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Abstract

We present a quantum dynamics approach for molecular systems based on wave-

function factorization into components describing the light and heavy particles, such as

electrons and nuclei. The dynamics of the nuclear subsystem can be viewed as motion

of the trajectories dened in the nuclear subspace, evolving according to the average

nuclear momentum of the full wavefunction. The probability density ow between the

nuclear and electronic subsystems is facilitated by the imaginary potential, derived to

ensure a physically meaningful normalization of the electronic wavefunction for each

conguration of the nuclei, and conservation of the probability density associated with

each trajectory in the Lagrangian frame of reference. The imaginary potential, dened

in the nuclear subspace, depends on the momentum variance in the nuclear coordinates

averaged over the electronic component of the wavefunction. An eective real poten-

tial, driving the dynamics of the nuclear subsystem, is dened to minimize motion

of the electronic wavefunction in the nuclear degrees of freedom. Illustration and the

analysis of the formalism are given for a two-dimensional model system of vibrationally

nonadiabatic dynamics.
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1 Intro duction

The importance of nuclear quantum eects (NQE) on reactivity and properties of chemical

systems gain recognition in chemistry thanks to advanced innovative experiments covering

a wide range of systems from proteins to gas-phase UV-absorption. Some recent represen-

tative examples include exciton splitting and vibrational energy pooling in a laser-induced

isomerization of a double-well quantum system in the condensed phase (CO adsorbed on

NaCl(100) forming OC-Na+ to CO-Na+ 1), validation of the quantum rate theories based

on measured thermal rates of the hydrogen recombination on platinum crystalline surfaces,2

contribution of tunneling to the kinetic isotope eect of the intermediate hydrogen transfer

step in the Cytochrome P450 Decarboxylase OleT, 3 and the tunneling dynamics, observed

in the excited state hydrogen transfer reaction of phenol{ammonia clusters.4 Practical and

conceptually insightful atomistic approaches to dynamics of large systems, characterized by

the mass- and time-scale separation, e.g. electron/nuclear dynamics, are typically based

on the trajectory description of nuclear motion and the wavefunction description of the

electronic motion. The development of inherently consistent yet computationally feasible

methods incorporating the NQEs in large systems remains an outstanding challenge and an

active research area of theoretical chemistry.

Arguably, the most accomplished method of exact quantum dynamics ( 5) is the multicon-

guration time-dependent Hartree method ( M C T D H ) . 6 { 8  Unlike the conventional methods

based on direct-product basis representations of wavefunctions, generally limited to systems

of 10-12 degrees of freedom (DOFs), 9 the MCTDH is based on the contraction of a gen-

eral basis to single (or a few) particle functions, which greatly reduces the basis size and

numerical cost. The eciency/accuracy balance is further improved within the multilayer

version10 through a simplied description of the spectator modes in a chemical process. The

MCTDH has proved especially successful in applications to bound high-dimensional molec-

ular systems, e. g. 15-dimensional simulation of the infrared spectrum of water dimer11 and

tunneling splitting in malonaldehyde.12,13 A  related variational multiconguration Gaussian
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approach14 {  its implementation extends to nonadiabatic dynamics with on-the-y evalua-

tion of the electronic structure15 {  employs time-dependent basis functions providing a closer

connection between the evolving in time wavefunction and the means to represent it.

When one is willing to trade o exact quantum treatment of the nuclei for an ability

to study larger molecular systems, the trajectory representation of the nuclear motion is a

long-established framework, which goes all the way to a highly useful classical motion of

the nuclei treated as point-particles. A  multitude of trajectory-based or trajectory-inspired

methods, incorporating the NQEs approximately, often through the trajectory interaction

or dynamics in extended spaces, have been developed, such as semiclassical initial value

representation,16,17 ring-polymer molecular dynamics,18{20 approximate quantum trajectory

methods,21 and approximate path-integral methods.22 There are trajectory-based yet (in

principle) exact methods such as guided Gaussian methods,23{25 and accurate implementa-

tions of the quantum trajectory dynamics.26{28

The idea of the time-dependent wavefunction representation is realized not only for the

nuclei, but for the electrons as well, in the exact factorization methods, which are actively

developed by a number of research groups.29{31 In these methods the total molecular wave-

function is a product of the time-dependent electronic wavefunction which parametrically de-

pends on nuclear coordinates and a nuclear wavefunction. This method is somewhat similar

to the Born-Oppenheimer (BO) approach, but with the nuclear dynamics occurring on a now

time-dependent (instead of static) potential energy surface (PES)  and with a time-dependent

vector potential.32{34 The main appeal of this approach, is that the nuclear dynamics occur

on a single T D P E S  and time-dependent potential vector, and the exact molecular wave-

function can be given as a single product unlike the Born-Huang approximation where the

exact non-adiabatic dynamics and molecular wavefunction requires summations across all

electronic states.35,36 However, while the T D P E S  provides the exact force acting on the nu-

clei, obtaining the T D P E S  is still as dicult and computationally expensive as solving the

full T D S E  for the electron-nuclear system and, thus, for larger systems approximations must
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be made.33,37

Here we present a dynamics approach combining certain features of the exact factorization

and the quantum trajectory dynamics. Motivated by the mass- and time-scale separation

characteristic of electron-nuclear dynamics, we introduce a product form for the full wave-

function with the nuclear component, describing the overall nuclear motion, possibly, in the

trajectory framework, and the electronic component, maintaining compatibility with the

modern electronic structure methods (ab initio or Density Functional Theory methods using

real atom-centered basis sets). An eective real potential driving the dynamics of the nuclear

subsystem is dened to minimize the changes of the electronic wavefunction relative to the

moving nuclei. The probability density ow between the two subsystems yielding physically

meaningful normalization of the wavefunction components, is described by a rigorously de-

rived imaginary potential. The formalism is presented in Section 2. The relative complexity

of the equations is due to the non-linear coupling of the nuclear and the electronic compo-

nents, further complicated by the moving nuclear frame of reference. (The reader is urged to

pay attention to the @
t (static Eulerian) vs. dt (moving Lagrangian) time derivatives in the

dynamic equations.) The results and analysis of Section 3 are based on the time-evolution

of a model vibrationally-nonadiabatic system, introduced by Kohen, Stillinger and Tully

(KST). 38  It is solved by a Gaussian wavefunction: the dierential equations dening the

wavefunction parameters are analytic, yet it cannot be factored into purely electronic and

purely nuclear time-dependent components. Thus, it is one of the simplest non-trivial models

to test the proposed factorization formalism. Section 4 presents the summary and outlook.

2 Theory

For clarity, the derivation below is given for a two-dimensional system of light (coordinate x)

and heavy (coordinate y) particles of masses m and M, respectively, which will be referred

to as the ’electron’ and ’nuclei’. Obviously, the same framework is applicable to systems

4



^ ^ ^

r 2
y

^ ^

2 2

r y^ ^

x^ ^ ^
2m N

^ y
2M

| {z }
(y; )

comprised of light and heavy nuclei, such as those characterized by the proton (light particle)

transfer within the molecular environment (heavy particles). We adhere to the following

notations: the partial time-derivative in the stationary, or Eulerian, frame of reference is

labeled as @t. The time-derivative in the frame of reference moving in the nuclear subspace,

or the Lagrangian frame, is denoted as d=dt. Variables yt and pt are reserved to denote the

position and momentum of a trajectory in the nuclear subspace y at time t. The spatial

derivatives are labeled as r x  =  @=@x and r y  =  @=@y.

functions over the x-coordinate are denoted as h: : :ix.

Integrals of the two-dimensional

The arguments of functions are

suppressed when unambiguous, and atomic units (~ =  1) are used throughout. The key

notations are summarized in Table 1 for convenience.

Table 1: The key denitions pertaining to the factorized wavefunction evolving in time
under the Hamiltonian H  =  K x  +  K y  +  V (x; y).

