; (7)

with restrictions kek2 � 1, jwT
r drj=kdrk2 � �, kwrk2 ¼ 1.

Traditional TransH is based on the LR loss framework,
our TransH-SS optimizes the embeddings and model
parameters by the new LSS loss (Eq. (5)).

3.2.3 TransD-SS

TransD-SS defines the same scoring function as TransD [20],
which takes the multiple types of entities and relations into
account, and replaces transfer matrix in TransR by the prod-
uct of two projection vectors of an entity-relation pair.

For a triplet ðh; r; tÞ, six vectors h;hp; r; rp; t; tp are used,
where subscript p marks the projection vectors, h;hp; t; tp 2
Rm and r; rp 2 Rn. For each triplet ðh; r; tÞ, we set head and
tail transfer matricesMrh;Mrt 2 Rm�n to project entities from
entity space to relation spaces. They are defined as follows:

Mrh ¼ rph
T
p þ I

n�m

Mrt ¼ rpt
T
p þþI

n�m:

Then we define the scoring function as

fðh; r; tÞ ¼ �logðsðtTgðh� rÞ þ btÞÞ
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where h� r ¼ DhhþDrrþ bc is the combination operator,
andDh;Dr 2 Rn�n;bc 2 Rn.

frðh; tÞ ¼ kMrhhþ r�Mrttk (8)

with restriction khk2 � 1; ktk2 � 1, krk2 � 1, kMrhhk2 � 1,
and kMrttk2 � 1.

TransD-SS can capture more power features than
TransE-SS and TransH-SS. When the dimension m ¼ n, and
all projection vectors are set to zero, TransE-SS is equal to
TransD-SS. Different from TransH-SS, TransD-SS considers
the multiple types of entities and relations, which also
determines the projection vectors simultaneously.

Similar to the former models, TransD-SS uses our double
scoring loss LSS to replace the LR loss in TransD.

3.2.4 ProjE-SS

Different from the usual translation-based KG embedding
model, HolE [48] and ProjE [30] take P ðYhrt ¼ 1Þ ¼
sðfðr; h; tÞÞ as the probability scoring of ðh; r; tÞ. Yhrt 2
f�1;þ1g is the label for true or false triplet. f is a measure
function for an observed relation, and sð	Þ is the activation
function to further compute its probability to be correct.

In order to make the probabilities easier to be observed,
�logð	Þ is suggested to be operated on the probabilities. For
a triplet, the scoring function of ProjE-SS is defined as

fðh; r; tÞ ¼ �logðsðtTgðh� rÞ þ btÞÞ; (9)

where h� r ¼ DhhþDrrþ bc is the combination operator,
andDh;Dr 2 Rn�n;bc 2 Rn. The scoring function is a neural
network operator, which takes two embedding vectors
ðh; rÞ as input and creates a target vector through a combi-
nation operator, and then compute the probability scores of
candidate embeddings for missing tail by a projection layer
and activation function. The activation function can be
logistic function or softmax function.

For the loss functions, HolE [48] suggests using the mar-
gin-based ranking LR loss to rank the probability of true tri-
ples higher than the probability of false ones:

L ¼
X

ðh;r;tÞ2D;ðh0;r;t0Þ2D0

½mþ sðfðh0; r; t0ÞÞ � sðfðh; r; tÞ�þ;

With the similar purpose, ProjE defines a pointwise loss [30]:

L ¼ �
X

t

logðsðfðh; r; tÞÞÞ �
X

t0ðt0 6¼tÞ

logð1� sðfðh; r; t0ÞÞÞ:

For ProjE-SS, we use the new LSS loss framework to real-
ize the optimization. Given an input ðh; rÞ, the loss function
is defined upon all correct tails and m negative samples
drawn from a negative candidate distribution t0 
 Et0 :

LSS ¼
X

t

½fðh; r; tÞ � m2�þ þ �
X

t0ðt0 6¼tÞ

½m3 � fðh; r; t0Þ�þ:

3.2.5 ComplEx-SS

Same to ComplEx [31], ComplEx-SS considers low-rank
matrix factorizations in complex space for scoring the

triplets. For a relation, we can get a partially observed adja-
cency matrix Y 2 Rn�n, and each element yh;t 2 f�1; 1g
denotes the true or false relation between entity pairs ðh; tÞ.
If Y is low-sign-rank, then the sign-rank of it is the smallest
rank of a real scoring matrix X 2 Rn�n that has the same
sign-pattern as Y [31]:

rankðY Þ ¼ minX2Rm�nfrankðY ÞjsignðXÞ ¼ Y g:

By setting a low-rank k� n on the scoring matrix X, it can
be approximated by dot products of complex embeddings:

X ¼ EWE
T
;

where W 2 Ck�k is the diagonal matrix of eigenvalues, E 2
Cn�k is the matrix of eigenvectors, and E is the complex
conjugate of E. We also extract the real part of the decompo-
sition as our scoring, as shown by [31].

X ¼ ReðEWE
T
Þ:

Individual relation scores Xht between entities h and t can
be predicted as X ¼ Reðeh

TWetÞ by the product of embed-
dings eh; et 2 Ck.

Such complex embedding model can effectively capture
symmetric and antisymmetric relations, while the dot prod-
uct is linearity in both space and time complexity. Factually
in order to efficiently predict the scores Xr for the relations
r 2 R, our ComplEx-SS same to ComplEx [31] that introdu-
ces a relation complex vector wr 2 Ck to define the measure
function of ðh; r; tÞ:

fðh; r; tÞ ¼Reð< wr; eh; et > Þ

¼ < ReðwrÞ; ReðehÞ; ReðetÞ >

þ < ReðwrÞ; ImðehÞ; ImðetÞ >

þ < ImðwrÞ; ReðehÞ; ImðetÞ >

� < ImðwrÞ; ImðehÞ; ReðetÞ > ;

(10)

We further compute the probability of the true fact rðh; tÞ is
P ðYrht ¼ 1Þ ¼ sðfðh; r; tÞÞ, and then define the scoring func-
tion of ComplEx-SS as follows:

frðh; tÞ ¼ �logðsðfðh; r; tÞÞÞ: (11)

Different to ComplEx that defines the loss function by
minimize the negative log-likelihood of the model [31], our
ComplEx-SS uses the double scoring loss for optimization:

LSS ¼
X

D

½frðh; tÞ � m2�þ þ �
X

D
0

½m3 � frðh
0; t0Þ�þ;

where D and D
0 denote the positive and negative triplets for

a special relationship.

