
Direct Calculation of the Temperature Dependence of 2D-IR Spectra.
Urea in Water

Ashley K. Borkowski, N. Ian Campbell,a) and Ward H. Thompsonb)

Department of Chemistry, University of Kansas, Lawrence, KS 66045, USA

(Dated: 20 May 2023)

A method for directly calculating the temperature derivative of two-dimensional infrared (2D-IR) spectra
from simulations at a single temperature is presented. The approach is demonstrated by application to
the OD stretching spectrum of isotopically dilute aqueous (HOD in H2O) solutions of urea as a function
of concentration. Urea is an important osmolyte because of its ability to denature proteins, which has
motivated significant interest in its effect on the structure and dynamics of water. The present results show
that the temperature dependence of both the linear IR and 2D-IR spectra, which report on the underlying
energetic driving forces, are more sensitive to urea concentration than the spectra themselves. Additional
physical insight is provided by calculation of the contributions to the temperature derivative from different
interactions, e.g., water-water, water-urea, and urea-urea, present in the system. Finally, it is demonstrated
how 2D-IR spectra at other temperatures can be obtained from only room temperature simulations.

I. INTRODUCTION

Since its development by Hamm, Lim, and
Hochstrasser in 1998,1 two-dimensional infrared (2D-IR)
spectroscopy has become a powerful technique for
investigating molecular structure and dynamics with
subpicosecond resolution.2–9 Moreover, new advances
continue to expand its utility. Here we address one area
ripe for development: The effect of temperature on the
spectrum. There have been relatively few studies of the
temperature dependence of 2D-IR spectra,10–13 despite
the fact that they can reveal the driving forces under-
lying the structural and dynamical properties being
probed. In this Paper, we present a method for directly
calculating the temperature derivative of the 2D-IR
spectrum from simulations at a single temperature. This
is an application of the recently developed fluctuation
theory for dynamics approach.14–17 We illustrate the
method in a detailed examination of the temperature
(and concentration) dependence of the spectra of the
OD stretch in aqueous urea solutions. A key finding is
that the temperature derivative of the 2D-IR spectra are
more sensitive to urea than the spectra themselves.

Osmolytes are often characterized as stabilizers that al-
low living cells to adjust their osmotic pressure and main-
tain cell volume.18–23 However, urea, shown in Fig. 1, is
an osmolyte that denatures proteins and counteracts the
properties of other osmolytes, e.g., trimethylamine N-
oxide (TMAO).18–26 For this reason, urea has been stud-
ied extensively to understand the origins of these behav-
iors.

The direct interactions between urea and proteins have
been examined in the context of protein stability.27–34 Us-
ing a transfer model to predict protein folding/unfolding
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FIG. 1: Stick model of urea. O (red), C (cyan), N
(blue), and H (white).

free-energy changes, Bolen and co-workers27,28 demon-
strate that urea interacts with the protein’s backbone and
side chains, with the former being larger in magnitude.
The interaction of urea with amino acids has also been
studied, and it was discovered that urea solvates non-
polar and aromatic residues in addition to the peptide
backbone.29–31 These findings suggest that urea weak-
ens the hydrophobic effect in proteins, thereby promot-
ing protein unfolding through its interactions with the
protein’s hydrophobic core.30,31 For example, molecular
dynamics (MD) simulations of the protein chymotrypsin
inhibitor 2 in the presence of urea found that urea pro-
motes protein unfolding both directly, by interacting with
the the peptide groups, and indirectly, by altering water
structure and dynamics.34

The possibility of such an indirect mechanism of urea
for protein denaturation has motivated extensive stud-
ies of the influence of urea on water structure using
both experiments23,24,35–40 and simulations.22–25,35,41,42
In this context, a key question is: Does urea act as
a “structure-maker” or “structure-breaker,” in the same
way in which salts are categorized43–55 according to the
Hofmeister series? Due to its ability to denature proteins,
it is often grouped with ions that are ranked as more
chaotropic, or structure-breaking.56 However, Liao et al.
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have argued against the notion that osmolytes indirectly
stabilize proteins by altering water structure.26 Zetter-
holm et al.21 concluded, based on Raman spectroscopy,
that urea destabilizes water structure to promote protein
denaturation, while Sahle et al.23 and Yoshida et al.57
observed that urea slightly strengthened the water struc-
ture. Many studies indicate that urea is not straight-
forwardly characterized in this way because it has weak
interactions with water.20,35–39,42,58 One argument in this
vein postulates that urea is commensurate with water’s
tetrahedral structure.25,37

Both linear and nonlinear vibrational spectroscopy of
the urea in water system have been used by multiple
groups to probe these questions.21,24,35,36,38,41,58 Carr et
al. considered the spectroscopy and dynamics of urea
in HOD in H2O up to 8 M, probing the water OD and
urea CO stretches.24 They reported measurements of the
linear IR spectra and simulations of the linear and two-
dimensional IR spectra as well as the reorientational dy-
namics. They found that the OD stretch IR spectrum
is insensitive to the urea concentration, which had been
previously observed by Sharp et al.,35 while the urea CO
stretch blueshifts modestly as urea is added. These re-
sults lead them to conclude that urea has a minimal effect
on the water structure and should not be considered ei-
ther a structure-maker or structure-breaker.

