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Abstract—Graph Contrastive Learning (GCL) has recently
emerged to leverage contrastive loss as a pseudo-supervision sig-
nal for self-supervised learning. In order to introduce contrastive
learning loss to graphs, existing GCL methods mostly focus
on leveraging network topology or node similarity to classify
a pair of nodes as same/different node pairs or close/distant
node pairs. In this paper, we propose a semi-supervised graph
contrastive learning framework, pmGCL, leveraging GCL to
augment the performance of a classifier t hrough a predictive
masking approach. Specifically, a c lassifier is tr ained us ing a
small number of labeled nodes to predict node labels. The label
prediction results are then transformed into a binary prediction
of whether two nodes have the same label or not for all node
pairs. The converted result, serving as a binary masking matrix,
will help the succeeding GCL learning to learn to pull nodes
likely belonging to the same class to be closer and push the
ones belonging to different classes to be further away from each
other. Experiments and comparisons, with respect to different
benchmark networks and label percentages, show that pmGCL
consistently outperforms rival graph convolution neural network
(GCN) and GCL baseline with a simple constraint posed on the
problem.

Index Terms—Graph contrastive learning, graph convolution
networks, predictive masking, semi-supervised Learning

I. INTRODUCTION

Graph Contrastive Learning (GCL) [1] [2], a self-supervised
graph learning approach, has recently drawn significant at-
tention, due to its superiority in not requiring supervised
label information in the network for learning. The strength
of GCL stems from its unique design of creating contrastive
learning tasks without requiring supervision. Following the
first GCL method, Deep Graph Infomax (DGI), which focuses
on contrasting local vs. global views [3] [4], many researches
now propose to contrast same vs. different nodes by creating
noisy versions of original data points. The main idea is to
learn representations that pull similar data closer and push
different data away. After learning the encoder, a downstream
task such as a node classification model can be trained using
learned representations.

One of the essential challenges in GCL learning is that the
number of negative node pairs is far more than positive pairs.
Early methods, such as GRACE [5], use all node pairs created
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from different nodes as negative pairs. The idea is simple but
purely heuristic because many negative pairs are unnecessary.
Later research proposes to extract semantic information by
leveraging similarity scores between nodes to estimate the
probability of whether two nodes may have the same label
or not. As a result, the estimated scores can help select a
subset of hard negative pairs and use scores for constructing
soft contrastive loss. [6] [7] [8] [9].

For semi-supervised learning scenarios, when labeled nodes
are provided, for graph data, graph convolution neural network
can be used with cross-entropy loss to train the model [10].
In [11], a method is proposed to use provided labels with
label propagation [12] along with GCN [13] [11]. In [14],
an uncertainty or probability-based GNN method is proposed
to utilize the labeled nodes for estimating multidimensional
uncertainty and leverage them for the node classification.
Another work that has a similar idea to ours is [15] which
applies an unsupervised learning scheme to the deep learning
architecture layers to simultaneously train both goals, where
our works transform the prediction result to an input that
can be utilized by unsupervised learning for further training.
Another important family of semi-supervised learning methods
includes cluster kernels [16], TSVM [17], Laplacian SVM [18]
that utilize the manifold assumption of the unlabeled data and
impose regularization together with supervised loss.

To date, most of the existing semi-supervised methods use
clustering or manifold regularization along with a supervised
loss to jointly train the model. Our method is different from
these methods in that we intend to use the results of the clas-
sifier trained from the labeled node to guide or enhance graph
contrastive learning instead of directly adding the contrastive
learning goal together with the training architecture.

The existing semi-supervised GCL method directly uses
given labels to create node pairs. [19] uses labeled nodes
to create positive pairs and modify contrastive loss using the
mean of positive pairs for each node. This creates a way to
unify contrastive learning with supervised labeling knowledge
but provides only nodes with labels. In most cases, the number
of labeled nodes is very few. As a result, it will limit the
number of positive pairs for effective contrastive learning.