3.3 Optimization and Training

The optimization for minimizing the double limit scoring loss
with the constraints mentioned above is carried out gradient
descent [56] over the possible entities, translation vectors and
other parameters. When a golden triplet is visited, a negative
triplet is randomly constructed according to the reference
[19]. Given a mini-batch of training triplets fðhi; ri; tiÞgi¼1
NB

,
the double limit scoring loss of amini-batch is
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LSS ¼
XNB

i¼1

LSSðiÞ; (12)

whereLSSðiÞ ¼ LSposðiÞ þ �LSnegðiÞ ¼ ½friðhi; tiÞ � m2�þ þ �½m3�
friðh

0
i; t
0
iÞ�þ. The gradient LSS of a mini-batch is generated

from the stochastic gradient of each pair of positive and nega-
tive triplets fðhi; ri; tiÞ, ðhi

0; ri; ti
0Þg as follows:

rLSS ¼
XNB

i¼1

rLSSðiÞ (13)

where rLSSðiÞ ¼ rLSposðiÞ þ �rLSnegðiÞ ¼ r½friðhi; tiÞ � m2�þþ

�r½m3 � friðh
0
i; t
0
iÞ�þ. Specifically, if friðhi; tiÞ � m2 > 0,

rLSpos ¼ rfriðhi; tiÞ, else rLSpos ¼ 0. If m3 � friðhi
0; ti
0Þ > 0,

rLSneg ¼ �rfriðhi
0; ti
0Þ, elserLSneg ¼ 0.

Comparing with LRS , LSS can optimize negative triplets
more independently. The major differences between LSS

and LRS are that ½m1 þ frðh; tÞ � frðh
0; t0Þ�þ in LRS and ½m3 �

frðh
0; t0Þ�þ in LSS . From the view of computation, r½m3 �

frðh
0; t0Þ�þ can optimize negative triplets more indepen-

dently than r½m1 þ frðh; tÞ � frðh0; t0Þ�þ. Because that for
½m1 þ frðh; tÞ � frðh0; t0Þ�þ, once m1 þ frðh; tÞ � frðh0; t0Þ > 0,
the negative score frðh0; t0Þ is needed to be updated by
rfrðh0; t0Þ from r½m1 þ frðh; tÞ � frðh0; t0Þ�, the correspond-
ing positive score frðh; tÞ is also updated by rfrðh; tÞ from
that. But for ½m3 � frðh

0; t0Þ�þ, the update of negative score
frðh

0; t0Þ by r½m3 � frðh
0; t0Þ� will not affect positive score

frðh; tÞ. Such independent parameter control mechanism for
positive and negative scores by LSS also makes LSS con-
verge faster than LRS (see Fig. 6 in Section 4.3).

Algorithm 1. KG embedding models with LSS

Input: Positive training triplets D ¼ fðh; r; tÞjh; t 2 E; r 2 Rg,
E and R are respectively the set of entities and relations.
Negative training triplets D0 ¼ ;.

Output: Entity and relation embedding E andR

Stage 1: Initialization of Knowledge Graphs.
1: Entity embedding E �initializationðNe;mÞ
2: Relation embeddingR �initializationðNr; nÞ

// initialization(a, b) produces a matrix with size [a, b] by
initialized randomly or the results of TransE [18]

Stage 2: Construct Negative Triplets.
3: for each ðh; r; tÞ in positive sample set D do
4: ðh0; r; t0Þ ¼ generate negativeððh; r; tÞÞ

// using unif/bern strategy in [19] or candidate distribution
strategy in [30] for generating negative samples.

5: D
0 ¼ D

0 [ fðh0; r; t0Þg
6: end for
Stage 3: Learning Embeddings of Entities and Relations.
7: Loop:
8: P = sample_batch(D;D0; B) // sample a mini-batch of size B

at random from positive and negative training samples.
9: for each fðh; r; tÞ; ðh0; r; t0Þg in P do
10: calculater½frðh; tÞ � m2�þ þ �r½m3 � frðh

0; t0Þ�þ
11: update embeddings E andR

12: end for
13: return E;R

In training stage, for TransE-SS, TransH-SS, TransD-SS
and ComplEx-SS, we use the same negative sampling
method as the former models [19], [20], [31]. For ProjE-SS,

we drawm negative samples from a negative candidate dis-
tribution t0 
 Et0 . The embeddings of TransE-SS, TransH-SS,
ComplEx-SS and ProjE-SS are initialized randomly. TransD-
SS is same to TransD [20] that uses the results of TransE as
initialized embeddings. The detailed training process of our
proposed knowledge graph embedding models with double
scoring loss LSS is illustrated in Algorithm 1.

We also give the parameter and operation complexities of
our presented models and relatedmethods in Table 1, where
m and n are the dimension of the entity and relation embed-
ding spaces, Ne, Nr and Nt are the number of entities, rela-
tions and triplets in knowledge graphs, u is the sparse degree
of matrix, c is the number of filter parameters in convolu-
tional operation and l is the length of paths in knowledge
graphs. Compared with former models, our models do not
increase complexities of the parameter and operation.
TransE-SS, TransH-SS, TransD-SS, ProjE-SS and ComplEx-
SS separately have the same parameters and complexities as
the formermodels.

3.4 Examples Analysis

In order to analyze the effectiveness of our double lossLSS for
KG embedding models intuitively, we compare TransE-SS
with TransE (LR loss) andTransE-RS (LRS loss) by an intuitive
example of optimizing positive and negative triplet’s scores.

Given some pairs of correct and incorrect triplets with
the initialized scores ½frðh; tÞ; frðh

0; t0Þ� as ½0:5; 1:5�, ½0:5; 2:5�,
½0:5; 3:5�, ½3:5; 4:5�, ½3:5; 5:5�, ½3:5; 6:5�, ½4:5; 5:5�, ½4:5; 6:5�,
½4:5; 7:5�, ½6:5; 7:5�, ½6:5; 8:5�, ½6:5; 9:5�, shown in Fig. 2a, where
a line connects a pair of scores ½frðh; tÞ; frðh

0; t0Þ�. We assume
that all the pairs of scores are from a same 1-to-n relation
category, that is, the task is to predict the missing tails with
the fixing head and relation ðh; r; ?Þ. We can see a large over-
lapping between the positive and negative triplets’ scores,
and there are three kinds of scores for the pairs: the first five
pairs are the flowfrðh; tÞ; lowfrðh

0; t0Þg case, the sixth pair is
the flowfrðh; tÞ; highfrðh

0; t0Þg case, and the last six belong to
the fhighfrðh; tÞ; highfrðh

0; t0Þg case. We will test the three
losses LR, LRS and LSS on these pairs of scores separately,
and rank all the candidate tails t� (including correct tails t
and incorrect tails t0) by their scorings fðh; r; t�Þ in ascend-
ing order. The ideal result should be that positive tails are
in front of negative tails: t; t; . . . ; t; t0; t0; . . . ; t0.