The nuclear wavefunction, (y; t)
 =  j j2 p =  r y  arg( ) r  =  r y j  j=j j

The electronic wavefunction, (x; y; t)
N (y) =  hjix r  =  ry jj=jj r  =  hjrjix=N p =  r y  arg()

p =  hjpjix=N p2 =  hjp2 j ix =N  =  p2

p2     
1=2

D 1  =   r y
M D 2  =   2M

K x  =   r 2
He l  =  K x + V  (x; y) E =   1 (hjHe l ix + <hjD2 ix ) Full

wavefunction, (x; y; t) =  (x; y; t) (y; t)
P x  =  r x  arg( ) Py =  r y  arg( ) K y  =  r 2

The nuclear subspace trajectory, (yt; pt)
pt =  p +  p dyt=dt =  pt=M wt

 =  (yt)yt

2.1 T h e  time-dependent Schro•dinger equation for a factorized wave-

function

A  full-dimensional wavefunction (x; y; t) can be represented in a product form without loss

of generality as

(x; y; t) =  (x; y; t) | {z t}; (1)
electronic     nuclear
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where the function (y; t) will capture the overall nuclear motion and connect to its trajectory

description, such as that of the Madelung-de Broglie-Bohm formulation.26,39 The electronic

component  at this point is exact, i.e.  = = , and depends on both x  and y coordinates.

We dene pt, specifying a moving frame of reference in the y-subspace,

dt 
=  @t +  

M 
r y ;

(2)

such that, rst of all, the continuity equation on the nuclear probability density, , is fullled

along the trajectory yt, evolving in time according to, so far, an unspecied momentum pt,

(yt) : =  j (yt; t)j2;
d(yt) =    

M 
t (yt); (3)

dt 
=  

M :
(4)

The second requirement on pt is that the normalization of the electronic component (x; y; t)

along the trajectory yt, i.e. evaluated at y =  yt, is constant in time,

N (y) : =  hjix;
dN (yt) 

=  0: (5)

The usual time-dependent Schr•odinger equation (TDSE)  in the Cartesian coordinates,

 K x  +  K y
 +  V (x; y) 2 2

=  {@t      ; K x  =   
2m

; K y  =   
2M 

; (6)

for the wavefunction of Eq. (1) yields:

K x  +  K y  +  K y   
M 

r y      r y  +  V (x; y) =  {( @t +  @t     ): (7)

We seek to dene the portion of Eq. (7) {  multiplied by a common electronic wavefunction

{  as the nuclear TDSE,  while the remaining portion denes the electronic T D S E  (solved by
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) with the imposed constraints on the electronic wavefunction described further. The con-

straints can be divided into those related to the (i) normalization of the factored functions,

and (ii) their phase. The former, given by Eq. (5), is intuitive and common to the factor-

ization schemes investigated in this and other works.29,30,34 Here, however, we also explore

factorization schemes leading to dierent partitioning of the wavefunction phase associated

with the nuclear motion.

The wavefunction factorization is achieved by adding and subtracting in the T D S E  (7)

a complex time-dependent potential, Vd, dened in the nuclear subspace,

Vd : =  Vr (y; t) +  {Vi(y; t); (8)

where Vr and Vi are its real and imaginary parts. Then, Eq. (7) can be rearranged as:

h

|
(K y

 +  Vd)      {@t

=0;  nuclear T D S E

i
+

}
K x  +  K y

  y r y
 +  V Vd  {@t =  0: (9)

|                                         {z                                         }
=0;  electronic T D S E

Denoting the electronic Hamiltonian Hel ,

He l  =  K x  +  V (x; y); (10)

and the rst and second derivative operator terms, respectively, as

D 1  : =   
r y r y (11a)

2

D 2  : =   
2M 

; (11b)

Eq. (9) yields the nuclear and electronic TDSEs, respectively,

K y +  Vd =  {@t     ; (12)
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He l  +  (D2  +  D1 ) Vd =  {@t: (13)

The operators D 2
 and K y

 are formally the same, but, as common in the literature, the former

notation will be used henceforth for the nuclear kinetic energy of the electronic wavefunction.

At this point let us note that, unlike the exact factorization method,33,34 Vd is the only

introduced ’object’, which is a complex scalar function, not a dierential operator or vector

potential. Restricting Vd  to be a function is a limitation of the nuclear/electronic equation

’decoupling’ scheme above, which is, nevertheless, formally exact. Furthermore, as shown

in the remainder of this section, the normalization constraints are achieved by imposing

conditions on Vi, which dene it uniquely, while Vr controls the electron/nuclear phase

partitioning. It is not unique, but a well-dened procedure of dening Vr is established.

Also note, that the derivative operators, D 1  and D2 , in Eq. (13) are, in general, non-

Hermitian in the electronic subspace. Thus, the electronic norm, N (y), is not guaranteed

to stay constant in time. However, the electronic norm conservation and the continuity

equation for the nuclear density (Eqs (3) and (5)) can be satised if the potential Vd is a

complex function as shown below.

2.2 Denit ion of the imaginary part of the dynamics potential

The continuity of the nuclear probability density. Using (y; t) in the polar form,

(y; t) =  j (y; t)j exp ({ arg( (y; t))) ; (14)

dening the corresponding probability density, (y; t), and the phase gradient, or the quan-

tum trajectory (QT) momentum, p (y; t) 26 as,

 : =  j (y; t)j2; p : =  ry (arg (y; t)); (15)
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V : =  ;

dw

^ ^ ^ ^ ^ ^
d

the continuity equation for , following from Eq. (12), is:

@t +  
M 

r  +
M 

 2Vi =  0: (16)

Upon switching to the Lagrangian frame of Eq. (2), specied by an unknown so far pt, Eq.

(16) becomes,
=0;  continuity eq

@  +  
pt r +

r y p t   
r pe

   
pe 

r  2V  =  0:(17) | {z
} | {z                  }

d=dt =0;  condition on pt and Vi

Here pe denotes the dierence between pt and p , the latter associated with the phase of

(y; t),

pe := pt p : (18)

As follows from Eq. (17), the continuity equation on  in the Lagrangian frame is fullled

for the following Vi,
pe r r pe

i 2M       2M (19)

where the function pe, related to pt, is so far undened. Similar to the QT dynamics40 the

continuity equation implies that the trajectory weights, dened as the probability density

within the volume element, yt, associated with the trajectory (yt; pt), are conserved,

wt
 : =  (yt; t)yt; dt

t =  0: (20)

The electronic wavefunction norm. Now let us consider the probability density ow

of the electronic part. Given the time-evolution Eq. (13), jj2 changes as

@tjj2 =   {Hel  { (D2 + D1 )+ {Vd jj2 + {(He
l )+ {((D2 + D1 ))  {V jj2: (21)
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p : = ; 2p : =
2

V =   :

d ^ ^ pt

iV = :

 {z {z
r  (p ) =  :

Integration of Eq. (21) over the electronic DOFs species the time-dependence of the elec-

tronic norm, N (y) of Eq. (5), in the Eulerian frame,

@tN(y) =   {(hj(D1 +  D 2 ) i x  h(D2 +  D1 )j i x  2ViN (y): (22)

In the Lagrangian frame, at y =  yt, Eq. (22) becomes,

dt
N (yt) =  2 =  hj(D2 +  D 1 ) i x      

y =yt  
2ViN (yt) +  

M 
ry N (yt ) :

Setting Eq. (23) to zero and using the polar form of , one obtains:

pe
R 

ry (jj2 )dx r y (
R  

jj2 ry (arg )dx)   r y  R 
jj2 ry (arg )dx

y =yt  
2M N (yt)

(23)

(24)

Let us denote the y-component of the momentum associated with the electronic wavefunc-

tion, p, and the relevant averages normalized with respect to x, as

p : =  ry (arg );