To further utilize the label information, we propose,
pmGCL, a predictive masking-based Graph Contrastive Learn-
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TABLE I
COMPARISON OF DIFFERENT MASKING METHODS

Masking Methods Learning Type Node identity  Label  Constraints
Contrastive Masking [5] Self Supervised v None None
Supervised Contrastive Masking [19]  Semi-Supervised v v None
Predictive Masking Semi-Supervised v v v

ing method. Our theme is to estimate node labels and create
binary relation masks to support contrastive learning. Another
perspective of looking at our scheme is to enhance the perfor-
mance of a classifier with a contrastive learning model.

Table I summarizes the main differences between our
proposed masking method and existing solutions. Compared
with existing methods like supervised contrastive learning
that directly use given labels, our method further extracts
information from given labels by training a classifier and using
it to predict all the node pair relations. Our method then uses
the relationship between each pair of nodes instead of directly
using the predicted node label.

Compared to existing research in the field, our research
brings the following three main contributions:

o We propose a new masking scheme for semi-supervised
graph contrastive learning;

+ We propose to decompose a multi-class prediction task
as a binary mask prediction task (where the latter often
has a higher prediction accuracy), and therefore can boost
graph contrastive learning;

o Experiments and analysis show that our method can
extract useful information from a small number of labeled
nodes to boost node embedding learning.

II. PROBLEM DEFINITION & PRELIMINARY

G (V,E, X,Y;) represents a graph, where V =
{Ui}¢:1,.»- " is the set of vertices representing nodes in the
graph and e;; = (v;,v;) € E is an edge capturing rela-
tionship between node v; and v;. An adjacency matrix A
represents topological structures of a graph G, with A; ; =1
if (v;,v;) € E or A;; = 0 otherwise. The feature matrix
X € R™ ™ represent features of all nodes, with x; € X
denoting feature vector of node v;, and each node has m
features, i.e. x; € R'*™. The label space of each node is
denoted by Y = {e¢1,-- -, ¢k}, so there are |Y| = K unique
labels/categories for the node label space.

For each node v;, its true label is denoted by y; € V. For
ease of calculation, we denote v;’s label in a one-hot encoded
vector as y; € Z'*K with j'" element corresponding to the
class ¢;, y;; = 1 if node label is ¢; and 0 otherwise. For
example, if a node v;’s label is co, y; = [0,1,0,--- , 0], with
¥i2 = 1 and y; ; = 0,Vj # 2. The predicted label of node
v; is denoted by ¢; and the one-hot encoded prediction is
represented as y; € Z'*X. The predicted probability of a
node v; belonging to class c; is denoted by p; ;. A small
subset of nodes V; has labels and the label set is denoted by
Y, € ZVil*E  The subset of nodes without labels is denoted
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by V, and the ground truth of the label set for V, is Y, €
ZIVulxK

Given a graph G, and a portion of labeled nodes V;
(including their labels Y;), our goal is to learn models to
accurately predict labels Y, of remaining nodes V,, in the
network.

A. GCN and GCL Preliminary

Our method involves both GCN and GCL components.
Here we introduce their core concepts and differences. For
both GCN classifier and GCL representation learning, a key
concept is a graph convolution neural network that involves
the following convolution operation [10] for each layer ¢:

H™*' = o(D~ 2 AD™ 2 H'WY) (1)

where H'*! is the output embedding from layer 4, o is an
activation function, A=A+1 ,where I is the identity matrix
with same size as A and D is the diagonal matrix of A. H'
is feature matrix X, and W' is the weight matrix of layer
1. The classifier GC'N, has an additional dropout layer after
Eq. (1) and its output is a predicted label € ). The encoder
GC N, has an additional stage to augment the original graph

and outputs the latent representation of the node.

III. PROPOSED METHOD
A. Motivation

As shown in Table I, existing contrastive masking methods
mainly rely on whether a pair of nodes belong to the same node
to create contrastive term. This does not allow label informa-
tion to be accommodated in the contrastive learning process.
On the other hand, supervised contrastive masking uses labels
to create contrastive loss, leaving the majority of unlabeled
nodes not able to be considered in the contrastive learning
process. The main motivation of our predictive masking is to
leverage limited label information in the network to create
masks, such that unlabeled nodes can be modeled during the
contrastive learning process.

