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Abstract

We present a quantum dynamics approach for molecular systems based on wave-
function factorization into components describing the light and heavy particles, such as
electrons and nuclei. The dynamics of the nuclear subsystem can be viewed as motion
of the trajectories dened in the nuclear subspace, evolving according to the average
nuclear momentum of the full wavefunction. The probability density ow between the
nuclear and electronic subsystems is facilitated by the imaginary potential, derived to
ensure a physically meaningful normalization of the electronic wavefunction for each
conguration of the nuclei, and conservation of the probability density associated with
each trajectory in the Lagrangian frame of reference. The imaginary potential, dened
in the nuclear subspace, depends on the momentum variance in the nuclear coordinates
averaged over the electronic component of the wavefunction. An eective real poten-
tial, driving the dynamics of the nuclear subsystem, is dened to minimize motion
of the electronic wavefunction in the nuclear degrees of freedom. lllustration and the
analysis of the formalism are given for a two-dimensional model system of vibrationally

nonadiabatic dynamics.



1 Introduction

The importance of nuclear quantum eects (NQE) on reactivity and properties of chemical
systems gain recognition in chemistry thanks to advanced innovative experiments covering
a wide range of systems from proteins to gas-phase UV-absorption. Some recent represen-
tative examples include exciton splitting and vibrational energy pooling in a laser-induced
isomerization of a double-well quantum system in the condensed phase (CO adsorbed on
NaCl(100) forming OC-Na* to CO-Na*1), validation of the quantum rate theories based
on measured thermal rates of the hydrogen recombination on platinum crystalline surfaces,?
contribution of tunneling to the kinetic isotope eect of the intermediate hydrogen transfer
step in the Cytochrome P450 Decarboxylase OleT,3 and the tunneling dynamics, observed
in the excited state hydrogen transfer reaction of phenol{ammonia clusters.* Practical and
conceptually insightful atomistic approaches to dynamics of large systems, characterized by
the mass- and time-scale separation, e.g. electron/nuclear dynamics, are typically based
on the trajectory description of nuclear motion and the wavefunction description of the
electronic motion. The development of inherently consistent yet computationally feasible
methods incorporating the NQEs in large systems remains an outstanding challenge and an
active research area of theoretical chemistry.

Arguably, the most accomplished method of exact quantum dynamics (°) is the multicon-
guration time-dependent Hartree method (M CTDH). ¢{8 Unlike the conventional methods
based on direct-product basis representations of wavefunctions, generally limited to systems
of 10-12 degrees of freedom (DOFs),® the MCTDH is based on the contraction of a gen-
eral basis to single (or a few) particle functions, which greatly reduces the basis size and
numerical cost. The eciency/accuracy balance is further improved within the multilayer
version® through a simplied description of the spectator modes in a chemical process. The
MCTDH has proved especially successful in applications to bound high-dimensional molec-
ular systems, e. g. 15-dimensional simulation of the infrared spectrum of water dimer?!! and

tunneling splitting in malonaldehyde.'>13 A related variational multiconguration Gaussian



approach®* { its implementation extends to nonadiabatic dynamics with on-the-y evalua-
tion of the electronic structure'® { employs time-dependent basis functions providing a closer
connection between the evolving in time wavefunction and the means to represent it.
When one is willing to trade o exact quantum treatment of the nuclei for an ability
to study larger molecular systems, the trajectory representation of the nuclear motion is a
long-established framework, which goes all the way to a highly useful classical motion of
the nuclei treated as point-particles. A multitude of trajectory-based or trajectory-inspired
methods, incorporating the NQEs approximately, often through the trajectory interaction
or dynamics in extended spaces, have been developed, such as semiclassical initial value
representation, 1®17 ring-polymer molecular dynamics,32° approximate quantum trajectory

21 and approximate path-integral methods.??> There are trajectory-based yet (in

methods,
principle) exact methods such as guided Gaussian methods, 232> and accurate implementa-
tions of the quantum trajectory dynamics.26(28

The idea of the time-dependent wavefunction representation is realized not only for the
nuclei, but for the electrons as well, in the exact factorization methods, which are actively
developed by a number of research groups.?°®! In these methods the total molecular wave-
function is a product of the time-dependent electronic wavefunction which parametrically de-
pends on nuclear coordinates and a nuclear wavefunction. This method is somewhat similar
to the Born-Oppenheimer (BO) approach, but with the nuclear dynamics occurring on a now
time-dependent (instead of static) potential energy surface (PES) and with a time-dependent
vector potential.3%34 The main appeal of this approach, is that the nuclear dynamics occur
on a single TDPES and time-dependent potential vector, and the exact molecular wave-
function can be given as a single product unlike the Born-Huang approximation where the
exact non-adiabatic dynamics and molecular wavefunction requires summations across all
electronic states.3>3® However, while the TDPES provides the exact force acting on the nu-

clei, obtaining the TDPES s still as dicult and computationally expensive as solving the

full TDSE for the electron-nuclear system and, thus, for larger systems approximations must



be made.33:37

Here we present a dynamics approach combining certain features of the exact factorization
and the quantum trajectory dynamics. Motivated by the mass- and time-scale separation
characteristic of electron-nuclear dynamics, we introduce a product form for the full wave-
function with the nuclear component, describing the overall nuclear motion, possibly, in the
trajectory framework, and the electronic component, maintaining compatibility with the
modern electronic structure methods (ab initio or Density Functional Theory methods using
real atom-centered basis sets). An eective real potential driving the dynamics of the nuclear
subsystem is dened to minimize the changes of the electronic wavefunction relative to the
moving nuclei. The probability density ow between the two subsystems yielding physically
meaningful normalization of the wavefunction components, is described by a rigorously de-
rived imaginary potential. The formalism is presented in Section 2. The relative complexity
of the equations is due to the non-linear coupling of the nuclear and the electronic compo-
nents, further complicated by the moving nuclear frame of reference. (The reader is urged to
pay attention to the @t (static Eulerian) vs. gdt (moving Lagrangian) time derivatives in the
dynamic equations.) The results and analysis of Section 3 are based on the time-evolution
of a model vibrationally-nonadiabatic system, introduced by Kohen, Stillinger and Tully
(KST).3® It is solved by a Gaussian wavefunction: the dierential equations dening the
wavefunction parameters are analytic, yet it cannot be factored into purely electronic and
purely nuclear time-dependent components. Thus, it is one of the simplest non-trivial models

to test the proposed factorization formalism. Section 4 presents the summary and outlook.

2 Theory

For clarity, the derivation below is given for a two-dimensional system of light (coordinate x)
and heavy (coordinate y) particles of masses m and M, respectively, which will be referred

to as the ’electron’ and ’nuclei’. Obviously, the same framework is applicable to systems



comprised of light and heavy nuclei, such as those characterized by the proton (light particle)
transfer within the molecular environment (heavy particles). We adhere to the following
notations: the partial time-derivative in the stationary, or Eulerian, frame of reference is
labeled as @. The time-derivative in the frame of reference moving in the nuclear subspace,
or the Lagrangian frame, is denoted as d=dt. Variables y; and p; are reserved to denote the
position and momentum of a trajectory in the nuclear subspace y at time t. The spatial
derivatives are labeled as ry = @=@xand ry, = @=@y. Integrals of the two-dimensional
functions over the x-coordinate are denoted as h:::i,.  The arguments of functions are
suppressed when unambiguous, and atomic units (~ = 1) are used throughout. The key
notations are summarized in Table 1 for convenience.