R 
pjj2dx
N (y)

R 
pjj2dx
N (y) (25)

The gradient of p is

r y (
R  

pjj2dx) r y (
R  

jj2dx) 
R 

pjj2dx y

N (y)                | N (y) } | N (y) }
r N ( y ) =N ( y ) p

(26)

Expressing r y (
R  

pjj2dx) from Eq. (26), Eq. (24) yields another expression for Vi:

(pe p) r y N (y t ) r p p r  i

2M N (yt )          2M        2M (27)
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y; 0)

R :

The two denitions of Vi {  Eqs (19) and (27) derived from the requirements on the probability

densities of Eqs (3) and (5), respectively, {  are equivalent if

pe = p: (28)

This means that (from Eq. (18)) the trajectory evolves according to the nuclear momentum

pt of the full wavefunction , averaged and normalized over the electronic DOFs,

pt =  p +  p  
h jry (arg )j

h j i x

i x  : (29)

Denition of the initial wavefunction. The purpose of the desired factorization is to

incorporate the nuclear momentum of the full (two-dimensional) wavefunction into the

nuclear component (one-dimensional) , as much as possible. Thus, ideally, the nuclear

wavefunction is chosen such that p (which is the normalized x-averaged nuclear momentum

of the electronic wavefunction ) is equal to zero. This can be accomplished by requiring

r y

(  
(y; 0) 

=  z(y; 0)
;

(30)

where z is the x-averaged log-derivative of ,

R
z(y; 0) =

(x; y ; 0)ry       (x; y; 0)dx j
(x; y; 0)j2dx

(31)

According to Eqs (30) and (31), for a single nuclear DOF (y; 0) can be dened as

Z y

(y; 0) =  N  exp z(y0; 0)dy0 ; (32)
 1
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;

V =  :

^

^

where N is the appropriate normalization constant (
R 

j (y; 0)j2dy =  1). Then, p (Eq.

(25)) and r y N ( y )  of the corresponding initial electronic wavefunction (x; y; 0),

(x; y; 0) =
(x; y; 0)
(y; 0)

(33)

are equal to zero by construction. The latter condition means that the resulting electronic

normalization is uniform, i. e. N (y; 0) =  const.

Summary. So far, based on Eqs (19) and (27), we have shown that the desired probability

conservation properties, i.e. the constant-in-time electronic norms, fN (yt )g, and the nuclear

trajectory weights, fwtg, are fullled in the Lagrangian frame, dened by pt of Eq. (29), i.e.

by the nuclear momentum of the full wavefunction averaged and normalized with respect to

the electronic DOFs, in the presence of a specic imaginary part of Vd:

r y p p r y j  j i

2M M j j

As shown in Appendix A, the counterparts to fwtg dened for the full wavefunction

(34)

(x; yt; t)

are constant in time as well. Note, that Vi above is consistent with simply setting the

imaginary part of the x-averaged electronic T D S E  (13) to zero, yielding Vi =  =(hj(D2 +

D1 )i x ) .  Furthermore, for a uniformly normalized electronic wavefunction, which means

r y N (y t )  =  0, Vi of Eq. (34) does not depend on the frame of reference, because switching

to any moving frame would add a term proportional to r y N  to Eq. (23), from which the

Vi denition follows. Lastly, the nuclear subspace factorization of Eqs (31{32) is applicable

to any wavefunction. In other words, the procedure does not depend on the factorizability

of the full wavefunction and can be performed at any time generating the optimal (in a

sense of having p =  0) (y; t) in the one-dimensional nuclear subspace. The dynamics and

associated quantities yielding p =  0 at all times will be referred to as ’optimal’ henceforth.
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2.3 Denit ion of the real part of the dynamics potential

In Section 2.2 we have derived the imaginary part Vi (y) (Eq. (34)) of the potential Vd(y),

the latter introduced to ’uncouple’ the nuclear and electronic TDSEs  for a factorized wave-

function. We have also demonstrated that the imposed probability conservation properties

do not depend on its real part, Vr (y), which denes the time-evolution of the nuclear wave-

function, in particular, its phase. This independence is related to a non-unique assignment

of the y-dependent phase to the two wavefunction components, i.e. adding a phase to

and subtracting the same from  does not change the full wavefunction . In this section

we consider some choices of Vr, which in some sense minimize motion of  in the nuclear

coordinate, y, by generating the dynamics characterized by small p and its gradient, and,

consequently, by small Vi.

Reducing the time-dependence of the electronic energy. First, let us dene Vr by

minimizing the change of the electronic wavefunction energy, given by the T D S E  (13). Its

x-averaged value can be set to zero in either the Eulerian or Lagrangian frames of reference,

i.e h@t arg i x  =  0 or hdt arg i x  =  0, respectively. (To  switch to the Lagrangian frame of

reference an operator {pt ry =M is added to both sides of Eq. (13).)      Referring to the

imaginary and real components of r y      = in the derivative coupling operator D 1  as p (Eq.

(15)) and r  {  both functions of y and t,

r
r y j  j

j j
(35)

and to the sum of the second derivative term and electronic energy as E, one obtains:

V eul =  E +  
p

M
 ; V

lagr =  E   
(p)2 

;

hjHel jix <(hjD2 jix )
N (y)                    N (y)

(36a)

(36b)

(36c)
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r
^

r M
 :

Both forms of Vr above can be interpreted as counterparts to Vi derived in Section 2.1,

which eectively sets the imaginary part of x-averaged Eq. (13) to zero. However, now

there is an explicit dependence on the frame of reference: V eul does not take into account

the nuclear motion, and in V lagr , dened by pt of Eq. (29), the terms associated with D 1

formally cancel. While the whole point of considering moving frames of reference is to reduce

coupling between the electronic sub-packets, f(x; yt; t)g, associated with each yt (so the

coupling is amenable to approximations), we expect these sub-packets to, at least, exchange

energy due to the rst derivative coupling along the nuclear DOF, explicitly expressed via p

term in Eq. (36a) and absent in Eq. (36b). Thus, both forms of Vr given by Eqs (36a) and

(36b) might be sub-optimal in a sense of generating complicated nuclear dynamics and large

imaginary potentials. Therefore, we also consider an intermediate denition of Vr, associated

with the ’electronic’ moving frame, which incorporates the average motion of the electronic

wavefunction in the nuclear DOF, by replacing pt in Eq. (2) with p:

V el =  E +  
pp (p)2

M (37)

So far, based on the energy minimization, we have argued for three choices of Vr specied

by Eqs (36a, 36b) and (37).

Reducing the nuclear momentum of the electronic wavefunction. Next, let us

construct Vr , which ’minimizes’ p and its gradient during the dynamics, using the time-

dependence of p. Since p depends on the nuclear momentum of the full wavefunction (Eq.

(7)), we begin with its equation of motion. Denoting

P x  : =  r x (arg ); Py : =  ry (arg ); (38)

14



P x P y

2
xr  j j jyr  j

2M 2M
p

G  : = +
2

:

jj
2

2

r  = ;

2

for given in terms of its modulus and phase yields T D S E  (6) (see e.g.26),

@tPy =   r y ( V  +  U )   
m 

r x P y
   

M 
r y P y ; (39)

where U is the quantum potential for the full wavefunction,

2
U : =   

2mj
      

j 
  

2Mj j
: (40)

As shown in Appendix B, combining Eq. (39) with its counterpart for ry (arg ) setting

the resulting time-derivatives of p to zero, one obtains the following expressions for r y V r ,

’minimizing’ the electronic motion in the Eulerian and Lagrangian frames of reference:

(ry Vr )e u l  =  G  +  
r y (p ) 2  

+  
r y ( p  p)

; (41a)

(ry Vr ) l a g r  =  G  +  
M 

r y p  ; (41b)

where G  stands for
hjry V j i x (2r

N (y)
+  r y ) ( r  +  2) M

(42)

In Eq. (42) and throughout the ’non-classical’ momentum components, r  given by Eq. (35)

and r,

r  : =  
ry j j

;
hjrjix

N (y) (43)

associated with the nuclear and electronic wavefunctions are used. The function 2 denotes

the nuclear momentum dispersion (variance), which is the same whether computed for the

full wavefunction or for the electronic component :

 : =  p
 

(p)2
1=2 

: (44)

15



r

^ ^

^ ^ ^ ^ ^ ^

^    ! ! ! !