To explicitly capture node relationships for contrastive
learning, we use a Boolean matrix M € R"*™ to represent
the node relationship between each node pair in terms of their
labels. A mask matrix value M; ; = 1 if node v; and node
v; does not belong to the same class, i.e.,y; 7# y;, otherwise,
M; ; = 0. In self-supervised learning, the label information
is not available, and therefore a rough estimation is needed
to fill the matrix M. Because mask M provides essential
guidance on how the final representation will be learned, a
more accurate estimation should be used to substitute rough
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estimation. Therefore, we propose to use a classifier to predict
and generate mask matrix M, using two major steps: (1) create
the mask M based on prediction from a base classifier; (2)
train encoder to learn node representation Z using mask matrix
M, where Z € R"*4 is defined as learned representations
from encoder with latent space dimension d for all n nodes.
z; € R4 is a representation of node v;.

B. Predictive Masking

GCN classifier, denoted by GC'N,, is chosen as our base
classifier due to its great performance in a supervised manner.
GCN, is trained using G and Y; with cross-entropy loss. Then,
}A/u is predicted and concatenated with Y; to form a label matrix
of all nodes, which is denoted by Y.

-[3]

We store Y’ using one-hot encoding form for later compu-
tation of mask M with dimension, i.e.,Y € R**IVI,

After that, mask matrix M is constructed using Y by using
the formula:

2)

M=V xY" -] (3)

where J € R™*" is an all-ones matrix. M; represents rela-
tionship between node v; and all other nodes, with M; ; = 1
if §; # §;, or M; ; = 0 otherwise.

Please note that Y in Eq. (2) concatenates both ground truth
labels (for labeled nodes) and predicted labels (for unlabeled
nodes). If a node v; is labeled, its label in Y would be its
ground truth label, meaning ¢; = y;. In this way, we can make
mask matrix M as accurate as possible to capture pairwise
node label relationship.

C. Representation Learning

After obtaining the new mask matrix M, the contrastive
learning will use M to enhance the representation learning,
through a contrastive learning process. To create different
graph views for contrastive learning, two augmented versions
of graph views are created by randomly dropping edges and
masking features. A shared GCN encoder GC' N, is trained to
learn the representation z of each node for the two views and
use a projection header to further project the representations.
The learned representation Z is used to compute the loss and
further improve GC N,.

For a specific node v;, we use AVI-Jr to denote the set of
nodes having the same label as v;. Likewise, we use AV,” to
denote the set of nodes whose labels are different from v;. In
the following, we outline the loss functions used to regularize
representation learning.

1) Loss Functions: For supervised loss, the cross entropy
loss is used and given as:

Vil 1Yl
lep(Z) =— Z Zyi,j -log pi,; “)
i=10;€V; j=1
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For each node v, its true label is denoted as y;, we denote
its form in one hot encoder for class j as y; ;. The predicted
probability of class j is denoted by p; ;.

For self-supervised Learning, the contrastive loss is to con-
sider the same node as positive and different nodes as negative
pairs. Methods like hard negative sampling [8] proposed to
estimate the hardness of the negative sample pairs and tried
to use those true and hard negative samples for the negative
loss. We consider this view as a negative mining scheme and
the formula is given:

2n 22"
1 e T
lor(Z2) = ™ Z log - — ®)
i=1 e  + % Z;‘L:I e T

where h is the number of hard negative examples to be selected
and ¢ is a hyperparameter to control the balance between the
hardness and correctness of the selected samples. z* is the
representation of a node that has a different view from node
i and z; is the representation of node j who has different
labels from node ¢. The intuition of a hard negative example
is similar to the idea of support vectors in the Support Vector
Machine (SVM) model.

Other works like Supervised Contrastive Learning [19]
suggest an SC loss that focuses on positive masks. For each
node, it gets the average of all the positive nodes. We consider
it a positive mining scheme and the formula is given:

2n Zi%j
1 -1 e T
lso(Z) = = o Y, 108 —omgr——=m=r (6)
2n = |A(V;T)] jeavit dactagi® T

where AVi+ is the set of positive nodes with node ¢ and a is
the index of the node. The labeled information is utilized as
a more accurate positive set AV, 1.

