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Abstract—Online planning of whole-body motions for legged
robots is challenging due to the inherent nonlinearity in the robot
dynamics. In this work, we propose a nonlinear MPC framework,
the BiConMP which can generate whole body trajectories online
by efficiently exploiting the structure of the robot dynamics.
BiConMP is used to generate various cyclic gaits on a real
quadruped robot and its performance is evaluated on different
terrain, countering unforeseen pushes and transitioning online
between different gaits. Further, the ability of BiConMP to
generate non-trivial acyclic whole-body dynamic motions on the
robot is presented. The same approach is also used to generate
various dynamic motions in MPC on a humanoid robot (Talos)
and another quadruped robot (AnYmal) in simulation. Finally,
an extensive empirical analysis on the effects of planning horizon
and frequency on the nonlinear MPC framework is reported and
discussed.

I. INTRODUCTION

Legged robots can autonomously navigate and operate in

environments built for humans. The efficacy of such robots

depends largely on how efficiently they can move around,

adapt to changes in their surroundings and recover from

unforeseen disturbances. These decisions are usually made

by trajectory optimization algorithms which compute optimal

robot movements and contact forces and contact planners

which decide which end-effector should make contact with

the environment. Consequently, the trajectory optimization

algorithm needs to be general enough that it can generate any

behavior that is needed for the robot to achieve the desired

task. At the same time, these algorithms should run as fast

as possible such that they adapt online to any changes in the

environment. In this work, we propose a general approach to

generate whole-body trajectories that is sufficiently fast to be

used in a model predictive control (MPC) fashion.

Initially, algorithms based on simplified models such as

the linear inverted pendulum model (LIPM) [1], [2] were

developed to generate trajectories online for humanoid robots.

These algorithms make use of a predefined footstep sequence

provided by the user to generate a feasible center of mass

(CoM) trajectory. Since the LIPM leads to an optimization

problem with quadratic costs and linear constraints, the prob-

lem can be solved quickly using a quadratic program (QP)
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[3]. While a further extension of these algorithms enabled

adaptation of the step location and timing [4], [5], [6], they are

only capable of generating walking motions for flat grounds

with co-planar contacts.

On the other hand, frameworks that can plan contacts and

optimal motions for complex scenarios have also been devel-

oped. In [7], [8], [9], the full-body motion and contact selec-

tion problems are formulated as single nonlinear optimization

problems. In [10], a more efficient phase-based formulation of

contact planning is proposed. Furthermore, [11] makes use of

differential dynamic programming (DDP) to solve the motion

optimization problem through contact. While these approaches

can in principle find complex contact sequences, they tend

to be computationally too expensive to be used in real-time.

Although [12] showed nonlinear model predictive control on a

quadruped using a Gauss-Newton multiple shooting variation

of DDP and a relaxed spring damper contact model, results

were limited to motions with low angular momentum such as

trotting and jumping in place.

Classically, the trajectory optimization problem has been

split into two different sub-problems: contact planning and mo-

tion optimization. This decomposition reduces the complexity

of the overall problem which allows them to be tractable. The

main idea is to first generate a contact sequence given the

terrain around the robot. The contact sequence is then provided

to the motion planner to generate a feasible trajectory for the

robot. The contact planning sub-problem can be solved using a

variety of approaches such as mixed integer optimization [13],

[14], L1-loss based optimization [15], graph search [16] and

sampling-based approach [17]. For the motion optimization

sub-problem, the nonlinear dynamics can be split into two

components, the actuated and unactuated dynamics (centroidal

dynamics) [18]. One of the interesting approaches to generate

whole body motions quickly is to use the centroidal dynamics

and full kinematics of the robot in one optimization problem

[19]. Further, a feasible whole-body motion can be generated

more efficiently by iteratively optimizing for the centroidal

dynamics and whole-body kinematics problems [20]. Despite

splitting the trajectory optimization problem into two parts,

each individual sub-problem remains nonlinear and challeng-

ing to solve in real time.

In order to further reduce computation times, several relax-

ations have been proposed to the centroidal dynamics formu-

lation. In [21], sequential convex relaxations are used and each

relaxation is solved using a second-order cone program [22].

Even though this approach can be used to quickly optimize a

variety of motions, the reduction in compute times are not

yet sufficient for closed-loop optimization. Further, in our

experience, the relaxations are often not tight enough for

very dynamic motions. Another approach to convexify the



centroidal dynamics problem is to only minimize the worst

case L1 bound on the angular momentum [23]. While this for-

mulation allows us to solve the motion planning problem with

a QP, it was only shown to be capable of generating motions

with low angular momentum such as walking. For quadrupeds,

with negligible leg inertia, the centroidal dynamics is also

often approximated by linearizing the base rotation [24], [25].

In these approaches, the swing foot trajectories are predefined

which restricts the possibilities for whole-body motions and

may lead to physical inconsistency. In [26], DDP is used to

solve an optimization problem with the centroidal dynamics

and first-order kinematics in real time. This approach achieved

re-planning frequencies suitable for real-time use. However,

the approach relied on a low-level whole-body controller and

it is unclear whether this controller solely tracked the motions

generated by DDP or whether the low-level controller behaved

as a dynamic filter to ensure physical consistency [27]. From

our experience, the solve times for such methods increase for

more dynamic motions such as bounding or rapid (forward)

jumping due to the drastic changes in the momenta profiles.

In this work, we propose a nonlinear trajectory optimization

framework that can be used in a real-time closed-loop model

predictive control to generate whole-body motions using the

kino-dynamic decomposition proposed in [20]. The dynamics

optimization problem is solved efficiently by exploiting the

biconvex structure of the centroidal dynamics. We previously

explored this structure in [28] which leveraged the biconvex

nature of the problem to formulate two separate, convex,

sub-problems. Given the convexity of each sub-problem, an

alternating procedure based on block coordinate descent was

used which allowed the use of state-of-the-art QP solvers

and resulted in a speedup in solve times. However, very

little is understood about the convergence rates of block

coordinate descent which makes it unreliable for MPC where

new solutions are needed in a fixed time[29]. In this work, we

explore a different approach that also exploits the biconvex

structure of the centroidal dynamics but we formulate the

optimization problem using the Alternating Direction Method

of Multipliers (ADMM) [30], leading to a more efficient and

reliable algorithm. We also split the biconvex dynamics dif-

ferently which reduces the number of optimization variables.

