
2022 IEEE International Conference on Big Data (Big Data)

978-1-6654-8045-1/22/$31.00 ©2022 IEEE 806

Temporal Adaptive Aggregation Network for
Dynamic Graph Learning

Man Wu
Dept. of Electrical Engineering and Computer Science

Florida Atlantic University
Boca Raton, FL 33431, USA

mwu2019@fau.edu

Xingquan Zhu
Dept. of Electrical Engineering and Computer Science

Florida Atlantic University
Boca Raton, FL 33431, USA

xzhu3@fau.edu

Fig. 1. A conceptual view of dynamic graph node classification where graph
dynamically evolves over time. At each time t, the learner needs to classify
vertices arriving in future time points, such as, t+1 and t+2, with maximum
accuracy (Red and blue colored nodes are labeled). For best performance, a
learner needs to leverage knowledge of subgraphs from previous moments to
adapt to the current subgraph.

the underlying node local structure. Nevertheless, many real-
world applications involve dynamic or temporal graphs [10]–
[14], which evolve over time. Simply applying algorithms
designed for static graphs to dynamic graphs would make
these algorithms underperform, because they cannot capture
temporal information. Therefore, it is imperative to explore
approaches applicable to dynamic graphs.

In this paper, we address a dynamic graph learning scenario
that nodes and their relationships continuously evolve over
time as shown in Figure 1. At each time point t, the learner
needs to classify new vertices arriving in a near future, such
as, time t+1 and time t+2, with maximum accuracy. Due to
the dynamic evolving nature, the learner can use knowledge
of subgraphs from past to adapt to the current subgraph for
dynamic graph learning.

A handful of methods exist to handle dynamic graphs,
by preprocessing dynamic graphs as a sequence of discrete
(snapshots) graphs and using recurrent networks or attention
mechanisms to combine intermediate representations extracted
through GNN-based encoders [15]. For these methods, the
number of nodes does not change in these discrete graphs.
In addition, these methods mainly utilize graph diffusion as
an alternative to neighborhood aggregation for dynamic graph
learning. Therefore, they only utilize information of limited

Abstract—Dynamic graphs are common in many applications,
such as social networks with evolving nodes and edges over time.
When handling such dynamics, existing approaches typically
suffer from two limitations: (1) they primarily focus on network
topology, without taking node class connections and temporal
changes into consideration; and (2) the learning objective is
primarily constrained by labeled nodes, which often result
in over-smoothing and weak-generalization in representation
learning, because labeled nodes are limited. In this paper, we
propose a temporal adaptive aggregation network (TAAN) for
dynamic graph learning. We consider a dynamic graph as a
network with changing nodes and edges in temporal order. The
temporal adaptive aggregation is to ensure that, for each node, the
information aggregation is to consider neighbors from different
classes, as well as their temporal order. For each snapshot of
the dynamic network, data augmentation and consistency loss
are combined to leverage labeled and unlabeled nodes to learn
good node embedding. Meanwhile, in order to accommodate
temporal changes of graphs, an incremental learning process is
used to ensure that learning on each snapshot can inherit weights
learned from previous time points, so graph learning can adapt
to the dynamic graph environments. Experiments on real-world
datasets validate the effectiveness of our approach.

Index Terms—Temporal adaptive aggregation, temporal net-
work, dynamic graph

I. INTRODUCTION

Graphs are becoming fundamental tools for modeling com-
plicated relationships in many applications. Instead of assum-
ing samples are IID (Independent and Identically Distributed),
graphs provide additional information through dependency
relationships between objects, allowing a machine learning
method to evaluate samples not only using their feature values,
but also their topological relationships.