A  few notable features of Eqs (41a) and (41b) are: (i) they dene forces which, in general,

cannot be integrated to yield Vr which is a scalar function; (ii) unlike for V lagr of Eq. (36b),

(ry Vr ) l a g r  explicitly contains the electron-nuclear momentum coupling, and (iii) there is no

contribution from the kinetic energy in the electronic coordinate. Therefore, in the numerical

tests presented in Section 3.3, we consider denitions for Vr of Eqs (36a, 36b) and (37) with

and without the kinetic energy terms associated with the action of K x  and D 2  on .

The stationary condition on the x-averaged electronic wavefunction. Finally, we

show that it is possible to keep the average nuclear momentum of the electronic wavefunction,

p, equal to zero, and, in case of a single nuclear DOF, a unique (up to a constant) purely

real eective potential of Eq. (8), Vi =  0 and Vd =  Vr , can be constructed. In this limit the

wavefunction factorization in our approach becomes unique, which is similar to the exact

factorization method, where (in the same limit of a single nuclear DOF) the vector potential

is equal to zero and the dynamics is driven by a real scalar potential.33,34,41

First, for electronic functions  =  jj exp({ arg()), normalized to 1 at all times, the x-

averaged nuclear momentum, p (Eq. (25)), can be computed via a simple linear operator,

 {hr y i x  =   {hjjry jjix +  hjjry (arg )jjix  =  
2

{
ry (N (y ))  +  pN (y) =  p: (45)

The last equality in Eq. (45) holds if N (y)  1. The time-dependence of p can now be

computed from the time-dependence of  given in Eq. (13):

{@tp =  h( {)(Hel  +  (D1  +  D2  V r ) ) j r y i x  +  hjry (  {)(Hel  +  (D1  +  D 2  Vr ))jix

=  {hj[Hel Vr ; ry ] j i x  +  {hj(D 1 +  D 2 ) r y    r y ( D 1  +  D 2 )j i x (46)

where in the last line the direction of action of the derivative operators is explicitly indicated.

The derivatives are taken with respect to the (nuclear position) parameter, which is not

integrated over in the hix notation. Therefore, we carefully keep track of the complex
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conjugation of these operators and their commutation with the nuclear gradient. Moreover,

the D 1  term of Eq. (11b) may not be equal to its complex conjugate through the complexity

of the nuclear function , hence its complex conjugation is shown explicitly in Eq. (46). The

following expressions are nevertheless straightforward to derive:

hj(D 2 r y
   D 2  r y ) j i x

 =   2ry (hjD2 jix ) (47a)

hj(D 1 r y
   r y  D 1 )j i x  =   4r hjD2jix : (47b)

Using these expressions and simplifying the commutator, Eq. (46) yields

@tp =   hjry V j i x  (4r +  2ry ) hjD2 jix  +  r y V r
 : (48)

Setting the above Eq. (48) to zero denes the optimal r y V r ,

r y V r
 =  hry V i x  +  (4r +  2ry )hD 2 i x  =  hry V i x  +  

M 
(2r +  r y ) hr  +  pix : (49)

The polar form of  has been used in the last equality, and the averages are computed for

. Equation (49) is equivalent to Eqs (41a) and (41b) in the limit of p =  0, the last two

becoming identical in this case.

Summary. (i) The full electron-nuclear wavefunction (x; y; t) can be uniquely repre-

sented as a product of the moduli of the nuclear, (y; t), and the electronic, (x; y; t),

components, but this factorization is not unique with respect to the full wavefunction phase

which depends on the real potential Vr . (ii) Based on the arguments for the energy time-

dependence and exchange between the electronic wavefunctions associated with dierent

congurations of the nuclei, we have derived several expressions for Vr : V eul of Eq. (36a)

in the stationary Eulerian frame of reference, V lagr of Eq. (36b) in the Lagrangian frame

dened by the nuclear momentum of the full wavefunction (averaged and normalized over
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with respect to the electronic DOF, x), and V el in the moving ’electronic’ frame specied

by p, which is the nuclear momentum of the electronic wavefunction averaged over the

electronic DOF. (iii) While minimizing the time-dependence of p in the Eulerian and in the

Lagrangian frames, we have obtained expressions for r y V r
 in which the electronic kinetic en-

ergy terms cancel. Therefore, in the numerical study of Section 3, dynamics with V eul, V lagr

and V el with and without the kinetic energy terms are considered. While there is no unique

denition for Vr , all choices are well-dened for any number of nuclear DOFs. (iv) Finally,

we have demonstrated that for one nuclear dimension the electron/nuclear factorization is

uniquely dened throughout the dynamics for the ’optimal’ Vr, consistent with Eq. (49),

and both Vi and p are equal to zero at all times. The dynamics for this choice, referred to

as V opt’, is considered in the system study below as well.

3 Results and Discussion

To better understand the formal properties of the dynamics presented in Section 2 we ex-

amine the model of Kohen, Stillinger and Tully (KST) 3 8  of the vibrationally nonadiabatic

dynamics, and compare the key dynamics features following from various choices of Vr (Eqs

(36a), (36b), (37), (49)), and the analytical denition of Vi (34). The full wavefunction

(x; y; t) solving this model is a two-dimensional Gaussian wavepacket evolving in time un-

der a real potential, V (x; y). The nuclear wavefunction (y; t) is a one-dimensional Gaussian

evolving in a complex parabolic potential. The electronic wavefunction (x; y; t) is simply

dened as a ratio  = = , using the Gaussian wavepacket parameters solved for numeri-

cally. Generalization of the multidimensional Gaussian wavepacket dynamics42
 to a complex

parabolic potential, given in Appendix C, provides the necessary equations of motion for

all the parameters. This model allows us to analyze the dynamics with various Vr, decou-

pling the electron and nuclear TDSEs  for an inherently non-adiabatic process bypassing the

challenges of general implementation, deferred to future work.
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3.1 T h e  model and its key  dynamics features

The two-dimensional K S T  model of the vibrationally-nonadiabatic dynamics38 can be inter-

preted as the Hooks atom whose nucleus is conned by a harmonic potential,

k(x y)2 K y 2

2                 2

Following prior work we consider the particle masses of m =  1 and M =  10 a.u.

(50)

for the

’electronic’ coordinates x  and ’nuclear’ coordinate y, respectively. The initial wavefunction

is coupled and complex; the parameter values are listed in Table 2. All values are given in

the appropriate atomic units. The full wavefunction is a two-dimensional Gaussian function,

Table 2: The model and initial wavefunction parameters in atomic units. N t r  and dy are the number and
spacing for the trajectories at time t =  0. The parameters are given in appropriate atomic units.