Compared to the block coordinate descent algorithm, the

ADMM algorithm provides favorable convergence properties

such as the ability to reach acceptable solutions in fewer

iterations and guaranteed sublinear convergence [30]. Cru-

cially, due to the unconstrained nature of each sub-problem,

each iteration is computationally cheap with respect to wall

time which allows us to exploit the aforementioned conver-

gence properties and make it attractive for use in an MPC

fashion. In the proposed ADMM formulation, each convex

sub-problem is solved using a custom implementation of

the Fast Iterative Shrinkage Thresholding Algorithm (FISTA)

[31]. This approach guarantees quadratic convergence of the

convex sub-problems while enforcing a variety of constraints

including second-order friction cone constraints. Our custom

implementation exploits 1) the accelerated gradient nature of

FISTA by warm starting the line search step to reduce solve

times and 2) the sparse nature of our optimal control problem

(OCP) as each iteration of the line-search only involves

sparse matrix-vector multiplication which is less expensive

compared to typical Quadratic Program (QP) or Quadratically

constrained QP solvers which often involve expensive matrix

decompositions. Due to this formulation, we solve the exact

centroidal optimization problem without relaxing the friction

cone constraints [32] or the dynamic constraints [21]. Finally,

the first-order optimization procedure of FISTA increases

robustness to convergence in the absence of true gradients [33],

[34]. This situation often occurs in real robots due to a lack

of accurate sensor measurements. Furthermore, problems such

as ill-conditioning of the Hessians that second-order methods

like DDP encounter are also absent with FISTA.

We also propose a second-order kinematics optimization

formulation to generate smooth joint trajectories that track

centroidal momentum profiles as required in the kino-dynamic

setup. We choose to solve this kinematics problem with

a DDP solver [35] to exploit the sparsity in the problem.

The second-order nonlinear optimization removes the need

to specify heuristic-based end-effector trajectories (e.g. via a

spline-based swing foot trajectory) as is often done in MPC

implementations [24], [36]. Although these methods of swing-

foot generation work well for simple motions, they are often

restrictive in nature and do not allow the algorithm the freedom

to find trajectories that may utilize the full capabilities of the

end-effectors. The nonlinear kinematics solver generates non-

trivial swing foot trajectories to track the desired centroidal

momentum provided by the dynamics optimization. Further,

the automatic generation of smooth joint acceleration profiles

allows direct computation and tracking of torques on the robot

with a simple inverse dynamics controller. This removes the

need for a complicated QP-based whole-body controller that

often behaves as an additional dynamic filter.

We demonstrate our approach in closed-loop MPC on

the real Solo12 quadruped robot [37] at 20 Hz to generate

several gaits such as trotting, jumping, and bounding. We

also display the robustness of the framework against external

disturbances and terrain noise. A high-five motion is also

shown to demonstrate the generality of the approach to non-

trivial, acyclic motions. Since the framework does not relax

or impose assumptions to make the original problem convex,

we are able to generate a wide array of motions in real time.

Furthermore, the same approach is used to generate various

dynamic motions in MPC on a humanoid robot (Talos [38])

and another quadruped robot (AnYmal [39]) in simulation.

This underlines the generality, robustness, and low compu-

tation times of our proposed framework, BiConMP, despite

the changes in the robot mass distributions, number of joints

(size of optimization problem), and nature of the robot. This is

often not as easy with other approaches which use simplified

dynamics whose assumptions may not hold valid for different

robots. Finally, we empirically analyze the effects of the

horizon length and re-planning frequency on the robustness

and performance of the nonlinear MPC on the real robot

(Solo12). To the best of our knowledge, this is the first reported

empirical analysis of closed-loop nonlinear MPC performance

for legged robots.



Fig. 1: A birds eye view of the entire nonlinear MPC framework. First, centroidal trajectories are generated using the ADMM

framework explained in Section III-B. These trajectories are used within a DDP-based kinematic optimizer that generates

the desired joint trajectories (Section III-D). The optimal force and joint trajectories from this kino-dynamic iteration are

recomputed at 20 Hz and are used in unconstrained inverse dynamics (9) to compute the desired joint torques at 1 kHz.

Finally, these actuator torques are summed up with a fixed low gain impedance joint controller that results in the torques sent

to the robot actuators (20).

II. BACKGROUND

This section introduces the background necessary to de-

scribe our approach. First, we discuss the centroidal momen-

tum dynamics of a floating base robot. Next, we explain the

kino-dynamic trajectory optimization scheme used to generate

feasible whole-body multi-contact motions for legged robots.

Finally, we briefly introduce an optimization technique used

in the solver.

A. Centroidal dynamics

The rigid body dynamics of a floating base robot can be

described as

M(q)v̇ +N(q,v) = ST
τ +

N
∑

j=1

JT
j λj (1)

where q ∈ R
n × SE(3) is the generalized configuration of

the robot (joint positions and base pose), and v ∈ R
n+6 is the

generalized velocity vector. M(q) ∈ R
(n+6)×(n+6) is the mass

matrix for the given robot configuration, N(q,v) ∈ R
n+6

is the vector containing all generalized forces (Coriolis, cen-

trifugal, gravity, etc), τ ∈ R
n is the vector of joint torques,

S is a selection matrix reflecting the underactuation of the

robot, Jj ∈ R
6×(n+6) are the end effector Jacobians and

λj = [fj ,κj ] ∈ R
6 is the vector of forces and torques applied

at each end effector.