With the rapid development of networking platforms, the
field o f g raph r epresentation l earning [1]–[4] h as gradu-
ally attracted widespread attention. The rapid development
of graph neural networks (GNN) [5], [6] has led to great
success in graph representation learning for tasks such as
node classification [5], [7], l ink p rediction [8], a nd graph
classification [9]. To date, most graph representation learning
algorithms are applicable to static graphs, where learning
and obtaining low-dimensional node embeddings can reflect

20
22

 IE
EE

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 B

ig
 D

at
a

(B
ig

 D
at

a)
 |

97
8-

1-
66

54
-8

04
5-

1/
22

/$
31

.0
0

©
20

22
 IE

EE
 |

D
O

I:
10

.1
10

9/
B

ig
D

at
a5

56
60

.2
02

2.
10

02
06

59

Authorized licensed use limited to: Florida Atlantic University. Downloaded on May 19,2023 at 21:38:12 UTC from IEEE Xplore. Restrictions apply.

807

neighbors and do not consider node class connections and
temporal changes.

Another drawback of existing dynamic graph neural nets is
that they only consider labeled nodes, and usually suffer from
the limitations of over-smoothing and weak-generalization. In
reality, labeled nodes may be very limited in the network,
making most methods easily overfit to the scarce label in-
formation. Most efforts to addressing this issue are focused
on how to fully leverage the large amount of unlabeled data
in the network. Recently, methods, such as MixMatch [16],
GRAND [17], have been proposed to use data augmentation
for regularized training, which have achieved great success in
image classification tasks. This motivates us to apply the idea
to facilitate dynamic graph learning.

In this paper, we study dynamic graph learning, where net-
work nodes and edges are continuously changing in temporal
order. The underlying key challenges are mainly threefold:

• Challenge 1: How can we capture graph structure in-
formation from changing neighbors for dynamic graph
learning?

• Challenge 2: How to design an end to end framework
to effectively leverage more unlabeled data to facilitate
dynamic graph learning?

• Challenge 3: How to ensure that learning can inherit
previous knowledge and adapt to dynamic changes of the
graph?

To overcome the above challenges, we propose a novel tem-
poral adaptive aggregation network (TAAN) for learning from
dynamic graphs with changing nodes and edges in temporal
order. For Challenge 1, we propose a novel temporal adaptive
aggregation to strengthen attention to intra-class nodes and
attenuates attention to inter-class nodes by considering neigh-
bors from different classes, as well as their temporal order,
which can capture the importance of each neighbor node to a
target node for better understanding of nodes. For Challenge
2, we utilize a graph data augmentation and consistency
loss to properly incorporate unlabeled data into the learning
process, which can optimize the prediction consistency of
unlabeled nodes across different data augmentations. In order
to accommodate temporal changes of graphs (Challenge 3),
an incremental learning process is employed to ensure that
the learning on each snapshot can inherit weights learned
from previous time points, so graph learning is essentially
adaptive to the dynamic graph environments. Experimental
results on real datasets validate the design and effectiveness
of our approach.

Comparing to existing work in the field, our contributions
can be summarized as follows:

• We propose a temporal adaptive aggregation network
(TAAN) for dynamic graph learning by considering a
dynamic graph as a network with changing nodes and
edges over time.

• We propose a novel temporal adaptive aggregation net-
work for graph data, which can effectively utilize neigh-
bors from different classes, as well as their temporal

order.
• We propose a graph data augmentation and consistency

loss to properly incorporate unlabeled data into the learn-
ing process, which can optimize the prediction consis-
tency of unlabeled nodes across different data augmenta-
tions to learn good node embedding.

• Experiments on two dynamic graph datasets demonstrate
that our graph neural network approach outperforms the
baseline methods.

II. PROBLEM STATEMENT

Graph: A graph is represented as G = (V,E,X, Y), where
V = {vi}i=1,··· ,N is a vertex set representing the nodes in
a graph, and ei,j = (vi, vj) ∈ E is an edge indicating the
relationship between two nodes. The topological structure of
graph G is represented by an adjacency matrix A, where
Ai,j = 1 if (vi, vj) ∈ E; otherwise Ai,j = 0. xi ∈ X indicates
content features associated with each node vi, yi ∈ Y denotes
class label of vi. Y ∈ RN×C is a binary (one-hot) label matrix
of G, where N is the number of nodes in G and C is the
number of node classes/categories (i.e. |Y| = C). If a node
vi ∈ V is associated with label l , Y l

(i) = 1 ; otherwise,
Y l
(i) = 0.

