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ABSTRACT
Contrastive-learning-based neural networks have recently been
introduced to recommender systems, due to their unique advantage
of injecting collaborative signals to model deep representations,
and the self-supervision nature in the learning process. Existing
contrastive learning methods for recommendations are mainly pro-
posed through introducing augmentations to the user-item (U-I)
bipartite graphs. Such a contrastive learning process, however,
is susceptible to bias towards popular items and users, because
higher-degree users/items are subject to more augmentations and
their correlations are more captured. In this paper, we advocate a
Siamese Graph Contrastive Consensus Learning (SGCCL) frame-
work, to explore intrinsic correlations and alleviate the bias effects
for personalized recommendation. Instead of augmenting original
U-I networks, we introduce siamese graphs, which are homoge-
neous relations of user-user (U-U) similarity and item-item (I-I)
correlations. A contrastive consensus optimization process is also
adopted to learn effective features for user-item ratings, user-user
similarity, and item-item correlation. Finally, we employ the self-
supervised learning coupled with the siamese item-item/user-user
graph relationships, which ensures unpopular users/items are well
preserved in the embedding space. Different from existing studies,
SGCCL performs well on both overall and debiasing recommen-
dation tasks resulting in a balanced recommender. Experiments
on four benchmark datasets demonstrate that SGCCL outperforms
state-of-the-art methods with higher accuracy and greater long-tail
item/user exposure.

CCS CONCEPTS
• Information systems → Recommender systems; Collabora-
tive filtering; Social recommendation.
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1 INTRODUCTION
Recommender system, as one of the most sought-after applica-
tions, is tempting to recommend items interesting to potential 
users, which has been widely used to help users discover contents 
and alleviate information overload in the era of information ex-
plosion [25]. Recently, graph learning-based recommender system 
becomes an emerging topic in this field that utilizes advanced graph 
learning to model users’ preferences and intentions for personalized 
recommendation [35]. Neural Graph Collaborative Filtering frame-
work (NGCF) [29] integrates user-item interactions as a bipartite 
graph, e.g. the left panel in Fig. 1, and adopts Graph Convolutional 
Networks (GCNs) to propagate information among neighbors to 
learn embedding features for recommendation. Later, LightGCN 
was proposed [13] to simplify the GCN, as feature transformation 
and nonlinear activation in GCNs are found to have limited contri-
bution to collaborative filtering [30]. However, observed purchase 
behaviors may be caused by one-off consumption or impulse spend-
ing, which usually contain noise and misleading information. The 
message passing scheme rooted in GCNs tends to magnify the im-
pact of interactions on representation learning, making the learning 
process inherently vulnerable to interaction noise.

Graph Contrastive Learning (GCL) has received considerable at-
tention because it can leverage self-supervised learning to alleviate 
noise disturbance in purchase behavior and improve recommenda-
tion robustness [22, 32]. The theme of GCL-based recommendation 
systems is to apply the graph augmentation strategies on user-item 
bipartite graphs, as shown in the upper panel in Fig. 2, and then max-
imize the agreement between different views of the same node and 
the disagreement among different nodes [31]. To further alleviate 
the selection bias in graph augmentation, debiased contrastive loss 
is also proposed to provide sufficient negative samples and applies

589

https://orcid.org/0000-0001-6015-0156
https://orcid.org/0000-0001-5130-3237
https://orcid.org/0000-0003-4129-9611
https://orcid.org/0000-0002-8308-9551
https://orcid.org/0000-0002-6815-0879
https://orcid.org/0000-0001-6015-0156
https://doi.org/https://doi.org/10.1145/3539597.3570422
https://doi.org/https://doi.org/10.1145/3539597.3570422
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3539597.3570422&domain=pdf&date_stamp=2023-02-27


WSDM ’23, February 27–March 3, 2023, Singapore, Singapore. Boyu Li, Ting Guo, Xingquan Zhu, Qian Li, Yang Wang, & Fang Chen

Figure 1: A toy example of user-item bipartite graph (left
panel), the constructed siamese graphs (middle panel), and
popularity bias in the ML-100K dataset (right panel). In the
right panel, 𝑋 -axis denotes the user/item popularity (node
degrees) in user-item (U-I) bipartite graph. Item interactions
are the number of items appeared together with a target item
in the whole dataset (i.e. shopping mix). User interactions
denote number of users selected one or more items same as a
target user. Red item/user popularity curves follow scale-free
distributions, meaning very few items/users have high de-
grees. Using item-item or user-user interactions, unpopular
items/users show lifted interactions (blue dots) which will
increase their exposure in personalized recommendation.

a bias correction probability to alleviate the sample bias [20]. Nev-
ertheless, existing GCL methods focus on the user-item bipartite
graph and neglect the direct-neighboring correlations among users
(or items), which fall short of utilizing the potential of contrastive
learning for recommendation.

Indeed, one of the outstanding problems in recommender sys-
tems is the popularity bias: from the data perspective, items always
exhibit long-tail distributions on the user-item interactions due to
the Pareto principle (i.e. 80-20 rule) [1], as shown in Fig. 1; from the
modeling perspective, recommender systems tend to amplify the
bias by over-recommending popular items, leading to the phenome-
non that popular items receive a lot of exposure while the majority
of other (less popular) items receive very little attention and hard to
be recommended to users [40]. This is because high-order connec-
tivity is built up based on the relationship between heterogeneous
nodes of user-item bipartite graph, causing any two adjacent users
sharing similar consumption habits are at least two-hop away (user-
item-user). The indirect connection between homogeneous nodes
(user-user/item-item) hinders the neighbor-aggregation-based mod-
els from exploring less popular preferences from homogeneous
neighbors. Despite several studies adopted homogeneous graphs to
model the user-user and item-item relationships separately, these
methods all forcibly fuse the node embeddings to reconstruct the
user-item bipartite graph for final recommendation. However, the
nature of spatial inconsistency of different graphs makes these
algorithms uneasy to converge and hard to balance different re-
lationships [26, 27]. Meanwhile, recent studies have attempted to
alleviate the bias problem by emphasizing the long-tail items/users
in the recommender training: either to downweight the influence
of popular items or to form a causal graph that takes cause-effect
into account [24, 37]. However, these debiasing methods may cause
another type of “bias”: The deliberate operation of impact reduction

Figure 2: GCL vs. SGCCL. ExistingGCLmethods (upper panel)
focus on user-item bipartite graph for representation learn-
ing. SGCCL (lower panel), introduces siamese (user-user and
item-item) graphs into graph contrastive learning. A consen-
sus loss is used to enforce that learned representation can
reconstruct network structures from multiple views.

on popular items contradicts actual observations and will reversely
downplay representation learning for popular users/items.