Using Boolean mask matrix M generated from the previous
step, we can create contrastive loss to select the negative pairs
and consider the following negative contrastive losses:

9 z;zT
1 & e T
tpm(Z) = o Z —log 22" _ 2 za M g ™
i=1 e T 4+ Zz;fz# e 7

where zT is the representation of the node which has the
same index as node v;, but from a different graph view.
M; , is element of matrix M, specifying node v; and v,
relationship. Compared to contrastive loss in Eq. (5), our loss
is not controlled with hyperparameter ¢ as we use the baseline
predictor to produce the whole relationship mask directly. Our
loss Eq. (7) is a smooth version of Eq. (5) by putting the
mask inside the exponential term and giving 1 to the predicted
positive terms or considering it as adding a count of predicted
positive terms. We compute the joint loss of our proposed
contrastive loss and cross-entropy loss with a hyperparameter
A to regulate. The final loss is computed as:
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Algorithm 1: pmGCL: Predictive Masking GCL Learning
Require:
(1) Graph: G = (V, E, X, Y)).
(2) L: The numbers of GCN layers.

(3) Aug(.): Augmentation function to create noisy graph views.

(4) GCN architecture: A graph convolution neural network
architecture with cross-entropy loss with a set of parameters
denoted by Waen.
(5) GCL architecture: a graph convolution neural network
architecture with the contrastive loss with a set of parameters
denoted by Wecr.

Ensure:
[Y.]: predicted result for all unlabeled nodes

: A+ V x E. Create an adjacency matrix from V and FE.

1

2: while not convergence do

3:  for i=1to L do

4: if i == 1 then

5: Z0-D X

6: end if

7: Z' + Conv™ (Z(i71)7A) using Eq. (1)

8:  end for

9:  Back-propagate loss gradient from Z*~!,Z% and Y; using
Eq. (4)

10:  Update predictor parameters Wgcon with loss

11: end while

12: Y, +— hl(ZL_l, Y;) where result is in one hot encoded form,

h1() is a linear regression model trained with embedding Z%~~!

and label Y] .
Y « concatenate (Y, Y]) using Eq. (2)
M < mask matrix using Eq. (3) and Y’
G1 + Aug(Q)
GQ < A’LLg(G)
while not convergence do
for i=1to L do
if : == 1 then
AR ¢
Zz”_l) — X
end if _
Zi « Conv™ ZY_D using Eq. (1)

Zi « Conv™ (z{~")) using Eq. (1)
end for
Back-propagate loss gradient from ZlLfl, ZQL*1,Z1L,ZQL, M
and Y; using Eq. (8)
Update encoder parameters Wacr with loss
end while
ho < Linear regression model trained with embedding ZL !
and label Z;
Y,  h2(Z%~') where result is in one hot encoded form.

13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:

24:

25:
26:
27:
28:
29:

30:

D. Algorithm

Algorithm 1 lists the pseudo code of the proposed predictive
masking graph contrastive learning process. The algorithm
consists of three main phases.

The first phase (from Step 1 to Step 10) is to first learn
a graph neural network GCN,., using input graph G
(V, E, X,Y;). The result of this phase will learn the embedding
feature for each node, and graph G is encoded as a dataset
ZL=1 with each instance representing a node in G.

The second phase (from Step 11 to Step 14) is the mask
generation phase. We first use Z~~! and node labels Y] to train
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a classifier 1y (ZL171,Y;). The classifier is applied to predict
node labels for unlabeled nodes. Given the predicted one-hot
encoding result V' & R"XD", we can compute our mask M
using Eq. (3).

The third phase (from step 15 till the end) is the graph
contrastive learning process. We first generate graph augmen-
tations G; and G5 and then learn two embedding features (Z {
and Z%) for each node in the network. Step 26 will use graph
contrastive loss defined in Eq. (8) to back-propagate gradient
for network training. Once the graph neural network is suitably
trained, the embedding vectors ZZ~! are then used to train
another classifier hi; to predict labels of unlabeled nodes in
the network.