Dynamic Graph Learning: A dynamic graph G = G1, ...GT

consists of a number of snapshot subgraphs at different time
point t, Gt = (Vt, Et, Xt, Yt). Assume V = L

⋃
U , where

L are the labeled nodes (∀vi ∈ L, yi ∈ Y) and U are
unlabeled nodes. m and n denote the number of the labeled
nodes and all nodes, respectively. At any time t, given a graph
Gt = (Vt, Et, Xt, Yt), we aim to learn a classifier model,
ft : (At, Xt;Lt) 7→ Yt, to predict the class labels for the
unlabeled nodes Ut.

III. PROPOSED METHOD

In order to tackle above dynamic changes, we propose a
framework, as shown in Figure 2, which employs an incremen-
tal learning process at each time point t to learn and update
graph neural network models, such that the overall system can
adapt to dynamics in the network. In our research, we consider
dynamics and changes as variance of the network, and our
main theme is to generate multiple graph data augmentations,
perform feature aggregation and consistency regularization to
learn best node features for each time step t.

A. Temporal Adaptive Aggregation Network

In traditional graph convolutional neural networks, the ag-
gregation of the information (for node representation learning)
is primarily driven by the network topology, e.g. using adja-
cency matrix A combined with feature matrix X to learn node
embedding. In dynamic graphs, the topology of the network is
continuously evolving, so our temporal adaptive aggregation
network (TAAN) is designed to allow each node to aggregate
information, by differentiating nodes from different classes as
well as nodes arrived in different temporal orders. This allows
TAAN to focus on changes of the network, instead of just
driven by topology for embedding learning.

Authorized licensed use limited to: Florida Atlantic University. Downloaded on May 19,2023 at 21:38:12 UTC from IEEE Xplore. Restrictions apply.

808

Fig. 2. The overall architecture of the proposed temporal adaptive aggregation network (TAAN). For subgraphs of task τ̂t, TAAN uses a novel temporal
adaptive aggregation network to strengthen attention to intra-class nodes and attenuates attention to inter-class nodes by considering the temporal and category
information of nodes jointly, and consistency regularized learning is utilized to optimize the prediction consistency of unlabeled nodes across different data
generations.

At time t, given an input graph Gt with its adjacency matrix
At and feature matrix Xt, we utilize random propagation [17]
to efficiently augment the graph data, wherein each node’s
features can be randomly dropped either partially (Dropout) or
entirely, after which the perturbed feature matrix is propagated
over the graph. For each augmentation X̃s, it is then fed into
a two-layer MLP, in order to obtain new node features Zs.
The MLP model can also be replaced with more complex and
advanced GNN models, such as GCN and GAT.

In real-world graphs, some nodes may have neighbors that
may be irrelevant to them or belong to different classes. There-
fore, in the aggregation of neighbor nodes of the target node,
these nodes of different classes will have an impact on the final
representation of the target node, and the impact is negative,
which will worsen the representation result. Therefore, when
we do aggregation, we need to adjust the aggregation degree
adaptively according to the local class context of each node.
For each augmentation graph X̃s and the new node features
Zs, we assume that starting from node vi, we determine
the next node among the neighbor by comparing the class
likelihood given the node features [18]. Here, we compare
pi = p̄(Y|zi) and pj = p̄(Y|zj) for j ∈ N(i). Our design
objective is that the more similar pi and pj , the more likely
the walker moves from vi to vj .

For each augmentation graph, we can define the transition
probability from vi to vj as Eq. (1).