To remedy popularity bias, we introduce the Siamese graphs with
homogeneous relations: user-user similarity and item-item correla-
tion. Siamese graphs can be extracted from side information and
historical interactions to boost recommendation performance. A
unique advantage of Siamese graphs, compared to user-item bipar-
tite graph, is that they can directly capture and model homogeneous
relationships between user-user and item-item. Particularly, dif-
ferent from bipartite graph, two uncommon items sharing some
attributes (e.g. same genres of movies) or being preferred by the
same user group will form a connection in the item-item graph.
This relation, hardly observable in the user-item graph, helps cap-
ture unique patterns shared by a group of items or the unexpected
retail correlation of products (e.g. the classic case study of “beer
and diapers” in marketing). Likewise for users, their distinctive
preferences of unpopular items can be easily propagated through
user-user connections if there is high similarity on their historical
behaviors. As shown in Fig. 1 (right panel), the majority of long-tail
unpopular items also have high active item interactions which can
help increase their exposure and reduce popularity bias.

Instead of pure exploration of user-item bipartite graph in exist-
ing GCL methods, siamese graphs make it possible to establish a
novel consensus learning principle integrating both homogeneous
(user-user and item-item) and heterogeneous (user-item) interac-
tions into a unified learning objective as shown in Fig. 2. Different
from only exploring information from homogeneous graphs, the
unified use of three views of graphs can greatly ensure the har-
mony of embeddings and the consistency of the final recommen-
dation. And benefits from the multi-view information acquisition,
our model can learn the nodes embedding which can handle both
the overall recommendation and popularity bias eliminating, thus
forming a balanced recommender. In addition, we put forward a
contrastive consensus learning framework for personalized recom-
mendation. The idea is to adopt a self-supervised learning scheme
to pre-train the user and item representations in parallel based on
the siamese graphs, and then reinforce the learned embeddings
by minimizing the reconstruction losses of homogeneous and het-
erogeneous graphs with a consensus learning manner. A dynamic
weighting strategy is adopted to consider each component in itera-
tions. The key contributions of the paper are given as below:
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• Balanced Recommendation: Instead of sacrificing the accuracy of
popular items to reduce the popularity bias, like existing methods
do, SGCCL is the first work that takes three types of relationships
to generate consensus embedding and achieve high accuracy and
balanced long-tail item/user coverage. Different from existing
studies which always focus on either general performance or pop-
ularity bias, SGCCL performs well on both overall and debiasing
recommendation tasks resulting in a balanced recommender.

• Multi-view fusion: We construct siamese graphs from homoge-
neous relations and propose a factorization-based consensus
learning principle to explore multi-relationships from users and
items simultaneously for personalized recommendation. Differ-
ent from the state-of-the-art approaches focus on user-item bi-
partite graph for recommendation, our model can fully explore
homogeneity relations with a multi-view fusion.

• Siamese Contrastive Consensus Learning: We propose a consensus
learning principle, along with a graph learning model, to con-
trastively explore siamese graphs in a self-supervisedmanner and
enforce the reconstruction losses from pre-trained embeddings
to homogeneous and heterogeneous relations. Our contrastive
consensus learning approach can be extended to many other
applications with a rich set of relationships in the data.

2 CONSENSUS LEARNING PRINCIPLE
In most general settings, a standard recommender system has two
sets of entities: a user setU with𝑚 users (|U| =𝑚) and an item set
V with 𝑛 items (|V| = 𝑛). User and item interactions are recorded
in a rating matrix R ∈ R𝑚×𝑛 , where R𝑖 𝑗 = 1 denotes that user 𝑖
interacted with (e.g. purchased or liked) item 𝑖 , or 0 otherwise. With
the rating matrix, learning good feature embeddings to precisely
represent users and items is a focus for accurate recommendation.
With the increasing success of deep graph learning, researchers
attempted to formulate recommendation as a user-item bipartite
graph, and adapted GCNs for recommendation [4, 36].

As discussed above, user-item bipartite graph cannot fully reveal
the direct connection between homogeneous nodes, where two ad-
jacent users can only interact through their shared items. It severely
restricts the target users from learning potential preferences from
similar users with particular likes or purchases. To overcome the
aforementioned limitation, we formulate a novel learning frame-
work with the exploration of multi-relationships from users and
items for better collaborative filtering, i.e., consensus learning. To
take special care of the interactions between homogeneous nodes,
we introduce the siamese graphs constructed by considering ho-
mogeneous relations: user-user similarity and item-item correlation,
in addition to the heterogeneous relations in the user-item ratings.
In this section, we first advocate a factorization-based consensus
learning principle to guide the learning process that can simulta-
neously explore the valuable interactions under three relationship
settings and leverage them for boosting recommendation perfor-
mance. This principle will be practiced using a novel graph learning
scheme (SGCCL) introduced in the following sections.

