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Abstract: Robust controllers that stabilize dynamical systems even under dis-
turbances and noise are often formulated as solutions of nonsmooth, nonconvex
optimization problems. While methods such as gradient sampling can handle
the nonconvexity and nonsmoothness, the costs of evaluating the objective
function may be substantial, making robust control challenging for dynami-
cal systems with high-dimensional state spaces. In this work, we introduce
multi-fidelity variants of gradient sampling that leverage low-cost, low-fidelity
models with low-dimensional state spaces for speeding up the optimization
process while nonetheless providing convergence guarantees for a high-fidelity
model of the system of interest, which is primarily accessed in the last phase
of the optimization process. Our first multi-fidelity method initiates gradient
sampling on higher fidelity models with starting points obtained from cheaper,
lower fidelity models. Our second multi-fidelity method relies on ensembles
of gradients that are computed from low- and high-fidelity models. Numeri-
cal experiments with controlling the cooling of a steel rail profile and laminar
flow in a cylinder wake demonstrate that our new multi-fidelity gradient sam-
pling methods achieve up to two orders of magnitude speedup compared to the
single-fidelity gradient sampling method that relies on the high-fidelity model
alone.

Keywords: nonsmooth optimization, multi-fidelity methods, robust control,
linear dynamical systems, H-infinity norm

Mathematics subject classification: 37N35, 37N40, 65K10, 90C30, 90C59

1. Introduction

Robust controllers are a ubiquitous tool to overcome uncertainties in the control of real-
world applications resulting from the gap between mathematical modeling and reality.
Constructing such controllers via minimizing the H,-norm of closed-loop systems is nu-
merically challenging for at least two reasons. First, the optimization objective induced
by Hoo-control leads to a challenging optimization problem due to its nonsmooth and
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nonconvex nature. Second, each evaluation of the objective entails computing the H -
norm, which incurs costs that grow rapidly with the dimension of the state space of the
system model. Gradient sampling methods [20,25,36] can handle the nonsmooth, noncon-
vex objectives underlying H.-control; however, each evaluation of the objective remains
computationally expensive. We introduce multi-fidelity approaches that build on gradi-
ent sampling and leverage hierarchies of low-fidelity models of the system of interest for
speeding up the optimization while still providing convergence guarantees for the high-
fidelity model of the system. Our new multi-fidelity variants of gradient sampling make
finding Ho-controllers tractable for models of systems with high-dimensional state spaces,
where relying on the expensive high-fidelity model alone quickly becomes computationally
prohibitive.

Multi-fidelity methods for optimization have a long tradition, especially in the engineer-
ing community; see, e.g., the survey [56]. Early work on multi-fidelity optimization was
based on trust-region methods [1,5,30,31,60]. Other works use a combination of reduced
and full models in optimization [53,54,57,66] and especially target optimization under un-
certainty, where the objective depends on stochastic auxiliary variables [26,37,38,46,47,55].
For optimization problems with constraints given by partial differential equations (PDEs),
e.g., optimal control problems with smooth objective functions, hierarchies of discretiza-
tions of PDEs have been used for efficient preconditioning [19,30,35,51]. In the context
of uncertainty quantification, warm-starting iterative processes is a common multi-fidelity
approach; see, e.g., [3]. There are also derivative-free multi-fidelity methods [40, 41, 65];
however, these still require a smooth objective function and thus are not well-suited for
nonsmooth optimization problems arising in H.-control.

There is a large body of work on reduced modeling for control and control for large-scale
systems; see, e.g., [8,13,48,59]. The problem of efficiently designing H..-controllers for
large-scale systems has been addressed before from different view points. While in [44] a
new large-scale Hoo-norm computation routine was used to improve performance of opti-
mization algorithms, reduced-order surrogates were instead exploited in [15]. In [12,45],
analytical formulas for (suboptimal) H.o-controllers are used rather than an optimization
algorithm, relating the low-order controller design problem under additional assumptions
to the solution of large-scale sparse nonlinear matrix equations.

The multi-fidelity variants of gradient sampling that we introduce in this work can
cope with nonconvex, nonsmooth objectives and at the same time leverage low-fidelity
models for reducing the optimization costs. In the first multi-fidelity method that we
introduce, we start by optimizing the objective corresponding to a low-fidelity model and
then use the last iterate from the lower level as a starting point for optimization of the
objective corresponding to the next level. This process is repeated until we eventually
optimize with respect to the most expensive, high-fidelity model with a good starting
point. The second variant uses the high-fidelity model to compute the objective function
and its gradient throughout the calculation, but restricts the typically expensive gradient
sampling process to gradients of the lower-fidelity models until the final phase of the
computation. Numerical experiments demonstrate that speedups of up to two orders of
magnitude can be obtained compared to single-fidelity gradient sampling that uses the
high-fidelity model alone.

The paper is organized as follows. We first discuss Hoo-control and gradient sampling
methods in Section 2. We then introduce two new multi-fidelity variants of gradient
sampling in Section 3. We present numerical experiments for both variants on two real-
world applications, controlling the cooling of a steel rail profile and control of a laminar
flow in a cylinder wake in Section 4. Conclusions are drawn in Section 5.
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2. Mathematical preliminaries

This section reviews the concepts of linear state-space systems, robust Ho-controller de-
sign and the gradient sampling method.
2.1. Dynamical systems and feedback controllers
Consider a finite-dimensional open-loop state-space model of the form
Ei(t) = Az(t) + Biw(t) + Bau(t),

C’lcc(t) + an(t) + Dlgu(t), (1)
y(t) = CQQ?(i) + Dglw(t) + Dggu(t),

Q
IS
—~
~
~—
I

where z(t) € R™ are the internal states, u(t) € R™2 the control inputs, w(t) € R™ the
disturbances, z(t) € RP! the performance of the system and y(¢) € RP? the measurements.
The matrices describing the model have corresponding dimensions: E, A € R" "™ By €
Rr*™M - By € R™W™M2 (O € RP1X" Oy € RP2X™ Dy € RP1X™ Dy € RPIX™2 Doy €
RP2X™1 and Dyy € RP2X™2; see, e.g., [32,67]. The system structure of (1) is motivated
by the observation that mathematical models are inevitably idealized and that allowance
must be made for perturbations to the system, either because of its complexity in practice
or because of unpredictable external input. The system (1) therefore has two different
types of inputs: a deterministic signal u that is the output of a controller, and a second
signal w that accounts for modeling errors and random perturbations. Furthermore, (1)
has two outputs, one called y that represents state measurements, typically obtained by
sensors, and a second output z, which may not be measured in practice but represents the
overall performance of the system. We consider (1) without any direct feed-through term,
i.e., Dog = 0, to simplify the exposition. In the general case with Dso # 0, it is described
in [67, Sec. 14.7] how one may first construct a controller K with transfer function K(s)
for the system with Doy = 0 and then obtain the controller for the system with Das # 0
from K (s)(Ip, + DQQK(S))_I. Also, we assume the matrix pencil AE — A in (1) to be
regular, i.e., there exists a A € C such that A\E' — A is invertible, so that (1) has a classical
frequency domain representation in terms of a transfer function.