Full wavefunction, (x; y; 0)
k K xc pc yc pc

5             15            1.0           0.2           1.0           2.0
<(a 1) =(a  1) <(a  2) =(a  2) <(a  2) =(a  2)
2.236         0.5         7.142        0.50         -1.0          0.5

The nuclear wavefunction, (y; 0)
Y P < ( ) = ( ) Ntr dy

1.0           2.0 6.695 0.724           9            0.45

(x; y; t) =  e a1 1 (x xc )2 =2 a1 2 (x xc ) (y  yc ) a22 (y yc )2 =2+{pc ( x  x c )+{p c  (y y c )+{s+g ; (51)

specied by the width parameters forming a symmetric matrix A ,  its elements fa11; a22; a12g

being complex functions of time. The overall phase s and normalization constant g are

real functions of time. The equations of motion for all parameters follow from expressions

in Appendix C  for Vi =  0, in which case the Gaussian center parameters, fxc; yc; pc ; pyg,

describe a classical trajectory. The nuclear function, (y; t), is a one-dimensional Gaussian
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with the complex time-dependent width parameter :

(y; t) =  e (y Y  )2 =2+{P (y  Y  ) + { + : (52)

The equation of motion for  and for the real time-dependent parameters, fY; P; ; g, follow

from those of Appendix B  for the complex potential.

The main dynamics features of this system are shown in Fig. 1. Note that for the

chosen initial conditions, the dynamics cannot be reduced to that of uncoupled eective

modes. The position of the full wavefunction center as a function of time is displayed in Fig.

1(a). The particle executes nearly harmonic motion in y (the heavy particle DOF), while

its motion along x  (the light particle DOF) is signicantly perturbed from the harmonic by

the coupled potential and initial conditions. An ensemble of Ntr  =  9 trajectories, initially

spaced at 0.45 a0, tracks the projection of the full-dimensional on the y-subspace (Fig.

1(c)): they are dened by the nuclear component of the full wavefunction averaged over

the electronic DOF (dyt=dt =  pt=M, pt is given by Eq. (29)). The position of the central

trajectory started at the GWP center matches the dynamics of yc at all times, while the

changes in the trajectory spacing over time reect the breathing motion of projected on

the y-coordinate. This dynamics conserves the normalization of the electronic wavefunction

 and the nuclear probabilities, or trajectory weights wt =  j (yt)j2yt, along the trajectories

in the y-subspace.

The real parts of the wavefunction width parameters fa  1; a 2; a 2g are shown in Fig.

1(b). The initial parameter <(a  2) was taken to be one-half of the coherent Gaussian value

to emphasize the breathing motion of the nuclear wavepacket in the nuclear coordinate y.

Thus, <(a  2) exhibits four-fold variations over time. The cross-term <(a 2) shows appreciable

amplitude variation as well. The parameter <(a  1) which initially matched the coherent

wavepacket width in x  exhibits relatively mild variations in time, yet the projections of

(x; y; t) onto the instantaneous vibrational states in x  illustrate the strongly nonadiabatic
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character of this model dynamics due to spatial delocalization of the correlated in x  and

y Gaussian wavefunction. The time-dependent vibrational state populations, dened as

%n =  jh (x; yc; t)jn(x; yc)ixj2, where n  are the eigenstates of He l  =  K x  +  V (x; yc), are

shown in Fig. 1(d) for the vibrational quantum numbers n =  f0; 1; 2; 3; 4g: the populations

of the excited states change from zero to up to 33; 17; 8 and 3 %, respectively.
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Figure 1: Vibrationally non-adiabatic dynamics of a Gaussian in the K S T  model. (a) The center posi-tion
(xc ; yc ), equivalent to the average position computed over (x; y; t). (b) The real parts of the width
matrix elements, fa  1; a 2; a 2g. (c) The trajectories, projecting (x; y; t) to the nuclear subspace y, gener-
ated according to the x-averaged momentum of the full wavefunction, Eq. (29). (d) Populations of the
instantaneous electronic energy eigenstates; the vibrational quantum number is indicated in the legend.
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3.2 Dynamics  with real mean-eld potential

First let us examine a conventional mean-eld dynamics under the purely real Vd, dened

by (i) the total electronic energy or by just (ii) the average classical potential,

( i ) hjHel jix 
d

N (y) ( i i ) hjV
ji x

d N (y)

Note, that in both cases Vi is zero and N (y) is time-dependent.

(53a)

(53b)

The average position

(Fig. 2(a)) of the nuclear wavepacket and its width (Fig. 2(b,d)) are shown alongside their

counterparts obtained from the full wavefunction, . As seen from the gure, the trends for

these parameters look somewhat similar, but the deviations are apparent. While the width

 of is not expected to match the y-component of the full two-dimensional wavefunction

width because of the cross-term in the latter, the mismatch between the center of the nuclear

wavepacket Y (t) with respect to yc of the full wavepacket is signicant. As a result of their

relative shift, the electronic wavefunction dened as the ratio,  = = , becomes very large

with time. Since Vi =  0, i.e. the electronic norm conservation is not fullled, the trajectory

weights fwtg computed along the trajectories, which are the same as in Fig. 1(c), depend on

time. As shown in Fig. 2(c) the values of wt (plotted on the logarithmic scale) drop to 10 
12

and 10 
8 for the potentials of Eqs (53a) and (53b), respectively. The total nuclear probability

is conserved along the trajectories by construction. Thus, the normalization, N (yt), of each

electronic sub-packet centered at yt is inversely proportional to wt and compensates the

behavior of the latter by acquiring very large values. We also note that the dynamics with V
( i i )  dened by the average potential (Eq. (53b)) yields wt and N (yt ) that are less singular

compared to V ( i )  based on the total electronic energy (Eq. (53a)); this eect may be model-

specic.
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Figure 2: Dynamics with the real mean-eld potentials. (a) The Gaussian center Y (t), and (b) the real and
(d) imaginary width parameter  of the nuclear wavefunction (y; t). (c) The trajectory weights fwt g, which
are inversely proportional to the electronic normalization fN (yt )g, are shown on the logarithmic vertical
scale. In all panels the properties obtained from (y; t) evolving under the average electronic
energy (Eq. (53a) and the average potential energy (Eq. (53b) are shown as black lines (label ’hHel i ’) and red
dashes (label ’hV ix ’),  respectively. In panels (a,b,d) blue dot-dashes (label ’ ’) show yc , <(a22 ) and =(a22 ),
respectively, which are the parameters of (x; y; t) evolving under the full V (x; y).
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3.3 Dynamics  with the norm-conserving complex potential

Now let us turn to dynamics with the norm-conserving Vi, starting with the full denition of

Vr in the Eulerian frame as given by Eq. (36a). As argued in Section 2.3(b), we also consider

Vr without the electronic kinetic energy ( K x )  contribution, and without both contributions

from the kinetic energy operators ( K x  and D2 ) of the electronic wavefunction. The results

obtained with these three versions of Vr are shown in Figs 3, 4(a,b) and 5(a,b), and labeled

as V (0), V (1) and V (2), respectively. Their performance is evaluated based on the time-

dependence of the center of the nuclear wavefunction Y (t) (Fig. 3(a)), the momentum P (t)

at the center of (Fig. 4(a)), the real and imaginary width parameters of (Figs 3(b)

and 4(b), respectively), and the average value and the dispersion of the y-momentum of

the electronic wavefunction  (Fig. 5(a) and (b), respectively). Wherever appropriate,

the full-dimensional counterparts to the quantities obtained from are shown with black

solid lines, labeled ’ ’ in legends. All -specic quantities are shown alongside the optimal

analytic nuclear wavefunction opt, obtained from the full wavefunction by performing a

procedure described in Section 2B(c). Let us point out here that opt(y; t), constructed as

the normalized x-averaged value of the full wavefunction (x; y; t) for any t, is the same as

(y; t) (up to a coordinate-independent phase) computed with the optimal real Vr of Eq.

(49) with the integration constant set to zero. The resulting functions are marked with red

circles in all panels.