2.1 Factorization of User-Item Ratings
The rating matrix R ∈ R𝑚×𝑛 provides tabular relationships be-
tween 𝑚 users and 𝑛 items. We can adopt Non-negative Matrix

Factorization (NMF) to factorize R into two compressed matrices
G ∈ R𝑚×𝑐 and F ∈ R𝑛×𝑑 with the objective of minimizing squared
errors between R and its approximation,

argmin
G,F

𝐽𝑈 ·𝐼 = | | R − GF⊤ | |2𝐹 , s.t. G, F ≥ 0, (1)

Where | | · | |2
𝐹
is the Frobenius norm of the matrix [8]. In reality,

because two-factor NMF in Eq. (1) is restrictive, in which the com-
pressed dimensions 𝑐 and 𝑑 have to be equal, one can introduce an
additional factor S ∈ R𝑐×𝑑 to absorb the different scales of R, G
and F . This leads to an extension of NMF, named NMTF [7]

argmin
G,F

𝐽 ′𝑈 ·𝐼 = | | R − GSF⊤ | |2𝐹 , s.t. G, F ≥ 0, (2)

In Eq. (2), S provides increased degrees of freedom such that the
low-rank matrix representation remains accurate, while 𝑐 and 𝑑 can
have different values. The optimized G and F by applying Eq. (2)
can be considered as the learned embedding matrices based on User-
Item ratings for users and items respectively, and this objective
function is consistent with MF-based collaborative filtering [21].

In recommendation, it is important to directly characterize user-
user and item-item relationships, such that we can learn embedding
to ensure users sharing similar items are close to each other in the
embedding space, regardless of whether the shared items are popu-
lar or not. Therefore, we introduce siamese graphs, user-user similar-
ity graph and item-item correlation graph, to explore the distinctive
features from homogeneous relations. In practice terms, the user-
user similarity graph can be constructed based on users’ attributes,
like users’ social states. Meanwhile, the item-item correlation graph
can be derived from items’ properties, such as their commodity
use and manufacturers. This information can provide auxiliary
support to comparability learning and performance-boosting. The
construction of homogeneous graphs will be detailed in Sec. 3.

2.2 Factorization of User-User Similarity
User-user similarity graph Θ𝑈 =< U,A𝑈 ,X𝑈 > contains pairwise
user relations in the structure space. It provides information to
characterize similarities between users for boosting preference
learning. Thus, we can factorize the adjacency matrix A𝑈 as an
𝑚 ×𝑑 matrix G𝑈 which is the embedding matrix showing potential
similarity of users by only considering User-User interactions:

argmin
G𝑈

𝐽𝑈 ·𝑈 = | |A𝑈 − G𝑈 G⊤
𝑈 | |2𝐹 , s.t. G𝑈 ≥ 0, (3)

It is noteworthy that G ∈ R𝑚×𝑑 in 𝐽𝑈 ·𝐼 and G𝑈 ∈ R𝑚×𝑑 in 𝐽𝑈 ·𝑈
each contains separated factorization results for the user set U. By
using this approach, we allow factorization for R and A𝑈 to have
maximum freedom to explore its optimal results, respectively.

2.3 Factorization of Item-Item Correlation
To enhance item embedding results, we also useΘ𝐼 =< V,A𝐼 ,X𝐼 >
to capture pairwise item correlations. Intuitively, if items 𝑣𝑖 and 𝑣 𝑗
are highly correlated, they should be more likely being picked up
together in the future. Similar to Eq. (3), the factorization of item
correlations A𝐼 is as follows,

argmin
F𝐼

𝐽𝐼 ·𝐼 = | |A𝐼 − F𝐼 F⊤
𝐼 | |2𝐹 , s.t. F𝐼 ≥ 0, (4)
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Figure 3: An overview of the SGCCL framework. Learning is carried out from left to right.

2.4 Consensus Factorization
In the above factorization processes, the objective functions 𝐽 ′

𝑈 ·𝐼 ,
𝐽𝑈 ·𝑈 and 𝐽𝐼 ·𝐼 each provides embedding results from different as-
pects (user-item ratings, user-user similarity, and item-item cor-
relation). To ensure that final results are consistent, we propose a
consensus factorization objective function to jointly formulate 𝐽 ′

𝑈 ·𝐼 ,
𝐽𝑈 ·𝑈 and 𝐽𝐼 ·𝐼 into a unified objective:

𝐽 = | | R − GSF⊤ | |2𝐹 + 𝛼 | |A𝑈 − G𝑈 G⊤
𝑈 | |2𝐹 + 𝛽 | |A𝐼 − F𝐼 F⊤

𝐼 | |2𝐹
+ 𝜌 ( | | G − G𝑈 | |2𝐹 + | | F − F𝐼 | |2𝐹 ),
s.t. G ≥ 0, F ≥ 0, G𝑈 ≥ 0, 𝑎𝑛𝑑 F𝐼 ≥ 0

(5)

The objective function in Eq. (5) is to factorize R, A𝑈 , and A𝐼

separately, and enforce the factorization consensus among all three
aspects. For instance, G and G𝑈 provide embedding results from
User-Item and User-User relations, respectively. | |G − G𝑈 | |2

𝐹
en-

forces that G should be maximally consistent with G𝑈 . Similarly,
| |F − F𝐼 | |2𝐹 makes F and F𝐼 close to each other. 𝛼 and 𝛽 in Eq. (5)
are regularization parameters to balance each factorization part. 𝜌
trade-offs the consistent degree. Intuitively, a very large 𝜌 value
will make G = G𝑈 and F = F𝐼 , while a small 𝜌 would make G
and G𝑈 totally independent (e.g., 𝜌 = 0). As a result, the designed
objective function provides increased degrees of freedom to exploit
different information encoded in multi-relationships.

Latent matrix S not only absorbs the different scales of R, F and
G, but also reveals the corresponding relationships between the
user and item embedding results. S𝑖 𝑗 uncovers the relative weight
between item embedding feature 𝑖 and user embedding feature 𝑗 .

3 SIAMESE GRAPH CONTRASTIVE
CONSENSUS LEARNING

Minimizing Eq. (5) is respect to G, F , G𝑈 , F𝐼 and S, and the func-
tion is not convex in all variables together. Traditionally, this kind
of Matrix Factorization (MF) task is always optimized by using
Stochastic Gradient Descent (SGD) or Alternating Least Squares
(ALS) algorithm [6, 38]. The objectives can be optimized w.r.t one
variable while fixing the other variables. This procedure repeats
until convergence. However, existing MF methods are not suitable
for consensus factorization. The limitation of these MF methods
are multi-fold: (1) The use of a simple and fixed inner product is

hard for the estimation of complex node interactions in the low-
dimensional latent space [14]. (2) Lack of the expressive modeling
of high-order connectivity in graph-based representations which
can effectively inject the collaborative signal into the embedding
process in an explicit manner. The embedding propagation among
similar users/items is important for learning better user and item
representations [29]. (3) The introduction of multiplex sub-objects
and optimization constraints in Eq. (5) makes it a tremendous has-
sle using matrix factorization methods, not to mention letting the
algorithm converge to the global optimum.