They did, however, observe more significant effects of
urea on the water dynamics as probed by both the OD
stretch anisotropy decay and spectral diffusion. Rezus
and Bakker had earlier measured the OD reorientational
dynamics in IR pump-probe anisotropy experiments.38
They found the anisotropy decay, as urea is added,
maintains a dominant component with the neat water
timescale of 2.5 ps, but a smaller component grows in
with a timescale too long to be resolved in the exper-
iments. They attributed the slower dynamics to wa-
ters that are “immobilized” by engaging in two hydro-
gen bonds with urea. However, Carr et al., while finding
the same slower reorientational dynamics in their sim-
ulations, did not observe slower dynamics in such dou-
bly hydrogen-bonded water molecules.24 Instead they at-
tribute the slower reorientational dynamics to an ex-
cluded volume effect of the urea molecules, which prevent
the approach of new hydrogen-bond partners for water.59

In this work, we examine the driving forces underlying
the urea-induced changes in the OD stretch 2D-IR spec-
tra in isotopically dilute water. Specifically, the tem-
perature derivatives of both the linear IR and 2D-IR
spectra are determined using the developed fluctuation
theory approach. These derivatives give insight into the
energetic driving forces that determine the spectra. In
addition, the method enables calculation of the contri-
butions to the temperature derivative from the different
motions and interactions present in the system (e.g., ki-
netic, Lennard-Jones, and Coulombic energies or water-
water, water-urea, and urea-urea interactions) providing
otherwise unavailable mechanistic insight.

II. THEORY

A. General Framework

We have recently shown how the derivative of virtu-
ally any dynamical property with respect to temperature
or, more precisely, β = 1/kBT , can be obtained from
simulations at a single temperature. The approach is
fluctuation theory60,61 applied to dynamics15 and can be
illustrated in a general way by considering the statistical
mechanical average of a dynamical property, e.g., a time
correlation function (TCF) of the form A(0)B(t). In the
canonical ensemble,

⟨A(0)B(t)⟩ = 1

hFQ(β)

∫
dp

∫
dq e−βH(p,q)

× A(p,q; 0)B(p,q; t), (1)

where h is Planck’s constant, F the number of degrees-
of-freedom, Q the canonical partition function, and H
the system Hamiltonian that depends on the full set of
momenta (p) and coordinates (q). Noting that β only
appears in the Boltzmann weighting and its normalizing
partition function, it is straightforward to show that

∂⟨A(0)B(t)⟩
∂β

= − 1

Q

∂Q

∂β
⟨A(0)B(t)⟩

− 1

hF Q(β)

∫
dp

∫
dq e−βH(p,q) H(p,q; 0)

× A(p,q; 0)B(p,q; t). (2)

Noting, however, that −∂ lnQ/∂β = ⟨H⟩ and that H in
the second term is evaluated at time 0, we can define
the fluctuation in the system Hamiltonian at t = 0 as
δH(0) = H(0)−⟨H⟩. Then the derivative can be written
as

∂⟨A(0)B(t)⟩
∂β

= − 1

hF Q(β)

∫
dp

∫
dq e−βH(p,q)

× δH(p,q; 0)A(p,q; 0)B(p,q; t)

= −⟨δH(0)A(0)B(t)⟩. (3)

In other words, the derivative of any TCF with respect
to β (and, hence, temperature) can be obtained from
a new time correlation function that is the original TCF
weighted by the fluctuation in the system energy at t = 0.
Of key importance is that Eq. (3) can be calculated from
simulations at a single temperature; it is the analytical
derivative corresponding to the numerical derivative com-
puted in an Arrhenius analysis.

An additional attraction of this approach is that it can
provide otherwise unavailable mechanistic insight into
the origin of the changes with temperature and hence
the driving forces for the dynamics. This is realized by
dividing the fluctuations of the total energy, δH(0), into
contributions from different energetic components, for ex-
ample, in the context of typical MD simulations

δH(0) = δKE(0) + δVCoul(0) + δVLJ(0), (4)
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where KE is the kinetic energy and VCoul and VLJ are
the Lennard-Jones and Coulombic potential energies, re-
spectively. The β derivative of the TCF, Eq. (3), can
then be decomposed as,

∂⟨A(0)B(t)⟩
∂β

= −⟨δKE(0)A(0)B(t)⟩

− ⟨δVLJ(0)A(0)B(t)⟩
− ⟨δVCoul(0)A(0)B(t)⟩. (5)

This is, however, only one of the simplest possible de-
compositions. In the context of the water-urea system
investigated in this work, we also consider the total sys-
tem energy fluctuation written as

δH(0) = δKE(0) + δVw−w(0) + δVu−w(0) + δVu−u(0),
(6)

where Vw−w, Vu−w, and Vu−u are the components of
the potential energy due to water-water, water-urea, and
urea-urea interactions, respectively. Each of these terms
can be further decomposed into the types of interactions
involved, for example,

δVu−w(0) = δVu−w,LJ(0) + δVu−w,Coul(0) (7)

In the following, we use such decompositions of the
derivatives of the linear and nonlinear vibrational spec-
tra to provide important insights into the effects of urea
on the water spectrum.

B. Linear IR Spectrum

We recently applied the fluctuation theory approach
described in Sec. IIA to calculate the temperature deriva-
tive of the IR spectrum.16,17 The IR line shape can be
calculated from the Fourier transform,

I(ω) =
1

2π

∫ ∞

−∞
e−iωtϕ(t) dt (8)

of the dipole-dipole response function,

ϕ(t) =
⟨
µ⃗01(0) · µ⃗01(t) e

i
∫ t
0
ω01(τ) dτ

⟩
e−|t|/2T1 . (9)

Here, µ⃗01(t) = ⟨1|µ̂|0⟩ = µ01(t) e⃗(t) is the matrix element
of the transition dipole moment vector for the mode of
interest at time t, ω01(t) is the 0 → 1 vibrational fre-
quency gap at time t, and T1 is the n = 1 vibrational
relaxation lifetime. Then the derivative of the dipole-
dipole response function with respect to β results in the
following expression:16

dϕ(t)

dβ
= −

⟨
δH(0) µ⃗01(0) · µ⃗01(t)e

i
∫ t
0
ω01(τ) dτ

⟩
× e−|t|/2T1

= −ϕH(t). (10)

Here, we have neglected any temperature dependence of
the relaxation time T1, though this could be straight-
forwardly included. Experimental reports indicate T1

increases with temperature for HOD in H2O, but
only weakly,12,62 and is essentially independent of urea
concentration,38 indicating it should have a minor effect
on the temperature dependence of the spectra.