The parameters used are: m1 ¼ 2 for loss LR, fm1 ¼ 2;
m2 ¼ 4; � ¼ 1g for loss LRS , fm2 ¼ 4;m3 ¼ 6; � ¼ 1g for loss
LSS , the learning rate a ¼ 0:1 for all the losses. Figs. 2b, 2c
and 2d shows the results of scores after gradient LR, LRS

and LSS respectively.
Margin-based Ranking Loss. For the results of margin-based

ranking loss maxð0;mþ frðh; tÞ � frðh
0; t0ÞÞ, as illustrated in

Fig. 2b, although with the margin parameter m1 ¼ 2, all
the pairs satisfy that frðh

0; t0Þ � frðh; tÞ > m1, there are still
the following issues. (1) Margin-based ranking loss cannot
ensure that the positive triplet’s score frðh; tÞ is within a low
value domain. For example, the positive triplets’ scores in last
five pairs are all larger than 4,which is not good for entity pre-
diction according to the scoring function. (2) There still three
kinds of score cases flowfrðh; tÞ; lowfrðh

0; t0Þg, flowfrðh; tÞ;
highfrðh

0; t0Þg and fhighfrðh; tÞ; highfrðh0; t0Þg shown as Fig. 2b,
although the seventh pair are optimized into normal
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flowfr ðh; tÞ; highfrðh
0; t0Þg case. The scores of positive and

negative triplets have a great overlapping, which lead to the
ranking of the correct and incorrect are confused.

Combined Limit-Based Scoring Loss. The combined limit-
based scoring loss LRS enforces an upper-limit score m2 ¼ 4

for all positive triplets, which means that frðh; tÞ < m2 is
also expected. As Fig. 2c shown,LRS dose not only guarantee
the discrimination between scores of positive and negative
triplets at least m1 ¼ 2, but also ensures that score of positive
triplet is within an expected low value domain m2 ¼ 4. Thus,
LRS can effectively avoid fhighfrðh; tÞ; highfrðh

0; t0Þg case,

and the last five fhighfrðh; tÞ; highfrðh
0; t0Þg pairs can be opti-

mized into the flowfrðh; tÞ; highfrðh
0; t0Þg case. However LRS

still can not solve flowfrðh; tÞ; lowfrðh
0; t0Þg case, and there

maybe partial overlapping when the initial scores of positive
and negative triplets are both lower, e.g., the first five pairs.

Double Limit Scoring Loss. Comparing with LR and LRS ,
our double scoring loss can completely avoid overlapping
between scores of positive and negative triplets, and also
can provide two separated optimization processes for posi-
tive and negative triplets. LSS simultaneously sets an
upper-limit score m2 for positive triplets and a lower-limit
m3 for negative triplets, where m3 � m2 imply the margin
between the pairs of scores. As illustrated in Fig. 2d, all pos-
itive triplets have scores lower than m2 ¼ 4 and negative
triplets have scores larger than m3 ¼ 6, and there is no over-
lap between scores of positive and negative triplets.

4 EXPERIMENTS

We compare our proposed LSS based models with other KG
embedding models for link prediction [18] and triplet classi-
fication [17] tasks on two popular KGs, FreeBase [33] and
WordNet [32]. Freebase contains a large number of world
facts, and WordNet is a large lexical knowledge graph. In
our experiments, we use some subsets of the two KGs, and
the statistics of the subsets are given in Table 2. WN18,
WN18RR and WN11 are fromWordNet, and FB15k, FB15K-
237 and FB13 are from Freebase. Earlier compared WN18
and FB15K [18] both include a large number of inverseFig. 2. Instances on scores of triplets.

TABLE 1
Summary of Related Models

Model #Parameter #Time Complexity

LFM OðNemþNrn
2Þðm ¼ nÞ Oððm2 þmÞNtÞ

SE OðNemþ 2Nrn
2Þðm ¼ nÞ Oð2m2NtÞ

SME(LIN) OðNemþNrnþ 4mkþ 4kÞðm ¼ nÞ Oð4mkNtÞ
SME(BILIN) OðNemþNrnþ 4mksþ 4kÞðm ¼ nÞ Oð4mksNtÞ
UM OðNemÞ OðNtÞ
TransR OðNemþNrðmþ 1ÞnÞ Oð2mnNtÞ
TranSparse OðNemþNrð1� uÞÞmn OðmnNtÞ
STransE OðNemþ 2Nrðn

2 þ nÞÞ Oð2m2NtÞ
TransG OðNemþNrncÞ OðmcNtÞ
KG2E OðNemþNrnÞ OðmNtÞ
SLM OðNemþNrð2kþ 2nkÞÞ Oðð2mkþ kÞNtÞ
NTN OðNemþNrðn

2sþ 2nsþ 2sÞÞ Oðððm2 þmÞsþ 2mkþ kÞNtÞ
RESCAL OðNemþNrn

2Þ Oðm2NtÞ
DistMult OðNemþNrnÞ OðmNtÞ
HolE OðNemþNrnÞ OðmlogðmÞNtÞ
ConvE OðNemþNrnÞ OðNtcÞ
PTransE OðNemþNrnÞ OðlNtÞ
RTransE OðNemþNrn OðlNtÞ
TransE OðNemþNrnÞ OðNtÞ
TransE-RS OðNemþNrnÞ OðNtÞ
TransE-SS OðNemþNrnÞ OðNtÞ
TransH OðNemþ 2NrnÞ Oð2mNtÞ
TransH-RS OðNemþ 2NrnÞ Oð2mNtÞ
TransH-SS OðNemþ 2NrnÞ Oð2mNtÞ
TransD Oð2Nemþ 2NrnÞ Oð2nNtÞ
TransD-SS Oð2Nemþ 2NrnÞ Oð2nNtÞ
ProjE OðNemþNrnþ 5mÞ Oð2ðm2 þmÞNtÞ
ProjE-SS OðNemþNrnþ 5mÞ Oð2ðm2 þmÞNtÞ
ComplEx OðNemþNrnÞ OðmNtÞ
ComplEx-SS OðNemþNrnÞ OðmNtÞ
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triplets, that is, the test set frequently contains triples such
as ðs; r1; oÞ while the training set contains its inverse
ðo; r2; sÞ. So FB15K-237 [57] and WN18RR [49] were intro-
duced to remove the inverse relations and reclaimed as new
datasets for current KG embedding evaluations.