In this work, we propose SGCCL which is a novel graph learn-
ing scheme followed the consensus learning principle. With the
consideration of homogeneous relations, factorized embeddings
(G𝑈 and F𝐼 ) are generated respectively by applying siamese graph
contrastive learning scheme on user-user similarity graph Θ𝑈 and
item-item correlation graph Θ𝐼 for robust pre-training. A nonlinear
transformation of G𝑈 and F𝐼 is then applied to reconstruct the
User-Item ratings (R) for consensus optimization. With delicate de-
sign, the portfolio of the loss functions from different components
is nicely consistent with 𝐽 in Eq. (5) and the overall framework is
as shown in Fig. 3.

3.1 Siamese Graph Generation
Homogeneous relation is the key concept introduced to boost rec-
ommendation performance and alleviate the popularity bias in this
paper. The siamese graphs (Θ𝑈 and Θ𝐼 ) can be generated from side
information. Take movie recommendation network as an exam-
ple [10], the movies contain different genres, and the spectators can
be classified based on gender, age, and occupation. While for the
Amazon datasets [11], the audiences’ reviews can be considered as
the side information for relation construction. By given the feature
embedding of users/items in side information space E = {E𝑈 , E𝐼 },
the adjacency matrices of siamese graphs can be formulated as:

[A𝑆
𝑈 ]𝑖 𝑗 =

{
1, E𝑈𝑖 E⊤

𝑈 𝑗
≥ 𝛿U

0, otherwise
; [A𝑆

𝐼 ]𝑖 𝑗 =
{
1, E𝐼𝑖 E⊤

𝐼 𝑗
≥ 𝛿I

0, otherwise
(6)

where 𝛿 refers to the threshold that controls the degree of graph
connectivity. At the same time, homogeneous relations can also be
extracted from user-item rating, as user preference and the audience
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for items show strong homogeneity in nature. Specifically,

[A𝑅
𝑈 ]𝑖 𝑗 =

{
1, R𝑖 ·R⊤

𝑗 · ≥ 𝛿U
0, otherwise

; [A𝑅
𝐼 ]𝑖 𝑗 =

{
1, R⊤

·𝑖 R · 𝑗 ≥ 𝛿I
0, otherwise

(7)

As user preferences and shoppingmix can be considered as a kind
of side information which can be extracted from User-Item rating,
we integrate them into the siamese graph generation in practice
when side information is available. Specifically, A𝑈 = A𝑆

𝑈
∪ A𝑅

𝑈

and A𝑈 = A𝑆
𝐼
∪ A𝑅

𝐼
, where “∪” is element-wise union operation.

The node attribute matrices are formulated as X𝑈 = E𝑈 | |R and
X𝐼 = E𝐼 | |R⊤, in which “| |” is a concatenation operator.

3.2 Siamese Contrastive Learning with Graph
Augmentation

To learn user/item embeddings from the siamese graphs (Θ𝑈 and
Θ𝐼 ), we propose a siamese contrastive learning paradigm, which
reinforces user/item representation learning from siamese graphs
via self-discrimination as shown in Fig. 3. Specifically, we introduce
how to perform graph augmentation that generates multiple repre-
sentation views, followed by the contrastive learning based on the
generated graph representations to build the adversarial task.

3.2.1 Graph Augmentation. To perform contrastive learning on
siamese graphs, we conduct graph augmentation to generate a set of
augmented graphs from the original graphs as the candidate space
for further representation learning. We hence devise two operators
on the graph data, edge perturbation and feature perturbation, to
create different views of the graph.

Edge Perturbation: It drops out the edges in graph with a
perturbation ratio 𝛾 . The augmentation processes for user-user and
item-item graphs are represented as:
EP(Θ𝑈 ) =< U, 𝑀𝑈 ⊙ A𝑈 , X𝑈 >; EP(Θ𝐼 ) =< V, 𝑀𝐼 ⊙ A𝐼 , X𝐼 > (8)

where [𝑀𝑈 ]𝑖 𝑗 ∈ {0, 1} and [𝑀𝐼 ]𝑖 𝑗 ∈ {0, 1} are two masking sym-
metrical matrices on adjacency matrices of user-user and item-item
graphs respectively. With the random generation of 𝑀𝑈 and 𝑀𝐼 ,
we can augment the candidate space with edge perturbation.

Feature Perturbation: With the probability 𝛾 , we randomly
drop out features from the nodes:
FP(Θ𝑈 ) =< U,A𝑈 , 𝑁𝑈 ⊙ X𝑈 >; FP(Θ𝐼 ) =< V,A𝐼 , 𝑁𝐼 ⊙ X𝐼 > (9)

where [𝑁𝑈 ]𝑖 𝑗 ∈ {0, 1} and [𝑁𝐼 ]𝑖 𝑗 ∈ {0, 1} are two masking matri-
ces on node attributes of user-user and item-item graphs respec-
tively. With the random generation of 𝑁𝑈 and 𝑁𝐼 , we can augment
the candidate space with feature perturbation.

We apply these augmentations on siamese graphs to generate the
candidate space. For each training epoch, we randomly select two
different views (with different perturbation operations as shown in
Fig. 3) of each node at the beginning. For each node, the coupling
of these two augmented graphs aims to capture useful patterns
of both local structures and attributes, and further endows the
representations with more robustness against noisy interactions.