The goal is to construct a continuous-time, finite-dimensional, feedback controller, which
maps the measurements taken from (1) onto an appropriate control signal, K : y — u. The
controller takes the form of a linear state-space model with

K. ik (t) = Ak (t) + By(t), @)
u(t) = Cxax(t) + Dky(t),

where Ag € R"™K*X"K Bp € R"™*P2 (i € R™2X"K and Dk € R™2*P2, Here, ng € N is the
order of the controller, assumed to be a fixed number that is much smaller than the state-
space dimension n of the system to be controlled, so ng <« n. Note that, in contrast to
the open-loop system (1), the controller (2) does not have a descriptor (mass) matrix Fk;
this is motivated by engineering practice that avoids the use of active algebraic constraints
in the controller. The control loop of (1) is closed by connecting the controller (2) with
the system (1), which yields the closed-loop system G.: w +— z with

3)

| Bete = Acxe + Bew(t),
¢ 2(t) = Cexe + Dow(t),
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where the system matrices are given by

b E 0 4= A+ ByDkCy BaCk
0 Ly’ c Bk Cy Ak |’
By + BoDxD 4
B. = [ 1 27K 21} , Co=[C1+ D12DxCs> D12Ck], W
Bk D2y

e« = D11+ D12oDg Doy

2.2. H, controller design

The requirement for the feedback controller (2) that we consider here is the stabilization
of the closed-loop system (3), i.e., the design of (2) ensures that the closed-loop matrix
pencil sE. — A, is regular and that all of its finite eigenvalues lie in the open left half-plane.
Thus, we define the set of stabilizing controllers as

K ={(Ak, Bk, Ck,Dx) | A € C with det(AE; — Ac) =0 = Re(\) <0}.
Let ||-||#., denote the Hoo-norm, defined for the closed-loop system (3) by

|Gellno == sup  [|Ge(N)]l2,
AEC,Re(N)>0

with the transfer function G.(s) = C.(sE. — Ac) "' B + De, where s € C; see, e.g., [4].
In optimal Hso-control, a controller K € K is sought as a solution to the constrained
minimization problem

in||Ge 740, - 5
min |G|, (5)

The task of Ho-optimal control can be interpreted as finding a stabilizing controller that
minimizes the worst-case amplification of all admissible disturbances.

In this paper, we focus on the case where the open-loop system (1) and, consequently, the
closed-loop system (3), are described by large-scale sparse systems of differential-algebraic
equations. The spectral abscissa of the pencil sE. — A is the real part of its rightmost
finite eigenvalue; we denote this by

a(Ac, E.) := max {Re(\) | A € C with det(AE. — A.)=0}. (6)

The maximum peak of the spectral norm of the transfer function on the imaginary axis is
known as the £..-norm, which is for the closed-loop system (3) given by

1Gellzo = sup||Ge(iw)ll2, (7)
w>0

where i denotes the imaginary unit, and the supremum is over the nonnegative imaginary
axis because the data are real.
Using (6) and (7), the Hoo-norm is

1Gull :{HGCHLOO if a(Ac, Ee) <0,

otherwise.

Now we define our objective function to be minimized as

f(@) = |Gellna (9)
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with the design variable

vec( Ak
T = E € RY where N = n%{ + ngms + pank + pama, (10)
(
defining a controller (2) via the matrices K = (Ak, Bk, Ck, Dx), with the closed-loop
system matrices defining G, in (8) depending on K via (4). It is also convenient to define

the constraint function
h(z) = a(A, Ec), (11)

where again the closed-loop system matrices A. and E. depend on the controller matrices
K = (Ak, Bk, Ck, Dx) via (4). Using this notation, the optimization problem (5) may be
equivalently given as either

min f(z) or m:}gr(l;?@f (@). (12)
This optimization problem is challenging because the Ho,-norm (8) is nonconvex and, at

points & where the supremum in (7) is attained at more than one value of w, nonsmooth.
However, f is locally Lipschitz on the set of stabilizing controllers {x € RY : h(x) < 0}.

2.3. Gradient sampling method

It has been known for decades that the steepest descent method (gradient descent with a
line search) generally fails on nonsmooth optimization problems, typically converging to a
non-stationary (and non-optimal) point where the objective function is not differentiable.
The gradient sampling method is a stabilized steepest descent method devised to overcome
this difficulty. It was presented by Burke, Lewis and Overton in 2005 [25], along with
an extensive convergence theory that was subsequently refined by Kiwiel in 2007 [36].
The algorithm is nondeterministic in the sense that it generates (samples) gradients at
randomly generated points within an appropriately-sized ball around a given iterate. In
this paper, we rely on the detailed description of the method and its convergence theory in
the survey [20]. The main convergence result for Alg. GS of [20] (with specific parameter
choices) is stated as Theorem 6.1 there: Suppose that f is locally Lipschitz on RN and
continuously differentiable on an open set with full measure. Then, with probability one,
Alg. GS is well defined and does not terminate, and generates a sequence of iterates for
which either the function values diverge to —oo, or every cluster point of the sequence
is Clarke stationary for f. Clarke stationarity is a standard measure of stationarity for
locally Lipschitz, nonsmooth functions [18].

The gradient sampling method relies on the computation of the function f and its
gradient Vf at the sequence of iterates generated by the method, using a “gradient
paradigm” [6], as opposed to the“subgradient paradigm” often used for nonsmooth func-
tions, in particular by the “subgradient method”, which is usually very slow. The gradient
paradigm observes that, since locally Lipschitz functions are differentiable almost every-
where by Rademacher’s theorem, and since in practice, it is essentially impossible to verify
whether a nontrivial function f is differentiable or not at a given iterate x, a method can
reasonably compute an approximate gradient at any given point, for example, by ignoring
“ties” in a max function. The idea is that it is only in the limit of the sequence of iterates
that the function is actually not differentiable. Of course, sampled gradients computed at
nearby points in this way may vary greatly, and the gradient sampling algorithm exploits
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this property. These key points are discussed at greater length in the references given
above.

The gradient sampling method has been applied to solve Hoo-norm optimization and
related stabilization problems since it was first introduced [21,22,24]. We follow the same
basic strategy used in [21]: First, in order to find a stabilizing controller for the Ho-
norm optimization problem described in Section 2.2, we apply gradient sampling to the
constraint function h(z) defined in (11); then, once a point z° with h(z") < 0 has been
found, we apply gradient sampling to the Hoo-norm objective f defined in (9), initialized
at 20. If this results in f being evaluated at a non-stabilizing controller, the function value
oo that is returned will result in the controller being rejected by the line search; according
to the gradient sampling convergence theory, as long as f is differentiable at 2, the line
search must eventually return a new point x! with f(x!) < f(2"). The functions f and
h are differentiable almost everywhere (in the former case, almost everywhere on ), and
the formulas for their gradients may be derived from the formulas for the gradients of the
Hoo-norm and the spectral abscissa given in Appendices A and B, respectively.