Ms
i,j = Softmaxj∈N(i)(pT

i pj), (1)

Let a row vector π(k)
i ∈ R1×N be the state distribution after

k steps. This can be naturally derived by a Markov chain, i.e.,
π
(k+1)
i = π

(k)
i Ms, where the initial state distribution π

(0)
i be

a one hot vector indicating the starting node vi. So we can get
the updated node representation as Eq.(2).

z
(AA,s)
i =

∑
j

π
(K)
i (j) · zsj , (2)

where z
(AA,s)
i is the new node representation of vi that

aggregates the neighbor node information for the augmentation
graph X̃s, and π

(K)
i (j) is zero for vj beyond K-hop from vi.

Hence, π(K)
i (j) can naturally reflect the class similarity as it

grows with the similarity between pi and pj .
During the aggregation process, for node vi, we only aggre-

gate the K-hop neighbor nodes that exist at the previous time
t− 1 and the current time t, and exclude the K-hop neighbor
nodes that exist at the future time t+1. Therefore, z(AA,s)

i is
essentially an attentive aggregation of K-hop neighbors which
can strengthen attention to intra-class nodes and attenuates
attention to inter-class nodes. Finally, we can form a new
feature representation of the node vi as follows:

z
(TAA,s)
i = (1− γi) · zsi + γi · z(AA,s)

i , (3)

where z
(TAA,s)
i denotes the updated node feature by using

the temporal adaptive aggregation module, and γi ∈ [0, 1]
controls the trade-off between its own node feature zi and the
aggregated feature z

(AA,s)
i in Eq. (2) by considering the local

class-context of vi. For the node with neighbors of the same
class, γi should be a large value to better aggregate information
of neighbors to obtain a better feature representation. For the
node with neighbors of a different class, γi should be adjusted
to a small value to preserve its original features and avoid the
interference of irrelevant neighbor information. For simplicity,
we define a control variable hi as follows:

hi =
1

deg(i)

∑
j∈N(i)

(pT
i pj), (4)

where deg(i) is the degree of vi and the range of hi would
be 0 ≤ hi ≤ 1. Here, the greater the value of hi means that
the more nodes of the same category in the neighborhood, and
vice versa. Therefore, we use an adaptive formula for γi as
Eq. (5)

γi = (1− β)hi + βγu, (5)

where γu is set to 1 and it ensures the range of γi to
be 0 ≤ γi ≤ 1. β ∈ [0, 1] is a hyperparameter which
balances the hi and γu, and it can be determined empirically
for each dataset since different graphs can capture different
neighborhood information. Note that, for each augmentation
graph X̃s, we can obtain the new node representation Z̄s

by the proposed temporal adaptive aggregation module. Here,

Authorized licensed use limited to: Florida Atlantic University. Downloaded on May 19,2023 at 21:38:12 UTC from IEEE Xplore. Restrictions apply.

809

the network of each augmentation graph learns independently
from each other and does not share. Therefore, we can obtain
S new node features Z̄s, s ∈ [1, ..., S].

B. Consistency Regularized Learning

In the dynamic graph learning, we aim to smooth the label
information over the graph with regularizations. Therefore,
we use a combination of the supervised loss on the labeled
nodes and the graph consistency regularized loss. Given the
Z̄s generated in the Temporal Adaptive Aggregation Module
for each augmentation graph, we normalize it using Softmax
to get Ds, s ∈ [1, ..., S].

1) Supervised Loss: The supervised objective of the graph
node classification task is defined as the average cross-entropy
loss over S augmentations:

Lsup = − 1

S

S∑
s=1

m−1∑
i=0

Y T
i logDs

i , (6)

where m denotes the number of labeled nodes.
2) Consistency Regularization Loss: For the unlabeled data,

we utilize a prediction consistency loss and optimize it among
S augmentations. For example, in our experiment, we have
considered a simple case of S =2, we can minimize the squared
L2 distance between the two outputs, i.e.min

∑n−1
i=0 ||Di

(1) −
Di

(2)||. For the case where S is greater than 2, we first
calculate the center of the distribution of labels by taking the
average of all distributions, i.e., D̂i = 1