3.2.2 Contrastive Learning. After expanding the candidate space
with the augmented views of siamese graphs, we employ a discrim-
inator to distinguish the deep representations of the same nodes
from different augmented graphs with the aim to learn robust se-
mantic information. For user-user similarity graph, we adopt an

𝐿-layer GCN with the following layer-wise propagation rule:

𝐻
(𝑙+1)
𝑈

= 𝜎

(
𝐷̃

− 1
2

𝑈
Ã𝑈 𝐷̃

− 1
2

𝑈
𝐻 𝑙𝑈W(𝑙 )

𝑈

)
(10)

Here, Ã𝑈 is the normalized adjacencymatrix of𝐸𝑃 (Θ𝑈 ) or 𝐹𝑃 (Θ𝑈 )
with added self-connections. 𝐷̃𝑖𝑖 =

∑
𝑗 Ã𝑖 𝑗 , and W(𝑙 ) is a layer-

specific trainable weight matrix. To be consistent with consensus
factorization introduced in Eq. (3), 𝜎 (·) is an non-negative activa-
tion function, such as the ReLU(·) = 𝑚𝑎𝑥 (0, ·). 𝐻 (𝑙 ) ∈ R𝑚×𝑘 is
the embedding matrix in the 𝑙𝑡ℎ layer; 𝐻 (0) = X𝑈 which refers to
the node attribute. Following this, a projection head is designed
to eliminate some noisy information [5]. Therefore, the learned
embeddings G𝐸𝑃

𝑈
and G𝐹𝑃

𝑈
by using the shared GCN component

can capture the robust homogeneous relations through iterative
training. It is worth noting that the GCN components could be any
GNN model, which remains a lot of potential for expansion.

The aim of contrastive learning is to discriminate representations
by contrasting positive and negative pairs. For positive pairs, we
treat two representations (views) (i.e., [G𝐸𝑃

𝑈
]𝑖 · and [G𝐹𝑃

𝑈
]𝑖 ·) of

the same nodes as random variables and maximize their mutual
information, which can enhance the consistency of the nodes for a
better embedding quality. For negative pairs, learned embeddings
of different nodes (i.e., [G𝐸𝑃

𝑈
]𝑖 · and [G𝐹𝑃

𝑈
] 𝑗 ·) should be far away

from each other by minimizing the mutual information. In practice,
we adopt the InfoNCE [9] as the contrastive loss to maximize the
agreement of the positive pairs and minimize the negative pairs:

[L1
𝑈 ]𝑐𝑙 =

∑︁
𝑖∈U

− log
exp(𝑠𝑖𝑚

(
[G𝐸𝑃
𝑈

]𝑖 ·, [G𝐹𝑃𝑈 ]𝑖 · )/𝜏
)

∑
𝑗 ∈U exp

(
𝑠𝑖𝑚 ( [G𝐸𝑃

𝑈
]𝑖 ·, [G𝐹𝑃𝑈 ] 𝑗 · )/𝜏

) (11)

Here, 𝑠𝑖𝑚(·) refers to the cosine similarity function and 𝜏 is the
temperature parameter in the softmax. Similarly, we can generate
and boost the item embedding from Item-Item correlation graph
Θ𝐼 with the contrastive learning as:

𝐻
(𝑙+1)
𝐼

= 𝜎

(
𝐷̃

− 1
2

𝐼
Ã𝐼 𝐷̃

− 1
2

𝐼
𝐻 𝑙𝐼W

(𝑙 )
𝐼

)
, (12)

[L1
𝐼 ]
𝑐𝑙 =

∑︁
𝑖∈V

− log
exp(𝑠𝑖𝑚

(
[F𝐸𝑃
𝐼

]𝑖 ·, [F𝐹𝑃𝐼 ]𝑖 · )/𝜏
)

∑
𝑗 ∈V exp

(
𝑠𝑖𝑚 ( [F𝐸𝑃

𝐼
]𝑖 ·, [F𝐹𝑃𝐼 ] 𝑗 · )/𝜏

) (13)

The siamese GCN components are optimized iteratively in par-
allel by minimizing [L1

𝑈
]𝑐𝑙 and [L1

𝐼
]𝑐𝑙 with each training epoch.

We set G𝑈 = G𝐸𝑃
𝑈

and F𝐼 = F 𝐸𝑃
𝐼

as the updated embeddings fed
to the following layers of SGCCL for consensus optimization.

3.3 Consensus Optimization
Under consensus learning setting, the user/item embeddings should
consider both homogeneous and heterogeneous relations. From
the perspective of graph learning, it means the learning goal is to
minimize the reconstruction losses from the user/item embeddings
to siamese graphs and the user-item bipartite graph, simultaneously.

3.3.1 Siamese Graph Reconstruction. The contrastive learning of
G𝑈 and F𝐼 can be considered as a pre-training scheme for robust
representation learning. To better explore homogeneous relations
from a topology perspective, we aim to find the optimal embeddings
by minimizing the reconstruction loss of siamese graphs,

[L1
𝑈 ]𝑟𝑒 =



A𝑈 − 𝜎
(
G𝑈 G⊤

𝑈

)

2
𝐹
, [L1

𝐼 ]
𝑟𝑒 =



A𝐼 − 𝜎
(
F𝐼 F⊤

𝐼

)

2
𝐹

(14)
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It is obvious that [L1
𝑈
]𝑟𝑒 and [L1

𝐼
]𝑟𝑒 are the non-linear varia-

tions to 𝐽𝑈 ·𝑈 (Eq. 3) and 𝐽𝐼 ·𝐼 (Eq. 4), respectively. By integrate the
reconstruction loss into the contrastive loss in Eq. (11) and Eq. (13),
we have the extended loss for siamese contrastive learning scheme,

L1
𝑈 = [L1

𝑈 ]𝑐𝑙 + [L1
𝑈 ]𝑟𝑒 , L1

𝐼 = [L1
𝐼 ]
𝑐𝑙 + [L1

𝐼 ]
𝑟𝑒 (15)

3.3.2 Bipartite Graph Reconstruction. For the factorization of User-
Item ratings, we aim to generate embedding matrices G and F
that can reconstruct the rating matrix R with a minimal loss 𝐽 ′

𝑈 ·𝐼 .
Traditionally, 𝐽 ′

𝑈 ·𝐼 can be optimized by using SGD or ALS. However,
This kind of MF methods does not apply to consensus learning as:
(1) The collaborative signal, which is latent in local communities, is
not encoded in the embedding process. (2) The embedding results
by barely optimizing 𝐽 ′

𝑈 ·𝐼 do not consider the relationships between
homogeneous nodes.