3. Multi-fidelity gradient sampling

In this section, we introduce two multi-fidelity versions of the gradient sampling method
to design controllers for high-fidelity models for which a hierarchy of cheap low-fidelity
models are available. We first introduce the notation of hierarchies of models in Section 3.1.
Then we define our two new methods: Gradient sampling with multi-fidelity restarts in
Section 3.2 and gradient sampling with multi-fidelity approximate gradients in Section 3.3.

3.1. Hierarchies of models

We consider the situation where there is a hierarchy of L models of the form (1) available.
The accuracy of the models increases with a corresponding index from level 1 to level L,
the most accurate model. We find such a situation, for example, when (1) is given as
spatial discretization of partial differential equations, where the model hierarchy with

levels £ = 1,..., L is due to different refinements of the discretization. The hierarchy of
models gives rise to a hierarchy of objective functions for H.-controller design:
l 4
f (@) = [Gellptee (13)

with £ = 1,..., L. A key point to note is that the dimension N of the vector z in (13)
representing the controller K = (Ak, Bk, Ck, Dk) is independent of the model level /.
Instead of (4), we now have closed-loop system matrices defined by

B0 s Af + BSDkC§  BiCk Bl B!+ BDx DS,
0 Ing|  ~°¢ Bk CY Ax |’ ¢ Bk D, ’
Ct = [Cf + D{,DxCY DiyCk], D= Diy+ DisDDsy,

Ef =

C

where the matrices superscripted by £ are the open-loop system matrices. The correspond-
ing transfer functions of the closed-loop systems are G%(s) = C%(sE! — AY)~'B! 4 DL
Our aim is to find a controller that is optimal with respect to the high-fidelity objective
function fZ, while leveraging the less accurate but cheaper objective functions f¢ on
levels £ = 1,...,L — 1. The objective functions have gradients Vf!,..., Vf¥, which are
increasingly more expensive to compute as £ increases; see Appendix A for the formulas.
Besides hierarchies of discretizations, the model hierarchy may alternatively be obtained
via model reduction techniques. These allow the computation of reasonably accurate,
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cheap-to-evaluate surrogates that can serve as low-fidelity models in our setting. See, for
example, [9,10,16,17,58] for overviews on potential methods, or [12,45] for model reduction
methods in the context of Ho-controller design.

In the following, our starting point is a hierarchy of objective functions f',..., f¥ that
are ordered from cheap to expensive and less accurate to more accurate but we make no
assumptions on where the objective functions originate. It is sufficient to have an oracle
that allows the evaluation of the functions f¢ and their gradients V f* at the design variable
x corresponding to the given controller K. Besides hierarchies of objective functions, we
must also at least implicitly consider hierarchies of constraint functions h‘(z). We return
to this topic below.

3.2. Restarted multi-fidelity gradient sampling (RMF-GS)

Our restarted multi-fidelity gradient sampling (RMF-GS) method uses controllers obtained
with lower fidelity models to warm-start the optimization for controllers of higher fidelity
models.

3.2.1. Multi-fidelity restarts

The proposed RMF-GS approach iterates over the levels £ = 1,..., L and, at each level ¢,
solves an optimization problem of the form (12) with the objective function f¢, where the
initial guess is the solution of the previous level. So, letting z¥~1 denote the final iterate
at level £ — 1, the initial guess at level £ > 2 is z%-1. The motivation for RMF-GS is
that the objective functions become progressively more accurate with increasing level £,
and thus, the solution z*¢-1 at the previous level £ — 1 should be a good starting point at
the current level ¢, implying that fewer gradient sampling steps are necessary than with a
generic initial guess. Hence, the aim is to take many iterations on lower levels where the
initial starting points are poor but where objective and gradient evaluations are cheap,
while taking fewer of the expensive evaluations on higher levels as the starting points get
closer to a minimizer of the high-fidelity objective function f~.

For any level ¢, the function f* is monotonically decreasing on {z*} as k increases from
ke_1 to ky. Note, however, that for ¢ < L, there is no guarantee that the high-fidelity
objective fI is lower at z*¢ than it was at ¥-1. Indeed, it might not even be finite, since
the objective function is finite only if the closed-loop system is stable, and even if this is
the case for the model at one level, it might not be at another level.

3.2.2. Algorithmic description of RMF-GS

The new method is summarized in Algorithm 1. The main difference from the original
(single-fidelity) gradient sampling method [20, Alg. GS] is the new outer loop starting in
Line 2 of Algorithm 1, which iterates over the available levels £ = 1,..., L. Lines 7 to 12
consist of an inner iteration describing the single-fidelity gradient sampling method using
the objective function f¢ and its gradients V f¢ at the current level. This has three parts:

(a) In Line 8, sampling gradients uniformly from B(z¥,¢;), the 2-norm ball around the
current iterate z* with radius €.

(b) In Line 9, computing the vector g*, which is easily done by standard software for
convex quadratic programming, observing that the convex hull of vectors v', ... ,v? €
RY is
{alvl—i—...—i—aqvq o +...+ag=1,0>0,...,04 ZO}.
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Algorithm 1 Restarted multi-fidelity gradient sampling (RMF-GS).
Input: Initial point 2° € RV,
sample size ¢ > N + 1, initial sampling radii €, > 0,
initial stationarity targets vy > 0,
termination tolerances e/ opy € (0,€00), Veopt € (0, 2,0),
reduction factors 6y € (0,1),60,, € (0,1), and
line search parameters 8y € (0,1), v, € (0,1), for ¢ =1,..., L.
Output: Approximation z¥ € RY to a minimizer of f~.
1: Initialize k = 0.
2: for /=1to L do

3: if ff(2*) is not finite then
4: Apply stabilization step for f¢ to z*.
5: end if
6: Set vp41 = 10 and €441 = €/0.
T repeat
8: Independently sample {1 ... %%} uniformly from B(z*, e).
9: Compute g* as the solution of mingcge.r 3gl|3, where
Gt*F = conv {Vfé(xk), Vfg(a:k’l), e Vfg(xk’q)} )
10: Compute 21, e, 1, v441 using Algorithm 2 with inputs
z®, g8, £ €, Uk, 00,1 Ot €0.0pts Ve,opts Bes Ve
11: Increment k + k + 1.
12: until (zF == 2 1) and (e, == ¢,_1) and (v == v}_1).
13: end for

As explained in [20, Sec. 6.1], the vector —g” is not only a descent direction for 1t

but more importantly it is a stabilized or robust descent direction, which allows for
longer steps to be taken in the line search in the next part.