S

∑S
s=1 Di

(s) . And
then followed by the work of [16], [17], we utilize a trick
called “sharpening” to predict the labels based on the average
distributions. Here, the ith node’s predicted probability on the
cth class can be calculated by:

D̂
′

i,c =
D̂

1
δ
i,c∑C−1

c=0 D̂
1
δ
ic

, 0 ≤ c ≤ C − 1 (7)

where 0 < δ ≤ 1 acts as the “temperature” controlling
the “sharpness” of the category distribution. As δ → 0, the
sharpened label distribution will approximate to the one-hot
distribution. We minimize the distance between D̂

′

i and Di in
the following equation:

Lcon =
1

S

S∑
s=1

n−1∑
i=0

||D̂i

′

−Di
(s)||22, (8)

So, by setting δ as a small value, we can force the entropy
of this model to be small. This can be seen as adding an
additional entropy minimization regularization to the model,
which assumes that the decision boundary of the classifier
should not pass through the high density region of the marginal
data distribution. The final loss function is defined in Eq. (9),
where λ is a hyper-parameter balancing betwee the two losses.

L = Lsup + λLcon, (9)

TABLE I
STATISTICS OF TWO DYNAMIC NETWORKS.

Dataset Node Edges Classes Features T

DBLP-easy 45,407 112,131 12 2,278 7

DBLP-hard 198,675 643,734 31 4,043 6

C. Incremental Learning

We use a sliding window to take the subgraph at each
moment. For example, at time t, our subgraph timestamps
include t, t + 1, and t + 2. In the process of acquiring each
subgraph, the sliding step size and the number of classes
remain the same. We adopt an incremental learning approach
to initialize the training parameters on time t with the final
parameters of the previous time θt−1.

IV. EXPERIMENTS

In this section, we will first describe experiment settings
including datasets, baselines and experimental setup, experi-
mental results and then report the parameter analysis.

A. Experiment Settings

1) Benchmark Datasets: We employ two newly compiled
citation graph datasets based on DBLP (DBLP-easy and
DBLP-hard) for dynamic graph learning [10]. For DBLP, we
use the conferences and journals of the published papers as
classes, and vertex features are normalized TF-IDF represen-
tations of the publication title.

For each dataset, we construct the tasks of subgraph
τ̂1, · · · , τ̂T on the basis of the publication year along with
a time window size w. For each task τ̂t, we construct a
graph with respect to publications from time [t, t + w],
where publications from time t are the training vertices, and
[t + 1, t + w] are test vertices. For example, in DBLP-easy,
we use the data from 2007-2015, when the w = 2, there
are a total of 7 subgraphs, namely 2007-2008-2009,· · · ,2013-
2014-2015. For DBLP-hard, it has a larger number of nodes,
edges, and categories. We use data from 1993-2000, when the
w = 2, and there are a total of 6 subgraphs, namely 1993-
1994-1995,· · · ,1998-1999-2000. Therefore, for each subgraph
task τ̂t, we can learn a classifier model,

ft : (At, Xt;Lt) 7→ Yt (10)

and use the learned classifier ft(·) to predict class labels of
the unlabeled nodes Ut. Finally, we can aggregate accuracy
scores over the sequence of tasks τ̂1, · · · , τ̂T . The details are
shown in Table I.

2) Baseline Methods: We use following baselines with
necessary adaption.
• MLP only uses a multi-layer perceptron (MLP) which

only utilizes node features to train the model.
• GCN uses Graph Convolutional Network [5] for graph

data, which integrates network topology, node features
and observed labels into an end-to-end learning frame-
work.

Authorized licensed use limited to: Florida Atlantic University. Downloaded on May 19,2023 at 21:38:12 UTC from IEEE Xplore. Restrictions apply.