In the notation of Eq. (8), the temperature derivative
of the IR spectrum is then,

dI(ω)

dβ
= − 1

2π

∫ ∞

−∞
e−iωtϕH(t) dt, (11)

i.e., the negative of the Fourier transform of this weighted
response function, ϕH(t). Note that this derivative can
be calculated from the same, single temperature, simula-
tions as I(ω) itself.

C. 2D-IR Spectrum

The 2D-IR spectrum can be obtained in an analogous,
if more complicated, fashion than the linear IR spectrum.
Following the approach of Skinner and co-workers,63,64
the heterodyne-detected signal is given by the double-
Fourier transform of rephasing and non-rephasing TCFs,

I2DIR(ω1, ω3;Tw) =Re

{∫ ∞

0

dt3 e
iω3t3

∫ ∞

0

dt1[
Rr(t1, Tw, t3) e

−iω1t1

+ Rnr(t1, Tw, t3) e
iω1t1

]}
. (12)

Here, ω1 and ω3 are the pump and probe frequencies and
Tw is the waiting time. The rephasing and non-rephasing
contributions are each the sum of three TCFs:

Rr(t1, Tw, t3) =

3∑
j=1

Rj(t1, Tw, t3) (13)

and

Rnr(t1, Tw, t3) =

6∑
j=4

Rj(t1, Tw, t3), (14)

which are of the form, for example,

R1(t1, Tw, t3) =
⟨
µ01(0)µ01(t1)µ01(t1 + Tw)

µ01(t1 + Tw + t3) e
∫ t1
0 ω01(τ)dτ

e−
∫ t1+Tw+t3
t1+Tw

ω01(τ)dτ
⟩
e−Tw/T1 , (15)

Additional details and the other five TCFs are given in
the Appendix.

In this Paper, we show how the same fluctuation the-
ory described above can be used to directly calculate the
temperature derivative of the 2D-IR spectrum. The ap-
proach is that described in Sec. II A. The TCFs that yield
the 2D-IR spectrum depend on temperature only through
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the Boltzmann weighting of the thermal average that ap-
pears as a factor of e−βH inside the the average and a
factor of 1/Q outside it. Then, for example, the deriva-
tive of the R1 TCF with respect to β follows the result
in Eq. (3):

∂R1(t1, Tw, t3)

∂β
=−

⟨
δH(0)µ01(0)µ01(t1)µ01(t1 + Tw)

µ01(t1 + Tw + t3) e
∫ t1
0 ω01(τ)dτ

e−
∫ t1+Tw+t3
t1+Tw

ω01(τ)dτ
⟩
e−Tw/T1

≡−R1,H(t1, Tw, t3). (16)

With analogous derivatives for the other five TCFs, which
are given in the Appendix, we can obtain the correspond-
ing derivatives of the rephasing and non-rephasing con-
tributions,

∂Rr(t1, Tw, t3)

∂β
= −

3∑
j=1

Rj,H(t1, Tw, t3)

≡ −Rr,H(t1, Tw, t3) (17)

and

∂Rnr(t1, Tw, t3)

∂β
= −

6∑
j=4

Rj,H(t1, Tw, t3),

≡ −Rnr,H(t1, Tw, t3) (18)

Then, the derivative of the 2D-IR spectrum is given by

∂I2DIR(ω1, ω3;Tw)

∂β
=− Re

{∫ ∞

0

dt3 e
iω3t3

∫ ∞

0

dt1[
Rr,H(t1, Tw, t3) e

−iω1t1

+ Rnr,H(t1, Tw, t3) e
iω1t1

]}
.

(19)

This result has a couple of important features. First, this
temperature derivative can be obtained from simulations
at a single temperature; the same simulations can be used
to compute both I2DIR and its temperature (or β) deriva-
tive. Second, the decompositions of the fluctuation of the
total energy, e.g., as shown in Eqs. (4)-(7), can be used
in the expressions for the Rj,H to yield contributions to
∂I2DIR/∂β from the different motions and interactions
present in the system. This is mechanistic information
for the 2D-IR spectra that cannot be obtained in any
other way.

III. COMPUTATIONAL METHODS

A. Molecular Dynamics

All MD simulations were performed using the Large-
Scale Atomic/Molecular Massively Parallel Simulator

(LAMMPS).65,66 Each simulation consisted of SPC/E
water molecules,67 and urea molecules described by the
Kirkwood-Buff force field (KBFF)68 to form concentra-
tions of approximately 1, 4 and 8 M. The intermolecular
force field parameters for each atom are provided in Ta-
ble S1 and the bonded parameters for the urea molecules
are given in Table S2. Each urea system was first equili-
brated for 1 ns and then propagated for 25 ns at constant
pressure and temperature using an NpT ensemble at
1 bar and 298.15 K, with a Nosé-Hoover thermostat and
barostat using pressure and temperature chain lengths
of three. The damping parameters for the barostat and
the thermostat were 1000 and 100 fs, respectively. The
latter stage was used to determine the average volume
that was used in subsequent NV T ensemble simulations.
The differences in average volume give rise to small de-
viations from the nominal 1, 4, and 8 M concentrations;
the precise values are given in Table S3.