First of all, we note that for the rigorously derived Vi of Eq. (34), the trajectory weights

and electronic wavefunction normalization remain constant in time, and that Y (t) =  hy(t)i

evolving according to the full wavefunction momentum, pt =  p +  p, is the same for all

versions of Vr . As seen in Fig. 3(b), the real width parameters < ( )  associated with dierent

Vr are nearly the same and close to the optimal value. (Therefore, Y (t) and < ( )  are not

plotted for other types of Vr .) In all cases < ( )  deviates from the two-dimensional parameter

<(a 2) (black line) as expected, since is a mapping of the correlated two-dimensional

Gaussian to one dimension. In contrast, the phase-related features, i.e. the momentum P (t)
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and imaginary width parameter, =() ,  show signicant dependence on Vr. Features of the

dynamics with V (2) (no kinetic energy associated with ) are the closest to those from the

optimal opt. Both P (t) and < ( )  obtained from opt show excellent {  perfect in case of P (t)

{  correlation with their counterparts from the conventional two-dimensional dynamics. The

same can be said of the x-averaged motion of the electronic wavepacket (x; y; t) along the

nuclear coordinate. The average p and its dispersion (2 according to Eq. (44)) are shown

in Fig. 5(a,b). Both quantities computed from the dynamics under V (0) and V (1) grow in

time despite the bound character of the two-dimensional Gaussian wavepacket motion.

(a) Eulerian frame denition of Vr, Eq. (36a) (b)

1

0

Y
Vopt

V(0)

V(1)

V(2)

25

20

15

10

-1
0 2  4 6 8 10

time [a.u.]
0 2  4 6 8 10

time [a.u.]

Figure 3: Dynamics with the complex norm-conserving potential dened in the Eulerian frame (Eq. (36a)).
(a) The average positions and (b) the real width parameters of the nuclear wavepacket     (y; t) are shown as

functions of time. The results from the dynamics with all terms in Vr included (V (0) ), the electronic kinetic
energy dropped (V ( 1) ) and all kinetic energy dropped (V ( 2) ) are shown as green dash, blue wide dash

and cyan dot-dash, respectively. The same quantities computed for the optimal     (y; t) according to Eq. (49)
are indicated with red circles (V opt in legend), while their counterparts yc and <(a22 ) of the full

wavefunction (x; y; t) are shown with black solid lines (      in legend) in (a) and (b), respectively. The same
legend applies

to both panels. Al l  quantities are given in the appropriate atomic units.

Next, let us examine the dynamics with Vr dened in the Lagrangian frame of reference

by Eq. (36b) (V (0) ) with the same modications (neglecting with K x  denes V (1), and

with both K x  and D 2  denes V (2) ) that were tested in the Eulerian frame. The results are

displayed in Figs 4(c,d) and 5(c,d). The trends for the various Vr
 options are largely the same

as in the case of the Eulerian frame discussed above. Comparing the dynamics with V (0)

and V (1) dened in the Eulerian and Lagrangian frames, we observe that P (t) and average

p are somewhat closer to the optimal values in the latter case, while = ( )  and dispersion
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(e) Electronic frame denition of Vr , Eq. (37) (f )
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Figure 4: Dynamics with the complex norm-conserving potential dened by Eqs (36a{37). The average
momenta (a,c,e) and the imaginary width parameters (b,d,f ) of the nuclear wavepacket (y; t) are shown
as functions of time in all panels. The results from the dynamics with all terms in Vr included (V (0) ), the
electronic kinetic energy dropped (V ( 1) ) and all kinetic energy dropped (V ( 2) ) are shown as green dash,
blue wide dash and cyan dot-dash, respectively. The same quantities computed for the optimal (y; t)
according to Eq. (48) are indicated with red circles (V opt in legend), while their counterparts pc and =(a22 ) of
the full wavefunction (x; y; t) are shown with black solid lines ( in legend) in panels (a,c,e) and (b,d,f ),
respectively. The same legend applies to all panels. Al l  quantities are in the appropriate atomic units.
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Figure 5: Dynamics with the complex norm-conserving potential dened by Eqs (36a{37). The x-averaged
nuclear momentum p (in panels (a,c,e)) and its dispersion (in panels (b,d,f )) for the electronic wavepacket
(y; t) are shown as functions of time in all panels. The results from the dynamics with all terms in Vr

included (V (0) ), the electronic kinetic energy dropped (V (1) ) and all kinetic energy dropped (V ( 2) ) are
shown as green dash, blue wide dash and cyan dot-dash, respectively. The same quantities computed for
the optimal (y; t) according to Eq. (48) are indicated with red circles (V opt in legend). The same legend
applies to all panels. Al l  quantities are given in the appropriate atomic units.
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of p are closer in the former case. This means that, since the 2D wavefunction underlying

the time-dependence of  in all cases is the same, large deviations in p from the optimal

value aord smaller deviations in dispersion, and, ideally both should be minimized in some

sense. Dynamics under V (2) of the Lagrangian frame is better correlated with the optimal

case than that of the Eulerian frame.

Lastly, let us focus on the dynamics under the intermediate or electronic-frame Vr of

Eq. (37), which takes into account the y-motion of the electronic wavefunction. The results

are given in Figs 4(e,f) and 5(e,f) in the same format and using the same legends as the

Eulerian and Lagrangian frame cases. The main observations are: (i) neglect of the kinetic

energy terms in Vr has small eect, though V (2) once again gives better agreement with the

optimally factorized result; (ii) the discrepancy in the momentum-related quantities (Figs 4

and 5) are signicantly smaller compared to the Eulerian and Lagrangian denitions of Eqs

(36a) and (36b).

3.4 Comparison to the optimal nuclear-subspace factorized d y -

namics

Finally, let us examine the optimal dynamics following from the stationary condition dis-

cussed in Section 2.3(c). In this case p =  0, and the electronic norm is conserved with zero

imaginary potential, while the real potential Vr is reconstructed from the condition on its

gradient, Eq. (49), by integration. The value of the integration constant simply shifts the

energy scale. Therefore, we set the constant to zero and focus on the force constant, which

denes the main dynamics features, presented in Figs 6 and 7.

Overall, the action of the real (Vr ) and imaginary (Vi ) components of the potential Vd,

decoupling the electronic and nuclear components of the full wavefunction, can be interpreted

as moving the probability density by a ’ow’ and by a ’source/sink’ process, respectively.

We assess their eect by comparing the force constants for several choices of the complex

Vd. Figure 6 illustrates the time-evolution of the system of (a) the purely real Vd for the
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optimal case (Eq. (48)) and (b) for one of the complex Vd, namely that of Eq. (36a) with

the kinetic energy terms set to zero, referred to in Section 3.3 as V (2) in the Eulerian frame.

In both panels the snapshots of j (y; t)j2
 are superimposed on Vr (the parabolas) for t =

f0; 1; 2; 3; 4; 5g a.u.; the blue trajectory indicates the position of the wavepacket center and

the red line shows the time-dependent location of the Vr minimum. Both types of dynamics

come from Vr exhibiting signicant variations of the parabolic shape or, equivalently, of the

force constant. These variations are interpreted as the force playing a dual role of directing

the overall classical-type motion of the wavepacket center and of controlling the wavepacket

spatial localization, e.g. the ’breathing’ motion. Comparing the center positions (Y (t), red

lines) we see sharper features in panel (a) vs (b): this dierence is compensated by the non-

zero Vi in the latter case which moves the probability density by the ’source/sink’ action in

addition to Vr moving the probability density by ’ow’. The combined action of Vr and Vi

maintains the uniform electronic normalization for any y.

(a) (b)

Figure 6: Dynamics with (a) the optimal real and (b) complex Vd of Eqs (48) and (36a), respectively.
(The kinetic energy terms are excluded in the latter case.) In both panels the snapshots of Vr and the
corresponding probability density of the nuclear wavefunction, j (y; t)j2, are shown with purple and green
lines, respectively, for t =  f0; 1; 2; 3; 4; 5g a.u. The values of Vr are marked on the vertical axis. The blue
lines track the position of the nuclear wavefunction center, Y (t). The minimum of Vr is indicated with the red
lines.