The dynamics can further be split into its actuated and

unactuated parts [18], [20]

Mu(q)v̇ +Nu(q,v) =

N
∑

j=1

JT
u,jλj (2a)

Ma(q)v̇ +Na(q,v) = τ +

N
∑

j=1

JT
a,jλj (2b)

where the subscript a, u correspond to actuated and unactuated

dynamics respectively. The unactuated dynamics is equivalent

to the Newton-Euler equations of the center of mass (CoM)

[

l̇

k̇

]

=

[

mg +
∑N

j=1 njfj
∑N

j=1 nj((rj − c)× fj + κj)

]

(3)

where l,k are the linear and angular momentum [40], m is

the robot mass, g is the gravity vector, c represents the center

of mass CoM location, nj is a binary integer that describes

whether the end effector j is in contact, fj ,κj , rj are the end

effector force, torque, and location respectively. The linear

momentum is related to the CoM velocity ċ as l = mċ.

The linear momentum and angular momentum can also be

described in terms of the generalized joint configuration us-

ing the centroidal momentum matrix(D(q)) of the robot as
[

l

k

]

= D(q)v, [40].



B. Kino-dynamic motion generation

Splitting the dynamics enables multi-contact motion genera-

tion by only considering the unactuated dynamics or centroidal

dynamics of the robot. Subsequently, a feasible whole-body

trajectory can then be determined based on the centroidal

plan and desired whole-body tasks, provided there is sufficient

torque authority [20][21]. This is an attractive approach since

it breaks the original nonlinear optimization problem into two

simpler sub-problems.

A desired motion plan using the centroidal dynamics can

be generated by solving the following discrete optimal control

problem (OCP)

min.
c,ċ,k,f ,κ

T−1
∑

t=0

φt(ct, ċt,kt, ft,κt) + φT (cT , ċT ,kT , fT ,κT )

s.t. ct+1 = ct + ċt∆t (4)

ċt+1 = ċt +

N
∑

j=1

n
j
t

f
j
t

m
∆t+ g∆t (5)

kt+1 = kt +

N
∑

j=1

n
j
t ((r

j
t − ct)× f

j
t + κ

j
t )∆t (6)

∀t,j ,
√

(fjt,x)
2 + (fjt,y)

2 ≤ µf
j
t,z , f

j
t,z ≥ 0 (7)

∀t,j , rjtǫΨ, ∀ct ∈ Ω, c0, ċ0 = cinit, ċinit (8)

where φt(ct, ċt,kt, ft,κt) is the running cost,

φT (cT , ċT ,kT , fT ,κT ) is the terminal cost, ∆t is the

time discretization, µ is the friction coefficient, Ψ is the set

of all allowed stepping locations, Ω are kinematic constraints

written as bounds on the CoM position, cinit, ċinit are the

initial conditions for the CoM.

The optimal joint trajectory is generated by solving a

whole-body kinematic optimizer which tracks the optimal

centroidal momentum obtained from the previous step using

the centroidal momentum matrix, along with additional full-

body tasks, such as swing foot motion [21]. The generated mo-

mentum trajectory from the whole-body kinematic optimizer

is then used as a soft constraint in the centroidal OCP to obtain

refined centroidal and contact forces trajectories. This process

is iterated until the two sub-problems converge [20] leading

to a solution to the original problem.

One can then directly use plain inverse dynamics to recover

actuated joint torques from desired state trajectories and con-

tact forces using Eq. 2b

τRNEA = Ma(q)v̇ +Na(q,v)−
N
∑

j=1

JT
a,jλj (9)

Note that in this work we do not use a constrained QP-based

inverse dynamics as is usually done, but we simply use the

computed joint positions, velocities, accelerations, and force

trajectories in the Recursive Newton Euler Algorithm (RNEA)

[41] to compute the torques.

C. Fast Iterative Shrinkage Thresholding Algorithm (FISTA)

Proximal gradient methods [42] is a popular family of

algorithms used to solve problems of the form

min.
x

T (x) + I(x) (10)

where x is the optimization variable, T (x) is the cost function

to be optimized, and I(x) is usually an indicator function that

enforces feasibility constraints or forces x to remain inside

a feasible set. The cost function T (x) can be non-smooth,

nonlinear, or convex and I(x) is restricted to be convex. Each

algorithm in the proximal gradient family varies slightly in the

step length computation and update procedure for x, however

each iteration in the proximal methods is fundamentally of the

form

xk+1 = Pc(xk + tk∇f(xk)) (11)

where tk is the step length, xk+1 is the value of the optimiza-

tion variable at the next iteration (k+1), and Pc is the proximal

operator that ensures that after the descent step is taken, the

new xk+1 lies within the domain of I(x) [42]. Depending

on the function represented by I(x), the proximal operator

may or may not have a closed-form solution. The function

I(x) can only be used if it is possible to compute a closed-

form solution for the proximal operator [31]. Consequently,

arbitrary inequality constraints cannot be enforced with these

methods. However, in the presence of closed-form solutions

(as is in our case) these proximal operators are very cheap to

evaluate.

In the specific case when the cost function T (x) is convex, a

proximal gradient method, the Fast Iterative Shrinkage Thresh-

olding Algorithm (FISTA) is an attractive choice. FISTA is an

accelerated first-order gradient method that displays quadratic

convergence. Algorithm 1 shows the steps in FISTA. The key

point in the algorithm, as compared to other proximal methods,

is the introduction of the auxiliary optimization variable yk

and the update procedure of tk which is the primary reason

for the quadratic convergence. The step length Lk is chosen

based on a sufficient decrease condition (similar to Wolfe’s

condition [3]). For more details regarding the algorithm, we

refer the reader to [42], [31].

Algorithm 1: FISTA algorithm

Initialize optimization variables: y0 = x0, t0 = 1
set k = 0
while k < maximum iterations do

Pick Lk > 0
xk+1 = prox 1

Lk
I(yk + 1

Lk

∇f(yk))

tk+1 =
1+

√
1+4t2

k

2
yk+1 = xk+1 +

tk−1
tk+1

(xk+1 − xk)

In the following, we will exploit FISTA’s quadratic conver-

gence properties to quickly solve the convex sub-problems of

the centroidal OCP (see Section III-C). The indicator function

in our formulation enforces kinematic (box constraints) and

friction cone constraints (second-order cone projections) for

which the proximal operator exists. In practice, FISTA is



computationally very cheap because it does not need the

inversion of the Hessian to achieve quadratic convergence,

and the proximal step that enforces feasibility of x (inequality

constraints) is inexpensive.