Accordingly, we adopt Variational GraphAuto-Encoders (VGAEs)
[16] on Θ′

𝑈
=< G𝑈 ,A𝑈 > and Θ′

𝐼
=< F𝐼 ,A𝐼 > to generate G and

F in this work to consider the local communities and homogeneous
relations. And at the same time, we force G and F to satisfy the
objective function 𝐽 ′

𝑈 ·𝐼 during the embedding process to take the
User-Item heterogeneous relation into consideration.

For user perspective, VGAEs extended the variational auto-encoder
framework to graph structure, which uses a probabilistic model
involving latent variables 𝑔𝑖 for each node 𝑖 ∈ U, interpreted as
node representations in an embedding space [15]. The inference
model, i.e. the encoding part of VAE, is defined as:

𝑞 (G |G𝑈 ,A𝑈 ) =
𝑚∏
𝑖=1

𝑞 (𝑔𝑖 | G𝑈 ,A𝑈 ) (16)

where 𝑞(𝑔𝑖 |G𝑈 ,A𝑈 ) = N(𝑔𝑖 |𝜇𝑖 , 𝑑𝑖𝑎𝑔(𝜎2𝑖 )). Gaussian parameters
are learned from twoGCNs, i.e. 𝜇 = 𝐺𝐶𝑁𝜇 (G𝑈 ,A𝑈 ), with 𝜇 thema-
trix stacking up mean vectors 𝜇𝑖 ; likewise, 𝑙𝑜𝑔𝜎 = 𝐺𝐶𝑁𝜎 (G𝑈 ,A𝑈 ).
Latent vectors 𝑔𝑖 are samples drawn from this distribution. From
these vectors, a generative model aims at decoding A𝑈 , leveraging
inner products: 𝑝 (A𝑈 |G) =

∏𝑚
𝑖=1

∏𝑚
𝑗=1 𝑝 ( [A𝑈 ]𝑖 𝑗 |𝑔𝑖 , 𝑔 𝑗 ), where

𝑝 ( [A𝑈 ]𝑖 𝑗 = 1|𝑔𝑖 , 𝑔 𝑗 ) = 𝜎 (𝑔⊤
𝑖
𝑔 𝑗 ). GCN weights are tuned by maxi-

mizing a tractable variational lower bound (ELBO) of the model’s
likelihood by gradient descent, with a Gaussian prior on the dis-
tribution of latent vectors, and using the reparameterization trick
from [15]. Formally, for VGAE, we minimize the reconstruction
error from G to G𝑈 by:

L2
𝑈 =E𝑞 (G|G𝑈 ,A𝑈 ) [log𝑝 (A𝑈 | G) ] − 𝐷𝐾𝐿 [𝑞 (G |G𝑈 ,A𝑈 ) | |𝑝 (G) ]

(17)
where 𝐷𝐾𝐿 (·| |·) is the KL divergence of the approximate from the
true posterior. It is obvious that L2

𝑈
is a variation of the objective

function 𝐽𝑈 ·𝑈 under the graph-based inference setting.
Similarly, the loss of the reconstruction from F to F𝐼 is:
L2
𝐼 =E𝑞 (F|F𝐼 ,A𝐼 ) [log𝑝 (A𝐼 | F) ] − 𝐷𝐾𝐿 [𝑞 (F | F𝐼 ,A𝐼 ) | |𝑝 (F) ] (18)

To ensure the embedding matrices F and G are consistent with
User-Item ratings, we aim to minimize the reconstruction loss in-
troduced in Eq. (2). Here, we present a neural-network-based NMF
module that can be integrated into our SGCCL framework by re-
placing the inner product in 𝐽 ′

𝑈 ·𝐼 with a neural architecture. It can
learn an arbitrary function from data. Specifically,

R̂ = GSF, and L𝑅 = | | R − R̂ | |2𝐹 (19)

Table 1: Data statistics & parameter setting.

Dataset #User #Items Interactions 𝛿𝑈 𝛿𝐼 𝑐 𝑑

ML-100k 943 1,349 100,000 2 4 16 32
Automotive 2,928 1,835 20,473 2 3 16 32
Movies & TV 44,439 25,047 1,070,860 5 5 32 32
Gowalla 29,858 40,981 1,027,370 3 5 32 64

S can be delicately considered as aweightmatrix under the neural
network framework (as shown in Fig. 3) and it can be updated using
typical backpropagation during the embedding process.

The reconstruction of siamese graph and bipartite graph in-
troduced above enable us to learn embeddings by taking care of
different aspects (user-user similarity, item-item correlations and
user-item ratings). To ensure that the final results are consistent,
we jointly formulate all loss functions as the unified loss of SGCCL,
which is a nonlinear variation of the objective function 𝐽 of con-
sensus learning principle in Eq. (5):

L = 𝜆1L𝑅 + 𝜆2L1
𝑈 + 𝜆3L1

𝐼 + 𝜆4 (L
2
𝑈 + L2

𝐼 ) (20)

Therefore the whole SGCCL network parameters are jointly
optimized by minimizing the lossL and the final output embedding
matrices for users and items are G and F .

3.4 Dynamic Loss Fusion
For most multi-task learning networks, optimizing multiple objec-
tives is difficult without finding the correct balance among those
objectives (i.e. 𝜆 in Eq. 20). In this paper, we adopt a simple yet effec-
tive adaptive weighting method, named Dynamic Weight Average
(DWA) proposed in [19], which learns to average task weighting
over time by considering the rate of change of loss for each task as:

𝑤𝑘 (𝑡 − 1) = L𝑘 (𝑡 − 1)
L𝑘 (𝑡 − 2) , 𝜆𝑘 (𝑡 ) =

𝐾 exp(𝑤𝑘 (𝑡 − 1)/𝑇 )∑
𝑖 exp(𝑤𝑖 (𝑡 − 1)/𝑇 ) (21)

where L𝑘 ∈ {L𝑅,L1
𝑈
,L1

𝐼
, (L2

𝑈
+ L2

𝐼
)} and 𝜆𝑘 ∈ {𝜆1, 𝜆2, 𝜆3, 𝜆4}. 𝑡

is an iteration index and𝑇 represents a temperature which controls
the softness of task weighting.