4.1 Link Prediction

Link predictions [27], [28] aim to predict the missing head
ð?; r; tÞ or tail ðh; r; ?Þ in the relation facts. For a testing triplet
ðh; r; tÞ, every entity in the KG will replace the missing
entity to construct the predicted triplets, and then such trip-
lets are ranked in descending order according to the scores
by scoring function. Based on the score rank, several metrics
are usually reported: mean rank (MR) of correct entities,
mean reciprocal rank (MRR) of correct entities, and the pro-
portion of top-k rank (Hits@k) for correct entities. A good
model should have low “MR”, high “MRR” and high
“Hits@10”. For constructing the corrupted triples, “unif”
denotes the traditional way of replacing head or tail with
equal probability, and “bern” denotes reducing false nega-
tive labels by replacing head or tail with different probabili-
ties following [19]. The settings “raw” and “filt” for the
metrics distinguish whether or not to consider the impact of
a corrupted triplet existing in the correct KG.

4.1.1 Results on WN18 and FB15K

First, we follow the experimental procedures and metrics of
the most negative sampling KG embedding models (such as
translation models [18], [19] etc.) for our evaluations on
WN18 and FB15K. In this experiment, two metrics (MR and
Hits@10) are reported.

Parameters Settings. We comparing the series of TransE,
TransH, TransD, ProjE and ComplEx with different losses,
and run them by our code framework.1 We search the best
settings of these models from the following parameters:
learning rate a from {0.0005, 0.001, 0.005, 0.01}, the embed-
ding dimension m from {50, 80, 100, 150, 200}, the batch size
B from {50, 75, 100, 120, 200, 480, 500, 960, 1000, 1200, 4800},
margin sizem1 from {0.1, 0.25, 0.5, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}.
{L1, L2} distances for loss functions, and weight parameter �
from {0.05, 0.1, 0.5, 1, 2, 3, 10, 25} for LRS and LSS . For
TransE-SS, TransH-SS and TransD-SS, upper limit m2 score
for positive triplets from {0.25, 1, 2, 3, 4, 5, 6, 7, 8, 10, 15},
and lower limit m3 score for negative triplet from {m2 + {0.1,
0.25, 0.5, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}}. ParameterC for TransH
series from {0.0005, 0.0625, 0.25, 1.0}. For ComplEx-SS,

upper limit m2 score for positive triplets is �logðpþÞ, pþ from
f0:3; 0:4; 0:6; 0:7; 0:8; 0:85; 0:9; 0:95; 0:99g, and lower limit
score m3 for negative triplets is �logðp�Þ, p� from f0:7; 0:6;
0:4; 0:3; 0:2; 0:15; 0:05; 0:001g. For ProjE, upper limit m2 is
�logðpþ=nþÞ, and lower limit score m3 is �logðp�=n�Þ, nþ
and n� are respectively the number of correct and incorrect
candidates for a given inputs. The dropout rate is 0.2 on
WN18 and FB15K, and negative sampling rate pd is from
f0:1; 0:15; 0:20; 0:25; 0:5g. The optimal parameters are deter-
mined by the validation set. We traverse all the training trip-
lets for 1000 rounds. The optimal configurations of the
models on link prediction is illustrated in Table 4.

Table 3 shows the evaluation results on two datasets
WN18 and FB15K, and the top-3 results in each column
with bold marker are given. The original results of the series
of TransE, TransH, TransD, ComplEx and ProjE from the
references [18], [19], [20], [31], [29] are given in the round
brackets. For the other compared models, we report the
original results from [34], [21], [49], [48], [47], [35].

From Table 3, we can see that: (1) All the proposal
models with LSS loss outperform the corresponding for-
mer models with LR and LRS on all the metrics, which
indicates that LSS loss can boost the capability of finding
missing facts and completing KGs. Detailed improved
results for Hit@10 (bern, filt) metric are as follows. On
WN18, the results are about increased by TransE-SS 0.5%,
TransH-SS 0.6%, TransD-SS 0.3%, ComplEx-SS 0.5% and
ProjE-SS 0.4% than corresponding LRS loss models. On
FB15K, the results are increased by TransE-SS 1.8%,
TransH-SS 4.8%, TransD-SS 5.5%, ComplEx-SS 1.1% and
ProjE-SS 0.1%. (2) Among all the compared methods,
TransE-SS, TransH-SS and TransD-SS have remarkable
improvements (especially on FB15K), and meanwhile
have lower computation complexities. (3) From the metric
of Hit@10, ComplEx-SS and ProjE-SS achieve more better
performances on the link prediction tasks.

4.1.2 Results on WN18RR and FB15K-237

We further evaluate our proposed models for link predic-
tions on WN18RR and FB15K-237. As WN18 and FB15K
both include a large number of inverse relations like
fðs; r1; oÞ; ðo; r2; sÞg [57], [49], many test triplets ðs; r; oÞ can
be inferred via a directly linked triplet ðs; r1; oÞ or ðo; r2; sÞ.

FB15K-237 [57] and WN18RR [49] are two more challeng-
ing datasets for KG completions, where the inverse relations
are deleted and the main relation patterns are symmetry/
antisymmetry and composition patterns. In recent years,
many non-translation models like DisMult [47], ComplEx
[31] and ConvE [49] etc. are tested on FB15K-237 and
WN18RR by five metrics, MR, MRR, Hits@1, Hits@3 and
Hits@10. In this experiment, by the five metrics, we compare
our TransE-SS, TransH-SS, TransD-SS, ProjE-SS and Com-
plEx-SS with their former loss models [18], [19], [20], [30],
[31] and some baseline models Rescal [37], Discult [47] and
ConvE [49]. We report the results of DisMult and ConvE
from the references [47], [49], and rerun the other compared
models by the released codes from [18], [19], [20], [31], [30].
We evaluate the models in the “bern” and “filt” setting.