Based on the calculated equilibrium volume, a con-
stant volume and temperature simulation for each urea
system was run for a 1 ns equilibration and 5 ns run
stages at 298.15 K. A Nosé-Hoover thermostat using the
same parameters given above was used. During the lat-
ter, the configurations and momenta were written every
1 ps. These were used as the initial conditions for 5000
NV E trajectories of 10 ps length from which the config-
urations were saved every 5 fs. The linear IR and 2D-IR
spectra were computed from these NV E trajectories, an
approach that eliminates any effect of the thermostat on
the dynamics. For neat HOD in H2O, five separate tra-
jectories at a density of 1.00 g/cm3 were run with 0.5 ns
equilibration and 1 ns run stages; the other simulation
details are the same as for the urea systems.

In every simulation, the time step was 1 fs, the SHAKE
algorithm was used for the bonds and angles of each water
molecule along with the O-C and N-H bonds within each
urea molecule, and the electrostatics were calculated us-
ing the particle-particle particle-mesh Ewald summation
with an tolerance of 1 × 10−4. Errors in the computed
results were obtained by block averaging using 5 blocks
(each block representing 1000 NV E trajectories) and are
reported as 95% confidence intervals using the Student’s
t-distribution.69

B. Empirical Mapping Approach

The spectra presented in this work are calculated using
the empirical, or electrostatic, mapping approach that
approximates the quantum mechanical vibrational fre-
quencies and transition dipole moments from information
directly available in a classical MD simulation.24,70–73
Specifically, each quantity is written in terms of an em-
pirical relationship obtained by correlating the results of
explicit quantum mechanical calculations on a cluster to
the electric fields computed from classical MD models.

For example, the fundamental transition frequency is
obtained as ω01 = c0+c1E+c2E2, where E is the (classical
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MD) electric field component along the OD bond evalu-
ated at the D atom position and c0, c1, and c2 are con-
stants. The constants used in this work for the transition
frequencies (ω01 and ω12) as well as the dipole derivative
(µ′) and coordinate matrix elements (x01 and x12) used
to compute the transition dipoles (µ01 and µ12) are taken
from Ref. 24 and are given in Table S4.

IV. RESULTS

A. Linear IR Spectrum and Derivative

It is useful to first consider the OD IR spectrum as a
function of urea concentration, which is shown in Fig. 2a.
The addition of urea has only minor effects on the spec-
trum. The 1 M urea solution has a spectrum essentially
identical to that of neat water. At higher concentrations,
there is little shift in the peak position and slight broad-
ening, primarily on the lower frequency side. This mod-
est influence of urea on the OD spectrum has been pre-
viously observed in simulations and measurements.24,36
These results emphasize the weak effect of urea on the
water structure as probed through the IR spectrum.

Additional insight is gained by examination of the
derivative of the spectrum with respect to inverse tem-
perature, ∂I(ω)/∂β, which is shown for the four solutions
in Fig. 2b. The shape of the derivative mirrors what
we have observed previously in simulations of the OH
stretch spectra of HOD in D2O, both in the neat liquid16

and in salt solutions.17 Namely, ∂I(ω)/∂β is positive for
lower frequencies corresponding to OD groups engaged
in stronger H-bonds, but turns negative for higher fre-
quency with weaker H-bonded OD groups. (Here, we
refer to the strength of the H-bond as measured by its
vibrational frequency, but it is important to acknowledge
that there are multiple ways in which H-bond strength
can be characterized.) This means that the spectrum will
red-shift as T decreases (β increases) favoring strong H-
bonds, but blue-shift as T increases. We have shown that
this behavior can be understood in terms of competing
energetic and entropic driving forces.16,17

The derivative shows stronger effects of added urea
compared to the spectrum itself. Namely, the derivative
becomes flatter, i.e., the maximum and minimum values
are reduced, as the urea concentration increases, with a
more significant effect on the maximum. This is similar
to the effect observed when alkali-halide salts are added
to water.17 In addition, a shoulder in the derivative grows
in at lower frequencies, below ∼ 2450 cm−1, indicating
that the presence of urea makes those OD groups more
energetically favorable.

The contributions to the IR spectrum derivative due
to the different interactions present in these systems can
also be analyzed as summarized in Eq. (5) and (6).
The results are presented in the Supplementary Mate-
rial, Figs. S1 and S2, but we forgo a detailed discussion
of this analysis to focus on the 2D-IR results.
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FIG. 2: a. HOD in H2O IR spectra for neat water
(black), 1 M (red), 4 M (blue), and 8 M (purple) urea.

The spectra are normalized to have a maximum at 1. b.
The derivative, ∂I(ω)/∂β, of each IR spectrum. Shaded

regions show 95% confidence intervals.

B. 2D-IR Spectrum

We now turn to the 2D-IR spectrum of the HOD in
H2O solutions of varying urea concentration. The spec-
tra are shown for 0, 1, 4, and 8 M solutions in Fig. 3. For
all cases, a clear evolution of the spectra from a strong
correlation between the pump (ω1) and probe (ω3) fre-
quencies at zero waiting time to a rounded peak shape
at longer Tw can be seen. This is indicative of the loss
of memory of vibrational frequency for the OD groups
being probed. While this change in the spectra is nearly
complete at Tw = 1 ps for the neat water case, it persists
for longer timescales as urea is added to the solution. In
particular, we see only modest differences between the
spectra for neat water and the 1 M urea solution. How-
ever, at the higher urea concentrations, the correlation
of the vibrational frequency is retained for significantly
longer times, e.g., even at Tw = 5 ps for the 8 M solution.