(¢) In Line 10, the computation of the gradient sampling step as described in Algo-
rithm 2, which includes checking the convergence criteria, updating the algorithm
parameters accordingly, and, if the termination criteria are not yet met, updating
the current iterate using a line search along —g".

The inner iteration for a given f! terminates when the gradient sampling step has no
effect, i.e., if the new iterate is the same as the previous one and the sampling radius
and stationarity target did not change. Looking at Algorithm 2, we see that this can
only occur if the algorithm satisfies the convergence criteria specified by the parameters.
According to the gradient sampling theory, this must happen eventually; see [20, Cor. 6.1],
taking into account the initialization of the parameters in Algorithm 1. In practice, it is
necessary to set a limit on the number of steps in each inner iteration, both because of the
possible effects of rounding errors and to limit the overall computation time. Likewise,
in theory, the line search in Line 8 of Algorithm 2 must terminate in a finite number of
steps, although in practice, because of rounding errors, a limit must be placed on this and
the line search terminated if this limit is reached. Whichever way the iteration for level
¢ < L terminates, the method continues with the next model level in the outer loop. In
this case, the current iterate ¥ is the final iterate z*¢ of level £ < L and the initial iterate
of level £ + 1.
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Algorithm 2 Gradient sampling step.

Input: Iterate € RY, vector g € RV, objective function f,
current sampling radius € and stationarity target v,
reduction factors 0. and 0,, termination tolerances €qpy and vopt, and
line search parameters § and +.
Output: Updated iterate z, sampling radius € and stationarity target o.
L if (|gll2 < vopt) and (e < €opt) then
Set v =v,é=cand t =0.
else
if ||g||2 < v then
Set o = 0,v, é = 0.c and £ = 0.
else
Set  =v and € = e.
Set t = max {t € {1,7,7%,...} : fx —tg) < f(x) — Bt[|g||3}
9: end if
10: end if
11: Update & = = — tg.

The algorithm allows for its parameters to depend on the level £ so that adjustments for
each level are possible. The last step of the outer loop in Algorithm 1 is gradient sampling
with the objective function of interest fL, i.e., each step of the inner loop in Algorithm 1
is as expensive as each step of classical single-fidelity gradient sampling. In terms of
global computational costs in comparison to the single-fidelity method [20, Alg. GS], we
can potentially save function as well as gradient evaluations using Algorithm 1, under
the assumption that the computed approximations of minimizers on each level are indeed
good initial guesses for optimization on subsequent levels.

Algorithm 2 implements the update step of gradient sampling and is the same as in
Alg. GS in [20], except for the differentiability check of the objective function f at the
next iterate . This check is needed in theory in order to be able to rigorously state the
convergence results in [20], but in practice, with the inevitable rounding errors incurred
in floating point arithmetic, it makes little or no sense to attempt it. As already noted,
our objective functions are differentiable almost everywhere, and while encountering a
point where the function is actually not differentiable is not technically a probability zero
event, it may be considered extremely unlikely in practice. This issue is discussed further
in [20, Sec. 6.4.2].

3.3. Approximate multi-fidelity gradient sampling (AMF-GS)

A valid criticism of Algorithm 1 is that although our primary interest is in minimizing the
highest fidelity model f%, this does not enter the computation until the gradient sampling
algorithm has been run on all lower fidelity objectives f', f2,..., fL=1. Although we
justified this by arguing that the final iterate for one level should be a good starting
point for the next level, an alternative viewpoint is that we might want to involve the
highest fidelity model f% at earlier stages of the computation. This can be done efficiently
by using f¥ as the objective function from the beginning, but replacing the expensive
gradient sampling of f* by gradient sampling of the cheaper models f!, f2,..., f£=1
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Algorithm 3 Approximate multi-fidelity gradient sampling (AMF-GS).

Input: Initial point 2° € RV,
sample size ¢ > N + 1, initial sampling radii €, > 0,
initial stationarity targets vy > 0,
termination tolerances e/ opy € (0,€00), Veopt € (0, 2,0),
reduction factors 6y € (0,1),60,, € (0,1), and
line search parameters 8y € (0,1), v, € (0,1), for ¢ =1,..., L.
Output: Approximation z¥ € RY to a minimizer of f~.
1: Initialize k = 0.
2: if fL(20) is not finite then
3: Apply stabilization step for f¥ to zV.
4: end if
5: for /{=1to L do
6 Set vp41 = 10 and €441 = €/0.
T repeat
8 Independently sample {z*1, ... 2%} uniformly from B(z*, eg).
9 Compute g* as the solution of mingcge. 3 gl|3, where

Gb* = conv {VfL(a:k), ViR, ... ,er(xk’q)} )

10: Compute 21, e, 1, v441 using Algorithm 2 with inputs
mka gka fL7 €ky Vk, eﬁ,ea 9(,1/3 €¢,0pt> V¢,0pt>s Be, Ye-

11: Increment k <+ k + 1.

12: until (zF == 2 1) and (e, == ¢;_1) and (v == v}_1).

13: end for

3.3.1. Multi-fidelity ensembles of gradients

In the AMF-GS method, we retain the idea of an outer loop over all L levels, but, unlike
in the RMF-GS method, we involve the high-fidelity function f* at every stage of the
outer loop. For this reason, we enforce the property that the high-fidelity function f¥ is
monotonically decreasing on {z*} as k increases. However, although we evaluate f at
every iterate z¥, and in the line search that produces these iterates, it is only at the final
level L that we actually sample ¢ > N + 1 gradients of the high-fidelity function fZ. At
all earlier levels, we sample gradients of lower fidelity functions instead. Thus, we replace
the definition
G4* = conv {Vfg(a:k), Vi), Vfg(mk’q)}

in Line 9 of Algorithm 1 by

G4 = cony {VfL(xk), VY, sz(xk’q)} .

3.3.2. Algorithmic description of AMF-GS

The AMF-GS method is summarized in Algorithm 3. The basic structure of the algorithm
is the same as that of Algorithm 1. However, a major difference between them is that
in AMF-GS, we are minimizing the high-fidelity objective function f¥ at all levels ¢ =
1,...,L, while in RMF-GS, at level ¢, we minimize the objective f¢. Consequently, each
step of level ¢ of AMF-GS (Algorithm 3) is computationally more expensive than the
corresponding step in RMF-GS (Algorithm 1). However, for £ < L, it is less expensive than
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a step at level L of either method due to the use of cheaper-to-evaluate approximations in
the gradient computations of the sampled evaluation points in Line 9 of Algorithm 3. A
key point, however, is that at the current iterate =, we use the gradient of the high-fidelity
objective function f% in the definition of G“*, regardless of the level £ in the outer loop.
This guarantees that —g” is a descent direction for f¥, although how “robust” of a descent
direction it is depends on how well the sampled gradients of f¢ approximate gradients of
fE. If the approximation is not very good, the result may be that the line search needs
to take a very short step to obtain a reduction in f¥ along —g¢*. The main differences
between Algorithms 1 and 3 are the definition of G4 and that the function we pass to
Algorithm 2 is f¢ in the first case and f in the second case. Note that both methods,
Algorithms 1 and 3, boil down to the classical (single-fidelity) gradient sampling method
from [20, Alg. GS] in the last step of each outer loop, so the rationale for both methods is
ultimately to provide a good starting point for this final optimization at level L.