Parameters Settings. We search the best settings from the
same parameter fields as the former experiments on WN18

TABLE 2
Experimental Datasets

Dataset #Rel #Ent #Train #Valid #Test

WN18 18 40,943 141,442 5,000 5,000
FB15K 1,345 14,951 483,142 50,000 59,071
WN18RR 11 40,943 86,835 3034 3134
FB15K-237 237 14,541 272,115 17,535 20,466
WN11 11 38,696 112,581 2,609 10,544
FB13 13 75,043 316,232 5908 23,733

1. https://github.com/IIE-UCAS/Knowledge-Embedding-with-
Double-Loss
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and FB15K. L1 distance for the series of TransE and TransH,
and L2 distance for the series of TransD. For ProjE and
ProjE-SS, dropout rate is 0.2 on WN18RR and 0.5 on FB15K-
237. We traverse all the training triplets for 3000 rounds.
The optimal configurations of our presented models on link
prediction is illustrated in Table 6.

The experimental results on FB15K-237 and WN18RR are
given in Table 5, where the top-3 results in each column
with bold marker are given.

From Table 5, we can see that: (1) Our presented mod-
els with LSS loss outperform the corresponding former
models with LR and LRS on all the metrics. The results
also prove the effectiveness of our LSS loss. (2) Among all
the compared methods, TransD-SS performs best among
the compared models on FB15K-237, and achieves highest
Hits@10 51:0%, Hits@3 35:6%, and MRR 32:7%. ComplEx-
SS performs well on WN18RR, and obtains the highest
Hits@10 50:6% and Hits@3 44:5%. ConvE shows the best
prediction capability on Hits@1 metric on WN18RR and
FB15K-237. (3) We can see that the translation models

with LRS and LSS generally have remarkable improve-
ments on all the metrics. However, similar to the LR loss,
they still does not perform well on Hits@1 metric of
WN18RR. The reason maybe that the main relation pat-
terns is the symmetry pattern in WN18RR, the scoring
functions of the translation models do not well on it.
Comparing to translation models, the score functions of
ComplEx can better model the the symmetry pattern,
thus our extended ComplEx-SS also can achieve better
prediction on this metric. (4) Comparing the results of
Tables 3 and 4, we can find that, the improvements of the
translation models with LSS on new datasets (WN18RR
and FB15K-237) are not more significants than that on the
old datasets (WN18 and FB15K). By contrast, ComplEx
with LSS can obtain remarkable improvements on both
old and new datasets. Therefore, the ability of a model to
process a certain pattern (such as symmetry/antisym-
mery) is also related to the scoring function. So we can
not directly conclude that LSS is more prone to symme-
try/antisymmery or inverse relationship.

TABLE 3
Evaluation Results on Link Prediction

WN18 FB15k

Models Mean Hits@10 (%) Mean Hits@10(%)

raw filt raw filt raw filt raw filt

Unstructured [27] 315 304 35.5 38.2 1074 979 4.5 6.3
SE [24] 1,011 985 68.5 80.5 273 162 28.8 39.8
LMF [26] 469 456 71.4 81.6 283 164 26.0 33.1
RESCAL [37] 1,180 1,163 37.2 52.8 828 683 28.4 44.1
SME(linear) [27] 545 533 65.1 74.1 274 154 30.7 40.8
SME(bilinear) [27] 526 509 54.7 61.3 284 158 31.3 41.3
TransR(unif) [34] 232 219 78.3 91.7 226 78 43.8 65.5
TransR(bern) [34] 238 225 79.8 92.0 198 77 48.2 68.7
TransSparse(unif) [21] 233 221 79.6 93.4 216 66 50.3 78.4
TransSparse(bern) [21] 223 211 80.1 93.2 190 82 53.7 79.9
STransE(unif) [35] 224 211 80.8 93.2 220 69 51.5 78.4
STransE(bern) [35] 219 206 80.9 93.4 219 68 51.6 79.7
DistMult [47] 987 902 79.2 93.6 224 97 51.8 82.4
HolE [48] 387 361 80.4 94.9 209 75 54.9 73.9

TransE(unif) [18] 288 (263) 265 (251) 80.0 (75.4) 94.1 (89.2) 177 (243) 63 (125) 46.4 (34.9) 63.8 (47.1)
TransE(bern) [18] 291 282 81.4 94.6 198 103 49.8 65.8
TransE-RS(unif) [29] 289 (362) 281 (348) 81.0 (80.3) 94.1 (93.7) 176 (161) 41 (62) 52.6 (53.1) 74.8 (72.3)
TransE-RS(bern) [29] 278 (385) 265 (371) 82.0 (80.4) 94.5 (93.7) 159 (161) 57 (63) 53.8 (53.2) 74.7 (72.1)
TransE-SS(unif) 285 279 83.1 94.4 170 39 54.3 78.7
TransE-SS(bern) 276 263 83.6 95.0 155 54 55.8 76.5

TransH(unif) [19] 347 (318) 331 (303) 80.3 (75.4) 94.5 (86.7) 212 (211) 84 (84) 44.1 (42.5) 62.1 (58.5)
TransH(bern) [19] 301 (401) 286 (388) 80.6 (73.0) 94.7 (82.3) 306 (212) 211(87) 44.8 (45.7) 58.8 (64.4)
TransH-RS (unif) [29] 201 (401) 188 (389) 80.2 (81.2) 94.7 (94.7) 210 (163) 55 (64) 51.9 (53.4) 81.3 (72.6)
TransH-RS(bern) [29] 214 (371) 202 (357) 81.0 (80.3) 94.5 (94.5) 179 (178) 62 (77) 53.4 (53.6) 78.7 (75.0)
TransH-SS(unif) 182 170 81.8 95.1 166 54 55.3 82.5
TransH-SS(bern) 184 173 82.1 95.1 177 61 54.6 83.5

TransD(unif) [20] 259 (242) 246 (229) 81.5 (79.2) 94.8 (92.5) 219 (211) 70 (67) 50.1 (49.4) 77.1 (74.2)
TransD(bern) [20] 283 (224) 270 (212) 82.0 (79.6) 95.0 (92.2) 194(194) 89 (91) 54.0 (53.4) 78.4 (77.3)
TransD-SS(unif) 267 250 83.0 95.0 201 70 53.8 82.0
TransD-SS (bern) 248 237 83.1 95.3 176 69 55.3 83.9