These vibrational frequency dynamics, or spectral dif-
fusion, can be quantitatively characterized by the center-
line slope (CLS) of the spectra as a function of waiting
time.74 We obtain the center line from the values of ω3 at
the maximum of the positive-going (0 → 1) peak for each
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FIG. 3: Simulated OD stretch 2D-IR spectra of HOD/H2O as a function of the waiting time, Tw, for a. the neat
water case and urea solutions of concentration b. 1 M, c. 4 M, and d. 8 M. Each spectrum is normalized so that its

maximum equals one.

ω1 value. These are determined from a 220 cm−1 wide
range of ω1 values centered at the position of the global
maximum of the peak. The CLS is then the slope of this
line, which is determined at each waiting time. The re-
sults obtained from the present simulations are shown in
Fig. 4 as a function of concentration and the CLS values
are provided in Table S5.

The CLS decays more slowly as urea is added to the
solution. The biggest changes are observed for the 4 and
8 M concentrations, which have both a larger CLS at
Tw = 0 and exhibit slower decays with waiting time.
The 0 and 1 M solutions have CLS values that are nearly
identical for short waiting times (≤ 1 ps), but the latter
shows a slower decay at longer times. Altogether these re-
sults indicate that the presence of urea slows water spec-
tral diffusion and this effect grows significantly at higher
concentrations. This is consistent with the prior simula-
tions by Carr et al.,24 who reported similar behavior in
the 2D-IR nodal slope and attributed it to rigidification
of the water network surrounding urea. We explore the
driving forces in greater detail below through analysis of
the temperature derivatives.

C. Temperature Derivative of the 2D-IR Spectrum

The derivatives of the 2D-IR spectra with respect to
β have been calculated using Eq. (19) and are shown
in Fig. 5 as a function of urea concentration and wait-
ing time. The corresponding 2D-IR spectra from Fig. 3
are shown as dashed contours to provide context for the
derivatives. There are a number of interesting features
to note.

We first consider the size of the derivative, which is
indicated by the contour scales on the right side of the
figure. The magnitude decreases as the urea concentra-
tion increases. Quantitatively, the maximum derivative
decreases by 0.75− 1 kcal/mol depending on the waiting
time. This is qualitatively the same behavior observed
in Fig. 2b, and both results indicate that urea reduces
the energy changes associated with changing the OD fre-
quency. However, the magnitude of the derivatives are
larger for the 2D-IR spectra, by a factor of ∼ 3− 4.

Examination of the derivative contours in Fig. 5 also
reveals that the temperature derivative increases in mag-
nitude with the waiting time. At Tw = 0, the maximum
in the derivative is ∼ 1 kcal/mol lower than it is at the
longest, Tw = 5 ps waiting time. This indicates that
the temperature derivative is sensitive to the dynamics
governing the 2D-IR spectrum.
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regions indicate 95% confidence intervals.

A key feature of the 2D-IR spectra derivatives is the
difference in the location of the derivative maximum rel-
ative to the spectrum maximum. Consider the Tw = 0
results in Fig. 5 for the positive-going 0 → 1 peak that,
for all urea concentrations, is positive for lower values of
both ω1 and ω3 but changes sign at higher frequencies. A
diagonal cut through the derivative is qualitatively sim-
ilar to that of the linear IR spectrum shown in Fig. 2,
i.e., both indicate the spectra will redshift as temper-
ature decreases and blueshift as temperature increases;
the origins of this behavior is examined in greater detail
below. This feature is generally preserved as the waiting
time increases.

Finally, the temperature derivatives also are signifi-
cantly narrower than the 2D-IR spectra themselves. This
indicates that changing the temperature leads not only
to shifts in the peak position of the spectra, but also in
changes to the peak widths. Specifically, the peaks will
narrow as temperature decreases (vide infra).

V. DISCUSSION

We now turn to a discussion of the origins and impli-
cations of the 2D-IR derivatives presented above. The
former are interrogated using the decompositions of the
derivative described in Sec. II A with two different ap-
proaches. The latter are examined in the context of pre-
dictions of the temperature-dependent spectra.

A. Contributions by Interaction Type

The simplest decomposition of the total energy within
the MD simulations used in this work is given by Eq. (4).
We now consider the contribution of each of these terms
to the temperature derivative of the 2D-IR spectrum by
using the decomposition in Eq. (19). The results ob-
tained from this analysis are shown as a function of wait-
ing time in Fig. 6 for the 8 M urea solution.

Effectively, these contributions to the derivative are
divided by the type of interaction or motion. The most
notable feature is that there is a competition between
the Lennard-Jones and Coulombic potential energy con-
tributions. Namely, the Coulombic contribution to the
derivative shown in Fig. 6d is primarily positive for the
0 → 1 peak, turning negative only at the highest frequen-
cies, but the signs are reversed for the Lennard-Jones
contribution in Fig. 6c.

This is a (so-far) universal feature of water structure
and dynamics that has been observed for every observ-
able to which we have applied fluctuation theory for dy-
namics, e.g., the diffusion coefficient,55,75,76 reorienta-
tion time,75–77 hydrogen-bond exchange time,78 linear IR
spectrum,16,17 radial distribution function,79 viscosity,80
and spectral diffusion time.81 This behavior reflects the
description of the hydrogen bond as driven by the electro-
static attraction of the positively charged, H atom donor
and the negatively charged O atom acceptor, which is
held in tension by the shorter-ranged Lennard-Jones in-
teraction that holds the two apart. At the close distances
of the hydrogen bond, the Coulombic energy is favorable
while the Lennard-Jones interaction is largely repulsive,
leading to the opposing behavior seen in Fig. 6.