3.4. Stabilization

As explained in Section 2.3, in order to obtain initial points for minimization of the H -
norm objective, it may be necessary to first apply gradient sampling to the stabilization
constraint function. Thus, in Algorithm 1, in order to initiate gradient sampling optimiza-
tion of f¢ at step £ of the outer loop, it may be necessary to first apply gradient sampling
to the corresponding constraint function h. This applies not only at level 1, but at higher
levels as well, because there is no guarantee that at level £ > 1, the function f* is finite
at the starting point z*, even though f¢~! is necessarily finite there. However, we note
that this stabilization step at level £ > 1 was never needed in our computational results
presented in Section 4. In contrast, for Algorithm 3, at most one initial stabilization is
necessary, to obtain a point z° where f* is finite.

3.5. Theoretical guarantees

Provided step ¢ in the outer loop of Algorithm 1 is initiated at a point where f* is finite and
differentiable, and that f* is also differentiable at subsequent iterates (see the discussion at
the end of Section 3.2), the convergence theory given in [20] states that, with probability
one, using exact arithmetic, and in the absence of maximum iteration limits, eventually
the convergence criteria imposed by the parameters €;opt and vy ope must be satisfied. It
is important to note that these stopping criteria, namely

”g&kZHQ < Vg opt and €0,k < €/4,0pt

essentially provide an approximate Clarke stationarity certificate. More precisely, if the
parameters €/ opt, and vy ot Were set to zero, then all cluster points of the resulting sequence
of iterates must be Clarke stationary for f (see [20, Thm. 6.1]), which amounts to a first-
order optimality condition given the Clarke regularity of f* [25, p. 753]. However, for
¢ < L, no such statement can be made about step ¢ in the outer loop of Algorithm 3,
because the gradients sampled are not gradients of fZ. In contrast, the statement can be
made about the final step ¢ = L in the outer loop of Algorithm 3.

4. Numerical experiments

In this section, we present results of applying the new multi-fidelity gradient sampling
algorithms to two applications. We start by introducing two special cases of the general
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system (1) that we will use. We then describe the experimental setup, and subsequently
present the computational results.

4.1. Two open-loop systems

We test the new methods for the design of H..-controllers on two special instances of
open-loop systems (1) that are motivated by applications discussed subsequently. First,
we consider systems of the form

(14)

In (14), the disturbances are separated into two independent parts w1 (t) and wo(t), where
w1 (t) has the same influence on the system dynamics as the controls and ws(t) disturbs
the measurements taken for the controller. Also, the performance of the system consists
of the non-disturbed measurements taken for the controller and the control signal itself.
Note that an open-loop system of the form (14) is known in the literature as normalized
linear-quadratic Gaussian (LQG) formulation; see, e.g., [12,45]. We may write (14) in the
form (1) by defining

B.—[B 0], B,-B, Cl:m’ Gy =0,
0

D1, =0, D12=[I }, Dy1 = [0 I,], Do =0.
ma

As a second instance of (1), we consider

Ei(t) = Az(t)+ Biw(t)+ Boult),
Z(t) = ng(t) + Diou(t), (15)
y(t) = CQ.%'(t) + Dglw(t).

Due to the nature of the benchmark problems that we use, the performance and control
measurements are based on the same state observations, i.e., we have C; = Cs in (1).
The feed-through term Djq is taken as the first columns (mg < pg) or rows (mg > p2) of
the max(msg, p2)-dimensional identity matrix, and the feed-through term Do as the first
columns (m1 < pg) or rows (m; > pa) of the max(mj, p2)-dimensional identity matrix.

For the controller design in both cases, we consider only the problem formulation of
the controller (2) without a feed-through term, i.e., Dx = 0, which is in line with known
analytically derived formulas for the construction of (suboptimal) H-controllers for (14)
and (15); see, e.g., [12,29].

4.2. Experimental setup

We performed our experiments using two publicly available data sets of spatial discretiza-
tions of PDEs [64]: heat flow on a steel bar profile (rail example) and laminar fluid flow
behind a cylinder obstacle (cylinder example). The dimensions of the discretizations and
the corresponding open-loop systems are given in Table 1. For the cylinder example, the
data set provides three different discretizations. For the rail example, the data set provides
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Table 1: Properties of models used in numerical experiments.

rail example cylinder example
Discretization levels ¢ =1 n = 109 n =6618
and state dimensions £ = 2 n =371 n = 10645
(=3 n =1357 n = 22060
=4 n=>5177 —
{=5 n = 20209 —

Inputs system (14) my; =13, me=7 m; =14, my =6

system (15) m; =3, mg =14 myp =3, myg =3

Outputs system (14) p; =13, ps =6 p1=14,p =8
system (15) p; =6, p2 =6 p1=38,p2=28

nine different discretizations, of which we chose to use the first five, which allowed us to ob-
tain a sufficiently accurate approximation while keeping computational costs managable.
We set nk, the order of the controller, to 2 in all the experiments.

In our experiments, we set the parameters of the multi-fidelity gradient sampling algo-
rithms as shown in Table 2. While the reduction factors and the line search parameters
were set to default values that do not depend on the discretization level, we chose the
initial sampling radii and stationarity targets to decrease with the increasing model level.
The rationale for these choices is that the multi-fidelity gradient sampling algorithms are
designed with the idea that final iterates of the optimization on one level should provide
good starting points for the next level, and that as the level increases it makes sense to
set more demanding termination criteria. Note that we set iteration limits on each level
of the multi-fidelity algorithms. These values are varied with the problem and are listed
in the column headed “Max. Iters.” in the tables that appear below. In the tables, the
point z*¢ denotes the final iterate at level £. In the case of the rail example, we steadily
decrease the maximum number of allowed iterations per level as the computed iterates
approach a minimizer of the highest fidelity objective. In the case of the cylinder example,
we observed some stagnation in the lowest fidelity objective for high maximum iteration
numbers, perhaps resulting from a mismatch in the approximation to the highest fidelity
objective. Therefore, we chose here a smaller maximum iteration number than for the sec-
ond level. The number of sampled gradients for all methods and in all problem instances
is set to ¢ = N + 2, where we recall that N, the number of optimization variables, is given
by (10). The resulting numbers are listed in Table 3. All methods are initialized with a
randomly generated controller based on the same random seed, which is then stabilized
by a gradient sampling method applied to the constraint function (11).