IV. EXPERIMENTS
A. Experimental Settings

We use three benchmark graph datasets, as shown in Ta-
ble IV, in the experiments. To evaluate the performance of the
algorithms, we use different portions of labeled samples, and
evaluate the algorithm performance on the rest samples. More
specifically, for each network, we label 1%, 2%, 3%, 10%, 20%
and 30% of nodes respectively, and test the algorithm perfor-
mance on the remaining nodes. To examine the effectiveness
of our method, we compare it with different baselines and test
our experiment with different label rates. Each label rate is
repeated 10 times with a random split.

1) Parameter Settings: For each set of labeled portions,
we separate 70% of labeled samples for training, and the
rest 30% is used for validation. For hyperparameter selection,
we follow the same setting used in the original papers. The
training epoch number is selected based on the validation set.
The added hyperparameter A\ is empirically examined from
[0,0.2,0.5,1, 3, 5] and we found that A should be chosen small
when the label percentage is small and relatively larger when
the label percentage increases. A = 0.2 is best for lower
labeling rate and up to 1 for a higher labeling rate. For both
GCL and GCN architecture, we have two GNN layers with
GCN adding an additional dropout layer with 0.5 dropout
rate and GCL contains additional parameters including drop
edge and drop feature ratio to control augmentation level and
temperature 7 used in the loss function. The Relu function
is used for the activation function. The other parameters for
both GCL and GCN include the number of hidden units, decay
weight, and initial learning rate. We follow the recommended
setting used in the original paper for the selection of these
parameters. The early stopping technique is used together with
the validation set for early convergence.

2) Baseline Methods: Table II lists the baselines and our
proposed method and compares their differences from two
perspectives: loss function and label utilization. SCL is a
supervised contrastive learning proposed in [19], which is a
baseline for comparing whether our method extracts more
information from labels. For the GCL method, we choose
GRACE [5] as our baseline, because it uses rough estimation
without any label information, making it a good baseline for
comparison. GCN [10] is selected for baseline to examine
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TABLE I
A SUMMARY OF BASELINE AND THE PROPOSED METHODS WITH RESPECT TO LEARNING TYPES, MASK GENERATION, AND LOSS FUNCTION

Method Learning Type Mask Generation Loss Function
GCN [10] Semi Supervised NA CE
GCL [5] Self Supervised consider same or different nodes CL
GCL(with correction) ~ Semi Supervised  consider the original label information CL
pmGCL Semi Supervised predict relation + label information CL+CE
pmGCL Semi Supervised predict relation + label information SC
SCL [19] Semi Supervised directly leverage label information SC
TABLE III TABLE IV

DATASETS DESCRIPTION

Datasets  # of nodes  # of edges  # of classes
Cora 2,708 10,556 7
Citeseer 3,327 9,228 6
Pubmed 19,717 88,651 3

whether we can further improve the results from GCN through
contrastive learning. For loss functions, CE represents cross-
entropy loss, SC represents supervised contrastive loss, and
CL is contrastive loss.

e« GCN [10] a semi-supervised framework that applies
Graph Convolution Neural Network to graph data with
cross-entropy loss.

e GCL [5] a self-supervised framework applied Graph Con-
volution Neural Network with contrastive loss to encode
node representation for downstream tasks.

o GCL (with correction) a semi-supervised framework ap-
plies and Graph Convolution Neural Network with con-
trastive loss upon given labels to encode node represen-
tation for downstream tasks.

o pmGCL(SC loss) our proposed framework with substitu-
tion of supervised contrastive loss.

o SCL [19] a semi-supervised framework applies and Graph
Convolution Neural Network with supervised contrastive
loss upon given labels to encode node representation for
downstream tasks.

B. Results and Analysis

For fairness of comparison, we extract the representation
learned from all models and follow the standard procedure to
use the latent features with a simple linear regression model
for evaluation.