4 EXPERIMENTS
4.1 Experimental Settings
4.1.1 Benchmark Datasets. We conduct experiments on four public
benchmark datasets commonly used in recommendation tasks.
• MovieLens-100k: The movielens datasets are collected from
MovieLens review websites [10]. In this study, we select the
MovieLens-100k and use the 5-core setting to ensure that users
and items have at least 5 interactions [12].

• Amazon-Automotive/Movies & TV: Amazon review datasets
are widely used for product recommendation [11]. Here we select
the Automotive and Movies & TV collections in this study. And
we adopt 5-core setting for automotive and 10-core for Movies &
TV. The rating information is used for connection building.

• Gowalla: Gowalla is a popular location-based social network [18].
We treat locations as items to capture user preferences based on
the check-in history. 10-core setting is used to ensure the data
quality. No side information is provided in Gowalla dataset.

The details of the datasets are reported in Table 1, where 𝛿 that
controls the degree of connectivity (Eq. 6) and the dimensions of
user/item embeddings (𝑐 and 𝑘) are used to regulate the graphs and
output embeddings for graph-based collaborative filtering.
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Table 2: Performance comparison between SGCCL and baseline methods.

Tasks Models ML-100k Automotive Movies & TV Gowalla
recall@20 ndcg@20 recall@20 ndcg@20 recall@20 ndcg@20 recall@20 ndcg@20

O
ve
ra
ll
Re

co
m
m
en
da
tio

n

MF 0.2897 0.3223 0.0742 0.0298 0.0625 0.0422 0.1291 0.1109
NeuMF 0.3168 0.3647 0.0762 0.0311 0.0820 0.0511 0.1399 0.1212
GC-MC 0.2544 0.3025 0.0990 0.0440 0.0638 0.0401 0.1395 0.1204
NGCF 0.3382 0.4016 0.1127 0.0455 0.0866 0.0555 0.1569 0.1327
Gemini 0.2724 0.3108 0.0874 0.0400 0.0718 0.0487 0.1351 0.1178
DICE-LightGCN 0.3131 0.3568 0.1202 0.0513 0.0863 0.0549 0.1648 0.1433
LightGCN 0.3229 0.3805 0.1384 0.0598 0.0915 0.0599 0.1821 0.1537
LightGCN-CL 0.3234 0.3878 0.1412 0.0617 0.0926 0.0600 0.1816 0.1528
SGL 0.3238 0.3923 0.1401 0.0611 0.0932 0.0606 0.1824 0.1540
SGCCL 0.3655 0.4221 0.1543 0.0658 0.0984 0.0643 0.1869 0.1610
SGCCL-SI 0.3682 0.4244 0.1557 0.0672 0.0993 0.0652 N/A N/A

Po
pu

la
rit
y
Bi
as

El
im

in
at
in
g

LightGCN 0.1052 0.0844 0.0301 0.0187 0.0334 0.0256 0.0610 0.0401
SGL 0.1063 0.0856 0.0304 0.0189 0.0340 0.0264 0.0617 0.0409
CausE-LightGCN 0.1035 0.0822 0.0293 0.0176 0.0334 0.0257 0.0606 0.0397
IPW-LightGCN 0.1067 0.0863 0.0302 0.0189 0.0338 0.0260 0.0609 0.0401
DICE-LightGCN 0.1198 0.1087 0.0308 0.0190 0.0344 0.0283 0.0619 0.0425
SGCCL 0.1225 0.1116 0.0364 0.0230 0.0364 0.0301 0.0631 0.0433
SGCCL-SI 0.1246 0.1129 0.0372 0.0244 0.0375 0.0307 N/A N/A

4.1.2 Evaluation Metrics. We adopt two widely used evaluation
metrics to evaluate the recommendation performance: recall@k and
ndcg@k (Normalized discounted cumulative gain) [34]. In this study,
the 𝑘 is set as 20 which are used by other baseline methods for a
fair comparison. For every user in each dataset, we randomly select
70% and 10% of their interacted items as training and validation
sets. And the rest 20% of data are set as the ground truth and used
for testing. While for the popularity debiasing task, we adopt the
skewed split rule in [17]: A test set is sample with 20% of the total
item exposures, which ensures the uniform probability of items.
Training and validation sets are then created from the remaining
data (as a regular split) with 70/10 proportions.

4.1.3 Baseline Methods. We compare the SGCCL with following
baseline methods: Vanilla CF methods: MF [23] & NeuMF [14]:
These are naive matrix factorization methods to factorize the User-
Item rating matrix directly. Graph-based CF methods: GC-MC [2];
NGCF [29]; Gemini [33] & LightGCN [13]: These methods in-
troduce the GCNs to learn the high-order node signal and model
the complex neighborhood relationships between users and items.
Gemini adopts the user-user and item-item correlations separately.
LightGCN-CL [20] & SGL [31]: These are the latest GCL-based
methods with injecting self-supervised learning into LightGCN.
Debiasing methods: IPW [17]; CausE [3] & DCIE [37]: These debi-
asing methods introduced the inverse propensity weight or causal
effect to alleviate the popularity bias problem. For a fair comparison,
all of them adopt LightGCN as the backbone in their original set-
tings Proposed methods - SGCCL: We generate the siamese graphs
from user-item rating matrix only for a fair competition. SGCCL-SI:
We exploit the side information in siamese graph generation.

4.2 Experimental Results
4.2.1 Performance Comparison. We report overall performance of
SGCCL compared with baselines methods in Table 2.
Overall Recommendation: The experiments demonstrate that the
SGCCL consistently yields the best performance on all the datasets.
With considering the side information (SGCCL-SI), the perfor-
mance can be further improved with 12.06% (ML-100k), 10.27%
(Automotive) and 6.14% (MoviesTV) in recall@k comparing with
baseline methods. It proves the effectiveness of introducing and

Table 3: Popularity bias analysis on Movies & TV dataset:
HD/LD refers to high-degree/low-degree and U/I refers to
users and items, e.g., HD-U refers to high-degree users.