III. APPROACH

We now introduce the main components of our solver, the

BiConMP. First, we present the biconvex dynamics solver

in detail and explain how it exploits the structure of the

nonlinearity in the centroidal OCP to solve the problem

efficiently. Second, we discuss the DDP based second order

kinematics formulation used in the framework to solve the

nonlinear problem. Finally, we give a birds eye view of how

the BiConMP is used in a non-linear MPC setting to generate

full body motions in real-time.

A. Biconvexity in centroidal dynamics

The unactuated dynamics constraints (4), (5), (6) are non-

linear due to the cross product term in the angular momentum

constraint (6). This non-convexity makes the problem inher-

ently difficult to solve. These constraints, however, have an

interesting feature: they are biconvex [30]. That is, the con-

straints are affine in terms of c, ċ,k when f
j
t , ∀t,j is kept con-

stant and vice-versa. Consequently, the terms of the discrete

constraints (4), (5), (6) can be rearranged as an affine equation

in terms of X, A(F)X = b(F) and F, A(X)F = b(X),
where X = {ct, ċt,kt . . . } and F = {f jt,x, f jt,y, f jt,z . . . }, for

t = 0, . . . , T −1, j = 1, . . . , N . Here A(F) is a matrix whose

elements depend on F and the centroidal dynamic constraints.

Similarly, A(X) is a matrix depending on X and dynamics

constraints. b(F) and b(X) are vectors whose elements depend

on F and X respectively.

B. Biconvex optimization with ADMM

Using the observation from the previous section, the cen-

troidal dynamics OCP in Section II-B can be alternatively

formulated as shown below, to highlight and exploit the

biconvexity in the problem:

min.
X,F

Φ(X) + I(X) + Φ(F) + I(F) (12)

s.t. G(X,F) = 0 (13)

where Φ(X),Φ(F) are the running and terminal cost functions

in terms of X and F respectively, G(X,F) = 0 are the

nonlinear constraints (4) such that it is bi-affine in terms of

X and F, (5), (6) and the initial state constraints (c0, ċ0 =
cinit, ċinit), I(X) is an indicator function that enforces kine-

matic constraints (∀ct ∈ Ω, section II-B) while I(F) is an

indicator function that enforces unilaterality and friction cone

constraints. This formulation makes it possible to exploit the

biconvexity in the dynamics and solve the nonlinear problem

very efficiently using the Alternating Direction Method of

Multipliers (ADMM) [30]. We want to use the ADMM algo-

rithm because it has an interesting property of reaching rea-

sonably good solutions in a few iterations [30]. The downside

however is that ADMM takes far more iterations as compared

to a second-order method (DDP) to obtain a high-resolution

result. In our application (closed loop MPC), solutions that

have dynamic constraint violation tolerances lower than the

sensor noise and satisfy feasibility constraints are sufficient

to be successfully deployed on the robot (as shown in our

experiments). Consequently, when the need arises, ADMM

allows us to terminate the solver before complete convergence

(early termination) to ensure that the new trajectory is available

in the desired time (real-time). At the same time, be sure that

a reasonably good solution that is realizable on the robot is

available. Furthermore, ADMM has a sub-linear convergence

rates, which is not guaranteed with block-coordinate descent.

The proposed BiConMP solves the dynamics optimization

by iteratively solving the two convex sub-problems (shown in

Algorithm 2) as a part of a larger ADMM optimization scheme

[30]. The ADMM algorithm solves both the convex sub-

problems (force (F) problem and state (X) problem) iteratively

until the dynamics violation falls below the desired tolerance

(exit criteria). The dynamics violation is computed as

||A(Fk+1)Xk+1 − b(Fk+1)||2 ≤ ǫdyn (14)

where ǫdyn is the termination tolerance.

Algorithm 2: Biconvex Centroidal Optimization

Initialize optimization variables: F0, X0, P0, ρ

set k = 0
while k < maximum iterations do

min.
F

Φ(F ) + ρ
2 ||A(Xk)F − b(Xk) + Pk||2 + I(F )

min.
X

Φ(X)+ ρ
2 ||A(Fk+1)X−b(Fk+1)+Pk||2+I(X)

Pk+1 = Pk +A(Fk+1)Xk+1 − b(Fk+1)
if ||A(Fk+1)Xk+1 − b(Fk+1)||2 ≤ ǫdyn then

terminate

The cost function in the state sub-problem is always of the

form Φ(X) = (X − Xnom)TWx(X − Xnom) where Xnom

is a nominal trajectory, Wx is a diagonal weight matrix.

The nominal trajectory gives the solver a heuristic idea of

the desired centroidal trajectory (need not be dynamically

consistent). In practice, the nominal trajectory usually consists

of the desired base height and velocity (forward and sideways

velocity). In addition, for some motions (cyclic gaits), a

nominal angular momentum trajectory is provided to track the

desired base orientation since direct orientation tracking is not

possible with the centroidal OCP formulation (it is possible

with the kinematics solver, section III-D). The nominal angular

momentum trajectory is computed as follows:

knom = w log3(q0 ⊖ qdes) (15)

where q0 and qdes are the current and desired base orientation

quaternions. ⊖ is the difference operator for quaternions and

log3 is the logarithmic map from SE(3) to se(3). w is a 3

dimensional weight vector. knom is set as the desired nominal

angular momentum value for each time step in the planning

horizon. In practice, the desired base orientation quaternion is

always set to [0, 0, 0, 1] which corresponds to zero roll, pitch,

and yaw.