We compare RMF-GS and AMF-GS to the single-fidelity gradient sampling method
from [20, Alg. GS] applied directly to the high-fidelity objective function f%, denoted
subsequently as HF-GS. We compare the results for the different methods by comparing
the evolution of the high-fidelity objective fI on the iterate sequence {z*}. In the case
of RMF-GS, which does not access f until its final outer loop, we computed f=(2*) a
postertori.
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Table 2: Algorithm parameters used in numerical experiments.

HF-GS RMF-GS AMF-GS
Init. sampling radii, €y = 0.1, e10=v10=0.1 €10 =v10=0.1
stationarity targets 19 = 0.1 €20 = 0 = 0.01 €20 = 12,0 = 0.01
€30 = v3,0 = 0.001 €30 = v3,0 = 0.001
€10 =v40=10"1 €140 =40 = 1071
€50 =vs50 = 107" €50 =vs0 =101
Termination tol.  €opy = 1074, €l,opt = V1,opt = 10~ €1,0pt = V1,0pt = 0.01

—4 —4

Vopt = 10 €2,0pt = V2,0pt = 10
_ _ —4

€3,0pt = V3,0pt = 10
—4

€4,0pt = V4,0pt = 10

— _ —4
€5.0pt = V5,0pt = 10

€2 opt = V2,0pt = 0.001
_ _ —4
€3,0pt = V3,0pt = 10
—4
€4,0pt = V4,0pt = 10

_ _ —4
€5.0pt = V5,0pt = 10

Reduction factors 6. = 0.1, 0pe =00, =0.1 Opc =00, =0.1
» =0.1 for{=1,...,L for/=1,...,L
Line search = 1074, By =10"% By =10"%
v=0.5 Y = 0.5 Y = 0.5
ford=1,...,L ford=1,...,L

Table 3: Number of sampled gradients per problem instance.

rail example

system (14)

cylinder example

system (15) system (14) system (15)

# sampled gradients ¢ 32 26 34 24

For each problem instance that we solve, since we do not know the minimal value of f,
it is convenient to define

fuin = min (f*(zgp.as), f* (erMP-G8): £ (@ AMP-GS)) -

where the three quantities on the right-hand side are respectively the minimal values of
f¥ found by the three different methods. Then, in the figures below, for each problem
instance we show two different plots of the evolution of fZ(2*). In the plots on the left,
the vertical axis shows the values of f¥ computed by each of the three methods, with
different symbols indicating the discretization level, i.e., the index of the outer loop in the
case of RMF-GS and AMF-GS. For HF-GS, only the highest fidelity discretization symbol
is used. In the plots on the right, the vertical axis shows the relative error

fL(xk) - fmin
fmin ’
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Figure 1: Rail example with formulation (14): To reach the final objective function value
found by HF-GS, RMF-GS achieves a speedup of 452 and AMF-GS achieves a
speedup of 30 in comparison. Additionally, RMF-GS and AMF-GS ultimately
obtain lower objective function values than those found by using only the high-
fidelity model in HF-GS.

using fmin as our best estimate of the true minimal value. In both cases, the horizontal
axis shows the running time in hours.

The experiments were run on compute nodes of the Greene high-performance com-
puting cluster of the New York University using 16 processing cores of the Intel Xeon
Platinum 8268 24C 205W CPU at 2.90 GHz and 16 GB main memory. We used MAT-
LAB 9.9.0.1467703 (R2020b) running on Red Hat Enterprise Linux release 8.4 (Ootpa).
For the single-fidelity gradient sampling method, we used the implementation in HANSO,
Hybrid Algorithm for Non-Smooth Optimization, version 3.0 [49]. The new multi-fidelity
codes are also based on this. All the examples discussed below, except the first two levels
of the rail example, use MATLAB’s sparse data structure. For the computation of the
Hoo-norm we employ the normTfMaxPeak and normTfPeak routines from ROSTAPACK
(RObust STAbility PACKage), version 3.0 [43]; see also [14] for the implemented algo-
rithms. As normTfPeak does not do a stability check, we implemented this using MAT-
LAB’s eigs function. The source code, data and results of the numerical experiments are
open source/open access and available at [64].

4.3. Optimal cooling of a steel rail profile

We consider the heat flow on a two-dimensional cross section of a steel bar for optimal
cooling; see [61] for further details and [62] for the data set. The underlying heat equation
is discretized on multiple grid levels using finite elements. The resulting dimensions of the
two open-loop systems (14) and (15) can be found in the rail example column of Table 1.

We first consider the example formulation (14). The results are shown in Figure 1
and Table 4. Even a quick glance reveals that both new methods are faster and more
accurate than the single-fidelity method HF-GS, with RMF-GS faster and more accurate
than AMF-GS. Indeed, already level 1 of the RMF-GS method obtains in less than 0.1h
about the same value for f* as the final value found by HF-GS after 45h. Furthermore,
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Table 4: Rail example with formulation (14): The table reports the wall-clock time of
the computations, the number of iterations taken versus the maximum allowed
number and the objective function values corresponding to the low-fidelity models
(in case of RMF-GS) and high-fidelity models.

Time (h) Tters./Max. Tters.  ff(zF¢)  fL(zke)

HF-GS 45.895 120 / 120 — 0.464284
RMF-GS level 1 2.5594 5000 / 5000 0.440143 0.440511
level 2 3.3656 1000 / 1000 0.440312 0.440399

level 3 8.5062 500 / 500 0.440365 0.440375

level 4 7.4379 100 / 100 0.440372 0.440372

level 5 17.113 50/ 50 — 0.440370

38.982 6650 / 6650 — 0.440370

AMF-GS level 1 0.7683 66 / 5000 — 0.467422
level 2 13.901 1000 / 1000 — 0.449315

level 3 13.983 500 /500 — 0.445053

level 4 8.8870 100 /100 — 0.444489

level 5 16.805 50/ 50 — 0.444229

54.363 1716 / 6650 — 0.444229

although the plot on the left side of Figure 1 suggests that RMF-GS stagnates, the plot
on the right side shows that this is not the case, with additional digits of accuracy steadily
attained as the hierarchy level of RMF-GS is increased. Overall, RMF-GS achieves a
speedup of 452 compared to HF-GS to reach the same high-fidelity objective function
value. AMF-GS achieves a speedup of 30 compared to HF-GS. For all methods, the
stabilization of the initial guess took only a single step of gradient sampling for the spectral
abscissa constraint function. Even for Algorithm 1, no subsequent stabilization steps were
required.