Table 1: The key denitions pertaining to the factorized wavefunction evolving in time
under the Hamiltonian H' = K, + K\ + V (x;y).

The nuclear wavefunction, (y;t)

=j j p =ryargl ) |r =ryj 5 ]
The electronic wavefunction, (x; y; t)
N(y) = hjixr = ryjjFijj r= hjrjk=Np =%, arg()
p = hjpjjx=N p> = |hjp® jix=N = p?
1=2
T Dl = ry_pr Dz = 2IV:_$
0 = 2_ Hei = K+ V (G y) | E= 2(hjHdix+<hjDyix) Full
m
wavefunction, Gy; )=y T) (v 1)
2
Py = ryarg( ) Py=ryarg( ) Ky =
The nuclear subspace trajectory, (y:; pt)
Pr=p +P [ dye=dt = p=M | we = (ye)ye

2.1 The time-dependent Schredinger equation for a factorized wave-

function

A full-dimensional wavefunction (x;y;t) can be represented in a product form without loss

of generality as

(xy;t) = ﬁ’i‘{;ztl} ) (1)
electronic nuclear



where the function (y;t) will capture the overall nuclear motion and connect to its trajectory
description, such as that of the Madelung-de Broglie-Bohm formulation.?®3° The electronic
component at this point is exact, i.e. = = , and depends on both x and y coordinates.

We dene py, specifying a moving frame of reference in the y-subspace,

d
T @ oy (2)

such that, rst of all, the continuity equation on the nuclear probability density, , is fullled

along the trajectory vy, evolving in time according to, so far, an unspecied momentum py,

o =i bonr; e Ry, (3
d t t
o

The second requirement on p; is that the normalization of the electronic component (x; y; t)

along the trajectory vy, i.e. evaluated at y = v, is constant in time,

s dN(ys) _
N (y) := hjiy; T 0: (5)

The usual time-dependent Schredinger equation (TDSE) in the Cartesian coordinates,

Ky + Ky + V(x;y) ;2 ;2
A A = . - X . - _ Y.
{@t ’ |<\X zmr K\y ZM ’ (6)
for the wavefunction of Eq. (1) yields:
Ko+ KKy " oy Viy) = {( @+ @ ): (7)

We seek to dene the portion of Eq. (7) { multiplied by a common electronic wavefunction

{ as the nuclear TDSE, while the remaining portion denes the electronic TDSE (solved by



) with the imposed constraints on the electronic wavefunction described further. The con-
straints can be divided into those related to the (i) normalization of the factored functions,
and (ii) their phase. The former, given by Eq. (5), is intuitive and common to the factor-
ization schemes investigated in this and other works.2>3%34 Here, however, we also explore
factorization schemes leading to dierent partitioning of the wavefunction phase associated
with the nuclear motion.

The wavefunction factorization is achieved by adding and subtracting in the TDSE (7)

a complex time-dependent potential, Vg4, dened in the nuclear subspace,

Vg := Vi(y; t) + {Vily; t); (8)

where V, and V; are its real and imaginary parts. Then, Eq. (7) can be rearranged as:

h i
(KJ; + Vd) {@t + KAX + |<,\y
| {z }

=0; nuclear TDSE

1ry

ry +V Vqg {@ = 0: (9)
{z }

=0; electronic TDSE

Denoting the electronic Hamiltonian Hy,,

Hei = K + V(X y); (10)

and the rst and second derivative operator terms, respectively, as

—

D, : Y (11a)

™M

2
B, : _V. (11b)

Ky +Vs ={@ ; (12)



He + (D2'+ DY) Vg = {@¢ (13)

The operators B, and K\y are formally the same, but, as common in the literature, the former
notation will be used henceforth for the nuclear kinetic energy of the electronic wavefunction.
At this point let us note that, unlike the exact factorization method,333* V4 is the only
introduced ‘object’, which is a complex scalar function, not a dierential operator or vector
potential. Restricting V4 to be a function is a limitation of the nuclear/electronic equation
"decoupling’ scheme above, which is, nevertheless, formally exact. Furthermore, as shown
in the remainder of this section, the normalization constraints are achieved by imposing
conditions on V;, which dene it uniquely, while V, controls the electron/nuclear phase
partitioning. It is not unique, but a well-dened procedure of dening V, is established.
Also note, that the derivative operators, 0, and O, in Eq. (13) are, in general, non-
Hermitian in the electronic subspace. Thus, the electronic norm, N(y), is not guaranteed
to stay constant in time. However, the electronic norm conservation and the continuity
equation for the nuclear density (Eqs (3) and (5)) can be satised if the potential V4 is a

complex function as shown below.

2.2 Denition of the imaginary part of the dynamics potential

The continuity of the nuclear probability density. Using (y;t) in the polar form,

(v;t)=J (v;thexp({arg( (y;1); (14)

dening the corresponding probability density, (y;t), and the phase gradient, or the quan-

tum trajectory (QT) momentum, p (y;t)%® as,

= (y; 0% p :=ry(arg (y;t); (15)



the continuity equation for , following from Eq. (12), is:

@+ 2+ 2V, = 0 (16)
M

Upon switching to the Lagrangian frame of Eq. (2), specied by an unknown so far p;, Eq.

(16) becomes,

=0; confinuity eq
— =
¢ P TP TR B oy - 0ap) | iz
M _| M M
d=dt =0; condition on pt and Vi

Here g denotes the dierence between p; and p , the latter associated with the phase of
(y; t),

B:=p: Pp: (18)

As follows from Eq. (17), the continuity equation on in the Lagrangian frame is fullled

for the following V;,
er ree

MR TV I TV

(19)

where the function g, related to py, is so far undened. Similar to the QT dynamics*° the
continuity equation implies that the trajectory weights, dened as the probability density

within the volume element, y;, associated with the trajectory (y:; pt), are conserved,

dw
We 1= (ye; t)ye d—tt = 0 (20)

The electronic wavefunction norm. Now let us consider the probability density ow

of the electronic part. Given the time-evolution Eq. (13), jj? changes as

@di* = {Her 1(D2+D1)¥{Vqjf?+{(H')+{((D2+D4)) {vjj* (21) * g



Integration of Eq. (21) over the electronic DOFs species the time-dependence of the elec-

tronic norm, N (y) of Eq. (5), in the Eulerian frame,
@:N(y) = {(hj(D{+ D3)ix h(D, + B1)jix 2ViN (y): (22)

In the Lagrangian frame, at y = vy, Eq. (22) becomes,

d . .
d—N(Vt) = 2= hj(D'+ D1ix 2ViN (ye) + &ryN (ye): (23)
t Y=Yt M

Setting Eq. (23) to zero and using the polar form of , one obtains:

R R R
B ry(jj?)dx ry( jj2ry(arg)dx) v _jj_zry(arg)dxyzy 2M N (y+)
V] = . (24)

Let us denote the y-component of the momentum associated with the electronic wavefunc-

tion, p, and the relevant averages normalized with respect to x, as

R R
pjj2dx pjj*dx
pi=ry(argl N(y) = R(y) (25)
p = —————; p*:=
The gradient of p is
R ..2 R ..2 R ..2 y
¢ (po) = el Ppiitdx) ry( Ji*dx)  pjjfdx " . (26)
N N N ’
v) | Wy, 4y Ny
rN(y)=N(y) b