Remark 1: Note that the exact Netwon-Euler dynamics

are considered in the centroidal dynamics optimization. The

inertia of the base is only ignored (assumes unit inertia) while

computing the nominal angular momentum to be tracked in

the cost (Eq. (15)). We use this heuristic computation because

the resulting trajectories from BiConMP were able to track

the desired orientation (even during external pushes) on the

robot. A more accurate nominal trajectory could be used if the

need arises. Note that the exact base orientation is optimized

concurrently in the kinematic solver.

In the force sub-problem, the cost is Φ(F) = FTWfF

which penalizes unnecessary contact forces. To enforce com-

plementarity constraints [9] based on the contact plan, coeffi-

cients of the variables corresponding to the time step for the

given end effector where contact does not exist (elements of

the matrix A(Xk)), are set to zero in the force sub-problem.

This automatically sets the planned forces to zero at that time

step after optimization because of the cost function.

C. Convex sub-problems

The state sub-problem can be solved using any Quadratic

Program (QP). The force subproblem will need a Quadratically

Constrained QP solver due to the second-order friction cone

constraints[3]. These constraints could be relaxed and made

linear, but this leads to more conservative motions (discussed

later). In the BiConMP, we use FISTA (section II-C) be-

cause of the following favorable reasons: 1) FISTA maintains

quadratic convergence even while enforcing constraints, 2)

FISTA has low computation cost since its a first-order method.

The biconvex problem was formulated with indicator functions

enforcing inequality constraints (kinematic and friction cone

constraints) because FISTA can efficiently impose them using

proximal operators, which are computationally inexpensive.

1) State sub-problem (optimizing for X): the kinematic

constraints are enforced by the indicator function I(X). This

constrains the CoM to stay within a cube whose size depends

on the location of the contact points at the particular time

step. The proximal operator then becomes a box projection

[31] while computing a descent step in FISTA for the kth

iteration,

Xk+1 = max(min(X∗

k,u), ξ) (16)

where

X∗

k = Yk+
1

Lk

(Φ
′

(Yk)+ρA(Fk)
T (A(Fk)Yk−b(Fk)+Pk))

is the updated X parameter after the descent step is taken

with Lk as the line search step, Fk is an auxilary variable

to Xk used in FISTA (subsection II-C), u and ξ are the

upper and lower bounds required to be satisfied for kinematic

feasibility. For the components of X corresponding to velocity

and angular momentum, the upper and lower bounds are set to

+∞ and −∞ to enforce bound constraints only on the CoM

location.

2) Force sub-problem (optimizing for F): the indicator

function I(F) enforces second order friction cone constraints

[43]. The proximal operator enforcing this constraint for each

group fx, fy, fz corresponding to one contact point and time

step in the F vector is










(0, 0, 0) µ
√

(fx
k )

2 + (fy
k )

2 ≤ −fz
korf

z
k < 0

(βfx, βfy, γfz) µ
√

(fx
k )

2 + (fy
k )

2 > fz
k

(fx, fy, fz)
√

(fx
k )

2 + (fy
k )

2 ≤ µfz

where µ is the friction coefficient,

β =
µ2

√

(fx
k )

2 + (fy
k )

2 + µfz

(µ2 + 1)
√

(fx
k )

2 + (fy
k )

2
(17)

and

γ =
µ
√

(fx
k )

2 + (fy
k )

2 + fz

(µ2 + 1)
. (18)

Subsequently, after a descent step is taken in FISTA to update

the force vector

F∗

k = Yk+
1

Lk

(Φ
′

(Yk)+ρA(Xk)
T (A(Xk)Yk−b(Xk)+Pk))

every f∗

x , f
∗

y , f
∗

z in F∗

k is then projected based on the friction

cone proximal operator to obtain the force vector Fk+1 for the

next iteration. Here Yk is the auxiliary variable to Fk (section

II-C). The projection of each group of forces independently

works mathematically with the FISTA algorithm because the

control decision variables are independent [31] of each other

in the centroidal problem. There is no explicit constraint en-

forcing unilaterality in fz because the friction cone projection

implicitly enforces fz ≥ 0. The interesting point to note here

is that with FISTA, the second-order cone projection can be

enforced directly while still maintaining quadratic convergence

rates. In contrast, other QCQP solvers do not have quadratic

convergence properties. They are also more computationally

intensive because they need second-order information. To im-

prove solve time the friction cones are often approximated as

linearized (i.e. converted to pyramidal polyhedral constraints)

to solve them with QPs. This usually results in conservative

trajectory solutions which are not desirable when dynamic

motions are to be performed.

3) FISTA implementation: To reduce the solve times in

each iteration we specialize our implementation of the FISTA

solver to exploit certain additional details specific to the

dynamics optimization problem. Firstly, the analytical gradi-

ents of the cost function are used to compute the descent

direction instead of using auto-diff or numerical differentiation

methods. Secondly, the sparsity of the matrices A(X), A(F)
is exploited during the matrix-matrix and matrix-vector com-

putation in each iteration. Thirdly, the matrix multiplications,

such as A(Xk)
TA(Xk), A(XF)

TA(XF), etc., which are only

computed once in each convex sub-problem, are cached and

reused. Finally, the accelerated gradient nature of the solver

ensures that the first line search step is successful after a

certain number of iterations are reached. In practice, we

noticed that almost the same step lengths were used in each

iteration. Subsequently, we warm start the solver with these

line search steps which significantly improves the solve times

as the solver no longer searches for the optimal values during

run time. The warm starting of the line search works well in

FISTA because of an interesting property in its convergence



proof which states that any line search parameter bigger than

the Lipschitz constant of the cost function will satisfy Wolfe’s

condition (chapter 10 [31]). In this case, we conjecture that

the empirically determined value satisfies this property. Warm

starting the line search would not be possible conveniently

with other QP solvers.

Remark 2: The quadratic convergence property of FISTA,

the computationally inexpensive proximal operators used to

enforce the inequality constraints, and the above-mentioned

details in the implementation significantly improve the solve

times which play a crucial role in being able to re-plan online

on the real robot. It is important to note that, thanks to FISTA,

we have quadratic convergence for each sub-problem of the

ADMM framework. We however only expect super-linear

convergence for the whole centroidal trajectory optimization

problem.