ComplEx [31] 466 451 81.5 95.4 (94.7) 215 92 54.4 84.8 (84.0)
ComplEx-SS 431 418 84.0 95.9 179 53 53.8 85.9

ProjE [30] 262 243 81.7 95.0 148 (124) 45 (34) 55.0 (54.7) 87.8 (88.4)
ProjE-SS 282 265 82.6 95.4 158 37 55.3 87.9
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4.2 Triplet Classification

Triplet classification is a binary classification problem to
decide whether a given triplet ðh; r; tÞ is correct or not. This
task is usually tested by translation models and semantic
matching models with margin-based ranking loss, but it is
rarely validated by nonlinear models like ConvE and ProjE.
So in this experiment we only test the series of the compared

translation models. We use three datasets, WN11, FB13 and
FB15K (see Table 2) for the experiment. The training proce-
dures are the same as the experiments of link predictions.
For a testing triplet ðh; r; tÞ, it will be predicted positive if the
score frðh; tÞ is below a relation-specific threshold, otherwise
negative. The relation-specific threshold is optimized by
maximizing classification accuracies on the validation set.

We compare our models TransE-SS, TransH-SS and
TransD-SS with baseline methods reported in [19], [20], [29],
[34] who used the same data sets. In this experiment, the
procedure of searching parameters and training procedures
are same as former link predictions. We traverse all the
training triplets for 1000 rounds. In the test phase, we need
negative triples for the binary classification evaluation. The
data sets WN11 and FB13 released by NTN [17] already
have negative triples. For FB15k, we construct the negative
triplets following [17]. For a testing triplet ðh; r; tÞ, it will be
predicted positive if the score frðh; tÞ is below a relation-
specific threshold, otherwise negative. The relation-specific
threshold is optimized by maximizing classification accura-
cies on the validation set. The optimal parameter configura-
tions of our extended models on triplet classification is
given in Table 7.

The experimental results on triplet classification are
shown in Table 8. On WN11 our three models all can reach
accuracy of more than 86%, and TransD-SS can achieve the
highest accuracy 86.8%. On FB13, our three models is com-
parable to former loss models. On FB15K, our models have
significant improvement compared to former models, and
TransD-SS still performs best resulting 92.3% accuracy
among the compared models.

4.3 Discussion

Our proposed double scoring loss framework enforces an
upper-limit for positive triplets and a lower-limit for

TABLE 4
Parameter Configurations for WN18 and FB15K

WN18 a m1 m2 m3 m B � C=pd

TransE 0.01 4 - - 50 75 - -
TransE-RS 0.01 4 4 - 50 75 1 -
TransE-SS 0.01 - 4 8 50 75 1 -
TransH 0.01 4 - - 100 120 - 0.0005
TransH-RS 0.01 4 3 - 100 120 1 0.0005
TransH-SS 0.01 - 3 7 100 120 1 0.0005
TransD 0.01 4 - - 100 1200 - -
TransD-SS 0.01 - 4 8 100 1200 3 -
ComplEx 0.01 - - - 200 100 - -
ComplEx-SS 0.01 - 0.8 0.4 200 100 1 -
ProjE 0.01 - - - 200 100 - pd = 0.1
ProjE-SS 0.01 - 0.99 0.01 200 100 1 pd = 0.1

FB15K a m1 m2 m3 m B � C=pd

TransE 0.001 4 - - 100 120 1 -
TransE-RS 0.001 2 6 - 100 960 1 -
TransE-SS 0.001 - 6 8 100 960 1 -
TransH 0.001 2 - - 100 960 - 0.0625
TransH-RS 0.001 1 7 - 100 960 1 0.0625
TransH-SS 0.001 - 7 8 100 960 3 0.0625
TransD 0.001 1 - - 100 960 - -
TransD-SS 0.001 - 8 9 100 960 2 -
ComplEx 0.01 - - - 200 100 - -
ComplEx-SS 0.01 - 0.9 0.7 200 100 1 -
ProjE 0.01 - - - 200 100 - pd = 0.25
ProjE-SS 0.01 - 0.99 0.01 200 100 - pd = 0.25

TABLE 5
The results of entity prediction on WN18RR and FB15K-237

WN18RR FB15K-237

Models Hits(%) Hits(%)

MR MRR(%) @1 @3 @10 MR MRR(%) @1 @3 @10

RESCAL [47] 10077 24.7 19.9 27.7 35.2 508 22.1 13.9 24.3 39.2
DisMult [47] 5110 43 39 44 49 254 24.1 15.5 26.3 41.9
ConvE [49] 5277 46 39 43 48 246 31.6 23.9 35.0 49.1

TransE [18] 3530 20.7 2.2 36.1 47.8 189 27.9 19.3 30.5 44.9
TransE-RS [29] 3415 20.8 2.3 36.3 47.8 177 28.2 19.4 31.2 46.1
TransE-SS (this paper) 3199 20.9 2.5 37.1 47.9 172 28.4 19.6 31.7 47.0

TransH [19] 3972 19.8 0.7 36.3 46.3 218 26.7 17.7 29.9 44.5
TransH-RS [29] 3421 18.1 0.9 36.9 47.6 207 27.3 17.6 30.6 46.4
TransH-SS (this paper) 3242 20.1 1.0 37.3 47.8 200 28.5 17.8 31.2 46.7

TransD 2562 20.3 4.2 35.5 46.0 134 30.5 20.5 31.7 47.7
TransD-RS 2403 21.0 3.7 35.6 47.1 127 31.8 23.1 35.5 50.3
TransD-SS (this paper) 2392 23.6 4.3 35.8 49.6 114 32.7 23.2 35.6 51.0

ComplEx [31] 5246 40.1 36.2 42.5 47.1 305 24 15.2 26.4 42.3
ComplEx-SS (this paper) 5152 41.3 37.8 44.5 50.6 301 24.7 15.7 27.3 43.4

ProjE [30] 3639 40.2 33.7 41.4 48.6 179 30.7 21.5 33.7 49.1
ProjE-SS (this paper) 3599 41.0 33.8 41.9 48.8 178 30.9 21.8 34.1 49.1
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negative triplets, which can avoid overlaps between score
distributions of positive and negative triplets. Also, there
are several parameters including upper-limit m2 for scoring
positive triplets, lower-limit m3 for scoring negative triplets,
combinational weight � for a pair of scores, in our models.
In the following, we will test the score distributions of posi-
tive and negative triplets, and explore how different param-
eters affect the performance of our models.