810

0.59

0.61

0.63

0.65

0.67

0.69

0.71

2007 2008 2009 2010 2011 2012 2013

A
cc

u
ra

cy

DBLP-easy

MLP GCN GAT TAAN

Different graph

(a) DPLP-easy

0.43

0.45

0.47

0.49

0.51

0.53

0.55

0.57

0.59

0.61

1993 1994 1995 1996 1997 1998

A
cc

u
ra

cy

DBLP-hard

MLP GCN GAT TAAN

Different graph

(b) DBLP-hard

Fig. 3. Classification accuracy with respect to different time points.

TABLE II
THE AVERAGE ACCURACY ON DBLP.

Method DBLP-easy DBLP-hard

MLP 0.6216 0.4927

GCN 0.6501 0.5449

GAT 0.6510 0.5460

TAAN-c 0.6541 0.5499

TAAN-t 0.6611 0.5530

TAAN-i 0.6471 0.5519

TAAN 0.6649 0.5558

TABLE III
THE ACCURACY OF DIFFERENT SAMPLE NUMBERS S ON DBLP.

S DBLP-easy DBLP-hard

1 0.6603 0.5510

2 0.6639 0.5522

3 0.6643 0.5555

4 0.6649 0.5558

5 0.6649 0.5547

• GAT uses Graph Attention Network [19] for graph data.
• TAAN-c removes the Consistency Regularization loss in

our proposed TAAN model, and only uses the temporal
adaptive aggregation network and supervised loss.

• TAAN-t removes the Temporal Adaptive Aggregation
Network in our proposed TAAN model, and only uses
the supervised loss and consistency regularization loss.

• TAAN-i removes the incremental learning strategy in
our proposed TAAN model, and re-initialize the training
parameters on each task of subgraph and retrain from
scratch.

• TAAN is our proposed model.

3) Experimental Setup: For fairness of comparison, for
each subgraph task τ̂t, nodes from time t are the training
vertices, and [t + 1, t + w] are test vertices. Here, w is set
to 2. We aggregate accuracy scores over the sequence of tasks

τ̂1, ..., τ̂T by using their unweighted average:

Acc(f) =
1

T

∑
t∈1,...,T

Acct(f
(t)) (11)

Here, we also conduct 5 trials of randomly splitting with
different random seeds, and report the average Accuracy for
each dataset as final experimental results.

All models were implemented in PyTorch with the Adam
optimizer with a learning rate of 1e−3 for 2000 steps. We
set the embedding dimension of nodes to 64 for all methods.
We choose two layers for MLP, GCN and GAT, where the
embedding dimension of the hidden layer is set to 64. The K
in temporal adaptive aggregation network is set to 6, and the
hyperparameters λ and β are set to 1 and 0.8, respectively.
The δ for sharpness is set to 0.5. For TAAN, the number of
graph data augmentations is 4 by default.

B. Experimental Results

We report the average accuracy of our model and baseline
methods on two benchmark datasets in Table 2 and Figure 3.
From results in Table 2 and Figure 3, we can conclude that:
(1) The GCN and GAT obtain better performance than MLP,

both in terms of the average accuracy and specifically in
terms of the accuracy at each time point. For the average
accuracy, on the DBLP-easy dataset, GCN and GAT
improved over MLP by 2.85% and 2.94%, respectively;
On the DBLP-hard dataset, GCN and GAT are 5.22%
and 5.33% higher than MLP, respectively. These results
shows that graph neural networks can better learn node
representations by leveraging node relationships.

(2) TAAN achieves better performance than GCN and GAT
in all experimental results. In terms of average accuracy,
on DBLP-easy dataset, TAAN is 1.48% and 1.39% higher
than GCN and GAT, respectively; On DBLP-hard dataset,
TAAN improves over GCN by 1.09% and GAT by
0.98%. In terms of the accuracy of each specific year,
in 1995 on the DBLP-hard dataset, for example, TAAN
improves the accuracy by about 1.3% compared with
GCN and by about 1.02% compared with GAT. This
phenomenon indicates the superior performance of the
proposed temporal adaptive aggregation network, which

Authorized licensed use limited to: Florida Atlantic University. Downloaded on May 19,2023 at 21:38:12 UTC from IEEE Xplore. Restrictions apply.