D. Kinematics solver

The full-body kinematics trajectory generation problem

described in section II-B is also nonlinear in nature. In the

BiConMP, the problem is solved quickly using Differential

Dynamic Programming (DDP). DDP exploits the block diag-

onal structure of the matrices while optimizing the problem

and also shows quadratic convergence [44], [45]. We use

Crocoddyl [35], an open-source DDP implementation. We

formulate the problem as

min.
q,v,v̇

T
∑

t=0

Φt
mom(l∗t ,k

∗

t ) + Φt
CoM (c∗t ) + Φt

eff (qt,vt) + ||v̇||

s.t. qt+1 = qt ⊕ vt ∆t, vt+1 = vt + v̇t ∆t (19)

where, Φt
mom(l∗t ,k

∗

t ) = ||D(qt)vt −
[

l∗t
k∗

t

]

|| is a momentum

cost that tracks the optimal linear and angular momentum

computed by the centroidal OCP (Algorithm 2), Φt
CoM (c∗t )

is the center of mass tracking cost with the optimal CoM

trajectory (c∗t ) obtained from the centroidal OCP, Φt
eff (qt,vt)

is the end effector locations and velocity cost, and ||v̇|| is a

penalty on the control. In practice, the cost on the control

encourages smooth motions of the end effectors, especially

during contact transitions. For example, during the landing

phase of a jumping motion, the kinematics solver retracts

the legs of the robot in the air so that a large torque is

not needed at the time of contact to bring the legs to rest

(satisfy complementarity constraints). In essence, this reduces

the impact of the legs during landing and makes the motion

smooth on the real robot. This is one of the advantages of

using a nonlinear kinematics formulation that plans a full body

motion by taking the future into account.

E. Model predictive control pipeline

An overview of the entire framework is shown in Fig. 1.

Given the current states of the robot qinit, vinit, v̇init, desired

gait, planning horizon, and velocity, a contact plan is either

generated and adapted using the Raibert controller [46] or

pre-defined without contact adaptation for acyclic or general

motions. The BiConMP framework takes the input states and

computes the optimal end effector forces, joint positions, joint

velocities, and joint acceleration trajectories for the entire

horizon. Given the desired joint trajectories and contact forces,

we use (9) along with a low joint impedance around the desired

states to compute the desired torques at 1 kHz (Equation (20)).

The desired torques are then sent to the robot which is tracked

on board at 10 kHz. The BiConMP control loop is re-computed

at 20 Hz (50 ms) to update for optimal motion and control

trajectories in real-time.

In our BiConMP framework, we re-plan the whole-body

trajectories every 50 ms, for a horizon larger than 50 ms,

based on feedback from the current state of the robot. The

feedforward torques are computed every 1 ms with inverse

dynamics (Equation (9)) based on the open loop trajectories

in between two re-planning instances. Finally, a low joint

impedance around the desired states is added to the computed

torque to result in the final joint torques

τi = τRNEA,i +Kp(qd,i − qr,i) +Ky(vd,i − vr,i) (20)

where τi is the torque sent to joint i, τRNEA,i is computed

using interpolated values of fi, qi,vi, and v̇i between each

MPC cycle, Kp and Ky are the joint position and velocity

impedance gains respectively. Subscripts d and r stand for

desired and actual respectively. In the rest of the paper,

we refer to the RNEA based controller (20) as the inverse

dynamics (ID) controller.

When the provided contact plan is longer than the desired

MPC horizon (e.g. for acyclic motions below), the plan is

segmented into a smaller section matching the desired horizon

length and then provided to the BiConMP. As time elapses,

the segment is shifted (moving horizon) to select the part of

the contact plan starting from the elapsed time t and ending at

t+T where T is the desired horizon. For gaited motions, the

contact plan is automatically updated based on the time that

has elapsed which determines which phase the legs should be

in and for how long depending on the gait parameters and

desired horizon length (horizon is kept constant after the start

of the motion). The desired velocity is also updated at every

cycle based on the user input.

Remark 3: We would like to emphasize the importance of

each component in our BiConMP pipeline. First, we exploit

the biconvex structure in the centroidal dynamics and effi-

ciently generate centroidal trajectories while respecting force

constraints (Section III-B). Second, for solving the convex

sub-problems in the centroidal problem, we use FISTA which

ensures quadratic convergence even with second-order fric-

tion cone constraints. Third, we solve a simple second-order

whole-body kinematic optimizer given the momentum profiles

provided by the centroidal dynamics optimization. This allows

for drastically reduced computation time compared to the

approaches using full-body dynamics DDP for the kinematics

problem [47]. Fourth, given the planned forces from centroidal

MPC and desired joint trajectories from the IK, we compute

the joint torques using Eq. (9) without a need to solve a

constrained whole-body inverse dynamics. Note that contrary

to [26], we intentionally did not use constrained inverse

dynamics on top of our MPC block to demonstrate the quality

of the plans generated by our approach without the need to



further filter them for physical consistency [27]. Specifically,

torque references computed from our MPC algorithm (which

enforces friction cone constraints) can be applied directly to

the robot.

IV. EXPERIMENTS

In this section, we present results obtained on a real Solo12

quadruped [37] along with simulation results on a humanoid

and another quadruped robot. We first study the optimizer,

including effects on the solve times as the size of the op-

timization problem changes and the behavior of termination

criteria used in the biconvex dynamics solver. Next, we present

the different motions (cyclic and acyclic) generated on Solo12

along with the performance of the BiConMP in various scenar-

ios to test the robustness of our approach. Finally, we present

simulation results on the AnYmal quadruped and the Talos

humanoid to show that the approach can be directly applied to

legged robots with other morphologies and mass distributions.

The attached video illustrates all these experiments.