4.3.1 Score Distributions

We test the positive and negative triplets’ score distribu-
tions by different models, Trans(E,H), Trans(E,H)-RS, and
Trans(E,H)-SS.

On FB15K, we train KG embeddings on training set, and use
test set to test the scoring distributions. We adopt “unif”
sampling method to generate negative triplets for both
training and test sets.

For each pair of positive and negative triplets in test set,
we compute three kinds of scores separately, the score
frðh; tÞ of positive triplet, the score frðh

0; t0Þ of negative trip-
let and the margin-score frðh

0; t0Þ � frðh; tÞ of the pair. For
the test set, with 0.1 scoring interval, we count the propor-
tion of triplets’ scores in ðs� 0:05; sþ 0:05� as the probabil-
ity of score s.

Figs. 3a, 3b, 3c, 3d, 3e, and 3d show the results of TransE,
TransH, TransE-RS, TransH-RS, TransE-SS and TransH-SS
on the distributions of three kinds of scores, respectively.
The score frðh; tÞ distribution of the positive triplets is
drawn by a solid line, the score frðh

0; t0Þ distribution of the
negative triplets is drawn by a dash line, and the margin-
score distribution are drawn by a dot line. The parameters
for scoring functions are as follow. TransE: m1 ¼ 1; TransH:
m1 ¼ 0:25; TransE-RS: m1 ¼ 2, m2 ¼ 6; TransH-RS: m1 ¼ 2,
m2 ¼ 6; TransE-SS: " ¼ 0, m2 ¼ 4, m3 ¼ 5; TransH-SS: " ¼ 0,
m2 ¼ 7, m3 ¼ 8.

According to these parameters, Trans(E,H) with LR loss
expect themarginal scores frðh0; t0Þ � frðh; tÞ � m1, Trans(E,H)-
RS with LRS loss do not only try frðh

0; t0Þ � frðh; tÞ � m1, but
also limit positive scores frðh; tÞ � m2, and Trans(E,H)-SS
with our LSS loss can realize double limit scoring
frðh; tÞ � m2 and frðh

0; t0Þ � m3. In Figs. 3a and 3b, we can
see the marginal scores of TransE and TransH are larger
than 1 and 0.25 (dot lines) respectively. In Figs. 3c and 3d,
for both TransE-RS and TransH-RS, the marginal scores
are larger than 2 (dot lines) and the scores of positive

TABLE 6
Parameter Configurations for WN18RR and FB15K-237

WN18RR a m1 m2 m3 m B � C=pd

TransE 0.0005 5 - - 50 100 - -
TransE-RS 0.0005 5 15 - 50 100 1 -
TransE-SS 0.0005 - 3 8 50 50 1 -
TransH 0.0005 5 - - 100 480 - 0.0625
TransH-RS 0.0005 5 4 - 100 480 1 0.0625
TransH-SS 0.0005 - 4 9 100 480 1 0.0625
TransD 0.0005 1 - - 100 1000 - -
TransD-RS 0.0005 1 1 - 100 1000 3 -
TransD-SS 0.0005 - 1 2 100 1000 25 -
ComplEx 0.005 - - - 200 500 0.05 -
ComplEx-SS 0.005 - 0.95 0.6 200 500 0.05 -
ProjE 0.01 - - - 200 200 - pd = 0.15
ProjE-SS 0.01 - 0.95 0.05 200 200 1 pd = 0.15

FB15K-237 a m1 m2 m3 m B � C=pd

TransE 0.0005 5 - - 150 500 - -
TransE-RS 0.0005 5 8 - 150 500 0.1 -
TransE-SS 0.0005 - 7 10 150 500 1 -
TransH 0.001 5 - - 100 480 - 0.0625
TransH-RS 0.0005 2 5 - 100 480 1 0.0625
TransH-SS 0.0005 - 5 7 100 480 1 0.0625
TransD 0.0005 1 - - 100 1000 - -
TransD-RS 0.005 1 2 - 100 1000 1 -
TransD-SS 0.005 - 1 1.5 100 1000 10 -
ComplEx 0.005 - - - 80 1200 - -
ComplEx-SS 0.005 - 0.95 0.6 80 1200 0.05 -
ProjE 0.01 - - - 200 200 - pd = 0.25
ProjE-SS 0.01 - 0.95 0.05 200 500 1 pd = 0.25

TABLE 7
Parameter Configurations for Triplet Classification

Models Datasets a m2 m3 m=n B � C=pd

TransE-SS WN11 0.01 2 13 100 120 1 -
FB13 0.001 5 6 100 480 1 -
FB15k 0.001 4 5 100 960 1 -

TransH-SS WN11 0.01 2 12 100 120 1 0.0005
FB13 0.01 5 8 100 1200 1 0.0625
FB15k 0.001 7 8 100 960 3 -

TransD-SS WN11 0.1 2 10 100 1200 1 -
FB13 0.01 6 8 100 1200 1 -
FB15k 0.01 8 9 100 960 2 -

TABLE 8
Accuracies(%) on Triplets Classification

Dataset WN11 FB13 FB15K

RESCAL [37] 50.2 61.5 51.0
SE [24] 53.0 75.2 65.4
LMF [26] 73.8 84.3 68.3
SME(linear) [27] 68.4 62.8 69.7
SME(bilinear) [27] 70.0 63.7 71.6
NTN [17] 70.4 87.1 68.2

TransSparse(unif) [21] 86.8 86.5 87.4
TransSparse(bern) [21] 86.8 87.5 88.5

TransE (unif) [18] 75.9 70.9 77.3
TransE (bern) [18] 75.9 81.5 79.8
TransE-RS(unif) [29] 85.2 82.8 90.5
TransE-RS(bern) [29] 85.3 83.0 90.7
TransE-SS(unif)(this paper) 86.3 81.1 91.3
TransE-SS(bern)(this paper) 86.0 82.7 91.3

TransH (unif) [19] 77.7 76.5 74.2
TransH (bern) [19] 78.8 83.3 79.9
TransH-RS(unif) [29] 86.3 82.1 86.4
TransH-RS(bern) [29] 86.4 81.6 86.8
TransH-SS(unif)(this paper) 86.6 81.1 89.7
TransH-SS(bern)(this paper) 86.6 80.7 89.6