The quadratic term of Vr, or the force constant, and of Vi are shown in Fig. 7(a,b) for all

the choices of Vd
 examined in Section 3.3. In both panels three families of curves, generated

by the dynamics with and without the kinetic energy terms under V (0); V (1) and V (2) as
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described in Section 3.3, are shown for Vr dened in the Eulerian (Eq. (36a)), Lagrangian

(Eq. (36b)) and electronic (Eq. (37)) frames of reference. The Lagrangian and the electronic

frame curves are shifted up by 10 and 20 units with respect to the Eulerian frame curves.

The force constant of the optimal Vr (Eq. 48) in panel (a) is shifted down by 10 units with

respect to the Eulerian curves; in panel (b) the force constant of Vi, identically equal to

zero in this case, is not shown. This gure clearly illustrates the deciencies of some of the

Vr denitions, which as time progresses result in Vd with large coecient amplitudes. The

inversion of the Vr parabolas around t =  4 a.u. (about one oscillation period) is particularly

troubling. Within the limits of Vr dened as a function of y, the formulation of Eq. (37)

with the kinetic energy dropped is the most stable, though neglect of the kinetic energy

terms helps with stability in all situations. The purely real optimal Vd is clearly the most

stable, and is attractive for conceptual and, since the dynamics with complex potentials is

highly sensitive to the time-step, for practical reasons. In-depth exploration of this option,

including how to extend it to multiple nuclear DOFs, will be reported in the future.

To  conclude the analysis here, we have taken a closer look at the kinetic energy terms,

hK x i x  =  Qx + T x  and hD2 ix =  Qy + Ty , in the denition of Vr , by isolating the contributions

associated with the wavefunction amplitude and phase,

Q
x 

:
=   

hjjrx jj ix  ;

Qy : =   
hjjr2 jjix  

;

Tx : =  
hj(rx (

a
rg ))2 jix  ;

Ty : =  
hj(ry (

a
rg ))2 jix  :

(54)

Based on the dynamics with various combinations of the terms above, we have observed

that inclusion of the quantum potential terms Qx and/or Qy does not change the nuclear

momentum dispersion p, a key characteristic of our wavefunction factorization ’quest’. As

it turns out, within our model system, the analytic expression for Qx does not depend on

y, i.e. Qx is a time-dependent constant, while the analytic formula for Qy contains linear

and quadratic in y coecients as functions of the wavepacket parameters. Interestingly,

these coecients are proportional to a certain combination of the width parameters, which
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within our dynamics procedure maintaining r y N  =  0, is equal to zero at all times. We

have not tested yet if this conclusion holds for general potentials and wavefunctions, but

at least it is easy to show that the forces in y-coordinate associated with Qx and Qy give

zero contributions upon averaging over x. This suggests that, when it comes to a numerical

implementation of solving both {  the nuclear and the electronic T D S E  (9) {  for general

systems, a simplied evaluation of the kinetic energy terms may be adequate.

(a) (b)
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Figure 7: The quadratic coecients c2 of Vd, represented as Vd =  c 2 y 2  
+  c1y +  c0. The real and imaginary parts

of c2, corresponding to Vr and Vi , are shown in panels (a) and (b), respectively. The legend applies to both
panels. The results are obtained from Vd of Eqs (36a) (Eulerian ’eul’), (36b) (Lagrangian ’lagr’, the curves
shifted vertically by 10 units) and (37) (electronic frame ’electr’, the curves shifted by 20 units). <(c2 )
following from the optimal Vr of Eq. (48) (red circles in (a)) is shifted by -10 units; =(c2 ) (not shown) is equal
to zero by construction. The superscripts ’(0)’ indicate c2 from the dynamics performed with all the terms in
Eqs (36a{37) included, ’(1)’ {  with the kinetic energy K x ,  and ’(2)’ {  with both terms, K x  and D2 , dropped
from the respective Vr denitions.
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4 Conclusions

Nonadiabatic dynamics (beyond a single time-independent potential energy surface) is ubiq-

uitous in chemistry, and sometimes the nuclear quantum eects are important for under-

standing the chemical processes. Description of the light particles, such as electrons, as

wavepackets evolving on the time-dependent potential energy surface, rather than as a su-

perposition of a few stationary energy states, may be advantageous when numerous station-

ary electronic states are involved. Thus, there is a renewed interest in the wavefunction

factorization methods, in large part thanks to active research in Exact Factorization with

the vector potential reviewed in Ref. 41

In this work, we have presented an exact formalism for the nuclear-subspace factorized

dynamics, which connects the electronic and nuclear T D S E  via a generally complex, time-

dependent scalar potential Vd, that is a function of the nuclear coordinates as opposed to

the methods involving the vector potential33,34. The dynamics potential Vd, dening the

dynamics of the nuclear wavefunction component, includes the back reaction from the nuclei

to electrons in a theoretically rigorous manner. Imposing the probability continuity and

normalization properties on the nuclear and electronic wavefunctions, the following has been

shown.

(i) The Lagrangian frame of reference, best visualized through the trajectory ow, should

be dened by the gradient of the phase of the full wavefunction, averaged over the electronic

DOFs.

(ii) The electronic wavefunction can be dened to have uniform normalization in the nuclear

space, and the normalization will stay constant provided a specic form of the imaginary

part of Vd (Eq. (34)).

(iii) There is an ambiguity in specifying the real part of Vd, which we dened to minimize

the nuclear gradient of the electronic wavefunction or its energy. Several choices related to

dierent frames of reference have been considered.

(iv) Finally, we have obtained a real expression for the gradient of Vd, underlying an ideal, or
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optimal, factorized dynamics. In one nuclear DOF, Vd can be reconstructed as a purely real

function, which is highly desirable, since the time-evolution with the imaginary potential,

which ’moves’ the probability dynamics via source/sink mechanism, is numerically more

challenging than dynamics with real potentials.

The analysis of the various Vd options was based on the K S T  model of vibrationally

nonadiabatic dynamics, allowing highly accurate implementation of the formalism within

the Gaussian wavepacket dynamics, generalized to complex parabolic potentials. The Eule-

rian, Lagrangian and an intermediate ’electronic’ frames of reference have been explored. It

has been found that the electronic frame led to the most stable dynamics (small imaginary

potential), and that the contribution from the kinetic energy terms of the electronic wave-

function was limited to the gradient of its phase. Omitting those terms altogether further

stabilized the dynamics and produced the nuclear momentum of the electronic wavefunction,

which was very close to the optimally factorized dynamics for a single nuclear DOF, making

this choice of Vd most promising for multidimensional nuclear dynamics.

Overall, the presented nuclear subspace factorization formalism is positioned to smoothly

connect to other types of trajectory-based nuclear dynamics, including the semiclassical and

classical approaches, for a potentially practical time-evolution framework. Future develop-

ment will include multidimensional generalizations, including search for optimal nuclear-

subspace factorization procedures, and applications to more realistic electron/nuclear dy-

namics models.
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P = R :

dt M y M

y
M

A p p e n d i x  A .  Conservation of the total probabil ity den-

sity along the nuclear tra jectory.