A. Implementation details

The entire BiConMP is implemented in C++. The biconvex

dynamics optimizer is implemented from scratch including a

custom implementation of FISTA. Croccoddyl [35] is used to

solve the kinematics problem. The code for the BiconMP is

available in this GitHub link

All experiments were run on a Dell precision 5820 tower

machine with a 3.7 GHz Intel Xeon processor and rt-preempt

kernel. Robot Operating System 2 (ROS 2) was used to

handle the multi-threading requirement of the approach to

communicate between the 1 kHz inverse dynamics control

loop and the 20 Hz MPC loop. The BiConMP is run on a node

using a service client setup while the main inverse dynamics

control loop (20) is run on a separate node at 1 kHz. The

BiConMP service node is called at 20 Hz to update the plan

and provide it to the inverse dynamics controller. The desired

torque commands are then computed and provided to Solo12

via an Ethernet channel.

B. Solver analysis

1) Solve Times: To analyze the solve times of the BiConMP

as a function of the number of collocation points/problem size,

three motions (trot, jump, and bound) are used. These cyclic

gaits are used as it is straightforward to change the horizon of

the problem for this analysis. For each of these motions, the

weights of the optimization problem, step time, discretization

time, tolerances, etc., are kept the same and only the horizon of

the problem is increased. In all cases, the solver is terminated

only after satisfying the termination criteria. The resulting

solve times are shown in Fig. 3. The top 3 plots contain

the solve times from the dynamics biconvex solver, the DDP-

based kinematics solver and the total solve time (including

miscellaneous operations like cost creations), respectively. The

biconvex dynamics solver shows a linear increase in the solve

times as the problem size increases. The kinematic solver also

shows an almost linear growth with an increase in the number

of collocation points. The solver does violate this trend at

times depending on the termination criteria used in Crocoddyl

[35]. However, the kinematics solver maintains a strong linear

behavior in the problem size that is mainly important in

this work to achieve MPC (between 6-12 collocation points).

On the other hand, the total solve times of the BiConMP

framework maintain a linear growth in the solve rates. The

solver always remains real-time, that is, it converges faster

than the horizon of the plan. For example, the solver takes less

than 0.85 seconds to generate a jump motion with a horizon

of 7 seconds (140 collocation points × 0.05). The third plot

also shows that the biconvex solver takes the most time in the

framework. Consequently, a further decrease in solve times can

be achieved by warm starting the solver with pre-computed

solutions or by highly optimizing the code [48].

2) Termination Criteria: The dynamics violation is used

as the termination criteria for the dynamics biconvex solver

(section III-B). The solver is terminated when the centroidal

dynamics constraints fall below the threshold of 0.001 or

until we hit a maximum number of ADMM iterations. Each

iteration here refers to one ADMM iteration. In Fig. 4, the

dynamic violation vs the number of iterations is plotted for the

three motions discussed previously. Each convex sub-problem

in the biconvex ADMM problem is solved until the norm of

the gradient falls below 1e − 5. High tolerance is necessary

to ensure that the main biconvex problem converges to high-

quality solutions. The dynamics violation rapidly decreases

to a small value across all motions in alignment with the

sublinear convergence property of the ADMM algorithm [30].

Note that a reasonable solution is found in a few iterations as

reflected by the rapid drop in the dynamic violation. This is in

alignment with the property of ADMM to get to roughly good

solutions in a few iterations (section III-B). This allows us to

set a maximum number of iterations of the ADMM algorithm

to guarantee the real-time performance of our framework. We

found that in practice there are times when we may hit the

maximum number of iterations before our solver finds a solu-

tion that satisfies our criteria for acceptable dynamic violation.

Even though our solutions don’t fall within our predefined

threshold for dynamic violation, we found empirically that

these trajectories are of sufficient quality to be executed on

the robot. In practice, setting the maximum number of ADMM

iterations to 50 allowed us to run all of the required motions

on the robot. The kinematics solver is terminated based on the

default settings provided by Crocoddyl.

C. Cyclic gaits

We generated different gaits such as trots, jumps, and

bounds for the Solo12 quadruped. The resulting motions are

shown in Fig. 2. Table I outlines the parameters used to design

the gaits. Figure 5 shows the actual and desired base angular

velocity about the Y axis (pitching axis) and the desired forces

from the planner. The BiconMP is able to generate a bounding

motion with considerable change in angular momentum and

pitch magnitude.

We observed empirically that a smaller gait horizon than

the ones chosen for each motion discussed above often led to















VI. DISCUSSION

This section discusses the proposed approach and the ex-

perimental results with respect to the current state of the art.

1) Algorithms for closed-loop whole-Body MPC: Very

few algorithms have demonstrated closed-loop whole-body

MPC on real legged robots. General purpose interior-point

or sequential quadratic programming (SQP) methods are not

capable of providing solve times low enough for real-time

control. Most of the existing approaches use custom DDP-like

methods to solve the entire whole-body optimization problem

at once [12], [54] or decompose it [26]. These approaches

have demonstrated closed-loop MPC ranging from 20 − 80
Hz for particular motions like trot and jumps. However,

these algorithms have seldom been used to show diverse and

dynamic motions on robots with different anatomy in closed

loop. To our knowledge, our method is the first algorithm

using ADMM and first-order proximal methods to demonstrate

closed-loop MPC at competitive rates.

The advantage of using DDP-like methods is that they can

in principle solve any OCP and efficiently exploit the time-

induced sparsity in the problem. DDP further provides optimal

feedback gains that can be used for local high-frequency

control. However, enforcing constraints becomes challenging

(typically hard constraints are not enforced in reported MPC

results). The most common practice of using log-barriers

to enforce constraints can be numerically problematic [32]

due to ill-conditioning of the Hessian. To address this issue,

constraints can be relaxed in order to find reasonable solutions

[32]. Recently, DDP-based algorithms that enforce constraints

directly with low solve times have been proposed [55]. How-

ever, they are yet to be demonstrated on high-dimensional

problems in MPC.