811

strengthens attention to intra-class nodes and attenuates
attention to inter-class nodes by considering the temporal
and category information of nodes jointly. Furthermore,
consistency regularized learning is used to leverage la-
beled and unlabeled nodes to learn good node embedding.

(3) The TAAN obtains better performance than TAAN-t,
which indicates that the Temporal Adaptive Aggregation
network can not only aggregate the information of neigh-
bor nodes, but also the temporal relationships of nodes.

(4) The performance of TAAN is better than that of TAAN-
c, indicating that the introduction of the consistency
regularization loss is effective.

(5) The performance of TAAN is better than that of TAAN-
i, indicating that the effectiveness of the incremental
learning. Here, in terms of average accuracy, on DBLP-
easy and DBLP-hard dataset, TAAN can achieve relative
improvements of 1.78% and 0.39% respectively, com-
pared with TAAN-i.

C. Parameter Analysis

Analysis of results for each subgraph To further demonstrate
the effectiveness of our method, we present the comparison
results of different subgraphs at each time t for both datasets
as shown in Figure 3(a) and Figure 3(b). From the results,
we can see that our proposed TAAN is better than other
baseline methods in different time periods, thus validating the
effectiveness of our method again.

Analysis of the Number of graph data augmentation S
The results for different numbers of graph data augmentation
S are shown in Table III. It can be seen from the results that the
larger the numbers of graph data augmentation S is, the better
the experimental results will be. Here, we use the augmented
graphs to explore consistency for more effective learning
and prediction, and a consistency loss is used to incorporate
unlabeled data into the learning process, and optimize the
prediction consistency of unlabeled nodes across different data
augmentations. However, as S becomes larger, the complexity
of the experiment increases. In order to balance the efficiency
and performance, we finally set S equal to 4.

V. CONCLUSIONS

Many applications, such as social networks and citation
networks, involve networks with changing nodes and edges
over time. In this paper, we study dynamic graph learning,
where network nodes and edges are continuously changing
in temporal order. We argued that when handling dynam-
ics in the networks, existing approaches primarily focus on
network topology, without taking node class connections and
temporal changes into consideration, and their learning ob-
jective is primarily constrained by labeled nodes. To address
the challenges, we proposed a temporal adaptive aggregation
network (TAAN) for dynamic graph learning. The temporal
adaptive aggregation jointly exploits neighbors from different
classes, as well as their temporal order. Data augmentation
and consistency loss are further integrated to leverage labeled
and unlabeled nodes in the network. As a result, TAAN can

adapt to changes in dynamic graphs to learn node embed-
ding features for classification. Results on real-world datasets
demonstrate the effectiveness of our algorithm.

ACKNOWLEDGMENT

This research is sponsored by US National Science Foun-
dation under grant No. IIS-1763452.

REFERENCES

[1] D. Zhang, J. Yin, X. Zhu, and C. Zhang, “Network representation
learning: A survey,” IEEE Trans. on Big Data, vol. 6, no. 1, pp. 3–
28, 2020.

[2] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and P. S. Yu, “A
comprehensive survey on graph neural networks,” IEEE Transactions
on Neural Networks and Learning Systems, 2020.

[3] M. Wu, S. Pan, and X. Zhu, “Openwgl: Open-world graph learning,”
in 20th IEEE International Conference on Data Mining, ICDM 2020,
Sorrento, Italy, November 17-20, 2020, pp. 681–690.

[4] M. Wu, S. Pan, C. Zhou, X. Chang, and X. Zhu, “Unsupervised domain
adaptive graph convolutional networks,” in WWW ’20: The Web Conf.
2020, Taipei, Taiwan, April 20-24, 2020, 2020, pp. 1457–1467.

[5] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” arXiv preprint arXiv:1609.02907, 2016.