The results show that, in most cases, pmGCL outperforms
all other baselines. Substituting SC loss with our predictive
mask performs worse than our own loss function. This shows
that our proposed loss function is better suitable to our
method. Our method with SC loss performs better than direct
label information with SC loss when a reasonable number of
labels is given, indicating that our predictive mask gets more
information from labels. Our method works better than GCN
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MEAN ACCURACY ON THE CORA DATASET

Label Rate 1% 3% 5% 10% 20% 30%
GCN [10] 0.5231 0.7155 0.757 0.8187 0.8456 0.8528
GCL [5] 0.6165 0.6464 0.6596 0.7738 0.7624 0.8446
GCL(with correction) 0.625 0.6344 0.6436 0.6942 0.732 0.7417
pmGCL 0.5454 0.7199 0.7625 0.8196 0.8426 0.8578
pmGCL(SC loss) 0.5287 0.7062 0.7552 0.8183 0.8437 0.8536
SCL [19] 0.5996 0.6356 0.6524 0.7072 0.7234 0.83
TABLE V
MEAN ACCURACY ON THE CITESEER DATASET
Label Rate 1% 3% 5% 10% 20% 30%
GCN [10] 0.4442 0.631 0.6634 0.7061 0.7294 0.7415
GCL [5] 0.6042 0.6251 0.6152 0.7077 0.705 0.7145
GCL(with correction) 0.5855 0.6004 0.6142 0.6555 0.675 0.684
pmGCL 0.5123  0.6529  0.68 0.7174  0.7399  0.7492
pmGCL(SC loss) 0.45 0.622 0.67 0.7119 0.7341 0.742
SCL [19] 0.5702 0.6145 0.6155 0.6525 0.6661 0.73
TABLE VI
MEAN ACCURACY ON THE PUBMED DATASET

Label Rate 1% 3% 5% 10% 20% 30%
GCN [10] 0.8047 0.8305 0.844 0.8464 0.8518 0.8528
GCL [5] 0.8054 0.8102 0.8175 0.8239 0.8333 0.8354
GCL(with correction) 0.8124 0.812 0.8197 0.8258 0.8348 0.8391
pmGCL 0.8198 0.8351 0.8396 0.8234 0.8421 0.8663
SCL [19] 0.8123 0.811 0.8217 0.8283 0.836 0.8406

showing that further improvement can be made by leveraging
supervised results from the representation learning perspective.

In Table VI, GCN performs better in many cases. This
is because Pubmed set only has K = 3 classes, suggesting
that the converted mask may be corrupted with higher model
prediction probability. For those cases, noise becomes a more
influencing factor and reduces the amount of information
brought by the prediction. Grace performs better in the extreme
fewer label rate showing that rough estimation can work when
no label or only fewer labels are given but can be improved
greatly with our methods when more labels are given.
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Fig. 1. Mean accuracy comparison between binary relation prediction and

label prediction on three datasets. x-axis is the percentage of labeled nodes
and y-axis is the mean accuracy of the prediction results. Label prediction
means prediction for a multi-class classification problem and mask prediction
means prediction for a binary mask problem.

C. Predictive Masking Rationality

In order to explain why predictive masking-based con-
trastive graph learning can improve learning accuracy, we
explicitly compare label prediction accuracy vs. pairwise label
mask accuracy. For example, for a network with 10 nodes
v, -+, 010, if we correctly predict labels for 6 nodes, the label
prediction accuracy is 60%. Then we use predicted labels to
create a mask, check the predicted pairwise label relationships,
and report mask prediction accuracy.

Figure 1 shows the empirical study comparing binary
masking accuracy vs. multi-class prediction accuracy, which
confirms that binary masks always have higher accuracy for all
tasks except when K = 3. This shows that instead of directly
relying on given labels to train graph neural networks, one
can predict labels for unlabelled nodes and use their pairwise
label relationships to boost graph learning.

V. CONCLUSION

In this paper, we propose a predictive masking contrastive
learning framework that uses a classifier to predict node labels
and leverages labels to create a binary mask for contrastive
learning. The niche of our predictive masking stems from its
rationality that instead of direct predicting a multi-class task,
we can create a more accurate binary task classifier, and use
the results to help improve the embedding learning. Another
way of looking at this scheme is to consider the framework
as an enhancement for a classifier using a self-supervised
objective. By using predictive masks to regulate contrastive
loss, experiments and comparisons demonstrate that pmGCL
consistently outperforms all common GCN and GCL baseline
for semi-supervised graph learning. Noted that in our theorem,
we didn’t constrain the specific model architecture and data
type, it is worthwhile for the future study to explore other
prediction models and data types to see if the framework can
be generalized.
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