R
Expressing ry(  pjj?dx) from Eq. (26), Eq. (24) yields another expression for V;:

(e p)ryN(y:) rp pr (27)
2M—  N(y:) 2M- 2M
V = —

10



The two denitions of V; { Eqs (19) and (27) derived from the requirements on the probability

densities of Eqs (3) and (5), respectively, { are equivalent if

®=pr (28)

This means that (from Eq. (18)) the trajectory evolves according to the nuclear momentum

p: of the full wavefunction , averaged and normalized over the electronic DOFs,

h jry(arg )j ix:
h j i

pt=p +p (29)

Denition of the initial wavefunction. The purpose of the desired factorization is to
incorporate the nuclear momentum of the full (two-dimensional) wavefunction into the
nuclear component (one-dimensional) , as much as possible. Thus, ideally, the nuclear
wavefunction is chosen such that p (which is the normalized x-averaged nuclear momentum

of the electronic wavefunction ) is equal to zero. This can be accomplished by requiring

ry (y;0) _

(v;0) z(y; 0) (30)

where z is the x-averaged log-derivative of

(x;y;0)ry (x;y;0)dx ]

200 = R0y o)dx (31)
According to Eqgs (30) and (31), for a single nuclear DOF (y; 0) can be dened as
z Yy
(y;0)= N exp z(y%; 0)dy® ; (32)

1

11



R
where N is the appropriate normalization constant ( j (y;0)j’dy = 1). Then, p (Eq.

(25)) and ry N (y) of the corresponding initial electronic wavefunction (x;y; 0),

(x;y;0)

;0] (33)

(x;y;0) =
are equal to zero by construction. The latter condition means that the resulting electronic

normalization is uniform, i. e. N(y; 0) = const.

Summary. So far, based on Egs (19) and (27), we have shown that the desired probability
conservation properties, i.e. the constant-in-time electronic norms, fN (y:)g, and the nuclear
trajectory weights, fw.g, are fullled in the Lagrangian frame, dened by p; of Eq. (29), i.e.

by the nuclear momentum of the full wavefunction averaged and normalized with respect to

the electronic DOFs, in the presence of a specic imaginary part of Vq:

ve hn P (34)
As shown in Appendix A, the counterparts to fw:g dened for the full wavefunction (x; ye; t)
are constant in time as well. Note, that V; above is consistent with simply setting the
imaginary part of the x-averaged electronic TDSE (13) to zero, yielding Vi = =(hj(D,"+

B:)ix). Furthermore, for a uniformly normalized electronic wavefunction, which means

ryN(yt) = 0, Vi of Eq. (34) does not depend on the frame of reference, because switching
to any moving frame would add a term proportional to ry N to Eq. (23), from which the
V; denition follows. Lastly, the nuclear subspace factorization of Eqs (31{32) is applicable

to any wavefunction. In other words, the procedure does not depend on the factorizability
of the full wavefunction and can be performed at any time generating the optimal (in a
sense of having p= 0) (y;t) in the one-dimensional nuclear subspace. The dynamics and

associated quantities yielding p = 0 at all times will be referred to as "optimal’ henceforth.

12



2.3 Denition of the real part of the dynamics potential

In Section 2.2 we have derived the imaginary part Vi(y) (Eq. (34)) of the potential Vq4(y),
the latter introduced to ‘uncouple’ the nuclear and electronic TDSEs for a factorized wave-
function. We have also demonstrated that the imposed probability conservation properties
do not depend on its real part, V,(y), which denes the time-evolution of the nuclear wave-
function, in particular, its phase. This independence is related to a non-unique assignment
of the y-dependent phase to the two wavefunction components, i.e. adding a phase to
and subtracting the same from does not change the full wavefunction . In this section
we consider some choices of V,, which in some sense minimize motion of in the nuclear
coordinate, y, by generating the dynamics characterized by small p and its gradient, and,

consequently, by small V;.

Reducing the time-dependence of the electronic energy. First, let us dene V, by
minimizing the change of the electronic wavefunction energy, given by the TDSE (13). Its
x-averaged value can be set to zero in either the Eulerian or Lagrangian frames of reference,
i.e h@argiy, = 0 or hd—‘:argix = 0, respectively. (To switch to the Lagrangian frame of
reference an operator {p:ry=M is added to both sides of Eq. (13).) Referring to the
imaginary and real components of r, = in the derivative coupling operator b, asp (Eq.

(15)) and r { both functions of y and t,

SIS (35)

and to the sum of the second derivative term and electronic energy as E, one obtains:

Pp.
Veul = E+ - \/

} ™M (36a)
agr (p)2—
eer = g P (36b)

' M

_ hiHejix  <(hjDajix)
N (y) N (y)

(36¢)
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Both forms of V, above can be interpreted as counterparts to V; derived in Section 2.1,
which eectively sets the imaginary part of x-averaged Eq. (13) to zero. However, now
there is an explicit dependence on the frame of reference: V' does not take into account
the nuclear motion, and in Vr'agr, dened by p: of Eq. (29), the terms associated with D"
formally cancel. While the whole point of considering moving frames of reference is to reduce
coupling between the electronic sub-packets, f(x;y:; t)g, associated with each y; (so the
coupling is amenable to approximations), we expect these sub-packets to, at least, exchange
energy due to the rst derivative coupling along the nuclear DOF, explicitly expressed via p
term in Eq. (36a) and absent in Eq. (36b). Thus, both forms of V, given by Eqs (36a) and
(36b) might be sub-optimal in a sense of generating complicated nuclear dynamics and large
imaginary potentials. Therefore, we also consider an intermediate denition of V., associated
with the “electronic’ moving frame, which incorporates the average motion of the electronic
wavefunction in the nuclear DOF, by replacing p: in Eq. (2) with pr

veops PP (PP

r M —M—Z (37)

So far, based on the energy minimization, we have argued for three choices of V, specied

by Eqgs (36a, 36b) and (37).

Reducing the nuclear momentum of the electronic wavefunction. Next, let us
construct V,, which ‘'minimizes’ p and its gradient during the dynamics, using the time-
dependence of p. Since p depends on the nuclear momentum of the full wavefunction (Eq.

(7)), we begin with its equation of motion. Denoting

Px :=rx(larg ); Py:=ry(arg ); (38)

14



for  given in terms of its modulus and phase yields TDSE (6) (see e.g.?°),

p p
@P,= r,(V + U) ExrxPy myryPy; (39)

where U is the quantum potential for the full wavefunction,

2. 2. .
U:= r xJ—J r \/-l J: 40
2mj j  2Mj j (40)

As shown in Appendix B, combining Eq. (39) with its counterpart for ry(arg ) setting
the resulting time-derivatives of p to zero, one obtains the following expressions for ryV,,

"minimizing’ the electronic motion in the Eulerian and Lagrangian frames of reference:

(ryVe)e¥' = G + y(p)? . (P PI- (41a)
Y 2M 2M’
(ryV,)'2€" = G + pmryp ; (41b)
where G stands for o
hjryV jiy 2r +ry)(r& 2) M
SLULrAD ’ ; (42)

N(y)

In Eq. (42) and throughout the "'non-classical’ momentum components, r given by Eq. (35)
and r,
_ndi, o hiniz 3)
i T TNy
associated with the nuclear and electronic wavefunctions are used. The function 2 denotes

the nuclear momentum dispersion (variance), which is the same whether computed for the

full wavefunction  or for the electronic component :

— 1=2

=P (2 (44)
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A few notable features of Eqs (41a) and (41b) are: (i) they dene forces which, in general,
cannot be integrated to yield V, which is a scalar function; (ii) unlike for VrIagr of Eq. (36b),
(ryV,)'28" explicitly contains the electron-nuclear momentum coupling, and (iii) there is no
contribution from the kinetic energy in the electronic coordinate. Therefore, in the numerical
tests presented in Section 3.3, we consider denitions for V, of Eqs (36a, 36b) and (37) with

and without the kinetic energy terms associated with the action of K, and 0% on .