On the other hand, the BiConMP does not solve general

optimal control problems and largely relies on the structure of

the floating-based dynamics (kino-dynamic decomposition and

biconvex structure of the centroidal dynamics). This has the

advantage that constraint enforcement, especially on contact

forces, becomes rather straightforward due to the use of the

proximal operators (including second-order cones) without

any loss in the solve times or convergence rates. Further-

more, problems related to Hessian ill-conditioning inherent

to second-order methods are removed with the use of FISTA

(a first-order method). While we exploited the structure of

the centroidal dynamic, we still use DDP to solve the kine-

matic optimization problem. It might be interesting to explore

whether this problem can be further decomposed to exploit

proximal methods and potentially improve efficiency while

also including hard constraints. Force constraint enforcement

plays an important role (as already highlighted in [56], [57])

and our results suggest that this helps find control trajectories

that can be directly executed on the robot with a simple

inverse dynamics controller, without the need for an additional

dynamic filter (as a QP-based inverse dynamics) unlike DDP-

based approaches [26].

In general, existing DDP-based approaches need a good

warm start trajectory [54], [48], [12] to actually achieve high

replanning rates. Indeed, quadratic convergence rates are only

guaranteed close to a local minimum and DDP can be quite

slow away from it. Obtaining these trajectories is, however,

a challenge that still limits the applicability of DDP-based

whole-body solvers. In contrast, we did not encounter the

need for good initialization in any of our experiments. The

ability of ADMM to converge to good solutions quickly allows

early termination of the solver. This property is favorable in

closed-loop MPC settings with real-time requirements and is

not present with other second-order methods. This property

could also be exploited for other problems with closed-loop

MPC settings.

2) Advantages of proximal methods for MPC: The use of

first-order optimization methods for MPC is not common in

robotics, nor is the use of general proximal methods. We

believe that beyond the legged robots, our work highlights

a few interesting properties more broadly applicable. First,

algorithms such as FISTA are very easy to implement (they

only need gradients) and are numerically robust. Since sensor

noise can limit the availability of true gradients, first-order

methods are more likely to converge to good solutions com-

pared to second-order methods [33], [58]. Indeed, we observed

that the algorithm was surprisingly stable in a closed loop

MPC setting. Further, the use of proximal operators renders

the constraint satisfaction problem rather easy. This suggests

that first-order methods might play an increasing role for

MPC solvers in robotics. Furthermore, developing custom

solvers based on proximal operators and related augmented

Lagrangian formulations [55], [59] for other closed loop

application is also a promising research direction, especially

when early termination is more important than very high

precision.

3) Enforcing torque constraints: The main assumption in

the kino-dynamic decomposition of the nonlinear robot dy-

namics is that there exists sufficient torque authority [20],

without which computing feasible torques become impossible

(or needs several kino-dynamic iterations) for the given plan.

During our experiments on the robot, this assumption has

never been violated for all the motions even though only

one dynamic to kinematic iteration is performed. Further, the

computed torques have been much lower than the maximum

torque limits of Solo12 and subsequently, more aggressive

behaviors can be performed if needed. In the case that this

limit is being reached, more than one kino-dynamic iteration

can be performed to ensure better consensus. It is also possible

to add torque constraints in the kinematic optimizer at the cost

of slightly higher solve times as discussed in previous work

[21].

4) Insights from Nonlinear MPC Implementation: Running

the nonlinear whole body MPC has shown several advantages

on the robot along with a few key insights: re-planning online

in general improves the robustness of the robot to disturbances

and terrain. In addition, the whole body optimization allows

the robot to automatically change swing foot trajectories

without highly specified references. An interesting result from

our analysis is that increasing the re-planning frequency or

horizon above a certain threshold does not seem to give

any major advantages in terms of performance for the tasks

we analyzed. However, there is a significant improvement in



robustness as the frequency is increased from 20 Hz to 100 Hz

after which the rate of gain starts to decrease. Consequently,

this analysis suggests that re-planning frequencies higher than

10 Hz are not needed to achieve direct sim to real transfer

for the Solo12. However, to gain more robustness to external

disturbances, higher frequencies are needed and avenues such

as warm starting the solver, optimizing the implementation, or

further exploiting the problem structure can be explored.

5) Comparison to Deep Reinforcement Learning (DRL):

Recently, DRL has become an increasingly popular choice to

generate robust trajectories for legged robots [60], [61]. One

main reason stems from the fact that MPC approaches need

fast optimizers while DRL approaches learn a policy offline

which is rather cheap to evaluate online. However, our pro-

posed method has a re-planning frequency comparable to these

methods, with the scope of further speed up in future work.

In addition, generating new trajectories with an optimizer is

significantly less cumbersome and does not require one to

re-train a policy for different types of motions. In our case,

the same cost function with different weights can be used to

generate different motions. Finally, the sim-2-real transfer is

simple and instantaneous in our approach as the BiConMP is

able to compensate for modeling errors automatically thanks

to the closed-loop optimization. On the other hand, sim-2-real

transfer with DRL methods is usually not simple, because they

depend heavily on the trained robot model. Subsequently, they

require very accurate robot actuator models [52] in simulation,

or domain randomization is necessary [61] for successful

transfer.

CONCLUSION

We proposed a nonlinear MPC framework, the BiConMP,

capable of generating dynamic behaviors in real-time for

various legged robots. We exploit the biconvex nature of the

centroidal dynamics to propose an efficient solver based on

ADMM and proximal gradient methods. We further propose

to formulate the kinematic problem as an optimal control

problem which is then solved using off-the-shelf DDP solvers

[35]. Through various real robot and simulation experiments

we demonstrated the ability of the approach to generate and

control very dynamic movements. We conducted an extensive

analysis of the various parameters of the MPC framework such

as frequency, cost, and horizon to understand their impact

on the performance and robustness on the real robot, hence

suggesting general guidelines for MPC requirements. In future

work, we intend to investigate the effect of warm-start on

the solver efficiency. We also intend to further explore the

capabilities of first order proximal methods for more general

MPC applications to robotics.
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