TransD (unif) [20] 85.6 85.9 86.4
TransD (bern) [20] 86.4 89.1 88.0
TransD-SS(unif)(this paper) 86.7 86.2 92.3
TransD-SS(bern)(this paper) 86.8 89.2 92.3
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triplets are lower than 6 (solid lines). In Fig. 3e, TransE-SS
takes frðh; tÞ � 4 (solid lines) and frðh0; t0Þ � 5 (dash lines),
and in Fig. 3f, TransH-SS limits frðh; tÞ � 7 (solid lines)
and frðh

0; t0Þ � 8 (dash lines).
Comparing the scores’ distributions of models by three

kinds of loss functions, we can find an important difference
in the positive triplets’ score distributions. See distribution
lines (solid lines) in Fig. 3, among the compared models our
LSS based models TransE-SS and TransH-SS have the most
centralized proportion distribution on the scoring of posi-
tive triplets, and meanwhile have smaller overlaps between
the positive and negative triplets’ scores.

4.3.2 Performance on Different �

In double scoring loss function LSS , � is used to weigh the
lower-limit scoring loss for negative triplets, which is
another important factor for our proposed models. This
subsection mainly explores the availability of � for the tasks
of link prediction and triplet classification. In this experi-
ment, we only conduct the tasks of link prediction and trip-
let classification on FB15k with different �, and set � from
f0; 0:001; 0:1; 0:25; 0:5; 1; 2; 3; 4; 5; 6; 7; 8; 9; 10g. The rest opti-
mal configuration also lies on Tables 6 and 7. Thus we only
train models on training set with different �, and then
obtain the results of link prediction and triplet classification
on test set.

The results of link prediction and triplet classification on
FB15k is given by Fig. 4, which we can analyze that (1) For
both tasks of link prediction and triplet classification, � ¼
f1; 2; 3g is the best configuration and is suitable for TransE-
SS, TransH-SS, TransD-SS and ProjE-SS, indicating that
such setting best express semantic information of entity
space and relation space. (2) The performance of our all
extended models is first increasing with the growth of �
and then drops with � further increases, which suggests
that too lower or too higher � damages the gradient balance
of positive and negative triplets in training process.

4.3.3 Performance of Different m2 and m3

By considering the limit-based scoring loss item, the pro-
posed double scoring loss LSS is more effective compared

with the traditional margin-based ranking loss LR and com-
bined limit-based scoring loss LRS for learning KG embed-
dings. In double scoring loss LSS , m2 is the upper score
margin for all positive triplets and m3 is the lower score mar-
gin for all negative triplets. Noted that m3 > m2 can guaran-
tee the the margin between the scores of positive and
negative triplets. Therefore we further analyse the correla-
tivity of m2 and m3 on four datasets.

From the experimental results of translation-based mod-
els TransE-SS, TransH-SS and TransD-SS, we find that m3 ¼
f1; 2; 3; 4g þ m2 is available to WN18, FB13 and FB15k for
link prediction and triplet classification, while there is the
correlation of m3 ¼ f8; 9; 10g þ m2 to WN11 for triplet classi-
fication. For explanation, we give the results of all transla-
tion-based proposed models on four datasets under ‘bern’
setting in Fig. 5. In this experiment, we set different ratio of

Fig. 3. Distribution of triplets on different scores(FB15K).

Fig. 4. Results with different � on FB15K.

Fig. 5. The correlation of m2 and m3 for four datasets.
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m2 to m3 with fixed �, that is m3 ¼ f0:1; 0:3; 0:5; 0:7; 0:9; 1;
2; 3; 4; 5; 6; 7; 8; 9; 10; 11; 12g þ m2, and the rest optimal con-
figurations are illustrated in Tables 6 and 7.

Complex relations such as “1-to-N”, “N-to-1” and “N-to-N”
relations exist inKGs, an entitymay connectsmultiple relations
simultaneously, and also needs to satisfy those relation golden
conditions. It leads that the score of the entity’s positive triplet
is lower for one relationwhilemaybe higher for other relations.
Similarly, the score of an entity’s negative triplets also has the
above phenomenon. Therefore the lower m2 for limiting the
upper scores of all positive triplets and higher m3 for limiting
the lower scores for all negative triplets, are expected to make
entities suit the evaluations for all the relations. Analysing from
Fig 5, we find that too lower or too higher m3 � m2 are not suit-
able for learning embeddings of KGs, which can make an
unstable and inconsistent results on four datasets for extended
models. The setting m3 > m2 also maintains the characteristic
of encouraging the discrimination between positive and nega-
tive triplets. Thus both m2 and m3 are important factors for our
proposedmodels.

4.3.4 Convergence of Loss

Compared with the combined limit-based scoring loss LRS ,
our double scoring loss LSS considers the limitation on
scores of all positive and negative triplets independently at
the same time. Intuitively, our double scoring loss has a
faster convergent rate than the combined limit-based scor-
ing loss LRS , since independent scoring limits for positive
and negative triplets can provide more effective and flexible
way of parameter learning in the training stage. In order to
study how LRS and LSS behave converge, we test TransH-
RS and TransH-SS on WN18 and FB15K datasets. The loss
values of TransH-RS and TransH-SS with increasing epoch
numbers are shown in Figure 6. We can see that the pro-
posed LSS loss can converge faster than LRS loss [29], and
also can reach persistent smaller loss values than the LRS

loss. So we can also conclude that LSS loss with indepen-
dent scoring limits for positive and negative triplets, pro-
vides faster parameter learning efficiency than LRS loss.

5 CONCLUSIONS

In this paper, we propose a novel double scoring loss frame-
work for learning KG embeddings. The key idea of our pro-
posal double scoring loss is to independently enforce a
lower upper-limit scoring on all positive and a higher
lower-limit scoring on all negative triplets. Such two limita-
tions guarantee the discrimination between positive and
negative triplets. Moreover, upon the double scoring loss

framework, we present several extended models TransE-SS,
TransH-SS, TransD-SS, ProjE-SS and ComplEx-SS for KG
embedding.We empirically conduct extensive experiments on
triplet classification and link prediction with two KGs Free-
Base and WordNet. The experimental results show that our
double scoring loss has significantly and consistently consider-
able improvement over former corresponding KG embedding
models, meanwhile has faster and more effective parameter
learning rate.
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