Polarization and charge transfer effects, which must
also be present in water, are obviously only described in
an averaged way in the fixed charge force fields used here.
While we plan to explore these in detail in the future, we
have previously examined three-body descriptions and
found the same competition between electrostatic and
Lennard-Jones interactions observed in three- and four-
site fixed charge models.76

It is important to note that the contribution from the
Coulombic interactions to the 2D-IR spectrum deriva-
tive is significantly larger, by a factor of ∼ 2 − 3, than
the Lennard-Jones one. This reflects the dominant role
of electrostatics in driving the hydrogen-bonded struc-
ture of water. Their behavior with waiting time is not
the same, however. As Tw increases from 0 to 5 ps, the
maximum in the Coulombic contributions grows, from
2.1 to 2.8 kcal/mol, while the Lennard-Jones minimum
falls more modestly from −0.9 to −1.0 kcal/mol. This is
one reason that the total temperature derivative grows
in magnitude with Tw.

The second reason is found in the kinetic energy con-
tribution, shown in Fig. 6b, which also increases with
waiting time, from 0.5 to 0.8 kcal/mol. It is notewor-
thy that this component of the derivative is significantly
larger than that found for the linear IR spectrum, for
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FIG. 5: Calculated derivative (in kcal/mol) of the normalized OD stretch 2D-IR spectra, ∂I(ω1, ω3;Tw)/∂β, of
HOD/H2O as a function of waiting time for a. the neat water case and urea solutions of concentration b. 1 M, c.

4 M, and d. 8 M. Black dashed contour lines represent the 2D-IR spectra from Fig. 3.

which it is less than 0.1 kcal/mol. This is indicative of
the greater dependence of the 2D-IR spectrum on the
dynamical behavior of the liquid.

The results for 1 and 4 M urea in HOD/H2O are shown
in Figs. S3 and S4 of the Supplementary Material. The
primary effect of increasing urea concentration is an in-
crease in the absolute magnitude of the Coulombic and
Lennard-Jones contributions. The kinetic energy contri-
bution is more modestly affected by the addition of urea.

B. Intermolecular Interaction Contributions

We next consider the contributions to the temperature
derivative from the water-water, water-urea, and urea-
urea interactions given by Eqs. (6) and (7). The results
obtained from this analysis are shown as a function of
waiting time in Fig. 7 for the 8 M urea solution (and
the 1 and 4 M urea results are shown in Figs. S5 and S6
of the Supplementary Material). Note that these three
contributions do not sum to the total derivative because
they do not include kinetic energy contributions.

We first note the qualitative features. Both the water-
water and water-urea contributions, shown in Fig. 7b,c,
to the derivative are positive over most of the positive-
going, 0 → 1, peak of the 2D-IR spectra. The water-

water contributions become negative at larger frequen-
cies, while the water-urea component is positive for all
regions of the 0 → 1 peak and its maximum is also
blueshifted (in both ω1 and ω3). In contrast, the urea-
urea contribution to the derivative, shown in Fig. 7d, is
negative for the 0 → 1 peak, with a similar shape (but op-
posite sign) to the water-urea component. Thus, we see
that as temperature is lowered, the water-water interac-
tions tend to redshift and narrow the 2D-IR spectrum,
the water-urea interactions tend to narrow the spectrum
and increase its amplitude, in competition with an op-
posing effect from the urea-urea contributions.

The behavior of the water-water interactions is similar
to that of the neat HOD in H2O results shown in Fig. 5a
and reflects the behavior seen in the neat water linear
IR spectrum (see Fig. 2 and Ref. 16). Namely, as tem-
perature increases, the higher frequency, weaker H-bonds
are favored, while lowering temperature shifts the spec-
trum to the more red-shifted, stronger H-bonds. The
2D-IR derivatives indicate that this effect is increased
for longer waiting times. The water-urea contributions
to the derivative do not indicate the same shifting of
the spectrum with temperature, presumably because of
weaker water-urea H-bonds, compared to those between
water molecules. The opposite behavior of the urea-urea
contributions compared to the water-urea ones are likely
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FIG. 6: Contributions to the derivative, ∂I(ω1, ω3;Tw)/∂β, of the simulated OD stretch normalized 2D-IR spectra
of 8 M urea in HOD/H2O as a function of waiting time. Results are shown for the a. total derivative and the b.

kinetic, c. Lennard-Jones interaction, and d. Coulombic interaction energies. Black dashed lines in each panel show
the corresponding 2D-IR spectra.

due to disruption of the water-water and water-urea H-
bonding by favorable urea-urea interactions.

The water-water interaction contributions represent
the largest component of the derivative, which can be
seen by comparing the scales of the contour plots. Like
the total derivative, the water-water contribution grows
with waiting time, with its maximum value increasing
from 1 to 1.6 kcal/mol as Tw increases from 0 to 5 ps.
The next largest contribution comes from the water-urea
interaction which is less sensitive to the waiting time; its
maximum grows from 0.9 to 1 kcal/mol with increasing
Tw. The urea-urea interactions counteract these water-
urea contributions but with a significantly smaller mag-
nitude. They have a minimum value of ∼ −0.3 kcal/mol
that is essentially independent of Tw. These results thus
indicate that the total temperature derivative of the 2D-
IR spectra are driven primarily by the water-water and
water-urea interactions. However, the latter only mod-
estly affects the qualitative behavior of the temperature
derivative.

The effect of increasing urea concentration can be seen
by comparing the 8 M results in Fig. 7 to those for the 1
and 4 M solutions in Figs. S5 and S6. The primary result
of adding urea is an increase in the absolute magnitude of
the water-urea and urea-urea interaction contributions,
as more water molecules are influenced by urea, directly

and indirectly, at the higher concentrations. These are
quite small, almost negligible, for the 1 M solution, but
become significant for the 4 M case. Similarly, the water-
water interaction contribution decreases in magnitude
from 1 to 4 M, but is relatively constant from 4 to 8 M
urea.