The second experiment that we consider for this application is for formulation (15). The
disturbances are set to be the lower boundary temperatures and the controls are restricted
to the boundary temperatures of the upper segments; see also [11, Sec. 3.2] where the same
setup is used. The results are shown in Figure 2 and Table 5. In this case, although the
results in absolute terms are not as much in favor of the new methods as they were for
the previous example, in relative terms, RMF-GS is much better than either of the other
methods, and AMF-GS gives much better results than the single-fidelity method until after
10h of computation. RMF-GS and AMF-GS reach the same level of the final objective
function value of HF-GS in about 1.5h and both provide at the end of the iterations a
smaller objective function value than HF-GS. All methods needed only a single gradient
sampling step to stabilize the closed-loop system at initialization.
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Figure 2: Rail example with formulation (15): To reach the final objective function value
found by HF-GS, RMF-GS achieves a speedup of 17 and AMF-GS a speedup of

2 in comparison.

4.4. Robust stabilization of laminar flows in a cylinder wake

We now consider the stabilization of laminar flow in a two-dimensional wake resulting
from a circular obstacle. The flow is modeled as the linearization of the Navier-Stokes
equations at Reynolds number 90 around the unstable non-zero steady state; see [7] for
details. The spatial discretization is obtained with Taylor-Hood finite elements resulting in
open-loop systems of the forms (14) and (15) described by differential-algebraic equations,
i.e., the F matrices are singular. The model matrices have been obtained in differently
sized discretizations using the codes from [7]. The resulting dimensions of the systems are
given in the cylinder example column of Table 1.

We first consider the formulation (14). The results of the computations can be found
in Figure 3 and Table 6. The visible gaps in the lines of RMF-GS and AMF-GS in
Figure 3 result from the amount of computation time needed to switch between levels and
to perform the first optimization step on the next level. The RMF-GS method provides
the lowest final objective function value of all methods within about the same runtime
as HF-GS. AMF-GS converges in less than half of the runtime than that of RMF-GS
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Table 5: Rail example with formulation (15): The table reports the wall-clock time of
the computations, the number of iterations taken versus the maximum allowed
number and the objective function values corresponding to the low-fidelity models
(in case of RMF-GS) and high-fidelity models.

Time (h) Tters./Max. Tters.  ff(zF¢)  fL(zke)

HF-GS 18.085 120 / 120 — 0.198720
RMF-GS level 1 1.5963 5000 / 5000 0.197222 0.197473
level 2 2.6002 1000 / 1000 0.195428 0.195475

level 3 4.2480 500 / 500 0.194404 0.194740

level 4 3.6196 100 / 100 0.194148 0.194543

level 5 7.3114 50/ 50 — 0.194028

19.375 6650 / 6650 — 0.194028

AMF-GS level 1 1.2626 86 / 5000 — 0.200531
level 2 3.4359 69 / 1000 — 0.198870

level 3 3.8725 29 /500 — 0.198732

level 4 0.2885 1/ 100 — 0.198732

level 5 8.1653 50/ 50 — 0.198707

17.043 235 / 6650 — 0.198707

and HF-GS but to a different objective function value than the one found by the other
2 methods, higher by a factor of about 1.0058. AMF-GS finds a good approximation
to a stationary point already for £ = 1, which cannot be improved further by taking
more accurate gradient sampling steps. Table 6 shows exactly this with its reported
numbers of iterations since for ¢ = 2, only two steps are performed (one to decrease the
target tolerances of the algorithm and one to verify that no better point can be found)
and only one step for £ = 3, which just confirms that the approximate stationary point
cannot be improved using the given target tolerances. However, this point appears to
be approximating a local minimizer, as is indicated by the other two methods obtaining
smaller objective function values. An interesting point to observe here that we did not
see earlier is that for RMF-GS, the high-fidelity objective function value f¥(x*) is not
monotonically decreasing as k increases. Particularly between 5 and 15 h, the high-fidelity
function value f¥ increases. This indicates a mismatch in the approximation of the high-
fidelity model by the low-fidelity model. Such convergence behavior cannot occur for
AMF-GS, which directly optimizes the high-fidelity objective function f”. Indeed, in the
region between 10 and 15 h, the objective function values obtained by AMF-GS are smaller
than for RMF-GS and HF-GS. However, when the discretization is refined, RMF-GS
overtakes AMF-GS and eventually obtains a significantly better result. As previously, all
three methods needed only a single gradient sampling step to stabilize the initial controller.

Finally, we consider the formulation (15) for the cylinder example. The original controls
of the benchmark example are modeled to steer the flow velocities in horizontal and vertical
directions behind the circular obstacle. We consider only the first half of these controls
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Figure 3: Cylinder example with formulation (14): AMF-GS requires less than half of the
runtime time of HF-GS to converge but it converges to a different objective
function value, higher by a factor of about 1.0058. RMF-GS finds the lowest
final objective function value of all three methods.

to introduce disturbances into the system, which is, for example, the case when control
units are defective. The second half of the controls remain as given for the design of
feedback controllers. The results for this example are shown in Figure 4 and Table 7.
As earlier, RMF-GS performs much better than AMF-GS, which in turn performs much
better than HF-GS, obtaining lower values of f% in less runtime. It requires AMF-GS 10 h
more computation time than RMF-GS to reach a value of ¥ that agrees with RMF-GS to
two digits. Compared to the final objective function value of HF-GS, AMF-GS performs
around 2 times faster than HF-GS and RMF-GS is around 4 times faster than HF-GS.
For all three methods, only a single gradient sampling step is necessary to stabilize the
initial guess for the controller.

As an alternative to the relatively expensive gradient sampling method, we also experi-
mented with using the BFGS method, which has proved very effective in other nonsmooth
optimization applications [28,39,50]. However, we found that, particularly for the cylin-
der example, the behavior of gradient sampling was more consistent and reliable, perhaps
reflecting its very satisfactory convergence theory, which is not shared by BFGS.

5. Conclusions

We have introduced two multi-fidelity gradient-sampling approaches for the robust control
of expensive, high-fidelity models that leverage low-cost, low-fidelity models for speedup.
The numerical experiments demonstrate that speedups of several orders of magnitude
can be achieved compared to a single-fidelity approach that uses the high-fidelity model
alone. Furthermore, our RMF-GS (Restarted Multi-Fidelity Gradient Sampling) method,
which does not access the highest fidelity model until the final phase of the computa-
tion, consistently outperforms our AMF-GS (Approximate Multi-Fidelity Gradient Sam-
pling) method, which uses the high-fidelity model throughout the computation, using
lower fidelity gradients in the sampling step. One might have expected the opposite, since
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Table 6: Cylinder example in formulation (14): The table reports the wall-clock time of
the computations, the number of iterations taken versus the maximum allowed
number and the objective function values corresponding to the low-fidelity models
(in case of RMF-GS) and high-fidelity models.