The stationary condition on the x-averaged electronic wavefunction. Finally, we
show that it is possible to keep the average nuclear momentum of the electronic wavefunction,
P, equal to zero, and, in case of a single nuclear DOF, a unique (up to a constant) purely
real eective potential of Eq. (8), Vi = 0 and V4 = V,, can be constructed. In this limit the
wavefunction factorization in our approach becomes unique, which is similar to the exact
factorization method, where (in the same limit of a single nuclear DOF) the vector potential
is equal to zero and the dynamics is driven by a real scalar potential.33:3%41
First, for electronic functions = jjexp({arg()), normalized to 1 at all times, the x-

averaged nuclear momentum, p (Eq. (25)), can be computed via a simple linear operator,
. N " { _ _
thryic =" {hijryjiic + hijry(arg)jjix = "ry(N{y)}+ pN(y) = p: (45)

The last equality in Eq. (45) holds if N(y) 1. The time-dependence of p €an now be

computed from the time-dependence of given in Eq. (13):

{@p h( (Rer+ (O1+ B2 Vo))jryix+ hjiry( O(Ha+ D1+ D2 " Vi))jix

! 1o .
thilHel Vs ryljix+ thi(Dy+ D2)ry 1y (D1 + Da)jix (46)

where in the last line the direction of action of the derivative operators is explicitly indicated.
The derivatives are taken with respect to the (nuclear position) parameter, which is not

integrated over in the hiy notation. Therefore, we carefully keep track of the complex

16



conjugation of these operators and their commutation with the nuclear gradient. Moreover,
the 0'; term of Eq. (11b) may not be equal to its complex conjugate through the complexity
of the nuclear function , hence its complex conjugation is shown explicitly in Eq. (46). The

following expressions are nevertheless straightforward to derive:

! I
hj(Dary  Dary)ji* = 2ry(hjDajix) (47a)

| | |
hi(Dyry  ry Di)jix = 4r hjDajix" (47b)

Using these expressions and simplifying the commutator, Eq. (46) yields
@p= hjryVjix (4r + 2ry) hjDJJix + ry V' : (48)
Setting the above Eq. (48) to zero denes the optimal r,V,,
ryV' = hryVie + (4r + 2ry)hBsic = hryVi, + %(Zr + ry) hr+ pif: (49)

The polar form of has been used in the last equality, and the averages are computed for
. Equation (49) is equivalent to Egs (41a) and (41b) in the limit of p = 0, the last two

becoming identical in this case.

Summary. (i) The full electron-nuclear wavefunction (x;y;t) can be uniquely repre-
sented as a product of the moduli of the nuclear, (y;t), and the electronic, (x;y;t),
components, but this factorization is not unique with respect to the full wavefunction phase
which depends on the real potential V,. (ii) Based on the arguments for the energy time-
dependence and exchange between the electronic wavefunctions associated with dierent
congurations of the nuclei, we have derived several expressions for V,: Ve‘r‘I of Eq. (36a)
in the stationary Eulerian frame of reference, VrIagr of Eq. (36b) in the Lagrangian frame

dened by the nuclear momentum of the full wavefunction (averaged and normalized over

17



with respect to the electronic DOF, x), and Vrel in the moving ’electronic’ frame specied
by p, which is the nuclear momentum of the electronic wavefunction averaged over the
electronic DOF. (iii) While minimizing the time-dependence of p in the Eulerian and in the
Lagrangian frames, we have obtained expressions for ry, V" in which the electronic kinetic en-
ergy terms cancel. Therefore, in the numerical study of Section 3, dynamics with Vre“', VrIagr
and VreI with and without the kinetic energy terms are considered. While there is no unique
denition for V,, all choices are well-dened for any number of nuclear DOFs. (iv) Finally,
we have demonstrated that for one nuclear dimension the electron/nuclear factorization is
uniquely dened throughout the dynamics for the ‘optimal’ V., consistent with Eq. (49),
and both V; and p are equal to zero at all times. The dynamics for this choice, referred to

as V P, is considered in the system study below as well.

3 Results and Discussion

To better understand the formal properties of the dynamics presented in Section 2 we ex-
amine the model of Kohen, Stillinger and Tully (KST)3# of the vibrationally nonadiabatic
dynamics, and compare the key dynamics features following from various choices of V, (Eqgs
(36a), (36b), (37), (49)), and the analytical denition of V; (34). The full wavefunction
(x; y; t) solving this model is a two-dimensional Gaussian wavepacket evolving in time un-
der a real potential, V (x; y). The nuclear wavefunction (y;t) is a one-dimensional Gaussian
evolving in a complex parabolic potential. The electronic wavefunction (x;y;t) is simply
dened as a ratio = = , using the Gaussian wavepacket parameters solved for numeri-
cally. Generalization of the multidimensional Gaussian wavepacket dynamics#? to a complex
parabolic potential, given in Appendix C, provides the necessary equations of motion for
all the parameters. This model allows us to analyze the dynamics with various V,, decou-
pling the electron and nuclear TDSEs for an inherently non-adiabatic process bypassing the

challenges of general implementation, deferred to future work.
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3.1 The model and its key dynamics features

The two-dimensional KST model of the vibrationally-nonadiabatic dynamics® can be inter-

preted as the Hooks atom whose nucleus is conned by a harmonic potential,

V = + : (50)

Following prior work we consider the particle masses of m = 1 and M = 10 a.u. for the
“electronic’ coordinates x and ‘nuclear’ coordinate y, respectively. The initial wavefunction
is coupled and complex; the parameter values are listed in Table 2. All values are given in

the appropriate atomic units. The full wavefunction is a two-dimensional Gaussian function,

Table 2: The model and initial wavefunction parameters in atomic units. N, and dy are the number and
spacing for the trajectories at time t = 0. The parameters are given in appropriate atomic units.

Full wavefunction, (x;y;0)

k K x€ P ye Py

5 15 1.0 0.2 1.0 2.0
<(a11) =(all) <(322) =(322) <(312) =(312)
2.236 0.5 7.142 | 0.50 -1.0 0.5
The nuclear wavefunction, (y;0)
Y P <() =() Nir dy
1.0 2.0 6.695 | 0.724 9 0.45

(x;y;t) = e 2l x4)2=2 ana(x xS)(y y¢) axnly yo)2=2+{p§(x x)+{pSly yo)+{s+e, (51)

specied by the width parameters forming a symmetric matrix A, its elements fa;1; a; 2128

being complex functions of time. The overall phase s and normalization constant g are
real functions of time. The equations of motion for all parameters follow from expressions
in Appendix C for V; = 0, in which case the Gaussian center parameters, fx¢;y<; p$; PyE,

describe a classical trajectory. The nuclear function, (y;t), is a one-dimensional Gaussian
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with the complex time-dependent width parameter :

(y;t) = e (v Y)?=2+{P(y Y)+{+. (52)

The equation of motion for and for the real time-dependent parameters, fY; P;; g, follow
from those of Appendix B for the complex potential.