C. Temperature Predictions of the 2D-IR Spectrum

A key advantage of calculating the temperature deriva-
tive of the spectrum at a single temperature is that it
can be used to predict the spectrum at other temper-
atures. We have previously demonstrated this for the
linear IR spectrum.16,17 In that case, the approach is to
treat the spectrum as an effective probability distribu-
tion from which an effective free energy is obtained as a
function of vibrational frequency. Then the temperature
derivative yields the underlying internal energy and en-
tropy as a function of frequency. The former can then
be used in a van’t Hoff relation to predict the IR spec-
trum over a wide range of temperatures. The same ap-
proach is, however, not straightforwardly applicable to
the 2D-IR spectrum which is not positive definite and
thus cannot be readily described as an effective probabil-
ity distribution; it thus remains to develop an analogous
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van’t Hoffian description of the 2D-IR spectrum.
For the present, we instead have adopted a simpler,

but more local, approximation for predicting the 2D-IR
spectrum at other temperatures. Specifically, we have
use a simple Taylor series approximation to express the
spectrum at a given β = 1/kBT in terms of the spectrum
and derivative at a reference β0 = 1/kBT0:

Ipred2DIR(ω1, ω3;Tw)|β = I2DIR(ω1, ω3;Tw)|β0

+
∂I2DIR(ω1, ω3;Tw)

∂β

⏐⏐⏐⏐
β0

(β − β0).

(20)

Note that this is the first-order approximation to a van’t
Hoff description. As observed for the van’t Hoff descrip-
tion of linear IR spectra, these predictions are not natu-
rally norm-preserving, so Eq. (20) should not accurately
predict the change in the maximum value of the 2D-IR
spectrum. Thus, we constrain our comparisons to nor-
malized spectra.

We have used the Taylor series expansion in Eq. (20)
to predict the OD stretch 2D-IR spectra for 8 M urea
at 280 K and 320 K from simulations at room tempera-
ture. The results are shown in Fig. 8 and compared with
direct calculations at the other temperatures using the
same simulation approach as described in Sec. III using

1 ns equilibration and 1 ns run stages at the respective
temperatures to generate the initial conditions for 1000
NVE trajectories.

The Taylor-series predicted 2D-IR spectra for 280 K
shown in Fig. 8b are essentially indistinguishable from
the directly calculated spectra, Fig. 8a. At this lower
temperature, the spectra are redshifted and the peaks
are narrowed (in both the diagonal and anti-diagonal di-
rections) compared to the room temperature result. At
the same time, the spectral diffusion, as measured by
the CLS(Tw) is slower. All of these effects are faithfully
captured by the predicted spectra.

At 320 K, the predicted spectra shown in Fig. 8d
also describe the significant changes relative to the spec-
tra at room temperature. These are naturally qualita-
tively opposite to that observed when lowering the tem-
perature: As the temperature is increased the spectra
blueshift and broaden while spectral diffusion is accel-
erated. The agreement between the directly calculated
spectra at 320 K and the predictions from the Taylor se-
ries expansion is not as quantitative as the 280 K results,
with some minor deviations observed at longer waiting
times. While the predictions are still accurate, this points
to the limitations of the Taylor series description, which
is intrinsically local in temperature. This is further illus-
trated in Fig. S7, where calculated and predicted spectra
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FIG. 8: a. Simulated OD stretch 2D-IR spectra of 8 M urea in HOD/H2O at 280 K. b. First-order Taylor series
prediction of the same spectra at 280 K from the 298.15 K simulations. c. Simulated OD stretch 2D-IR spectra of

8 M urea in HOD/H2O at 320 K. d. First-order Taylor series prediction of the same spectra at 320 K from the
298.15 K simulations. Each spectrum is normalized so that its maximum equals one. Black dashed lines indicate the

simulated 2D-IR spectra contours and blue dashed lines indicate the predicted 2D-IR spectra contours.

at 340 K are compared and the shortcomings are more
clearly seen. Thus, it remains to develop a van’t Hoff ap-
proach analogous to that previously used for the linear
IR spectrum,16,17 which is both a more global descrip-
tion and is capable of describing the changes in the peak
maxima with temperature.

VI. CONCLUSIONS

We have introduced a method for directly calculating
the temperature derivative of the 2D-IR spectrum from
simulations at a single temperature and applied it to the
case of aqueous urea solutions of varying concentration
using the OD stretch of isotopically dilute water. The
derivatives of both the linear IR and 2D-IR spectra are
more sensitive to the urea concentration than the spectra
themselves. Because the derivative is a measure of the
energetic driving forces determining the spectrum, this
suggests that there is significant energy-entropy compen-

sation that mutes the effect of urea on the spectra. These
results thus suggest caution in drawing conclusions from
examination of the spectra alone. We are unaware of any
measurements of the 2D-IR spectrum of aqueous urea
solutions as a function of temperature. However, the
observations in this work should motivate experimental
studies of the temperature dependence of 2D-IR spectra,
for both the present system and others, to obtain greater
insight into the driving forces of the spectral features.

As urea is added, the overall magnitude of the deriva-
tive decreases. This is similar to what was observed
previously for the IR spectra when alkali-halide salts
are added.17 This behavior appears to be independent
of where the added solute(s) falls in terms of Hofmeis-
ter behavior, e.g., it is found for both KF, which is
“structure-making” as well as urea and the other sodium-
halides, which are all “structure-breaking.”17 In the case
of alkali-halide solution, we have found that, for both
the diffusion coefficient and the linear IR spectra, the
Hofmeister trends are determined in large part by en-
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tropic factors,17,55 which are, however, more difficult to
quantify. It will be interesting to compare the behavior
of urea to other osmolytes (as well as salts), especially
those that fall on the opposite end of the Hofmeister-
type ranking.