[6] S. Pan, R. Hu, S.-f. Fung, G. Long, J. Jiang, and C. Zhang, “Learning
graph embedding with adversarial training methods,” IEEE Transactions
on Cybernetics, vol. 50, no. 6, pp. 2475–2487, 2020.

[7] M. Wu, S. Pan, L. Du, I. W. Tsang, X. Zhu, and B. Du, “Long-short
distance aggregation networks for positive unlabeled graph learning,” in
Proc. of ACM CIKM International Conference, 2019.

[8] C. Wang, S. Pan, R. Hu, G. Long, J. Jiang, and C. Zhang, “Attributed
graph clustering: A deep attentional embedding approach,” in Proc. of
IJCAI, 2019, pp. 3670–3676.

[9] H. Gao and S. Ji, “Graph u-nets,” in International Conference on
Machine Learning, 2019, pp. 2083–2092.

[10] L. Galke, B. Franke, T. Zielke, and A. Scherp, “Lifelong learning of
graph neural networks for open-world node classification,” in Interna-
tional Joint Conference on Neural Networks, IJCNN 2021, Shenzhen,
China, July 18-22, 2021. IEEE, 2021, pp. 1–8.

[11] J. Leskovec, J. M. Kleinberg, and C. Faloutsos, “Graphs over time:
densification laws, shrinking diameters and possible explanations,” in
Proc. of the 11th ACM SIGKDD Conf. on Knowledge Discovery and
Data Mining, August 21-24, 2005, 2005, pp. 177–187.

[12] M. Shi, Y. Huang, X. Zhu, Y. Tang, Y. Zhuang, and J. Liu, “Gaen:
Graph attention evolving networks,” in International Joint Conference
on Artificial Intelligence (IJCAI), 2021, pp. 1541–1547.

[13] R. Trivedi, M. Farajtabar, P. Biswal, and H. Zha, “Dyrep: Learning
representations over dynamic graphs,” in 7th International Conference
on Learning Representations, ICLR 2019, New Orleans, LA, USA, May
6-9, 2019. OpenReview.net, 2019.

[14] E. Rossi, B. Chamberlain, F. Frasca, D. Eynard, F. Monti, and M. M.
Bronstein, “Temporal graph networks for deep learning on dynamic
graphs,” CoRR, vol. abs/2006.10637, 2020.

[15] A. Pareja, G. Domeniconi, J. Chen, T. Ma, T. Suzumura, H. Kanezashi,
T. Kaler, T. B. Schardl, and C. E. Leiserson, “Evolvegcn: Evolving graph
convolutional networks for dynamic graphs,” in The Thirty-Fourth AAAI
Conference on Artificial Intelligence, AAAI 2020, 2020, pp. 5363–5370.

[16] D. Berthelot, N. Carlini, I. J. Goodfellow, N. Papernot, A. Oliver,
and C. Raffel, “Mixmatch: A holistic approach to semi-supervised
learning,” in Annual Conference on Neural Information Processing
Systems (NeurIPS), 2019, pp. 5050–5060.

[17] W. Feng, J. Zhang, Y. Dong, Y. Han, H. Luan, Q. Xu, Q. Yang,
E. Kharlamov, and J. Tang, “Graph random neural networks for semi-
supervised learning on graphs,” in Annual Conf. on Neural Information
Processing Systems (NeurIPS), 2020.

[18] J. Lim, D. Um, H. J. Chang, D. U. Jo, and J. Y. Choi, “Class-attentive
diffusion network for semi-supervised classification,” in Thirty-Fifth
AAAI Conference on Artificial Intelligence, Virtual Event, February 2-9,
2021, 2021, pp. 8601–8609.

[19] P. Velickovic, G. Cucurull, A. Casanova, A. Romero, P. Lio, and Y. Ben-
gio, “Graph attention networks,” arXiv preprint arXiv:1710.10903, 2017.

Authorized licensed use limited to: Florida Atlantic University. Downloaded on May 19,2023 at 21:38:12 UTC from IEEE Xplore. Restrictions apply.