The main dynamics features of this system are shown in Fig. 1. Note that for the
chosen initial conditions, the dynamics cannot be reduced to that of uncoupled eective
modes. The position of the full wavefunction center as a function of time is displayed in Fig.
1(a). The particle executes nearly harmonic motion in y (the heavy particle DOF), while
its motion along x (the light particle DOF) is signicantly perturbed from the harmonic by
the coupled potential and initial conditions. An ensemble of N¢, = 9 trajectories, initially
spaced at 0.45 ag, tracks the projection of the full-dimensional on the y-subspace (Fig.
1(c)): they are dened by the nuclear component of the full wavefunction averaged over
the electronic DOF (dyi=dt = p=M, py is given by Eq. (29)). The position of the central
trajectory started at the GWP center matches the dynamics of y© at all times, while the
changes in the trajectory spacing over time reect the breathing motion of projected on
the y-coordinate. This dynamics conserves the normalization of the electronic wavefunction
and the nuclear probabilities, or trajectory weights w: = j (yt)j’y:, along the trajectories
in the y-subspace.

The real parts of the wavefunction width parameters fa;; a; apg are shown in Fig.
1(b). The initial parameter <(a,,) was taken to be one-half of the coherent Gaussian value
to emphasize the breathing motion of the nuclear wavepacket in the nuclear coordinate vy.
Thus, <(a,») exhibits four-fold variations over time. The cross-term <(a») shows appreciable
amplitude variation as well. The parameter <(a;;) which initially matched the coherent
wavepacket width in x exhibits relatively mild variations in time, yet the projections of

(x; y; t) onto the instantaneous vibrational states in x illustrate the strongly nonadiabatic
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character of this model dynamics due to spatial delocalization of the correlated in x and
y Gaussian wavefunction. The time-dependent vibrational state populations, dened as
%, = jh (X; ¥ t)jn(x; y©)ixj2, Where , are the eigenstates of He ™= Ky % V(x;y€), are

shown in Fig. 1(d) for the vibrational quantum numbers n = f0; 1; 2; 3; 4g: the populations

of the excited states change from zero to up to 33; 17; 8 and 3 %, respectively.

2 T T T T T | T | T 30
‘_ R — Re(a”) (b) B )5
1 L Re(a,) -
-F—é N Re(a,) 20
= = 15
= 0 =] ]
5 = — 10
O -
&) -1 — —5
P e e e N —— o
- o
2 ] | ] | ] | ] | ] C ] | I | ] | ] i ] 7
0 2 4 6 8 10 0 2 4 6 8 10

population

0 2 4 . 6 8 10 0 2 4 . 6 8 10
time time

Figure 1: Vibrationally non-adiabatic dynamics of a Gaussian in the KST model. (a) The center posi-tion
(x¢;y®), equivalent to the average position computed over (x;y;t). (b) The real parts of the width
matrix elements, fai1; a22; a128. (c) The trajectories, projecting (x;y;t) to the nuclear subspace y, gener-
ated according to the x-averaged momentum of the full wavefunction, Eq. (29). (d) Populations of the
instantaneous electronic energy eigenstates; the vibrational quantum number is indicated in the legend.
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3.2 Dynamics with real mean-eld potential

First let us examine a conventional mean-eld dynamics under the purely real V4, dened

by (i) the total electronic energy or by just (ii) the average classical potential,

g N d
(i) hJHeljlx
= — (53a)
N(y) @iy hV
Jix
Vi =2 ———:
q N(y) (53b)

Note, that in both cases V; is zero and N(y) is time-dependent. The average position
(Fig. 2(a)) of the nuclear wavepacket and its width (Fig. 2(b,d)) are shown alongside their
counterparts obtained from the full wavefunction, . As seen from the gure, the trends for
these parameters look somewhat similar, but the deviations are apparent. While the width
of is not expected to match the y-component of the full two-dimensional wavefunction
width because of the cross-term in the latter, the mismatch between the center of the nuclear
wavepacket Y (t) with respect to y¢ of the full wavepacket is signicant. As a result of their
relative shift, the electronic wavefunction dened as the ratio, = = , becomes very large
with time. Since V; = 0, i.e. the electronic norm conservation is not fullled, the trajectory
weights fw,g computed along the trajectories, which are the same as in Fig. 1(c), depend on
time. As shown in Fig. 2(c) the values of w; (plotted on the logarithmic scale) drop to 10 12
and 10 & for the potentials of Eqs (53a) and (53b), respectively. The total nuclear probability
is conserved along the trajectories by construction. Thus, the normalization, N (y:), of each
electronic sub-packet centered at y; is inversely proportional to w; and compensates the
behavior of the latter by acquiring very large values. We also note that the dynamics with V
“2 dened by the average potential (Eq. (53b)) yields wy and N{(y:) that are less singular
compared to Vd“) based on the total electronic energy (Eq. (53a)); this eect may be model-

specic.
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Re(a)

time

Figure 2: Dynamics with the real mean-eld potentials. (a) The Gaussian center Y (t), and (b) the real and
(d) imaginary width parameter of the nuclear wavefunction (y;t). (c) The trajectory weights fw:g, which
are inversely proportional to the electronic normalization fN(yt)g, are shown on the logarithmic vertical
scale. In all panels the properties obtained from (y;t) evolving under the average electronic
energy (Eq. (53a) and the average potential energy (Eq. (53b) are shown as black lines (label "hHeji ’) and red
dashes (label ’hViy’), respectively. In panels (a,b,d) blue dot-dashes (label * ’) show y©, <(a22) andx=(a22),
respectively, which are the parameters of (x; y; t) evolving under the full V (x;y).
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3.3 Dynamics with the norm-conserving complex potential

Now let us turn to dynamics with the norm-conserving V;, starting with the full denition of
V., in the Eulerian frame as given by Eq. (36a). As argued in Section 2.3(b), we also consider
V, without the electronic kinetic energy (K) contribution, and without both contributions
from the kinetic energy operators (K, and D%) of the electronic wavefunction. The results
obtained with these three versions of V, are shown in Figs 3, 4(a,b) and 5(a,b), and labeled
as VO, v and V), respectively. Their performance is evaluated based on the time-
dependence of the center of the nuclear wavefunction Y (t) (Fig. 3(a)), the momentum P (t)
at the center of (Fig. 4(a)), the real and imaginary width parameters of  (Figs 3(b)
and 4(b), respectively), and the average value and the dispersion of the y-momentum of
the electronic wavefunction (Fig. 5(a) and (b), respectively). Wherever appropriate,
the full-dimensional counterparts to the quantities obtained from are shown with black
solid lines, labeled * ’ in legends. All -specic quantities are shown alongside the optimal
analytic nuclear wavefunction °Pt, obtained from the full wavefunction by performing a
procedure described in Section 2B(c). Let us point out here that ©°P(y;t), constructed as
the normalized x-averaged value of the full wavefunction (x;y;t) for any t, is the same as

(y;t) (up to a coordinate-independent phase) computed with the optimal real V, of Eq.
(49) with the integration constant set to zero. The resulting functions are marked with red
circles in all panels.