Interestingly, the derivative is larger in magnitude than
for the linear IR spectrum and it grows with waiting time.
The method allows the decomposition of the derivative
into contributions from different kinds of motions and in-
teractions present in the system. This approach reveals a
competition between the Coulombic and Lennard-Jones
interaction contributions, which appears to be a universal
feature of water behavior. The kinetic energy contribu-
tion is substantially larger for the 2D-IR spectrum than
the linear IR spectrum.

Examination of the components of the temperature
derivative associated with the different intermolecular in-
teractions (i.e., water-water, water-urea, and urea-urea,
reveals that the water-water and water-urea contribu-
tions are opposed from those due to the urea-urea ones.
The water-water interactions are the largest component,
but a significant contribution is found for water-urea in-
teractions and these two appear to be the main driving
force of the temperature-induced changes to the 2D-IR
spectra.

We demonstrated that the derivative can be used to
predict the 2D-IR spectrum at other temperatures using
a simple first-order Taylor series approximation. This
approach works well for a reasonable temperature range
(at least 280−320 K), but improved methods are needed
that provide a more universal description in the spirit of
a van’t Hoff approximation and enable prediction of the
changes in peak heights of the spectra with temperature.

The method presented here is simple and easily imple-
mented. The results show that it is promising, not only
for determining the temperature dependence of the spec-
tra, but for elucidating the driving forces that determine
the spectra. A key element of this is the ability to decom-
pose the temperature derivative into contributions from
different interactions present in the system, and provid-
ing information that is not available in any other way.

SUPPLEMENTARY MATERIAL

See the supplementary material for force field, simula-
tion, and empirical spectroscopic map parameters as well
as center-line slope data, energetic decomposition of the
IR spectra temperature derivatives, and 2D IR derivative
results for 1 and 4 M urea solutions.
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APPENDIX: 2D-IR TIME CORRELATION FUNCTIONS
AND DERIVATIVES

Here we present the TCFs not given in Sec. II C,
that are used to calculate the 2D-IR spectrum through
Eqs. (12)-(14). Each is a four-time TCF of transition
dipole moments with transition frequency-determined
phases and a vibrational relaxation factor. The first three
contributions determine the rephasing TCF in Eq. (13)
and are given by,

R2(t1, Tw, t3) = R1(t1, Tw, t3), (21)

and

R3(t1, Tw, t3) =−
⟨
µ01(0)µ01(t1)µ12(t1 + Tw)

µ12(t1 + Tw + t3) e
∫ t1
0 ω01(τ)dτ

e−
∫ t1+Tw+t3
t1+Tw

ω12(τ)dτ
⟩
e−Tw/T1 . (22)

We note that the transition dipole moments have a di-
rection and the 2D-IR measurements are typically made
with particular polarization combinations that affect the
components used in these expressions. In the present
work we average the three terms that have the same po-
larization (x̂, ŷ, or ẑ) for all four transition dipole mo-
ments. Other polarization conditions are easily imple-
mented.

The last three TCFs,

R4(t1, Tw, t3) =
⟨
µ01(0)µ01(t1)µ01(t1 + Tw)

µ01(t1 + Tw + t3) e
−

∫ t1
0 ω01(τ)dτ

e−
∫ t1+Tw+t3
t1+Tw

ω01(τ)dτ
⟩
e−Tw/T1 , (23)

R5(t1, Tw, t3) = R4(t1, Tw, t3), (24)

and

R6(t1, Tw, t3) =−
⟨
µ01(0)µ01(t1)µ12(t1 + Tw)

µ12(t1 + Tw + t3) e
−

∫ t1
0 ω01(τ)dτ

e−
∫ t1+Tw+t3
t1+Tw

ω12(τ)dτ
⟩
e−Tw/T1 . (25)
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give the non-rephasing contribution to the spectrum
through Eq. (14). Note that these expressions, follow-
ing Ref. 64, neglect vibrational lifetime effects during
the t1 and t3 periods, an approximation based on the
rapid decay of the response functions with respect those
timescales.

The derivatives of these TCFs with respect to β can
be expressed in terms of new TCFs defined as

Rj,H(t1, Tw, t3) ≡ −∂Rj(t1, Tw, t3)

∂β
, (26)

as indicated in Eq. (16). The remaining five TCF deriva-
tives are given by

R2,H(t1, Tw, t3) = R1,H(t1, Tw, t3), (27)

and

R3,H(t1, Tw, t3) =−
⟨
δH(0)µ01(0)µ01(t1)µ12(t1 + Tw)

µ12(t1 + Tw + t3) e
∫ t1
0 ω01(τ)dτ

e−
∫ t1+Tw+t3
t1+Tw

ω12(τ)dτ
⟩
e−Tw/T1 , (28)

for the rephasing contributions and

R4,H(t1, Tw, t3) =
⟨
δH(0)µ01(0)µ01(t1)µ01(t1 + Tw)

µ01(t1 + Tw + t3) e
−

∫ t1
0 ω01(τ)dτ

e−
∫ t1+Tw+t3
t1+Tw

ω01(τ)dτ
⟩
e−Tw/T1 , (29)

R5,H(t1, Tw, t3) = R4,H(t1, Tw, t3), (30)

and

R6,H(t1, Tw, t3) =−
⟨
δH(0)µ01(0)µ01(t1)µ12(t1 + Tw)

µ12(t1 + Tw + t3) e
−

∫ t1
0 ω01(τ)dτ

e−
∫ t1+Tw+t3
t1+Tw

ω12(τ)dτ
⟩
e−Tw/T1 . (31)

for the non-rephasing TCFs.
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