Model HD-U & HD-I HD-U & LD-I LD-U & HD-I LD-U & LD-I
LightGCN 0.3740 0.1203 0.6556 0.2513
SGL 0.3715 0.1163 0.6525 0.2422
CausE-LightGCN 0.4207 0.1359 0.6932 0.2744
IPW-LightGCN 0.3731 0.1151 0.6723 0.2486
DCIE-LightGCN 0.3812 0.1321 0.6601 0.2541
SGCCL 0.3542 0.0439 0.6481 0.1139
SGCCL-SI 0.3478 0.0420 0.6473 0.1124

distinguishing both heterogeneous and homogeneous information
from the original user-item network under a consensus principle.

To better demonstrate the improvements, we also visualize the
ML-100k data in a two-dimensional space by adopting the 𝑡−SNE
algorithm [28] on the learned embedding F and G as shown in
Fig. 4. By applying 𝑘-means clustering algorithms to 10 clusters,
we can see that the user and item embeddings generated based on
SGCCL have the shortest intra cluster distance comparing with
the counterparts. It validates the advantages of considering both
user-user and item-item homogeneous relationships to infer user
preferences and item correlations in SGCCL.
Popularity Bias Eliminating: In Table 2 (lower section), we com-
pare methods for popularity bias elimination. The results show that
baseline debiasing methods can alleviate bias to a certain degree
but lead to worse performance on overall recommendation tasks
(DCIE-LightGCN). It indicates that these debiasing methods exces-
sively emphasize on unpopular items and cause another type of
bias. SGCCL can still achieve best performance on all datasets on
bias eliminating tasks. By applying SGCCL, majority unpopular
items boost their exposure to users through item-item correlations
and the distinctive preference of users’ homogeneous neighbors,
without losing the attention of popular items/users.

In order to delineate how SGCCL alleviates the popularity bias
for both users and items, we define four different combinations of
users and items according to their popularity: the high-degree nodes
(users/items) as their degrees are at the top 20% while low-degree
nodes are at the bottom 20%. The embedding quality reported in
Table 3 is measured as 𝑃 = 1

𝑚×𝑛 | |R
∗ − R̂∗ | |2, where R∗ ∈ R𝑚×𝑛

refers to a submatrix of R that only contains the selected𝑚 users
and 𝑛 items. R̂∗ is the reconstructed rating matrix from G, F and S.
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Figure 4: Embedding feature comparisons on ML-100k using 𝑡-SNE. Each point denotes a node, which is color-coded based on
the clusters the node belonging to (there are 10 groups in total). (a)-(e) refers to the item nodes clustering, (f)-(j) refers to the
user nodes clustering, and the indicators refer to the intra cluster distances.

Figure 5: Comparative analysis of running time.

Figure 6: Comparative analysis of graph augmentation ef-
fect on Movies & TV dataset, where NP/EP/FP refers to
node/edge/feature perturbations (dropout), and RW refers to
random walk [20, 39].
SGCCL performs extremely well on unpopular item recommenda-
tion with 264% in Column 2 and 212% in Column 4, which indicates
the introduction of homogeneous relations can significantly help
de-biasing the user preference ratings.
4.2.2 Time Efficiency Analysis. Fig. 5 illustrates the training time
comparison among different methods and shows that SGCCL is
an efficient recommendation model even with a complex model
structure. It is achieved by the adoption of parallel computation
in siamese graph learning of G𝑈 and F𝐼 . And the introduction of
VGAE and DWA makes the reconstruction of R from Θ𝑈 and Θ𝐼
more flexible and therefore speeding up the convergence process.
LightGCN is faster because the authors claim that feature transfor-
mation and nonlinear activation contribute little to the performance,
thus it significantly simplifies the GCN model. However, our exper-
iments suggest that nonlinear transformation is indispensable in
better capturing the complex relations of users/items.
4.2.3 Comparison of Graph Augmentation Operations. As one of
the most important components in contrastive learning, graph
augmentation directly influences the node embedding quality. To
explore the difference among augmentation operations, we conduct
experiments based on Movie&TV as shown in Fig. 6. SGCCL that
adopts the combination of edge and feature perturbations achieve
the best performance. Coupling two augmentation operations to-
gether enable SGCCL to capture the robust patterns from both

Figure 7: Effective of Each Components: the label in x-axis
refers to w/o the components, e.g., S refers to W/O S.
local structures and attributes of a node, and further endows the
representations more robustness against noisy interactions.
4.2.4 Ablation Study. To better understand the effectiveness of the
components in SGCCL, we compare the performance of SGCCL
and its variants on the Movie&TV dataset. The 4 variants is defined
as: (1) W/O contrastive learning module and [L1]𝑐𝑙 ; (2) W/O La-
tent matrix S; (3) W/O [L]1 (Siamese Graph Reconstruction); (4)
W/O [L]2 (Bipartite Graph Reconstruction), which their perfor-
mance in two different recommendation tasks is shown in Fig. 7.
We can observe that each component contributes to the model per-
formance. The contrastive learning part makes an improvement on
the popularity bias problem as it can learn the high-quality repre-
sentations of unpopular nodes with sparse interactions. The latent
matrix S can fuse different scales of node embeddings, and [L]1
improves the robustness of node embeddings with the constraint
of siamese graphs. Moreover, consensus learning [L]2 forces the
final recommendation to be consistent with the bipartite graph.

5 CONCLUSION
In this paper, we proposed a novel graph learning method for per-
sonalized recommendation. We introduced siamese graphs which
consider user-user similarity and item-item correlations as two
types of homogeneous relations to capture distinctive nodes infor-
mation, and proposed a consensus learning principle to simultane-
ously factorize homogeneous and heterogeneous information. A
siamese graph contrastive consensus learning framework (SGCCL)
is further proposed to model high-hop connectivity with robust-
ness between nodes and optimize them based on the consensus
learning principle. Experiments demonstrated that SGCCL outper-
forms state-of-the-art methods. Case studies further confirmed its
effectiveness for unpopular items.
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