The trajectory weight denition (Eq. (20)) can be extended to the full wavefunction,

Z
Wt

 =  yt j (x; yt; t)j2dx: (A.1)

Let us dene the full wavefunction momentum components, P x
 and Py , and their normalized

averages (k 2  fx; yg):

Pk  =  r k (arg );

R 
Pk j j2dx

k j j2dx (A.2)

The time-dependence of Wt will involve the following relations:

@tj j2 =  2=(  ( K x  +  K y )  )  =   
r x ( P x j j2) r y (P y j

M
j2) ;

(A.3)

d 
yt =  

Py yt =  
r y P y  yt

:
(A.4)

t

Using Eqs (A.2{A.4), interchanging the order of r y  with integration over x, and switching

to the Lagrangian frame (the last right-hand-side term below), one obtains

dWt

dt
=      

yt 
Z 

j j2dx  r y ( P y )    
yt 

Z 
r x ( P x j  j2)dx |

{z            }
Z Z = 0

+ t  r y Py j j2dx +  P y r y j j2dx =  0: (A.5)
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A p p e n d i x  B .  Time-dependence of the average nuclear

momentum of the electronic wavefunction

Starting with @tPy of Eq. (39) and U of (40), using

N (y ) : =  h j i x

to label the x-averaged norm of , and denoting the expectation values over the full wave-

function integrated over x  as

Py : =  
h jPyj

N
i x  ; Py 

:
=  

h jPy j
N

i x  
; F  : =   

h j r y (V  +  U )j
N

i x  ;

the time-dependence of Py in the Eulerian frame is

@tPy =

=

R 
(j j2@tPy

 +  Py@tj j2)dx
R 

Py j j2dx @tN
N N N

X  j j2 ry P 2 dx j j2 ry P 2 dx P y r x ( P x j  j2)dx
2mN X 2M N mN X

Py ry (P y j  j2)dx Pyj j2dx r x ( P x j  j2)dx 0 r y h  jPyj
M N                            N                  mN                              M N

!
i x

=
r y h  jPy j

M N
i x  Py r y h  jPyj

M N
i x  : (B.1)

Introducing the y-momentum standard deviation  (the same whether computed for or

),

 : =  P
  

Py
21=2 

=  p
 

(p)2
1=2 

; (B.2)
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F    + r  P  +
d

N M

F    :

p

2

=   ;

dp p

N (y) M M
r y

p

2M M

switching to the Lagrangian frame and manipulating the gradients of the average values into

the gradients of their normalized counterparts, Eq. (B.1) becomes

dt
Py =

=

r y P 2 h jPy j i x  r y N Py Py h jPyj
M                M N N M     y     y M N

r y
2 2 r y N

M M N

i x  r y N  
+  

Py r y P y

(B.3)

From the nuclear T D S E  the time-dependence of the nuclear momentum, p in the Lagrangian

frame is given by:
dp
dt

=   r y ( V r  +  U ) +  
M 

r y p  ; (B.4)

where

U
r y j  j
2Mj j

(B.5)

is the appropriate quantum potential. Then, the time-evolution of the average electronic

momentum in the nuclear DOF, p =  Py
 p , is governed by,

dt 
=  Fd    

M 
r y p  

;
(B.6)

where Fd  includes the dispersion-related forces,

Fd  : =   
hjry (V + U )j i x    

r y
2  

  
2

j 
j
j2

j2 
+  r y ( V r  +  U ): (B.7)

Its Eulerian frame counterpart, based on Eq. (39) and the equation of motion for p , is

given for completeness,

@tp =   r y ( V  +  U )   
M 

r p  ;                                               (B.8)

@tp =  Fd    
r y (p) 2  

  
r y ( p  p)

:                                            (B.9)

To  obtain Eq. (B.6), the average of r y U ,  which denes the quantum force associated with

the full wavefunction (x; y; t) =  (x; y; t) (y; t), was evaluated and simplied as follows.
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2

 jj
2

dx

 1

1 2
yr  j

 
2

;

 ;

2

 ;

2

:

; r  = ;

1 2 2

jj
y yr  r r  j r

Z Z
yr  j

y

| {z }
r  r r

Z

y
| {z }

2

2r

Z

3

2
3 2

2M M

Let us separate U into four contributions:

U =

Ux =

Uc =

U =

U =

Ux +  Uc +  U +  U ;

r x j j
2mjj

r  r y j j
M jj

r y j j
2Mjj
r y j  j
2Mj j

(B.10)

(B.11)

(B.12)

(B.13)

(B.14)

Using
Z

N (y) = jj2dx; r
r y j  j r y j j  j

j                        jj

the rst three terms simplify as:

Z
jj2 ry Ux dx =

[integrate by parts] =

1 
Z

2 r y r x x j j r x x j j r y j j
 
2M

Z                     jj                      jj
2

 
2M

( r x j j r y x j j  +  r x y j j r x j j ) d x  =  0; (B.15)

Z
jj2 ry Uc dx =

M 

Z 
j j2 ry  

r  r y j j
dx

=    
M

jj2      

jj 
j
dx   

M
jj2 ry jj 

j
dx (B.16) =    

2M
r y N (y t )   

M
 
jjr2 jj       (ry jj)2 dx =  

M 
hjr2 jix ;

use r y N ( y ) = 0
use r y N ( y ) = 0

Z
jj2 ry Udx =   

2M 

Z 
j j2 ry       jj 

j
dx

=    
1  

jjry jj  r y j j r y j jdx  =  
ry hjrj i x (B.17)

|                          {z }
use r y N ( y ) = 0
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M M

c c c c

0 N

c c

^ 1 ^ ^

With that Eq. (B.6) is equivalent to

dp hjry V j i x (2r
dt            y     r                     N (y )

+  ry )hjrj i x (2r
M N (y)

+  r y ) 2  
  

p r y p  
:

(B.18)

A p p e n d i x  C .  Time-evolution of a Gaussian wavefunction

in an Nd-dimensional complex quadratic potential

Take an Nd-dimensional Gaussian wavepacket in atomic units (~ =  1),

(x; t) =  N0 exp ( ( x  x t ) A t ( x  xt )=2 +  {pt (x x t )  +  {st +  t) : (C.1)

where the subscript t indicates functions dependent only on time t. N0 is the initial normal-

ization constant and chosen such that at t =  0 we have 0 =  0, and is given as

N  =  
det <(A0 ) 1=4 

: (C.2)
d

The parameters x t  and pt are real Nd-dimensional vectors, describing the wavepacket center

and st describes the coordinate-independent phase. The nal parameter A t  is a complex

matrix with real and imaginary parts:

A  =  A <  +  {A = : (C.3)

The wavefunction evolves according to the Hamiltonian,

H  =   
2

r T  M  1 r  +  V (x) ; (C.4)
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d A

dt

dt
d 1

ds 1 1  

^ 1 1

1 1

M  is a diagonal matrix of particle masses. V ( x )  is the complex, possibly, time-dependent

quadratic potential with real and imaginary parts, Vr (x)  and Vi (x),

V ( x )  =  V r (x)  +  {Vi (x): (C.5)

The T D S E  yields the following equations of motion for the wavepacket parameters,

{ 
dt 

=  A M  1 A  r r T  V; (C.6a)
dxc 

=  M  1pc +  A <
 1 rV i (x c )

;
                                                                                        (C.6b)

dpc 
=   

rV
r ( x c )      

 
A = A <

 1 rV i (x c )
;
                                                                           

 
(C.6c)

dt 
=  

2 
Tr

 
A = M  1 

+  Vi (xc )                                                                                       
 
(C.6d)

dt 
=  

2
(
p

c)T M  1

p
c     

 
Vr (xc )   

2 
Tr  A < M  1     +  (

p
c)T A <

 1 rV i (x c )
:
               (C.6e)

where r r T  V is the (coordinate-independent) Hessian matrix of the potential V .

The total wavefunction energy is,

E  =  h jH i  =  
2

(pc)T M  1pc +  V (xc )  +  
4 

Tr
 

A <
 1 r r T  V 

 
+  K  +  U; (C.7)

where the rst two right-hand-side terms are the classical kinetic and potential energy of

the wavefunction center, the third right-hand-side term is the potential energy contribution

from wavefunction delocalization. The last two right-hand-side terms K  and U are given

below and describe the kinetic energy from the derivatives of the wavefunction phase and

amplitude respectively,

K  : =  
4

 
Tr ( A = A <

 1 A = M  1); U : =  
4

 
Tr ( A < M  1): (C.8)
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