First of all, we note that for the rigorously derived V; of Eq. (34), the trajectory weights
and electronic wavefunction normalization remain constant in time, and that Y (t) = hy(t)i
evolving according to the full wavefunction momentum, p: = p + p, is the same for all
versions of V.. As seen in Fig. 3(b), the real width parameters <() associated with dierent
V. are nearly the same and close to the optimal value. (Therefore, Y (t) and <() are not
plotted for other types of V,.) In all cases <() deviates from the two-dimensional parameter
<(ay2) (black line) as expected, since is a mapping of the correlated two-dimensional

Gaussian to one dimension. In contrast, the phase-related features, i.e. the momentum P (t)
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and imaginary width parameter, =(), show signicant dependence on V,. Features of the
dynamics with V 2} (no kinetic energy associated with ) are the closest to those from the
optimal ©°Pt, Both P (t) and <() obtained from  °P* show excellent { perfect in case of P (t)
{ correlation with their counterparts from the conventional two-dimensional dynamics. The
same can be said of the x-averaged motion of the electronic wavepacket (x; y; t) along the
nuclear coordinate. The average p and its dispersion (? according to Eq. (44)) are shown

in Fig. 5(a,b). Both quantities computed from the dynamics under V(® and V() grow in

time despite the bound character of the two-dimensional Gaussian wavepacket motion.

(a) Eulerian frame denition of V., Eq. (36a) (b)
T T T T T | T T T T | T | T T T
e — ¥ VO - ]
oO o Vopt rO oo o V(l)
- @ ’ - 2) |

) Y V@ =
= ] 3
N~ b ¢ ol [l \q_)/
>“ (1 \ ¢ & 3 | [

|
0 2 4 6 8 10
time [a.u.]

Figure 3: Dynamics with the complex norm-conserving potential dened in the Eulerian frame (Eq. (36a)).
(a) The average positions and (b) the real width parameters of the nuclear wavepacket (y;t) are shown as

functions of time. The results from the dynamics with all terms in V; included (V () ), the electronic kinetic

energy dropped (V (1) ) and all kinetic energy dropped (V ( 2)) are shown as green dash, blue wide dash
and cyan dot-dash, respectively. The same quantities computed for the optimal (y;t) according to Eq. (49)
are indicated with red circles (V °P! in legend), while their counterparts y¢ and <(a22) of the full
wavefunction (x; y; t) are shown with black solid lines ( in legend) in (a) and (b), respectively. The same
legend applies

to both panels. All quantities are given in the appropriate atomic units.

Next, let us examine the dynamics with V, dened in the Lagrangian frame of reference
by Eq. (36b) (V@) with the same modications (neglecting with K," denes V%), and
with both Ky and [, denes V (2)) that were tested in the Eulerian frame. The results are
displayed in Figs 4(c,d) and 5(c,d). The trends for the various V, options are largely the same
as in the case of the Eulerian frame discussed above. Comparing the dynamics with V (©)
and V(1) dened in the Eulerian and Lagrangian frames, we observe that P (t) and average

p are somewhat closer to the optimal values in the latter case, while =() and dispersion
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(a)

Eulerian frame denition of V,, Eq. (36a)
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Eq. (36b)
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(e) Electronic frame denition of V., Eq. (37) (f)
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Figure 4: Dynamics with the complex norm-conserving potential dened by Eqs (36a{37). The average
momenta (a,c,e) and the imaginary width parameters (b,d,f) of the nuclear wavepacket (y;t) are shown
as functions of time in all panels. The results from the dynamics with all terms in V; included (V (0) ), the
electronic kinetic energy dropped (V(l) ) and all kinetic energy dropped (V(z) ) are shown as green dash,
blue wide dash and cyan dot-dash, respectively. The same quantities computed for the optimal (y;t)
according to Eq. (48) are indicated with red circles (V °P*in legend), while their counterparts p® and =(a22) of
the full wavefunction (x; y; t) are shown with black solid lines ( in legend) in panels (a,c,e) and (b,d,f),
respectively. The same legend applies to all panels. All quantities are in the appropriate atomic units.
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(a) Eulerian frame denition of V., Eq. (36a) (b)
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(c) Lagrangian frame denition of V., Eq. (36b) (d)
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(e) Electronic frame denition of V,, Eq. (37) (f)
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Figure 5: Dynamics with the complex norm-conserving potential dened by Eqs (36a{37). The x-averaged
nuclear momentum p (in panels (a,c,e)) and its dispersion (in panels (b,d,f)) for the electronic wavepacket
(y; t) are shown as functions of time in all panels. The results from the dynamics with all terms in V.
included (V (0) ), the electronic kinetic energy dropped (V (1) ) and all kinetic energy dropped (V(Z) ) are
shown as green dash, blue wide dash and cyan dot-dash, respectively. The same quantities computed for
the optimal (y;t) according to Eq. (48) are indicated with red circles (V °P! in legend). The same legend
applies to all panels. All quantities are given in the appropriate atomic units.
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of p are closer in the former case. This means that, since the 2D wavefunction underlying
the time-dependence of in all cases is the same, large deviations in p from the optimal
value aord smaller deviations in dispersion, and, ideally both should be minimized in some
sense. Dynamics under V(2 of the Lagrangian frame is better correlated with the optimal
case than that of the Eulerian frame.

Lastly, let us focus on the dynamics under the intermediate or electronic-frame V, of
Eq. (37), which takes into account the y-motion of the electronic wavefunction. The results
are given in Figs 4(e,f) and 5(e,f) in the same format and using the same legends as the
Eulerian and Lagrangian frame cases. The main observations are: (i) neglect of the kinetic
energy terms in V, has small eect, though V (2) once again gives better agreement with the
optimally factorized result; (ii) the discrepancy in the momentum-related quantities (Figs 4
and 5) are signicantly smaller compared to the Eulerian and Lagrangian denitions of Eqgs

(36a) and (36b).

3.4 Comparison to the optimal nuclear-subspace factorized dy-

namics

Finally, let us examine the optimal dynamics following from the stationary condition dis-
cussed in Section 2.3(c). In this case p = 0, and the electronic norm is conserved with zero
imaginary potential, while the real potential V., is reconstructed from the condition on its
gradient, Eq. (49), by integration. The value of the integration constant simply shifts the
energy scale. Therefore, we set the constant to zero and focus on the force constant, which
denes the main dynamics features, presented in Figs 6 and 7.

Overall, the action of the real (V,) and imaginary (Vi) components of the potential Vg,
decoupling the electronic and nuclear components of the full wavefunction, can be interpreted
as moving the probability density by a ‘ow’ and by a “source/sink’ process, respectively.
We assess their eect by comparing the force constants for several choices of the complex

V4. Figure 6 illustrates the time-evolution of the system of (a) the purely real Vq4 for the

28



optimal case (Eq. (48)) and (b) for one of the complex V4, namely that of Eq. (36a) with
the kinetic energy terms set to zero, referred to in Section 3.3 as V (?) in the Eulerian frame.
In both panels the snapshots of j (y;t)j? are superimposed on V, (the parabolas) for t =
f0;1;2;3; 4;5g a.u.; the blue trajectory indicates the position of the wavepacket center and
the red line shows the time-dependent location of the V, minimum. Both types of dynamics
come from V, exhibiting signicant variations of the parabolic shape or, equivalently, of the
force constant. These variations are interpreted as the force playing a dual role of directing
the overall classical-type motion of the wavepacket center and of controlling the wavepacket
spatial localization, e.g. the ’breathing’ motion. Comparing the center positions (Y (t), red
lines) we see sharper features in panel (a) vs (b): this dierence is compensated by the non-
zero V; in the latter case which moves the probability density by the “source/sink’ action in
addition to V, moving the probability density by ‘ow’. The combined action of V, and V;

maintains the uniform electronic normalization for any vy.