Time (h) Tters./Max. Tters.  ff(zF¢)  fL(zke)

HF-GS 86.390 50 / 50 — 1.174923
RMF-GS level 1 12.552 40 / 40 1.399568 1.298534
level 2 33.007 50 / 50 1.152272 1.153551

level 3 36.802 20/ 20 — 1.137206

82.360 110 / 110 — 1.137206

AMF-GS level 1 26.924 35/ 40 — 1.181741
level 2 7.1769 2/ 50 — 1.181741

level 3 3.7238 1/ 20 — 1.181741

37.852 38 / 110 — 1.181741

AMF-GS monotonically reduces the high-fidelity objective function on the sequence {x*}.
However, as the cylinder example demonstrated (see Figure 3), even when RMF-GS fails
to reduce the high-fidelity function on a lower level of optimization, it can still recover
when it continues to the next level of optimization. In fact, its robustness seems to reflect
its stronger convergence properties. As explained in Section 3.5, the convergence guar-
antees of the gradient sampling algorithm apply at every level of the RMF-GS method,
while, because of the approximate gradients used by AMF-GS, they apply only at the
final level of AMF-GS, which, in a sense, means that its convergence guarantees are no
stronger than those of HF-GS. One could argue that the consequence of this is that the
result of optimization on one level of RMF-GS really does provide a good starting point
for optimization at the next level; the same argument cannot be made for AMF-GS.

An interesting question that we leave for future work is what convergence guarantees one
might be able to derive for a variant of RMF-GS where the discretization level increases
without bound so that it asymptotically approximates a limit objective function that is
computationally intractable. Such a situation can be found when the dynamical system
stems from a discretization of an underlying partial differential equation and the limit ¢ —
oo means driving the mesh width to zero to asymptotically approximate the continuous
solution of the partial differential equation and its corresponding objective function. Such
a setting is considered in the context of uncertainty quantification in, e.g., [27,33,52].
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A. Gradients of the H.-norm of the closed-loop system

For the use of gradient sampling in H.-controller design, the gradients of the Ho,-norm (8)
of the closed-loop system (3) with respect to the controller matrices from (2) are needed.
These are well-known in the Hso-control community, and, for the case of an identity
descriptor matrix in (1), i.e., F = I, they can be found, for example, in [42]. We
summarize these gradients here for completeness and include also the case of descriptor
matrices as in (1). We are concerned with computing the gradients at a given design
variable given by (10). We need to assume that, given these controller variables, the
supremum in (7) is attained only at one finite point wy_, with ||Gc(iwy.)|l2= [|GellHo
and that the largest singular value of G¢(iwy_ ) is simple. Then the Hoo-norm of the
closed-loop system (3) is indeed differentiable and its gradients with respect to the closed-
loop system matrices are given by

- (16)
Vel Gellp = wBIZ7H, Vol Gellpn = ud®,

where Z = iwy_ E.— Ac, and u and v are the right and left singular vectors corresponding
to the largest singular value of G.(iwy_ ). Note that the gradient with respect to E. is
not needed since it does not involve any of the controller matrices, i.e., it contains no
optimization variables for which the gradients need to be evaluated. However, the matrix
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Table 7: Cylinder example with formulation (15): The table reports the wall-clock time of
the computations, the number of iterations taken versus the maximum allowed
number and the objective function values corresponding to the low-fidelity models
(in case of RMF-GS) and high-fidelity models.

Time (h) Tters./Max. Tters.  ff(z®¢)  fE(zh)

HF-GS 35.803 50 / 50 — 0.725212
RMF-GS level 1 5.1153 40 / 40 0.786143 0.787230
level 2 13.262 50 / 50 0.696799 0.696859

level 3 14.795 20 / 20 — 0.681304

33.172 110 / 110 — 0.681304

AMF-GS level 1 13.169 40 / 40 — 0.817351
level 2 15.055 50 / 50 — 0.702572

level 3 15.415 20/ 20 — 0.685316

43.663 110 / 110 — 0.685316

E. plays a role in (16) in terms of the frequency-dependent matrix pencil Z. Using the
chain rule of differentiation we can directly obtain the requested gradients with respect to
the controller matrices from (16). Additionally applying realification to the single terms,
since we are only interested in the design of controllers realized by real-valued matrices,

yields the following results:
VallGell#

0
cre(fo mvatee.[]).
nK

In
= Re <[0 L) Va | Gellrn [o] 0;)

+ Re ([O Ty | VBCIIGCHHOOD;) ;

0
=re (Bt 0} Valcibe. [ ])
nK

| Re (DIzvcchcHHm [

In
= Re <B§ (I 0] Va llGellro [0] 0})

)

+ Re (B [In 0] Vi, |Gelln.. DF,)

I
+ e (DL G |] )

+ Re (DLVp.|Gelln. DL )

Given the Hoo-frequency point wyy_, the gradients in (17) can be cheaply obtained. This
is especially the case when A. and E. are large-scale and sparse by using appropriate
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factorizations of the matrix products above. There have been recent advances in the
computation of the L,-norm of large-scale sparse systems [2, 14], which also yield an
efficient approximation of wy__ .

B. Gradients of the spectral abscissa for initial stabilization

The gradients of (6) with respect to the controller matrices (2) are well known in the
literature for the standard system case, i.e., Ec = L qn,; see, for example, [23] and the
implementation in [42]. Let the design variable be given by (10). We need to assume that
the spectral abscissa of the corresponding matrix pencil (Ac, E.) is attained at only one
eigenvalue in the closed upper half of the complex plane, say A\, with Re(\,) = a(A., E.),
and that this eigenvalue is simple. Then the spectral abscissa is indeed differentiable, with
the gradient, with respect to A¢, given by

Va.oAe, Ee) = wol,

where v is the right generalized eigenvector of A, and w is the corresponding left eigen-
vector, normalized with respect to the inner product with E., i.e., such that

wHECU = 1.

Note that we do not need the gradient with respect to E. since this matrix does not
contain any matrix of the controller (2). Applying the chain rule and realification of the
resulting terms, since we are only interested in controllers with real-valued matrices, yields
the gradients of interest given by

Vaca(Ae, E) = Re <[o L] Va0 A, Ee) [IS D ,

K

Vi a(Ae, Eo) = Re <[o L] V.o Ac, Eo) [ﬂ c‘{) ,

Veoga(Ae, Ee) = Re <B§ (I, 0] Va,a(Ac, Ee) [IO D ,

nK

Vo (A, Ec) = Re <B§ (I, 0] Va.a(Ac, Ee) [ﬂ C}) :

The right-most eigenvalues and eigenvectors of large-scale sparse matrix pencils can be
efficiently computed using an Arnoldi or Krylov-Schur method with the shift-and-invert
operator and a suitable shift o with a real part larger than or close to a(A., E.); see,
e.g., [34,63]. The shift o can be efficiently updated during an optimization approach
using the previous computations of a(A., F.). In our numerical experiments, we use the
eigs function from MATLAB, which in its latest version implements the Krylov-Schur
algorithm [63].
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