(b)

Figure 6: Dynamics with (a) the optimal real and (b) complex V4 of Eqs (48) and (36a), respectively.
(The kinetic energy terms are excluded in the latter case.) In both panels the snapshots of V. and the
corresponding probability density of the nuclear wavefunction, j (y;t)j?, are shown with purple and green
lines, respectively, for t = f0;1;2;3;4;5g a.u. The values of V, are marked on the vertical axis. The blue
lines track the position of the nuclear wavefunction center, Y (t). The minimum of V, is indicated with the red
lines.

The quadratic term of V., or the force constant, and of V; are shown in Fig. 7(a,b) for all
the choices of V4 examined in Section 3.3. In both panels three families of curves, generated

by the dynamics with and without the kinetic energy terms under V(©;Vv (1) and V() as
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described in Section 3.3, are shown for V, dened in the Eulerian (Eq. (36a)), Lagrangian
(Eq. (36b)) and electronic (Eq. (37)) frames of reference. The Lagrangian and the electronic
frame curves are shifted up by 10 and 20 units with respect to the Eulerian frame curves.
The force constant of the optimal V, (Eq. 48) in panel (a) is shifted down by 10 units with
respect to the Eulerian curves; in panel (b) the force constant of V;, identically equal to
zero in this case, is not shown. This gure clearly illustrates the deciencies of some of the
V. denitions, which as time progresses result in Vg4 with large coecient amplitudes. The
inversion of the V, parabolas around t = 4 a.u. (about one oscillation period) is particularly
troubling. Within the limits of V, dened as a function of y, the formulation of Eq. (37)
with the kinetic energy dropped is the most stable, though neglect of the kinetic energy
terms helps with stability in all situations. The purely real optimal Vq is clearly the most
stable, and is attractive for conceptual and, since the dynamics with complex potentials is
highly sensitive to the time-step, for practical reasons. In-depth exploration of this option,
including how to extend it to multiple nuclear DOFs, will be reported in the future.

To conclude the analysis here, we have taken a closer look at the kinetic energy terms,
hR,iy = Qx+ Ty and hD,i, = Qy + Ty, in the denition of V,, by isolating the contributions

associated with the wavefunction amplitude and phase,

Q :_ hjjrdkix; _— hi(r.(_rg))%jix.
X - 2m X - bl 2m 7
o £m 54
e PRI iy ey >4
Yy 2M 7 y - = d 2|V| .

Based on the dynamics with various combinations of the terms above, we have observed
that inclusion of the quantum potential terms Qy and/or Q, does not change the nuclear
momentum dispersion p, a key characteristic of our wavefunction factorization 'quest’. As
it turns out, within our model system, the analytic expression for Q, does not depend on
y, i.e. Qy is a time-dependent constant, while the analytic formula for Q, contains linear
and quadratic in y coecients as functions of the wavepacket parameters. Interestingly,

these coecients are proportional to a certain combination of the width parameters, which
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within our dynamics procedure maintaining ry N = 0, is equal to zero at all times. We
have not tested yet if this conclusion holds for general potentials and wavefunctions, but
at least it is easy to show that the forces in y-coordinate associated with Qx and Q, give
zero contributions upon averaging over x. This suggests that, when it comes to a numerical
implementation of solving both { the nuclear and the electronic TDSE (9) { for general

systems, a simplied evaluation of the kinetic energy terms may be adequate.
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Figure 7: The quadratic coecients ¢ of Vg, represented as Vg = cay? #5€1y + Co. The real and imaginary parts
of ¢z, corresponding to V: and V;, are shown in panels (a) and (b), respectively. The legend applies to both
panels. The results are obtained from V4 of Eqs (36a) (Eulerian ’eul’), (36b) (Lagrangian ‘lagr’, the curves
shifted vertically by 10 units) and (37) (electronic frame ’‘electr’, the curves shifted by 20 units). <(c3)
following from the optimal V. of Eq. (48) (red circles in (a)) is shifted by -10 units; =(c2) (not shown) is equal
to zero by construction. The superscripts ’(0)’ indicate c; from the dynamics performed with all the terms in
Eqgs (36a{37) included, ’(1)’ { with the kinetic energy K, and ’42)’ { with both terms, Kx and Dy, dropped
from the respective V. denitions.
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4 Conclusions

Nonadiabatic dynamics (beyond a single time-independent potential energy surface) is ubig-
uitous in chemistry, and sometimes the nuclear quantum eects are important for under-
standing the chemical processes. Description of the light particles, such as electrons, as
wavepackets evolving on the time-dependent potential energy surface, rather than as a su-
perposition of a few stationary energy states, may be advantageous when numerous station-
ary electronic states are involved. Thus, there is a renewed interest in the wavefunction
factorization methods, in large part thanks to active research in Exact Factorization with
the vector potential reviewed in Ref.#!

In this work, we have presented an exact formalism for the nuclear-subspace factorized
dynamics, which connects the electronic and nuclear TDSE via a generally complex, time-
dependent scalar potential V4, that is a function of the nuclear coordinates as opposed to
the methods involving the vector potential3334. The dynamics potential V4, dening the
dynamics of the nuclear wavefunction component, includes the back reaction from the nuclei
to electrons in a theoretically rigorous manner. Imposing the probability continuity and
normalization properties on the nuclear and electronic wavefunctions, the following has been
shown.

(i) The Lagrangian frame of reference, best visualized through the trajectory ow, should
be dened by the gradient of the phase of the full wavefunction, averaged over the electronic
DOFs.

(ii) The electronic wavefunction can be dened to have uniform normalization in the nuclear
space, and the normalization will stay constant provided a specic form of the imaginary
part of Vg4 (Eq. (34)).

(iii) There is an ambiguity in specifying the real part of V4, which we dened to minimize
the nuclear gradient of the electronic wavefunction or its energy. Several choices related to
dierent frames of reference have been considered.

(iv) Finally, we have obtained a real expression for the gradient of V4, underlying an ideal, or
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optimal, factorized dynamics. In one nuclear DOF, V4 can be reconstructed as a purely real
function, which is highly desirable, since the time-evolution with the imaginary potential,
which ‘moves’ the probability dynamics via source/sink mechanism, is numerically more
challenging than dynamics with real potentials.

The analysis of the various V4 options was based on the KST model of vibrationally
nonadiabatic dynamics, allowing highly accurate implementation of the formalism within
the Gaussian wavepacket dynamics, generalized to complex parabolic potentials. The Eule-
rian, Lagrangian and an intermediate ’electronic’ frames of reference have been explored. It
has been found that the electronic frame led to the most stable dynamics (small imaginary
potential), and that the contribution from the kinetic energy terms of the electronic wave-
function was limited to the gradient of its phase. Omitting those terms altogether further
stabilized the dynamics and produced the nuclear momentum of the electronic wavefunction,
which was very close to the optimally factorized dynamics for a single nuclear DOF, making
this choice of V4 most promising for multidimensional nuclear dynamics.

Overall, the presented nuclear subspace factorization formalism is positioned to smoothly
connect to other types of trajectory-based nuclear dynamics, including the semiclassical and
classical approaches, for a potentially practical time-evolution framework. Future develop-
ment will include multidimensional generalizations, including search for optimal nuclear-
subspace factorization procedures, and applications to more realistic electron/nuclear dy-

namics models.
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Appendix A. Conservation of the total probability den-
sity along the nuclear trajectory.

The trajectory weight denition (Eq. (20)) can be extended to the full wavefunction,

Z
Wi = vyt i (X Yt}t)jzd)c (A.1)

Let us dene the full wavefunction momentum components, P, and Py, and their normalized
averages (k 2 fx;yg): R

P, = rk(arg ); Pk= R——: (A.2)
The time-dependence of W; will involve the following relations:

r(Pud 32 ry(Py %)

@i j*=2=( (KY+K}) )= (A.3)

m M

d Pyye _ ryPy

—Vt= = Ty (A.4)
. My: M

Using Eqs (A.2{A.4), interchanging the order of r, with integration over x, and switching

to the Lagrangian frame (the last right-hand-side term below), one obtains

v4 v4
dw. Ve . y o
o= T g jdxory(Py) T r(Pyj j2)dx |
Z z °°
+ % ry Py j2dx+ Pyr, j j2dx = 0: (A.5)
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Appendix B. Time-dependence of the average nuclear
momentum of the electronic wavefunction
Starting with @:P, of Eq. (39) and U of (40), using
N (Y) = h iy
to label the x-averaged norm of , and denoting the expectation values over the full wave-

function integrated over x as

ﬁ:= h ijZJ' ix. s h jry(V + U)j iy
y ’ . N 7

_ h jPyj ix;

the time-dependence of P, in the Eulerian frame is

R R
— (i P@Py+ Py@j j*)dx P,j j2dx @N
@:Py N N

N
)B . R . 2 2 )8 . .
— ¥ xiyryP rdx j i*ryPdx Pyrx (P i j%)dx
- 2mN” XA 2MN mN * X xX
R o R . ., R 0 !
Pyry(Pyj j?)dx Pyj jédx ry(Pxj j%)dx ryh jPyj i
MN N mN MN
A L LTS (8.1)
— MN—+ ™ N
Introducing the y-momentum standard deviation (the same whether computed for or
),
- 1=2 — 1=2
=P 2 P =p 2 (F ; (B.2)
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switching to the Lagrangian frame and manipulating the gradients of the average values into

the gradients of their normalized counterparts, Eq. (B.1) becomes

d_—— _ ryP2Z  hjPZ ixryN Py, _— Pyh jPyj i.ruN P _
—Py - F Yy y Yy x by + _Vr_ yPy+ _Y J YJ x Iy _yryPy
dt M M N N M M N N
_ry? 2ryN
= — B.3
F M M N ( )

From the nuclear TDSE the time-dependence of the nuclear momentum, p in the Lagrangian

frame is given by:

dp p
g - Ver U e (B.4)
where
rJ i
Y
= . B.
2Mj j’ (B.5)

is the appropriate quantum potential. Then, the time-evolution of the average electronic

momentum in the nuclear DOF, p = Py_ p , is governed by,

dp p
L - F = B.6
dt d mvP ; (B.6)

where Fq4 includes the dispersion-related forces,

hiry(V +U)ji, r,2 2 j 2
£y o= (VUi Ty LT IV T (B.7)

N(y) M M jJj?

Its Eulerian frame counterpart, based on Eq. (39) and the equation of motion for p , is

given for completeness,

@p = ry(V+U) pMrp ; (B.8)

rytp)? ry(p_p):

= F
T@p Y v

(B.9)

To obtain Eq. (B.6), the average of ry U, which denes the quantum force associated with

the full wavefunction (x;y;t) = (x;y;t) (y;t), was evaluated and simplied as follows.

36



Let us separate U into four contributions:

U = Uy+ U+ U+ U; (B.10)
Pyl
Ug = mij’ (B.11)
roryjj
U = — B.12
c = W (8.12)
ryij
u = —r— B.1
2Mjj ( 3)
ryi i
_ y .
TG (B.14)
e z Fyj ] ryiii
_ 22 1o _ y . y
N(y)=jifd r = 5— r 5 ;
the rst three terms simplify as:
Z Z .. R
ij2r, U, dx 1 2fy 3 rxiryli 2M
v . i dx
1
[integrate by parts] = IV ( rediryxfd + ryydifxii)dx = 0; (B.15)
z z .
jitryUedx = 1 jjrr, g
C - .
Y ™M 2 v ji 2
_ ryr o F -.!I hi2p J Myl B.16) =
-~ 0 ,\%# i (B.16) 5M
NGl r C 0 (ri)%dx= | hirdis
T y
USL-FT{\‘Z(.H-}O | usery{\lz(v)=0 }
2
Z Z i
jjr,Udx = jj2r dx
~ 1 N ... ryhjrjiy
= jiryJp rydjryjidx = (B.17)
2M | {z }

use ryN (y)=0
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With that Eq. (B.6) is equivalent to

dp— hjryV jix (2r + ry)hjrji? (2r +ry)2 p—
—— =T er r_V'p
dt N(y) M N (y) M M

(B.18)

Appendix C. Time-evolution of a Gaussian wavefunction
in an Ng-dimensional complex quadratic potential

Take an Ng-dimensional Gaussian wavepacket in atomic units (~ = 1),
(x;t) = Noexp( (x xg)Au(x  x)=2+ {pi(x  x¢) + {st+ ¢): (C.1)

where the subscript t indicates functions dependent only on time t. Ny is the initial normal-

ization constant and chosen such that at t = 0 we have ¢ = 0, and is given as

_ det <(Ag)*™* .

0 Ng

(C.2)

The parameters x £ and ps are real Ng-dimensional vectors, describing the wavepacket center
and s; describes the coordinate-independent phase. The nal parameter A; is a complex

matrix with real and imaginary parts:
A=A+ {A: (C.3)
The wavefunction evolves according to the Hamiltonian,

H = %?TM 1P+ V(x); (C.4)
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M is a diagonal matrix of particle masses. V (x) is the complex, possibly, time-dependent

guadratic potential with real and imaginary parts, V,(x) and V;(x),

V(x) = Vi(x) + {Vi(x): (C.5)

The TDSE vyields the following equations of motion for the wavepacket parameters,

dA
{d;= AM A rrTVy; (C.6a)
om Py Al Trvi(xe) (C.6b)
dt
v

Bo ) ALAL V) (C.6c)
% - lzTr A-M 14 Vi(x°) (C.6d)
ds_ Lem t e vk LrroalMm T ow ( 9TAL trvi(x€) (C.6e)
dt 2'p p 2 p :

where r r T V is the (coordinate-independent) Hessian matrix of the potential V.

The total wavefunction energy is,

E=hijH i= i(pC)T M 1pS+ V(x°)+ &Tr A. 'rrTV+K+U; (C.7)

where the rst two right-hand-side terms are the classical kinetic and potential energy of
the wavefunction center, the third right-hand-side term is the potential energy contribution
from wavefunction delocalization. The last two right-hand-side terms K and U are given
below and describe the kinetic energy from the derivatives of the wavefunction phase and
amplitude respectively,

1 1
K := ZTr(A=A< 1A=M 1); u:= 4_Tr(A<M 1): (C8)
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